
6
A dichotomy about (s, 1, u)-partially hyperbolic attractors

In this section we present an important class of dynamics where u or s-

minimality holds. The proof of next theorem is the main goal of this section.

Theorem 6.1 There is a residual subset R ⊂ Diff1(M) with the following

property. Let f ∈ R and Λf (U) be a transitive proper attractor of f that is

(s, 1, u)-partially hyperbolic, and U be a compatible neighborhood of f . Let Gs

(resp. Gu) be the subset of Diff1(M) of diffeomorphisms g such that Λg(U) is

s-minimal (resp. u-minimal). Then Gs ∪ Gu is a residual subset of U .

Corollary 6.2 Let R, f ∈ R, and Λf (U) be as in Theorem 6.1. If Λf (U) is

robustly transitive, then int(Gs) ∪ int(Gu) is an open and dense subset of U .

Proof : This corollary is an immediate consequence of Corollary 5.17 together

with Theorem 6.1 when Λf (U) is a robustly transitive set. �

Corollary 6.3 Let f ∈ R and Λf (U) be a transitive attractor of f that is

(s, 1, u)-partially hyperbolic. Then for every periodic point p ∈ Λf (U) there is

an open set Wp ⊂ Diff1(M), with f ∈ Vp, such that if g ∈ V and Λg(U) is

transitive then Λg(U) = H(pg, g).

Proof : By Remark 3.7, any attractor contains its unstable manifolds. In

particular, the attractors contain its homoclinic classes, since they are subsets

of the unstable manifolds. Then, H(pg, g) ⊂ Λg(U). The inverse inclusion is

just Theorem 5.9, giving the equality Λg(U) = H(pg, g) in the open set Wp. �

Corollary 6.4 C1-generically, a robustly transitive attractor Λf (U) of a dif-

feomorphism f varies continuously in a small neighborhood of f .

Proof : This is an immediate consequence of Remark 2.2 and 4.2. Since the

attractor is also robustly a homoclinic class, it must vary both lower and upper

semicontinously in a open neighborhood of f . �
To prove Theorem 6.1 we need to classify the behaviour of the dynamics

on certain central invariant curves. According to this classification, the proof

of Theorem 6.1 is divided case by case.
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6.1
Central Curves: Classification of Periodic Points

Unlike the strong stable and unstable bundles, we can not guarantee

the existence of invariant central foliations tangent to the central bundle

of a partially hyperbolic splitting. Nevertheless, if Λ is a (s, 1, u)-partially

hyperbolic attractors, we can guarantee the existence of invariant central

curves for the hyperbolic periodic points of Λ (Proposition 6.5). A central

curve is a curve γ ⊂M that is tangent to the (extended) central bundle Ec at

every point of U (see subsection 4.3).

Next result is an adaptation of Theorem 2 in (22) for the context of

partially hyperbolic attractors. In the original statement in (22), the partial

hyperbolicity is defined in the whole manifold.

Proposition 6.5 Let f ∈ R and Λf (U) be an (s, 1, u)-partially hyperbolic

attractor of f . Then there exists K > 0 such that, for every hyperbolic periodic

point with period N ≥ K, there exists an fN invariant central curve L(p) (i.e.,

fN(L(p)) = L(p)) containing p in its interior.

ProofSketch of the proof : The proof of this version is exactly the same as

the one in Theorem 2 of (22). We only observe that it involves only local

arguments, which are still valid inside the isolating block U of the attractor

Λf (U). Then for each periodic point p ∈ Λf (U) we obtain a local central curve

γ(p) inside U . In the process we may assume that either γ(p) is a complete

curve inside U or its boundary lies in the boundary of U . In the later case, we

can still extend γ(p) to a complete curve by taking the backward and forward

iterations of it. So we define L(p) =
�

n∈Z f
n·N (γ(p)), where N is the period of

p. In this way we obtain the invariance by the period fN(L(p)) = L(p). �
Let f be a diffeomorphism in the residual subset R and Λf (U) be a

transitive attractor of f . For each periodic point p ∈ Λf (U) of sufficiently

large period we consider an invariant central curve L(p) passing through p

given by Proposition 6.5. Given ε > 0, we denote by Lε,U (p) the connected

component of LU(p) ∩ Bε(p) that contains p.

The rest of this section is a translation, to the case of attractors, of the

results in Section 5.2 of (12).

Remark 6.6 Recall that R consists of Kupka-Smale diffeomorphisms, so the

set of periodic points with period less than a given constant K is a finite set.

Note that if the period of p is d, then the period of any periodic point in

the curve L(p) is a divisor of 2d (the factor 2 appears because f may reverse
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the orientation in the central direction). Hence, there are only finitely many

periodic points in L(p).

We choose these central curves L(p) in a coherent way, that is, satisfying

f(L(p)) = L(f(p)).

Denote by LU(p) the connected component of L(p)∩U containing p and

let Γp ⊂ LU(p) be the smallest compact and connected subset of LU(p) that

contains all periodic points and all periodic closed curves of LU(p) (it may

happens that Γp = {p}). There are three possibilities for the boundary ∂Γp of

Γp relative to the set LU(p): either it is an empty set, a unitary set, or a two

points set. If ∂Γp = ∅ then Γp is a closed curve. When ∂Γp �= ∅ we say that

∂Γp are the extremal points of Γp. A periodic point q is called extremal if there

is some p ∈ Λf (U) such that q ∈ ∂Γp.

Remark 6.7 Since U is a neighborhood of the compact set Λf (U), the length

of LU(p) is uniformly bounded from below, and the point p is uniformly far

from the edges of LU(p), if any. Hence, there is δ > 0 such that, for every

periodic point p ∈ Λ, the central curve LU(p) contains a disk centered at p of

length bigger that δ.

As in (12), we classify the periodic points of f in U as follows:

P1 ∪ P2 ∪ P3 ∪ P4 = {p ∈ Per(f) ∩ U, period of p ≥ K}

where

– p ∈ P1 if the extremal points of Γp are attracting in the central direction,

– p ∈ P2 if the extremal points of Γp are repelling in the central direction,

– p ∈ P3 if there are one attracting and one repelling extremal points of

Γp, and

– p ∈ P4 if Γp is a closed curve.

Remark 6.8 Given a periodic point p in Λ, from the Morse-Smale dynamics

induced on the one dimensional curve L(p), there are finitely many periodic

points a1, . . . , amp of index s and finitely many periodic points b1, . . . , bnp of

index s+ 1 such that

Γp ⊂ {a1, . . . , amp} ∪
np�

i=1

W s(bi, f) and Γp ⊂ {b1, . . . , bnp} ∪
mp�

i=1

W u(ai, f).
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Remark 6.9 If p ∈ P1 ∪P4 then ∂Γp is either the empty set or consists of (at

most two) points of index s+ 1. Hence

LU(p) ⊂ Γp ∪W s(∂Γp).

Similarly, if p ∈ P2 ∪ P4, then ∂Γp is either the empty set or consists of

(at most two) points of index s. Hence

LU(p) ⊂ Γp ∪W u(∂Γp).

In this case, as Λ is an attractor, both Γp and W
u(∂Γp) are subsets of Λ,

and thus LU(p) ⊂ Λ.

Lemma 6.10 For every p ∈ Per(f) ∩ U with period bigger than K, the

following properties hold:

1. Γp ⊂ Λf (U),

2. f(Γp) = Γf(p),

3. f(Pi) = Pi.

Proof : By definition, the periodic points of Γp belong to U . Also note that

Γp ⊂
�

q∈Γp

W u(q)

and that, as Λf (U) is an attractor, W u(q) ⊂ Λf (U), proving item (1).

Item (2) and (3) follow directly from item (1) and the coherent choice of

the central curves. Observe that the diffeomorphism f send closed curves to

closed curves and the extremal points of Γp to the extremal points of Γf(p). �

Lemma 6.11 Pi = Λf (U) for some i ∈ {1, ..., 4}.

Proof : By item (2) of Theorem 4.3 the periodic points of f are dense in

Λf (U). By Remark 6.6, the periodic points of Λf (U) of period less then K

(given by Theorem 6.5) is a finite set. Since Λf (U) is infinite and transitive,

it has no isolated periodic orbits, and then Λf (U) = P1 ∪ P2 ∪ P3 ∪ P4. Let

x ∈ Λf (U) be a point with dense orbit. Then x ∈ Pi for some i ∈ {1, ..., 4}.
From item (3) in Lemma 6.10, the whole orbit of x lies in Pi. Consequently

Pi = Λf (U). �
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6.2
Proof of Theorem 6.1

Before proving Theorem 6.1, we state some auxiliary lemmas. In what

follows we always assume (without mentioning) that Λf (U) is a (s, 1, u)-

partially hyperbolic attractor.

Given n ∈ N, let Per(n, f|U ) be the set of periodic points in Λf (U) whose

period is less than or equal to n. By Remark 6.6, for every f ∈ R and n ∈ N,
the set Per(n, f|U ) is a finite (hyperbolic) set. This immediately implies the

following remark.

Remark 6.12 Given f ∈ R and n ∈ N, there is a neighborhood Un of f such

that, for every g ∈ Un, the set Per(n, g|U ) consists exactly of the continuations

of the points in Per(n, f|U ).

The next lemma follows using a standard Kupka-Smale-like argument.

Lemma 6.13 Fix n ∈ N. Let U be a compatible neighborhood of f ∈ R such

that, for g ∈ U , the set Per(n, g|U ) is the continuation of the hyperbolic set

Per(n, f|U ). Fixed ε > 0, there is an open and dense subset V of U such that,

for every g ∈ V and every pair of distinct points pg, qg ∈ Per(n, g|U ) it holds

that

F s
ε (pg, g) ∩ Fu

ε (qg, g) = ∅.

Proof : Fix p, q ∈ Per(n, f|U ) with p �= q. Observe that by the continuous

dependence of the leafs on g, if F s
ε (pg, g) ∩ Fu

ε (qg, g) = ∅, than it holds in an

open neighborhood of g.

On the other hand, since u + s is less than the ambient dimension, if

F s
ε (pg, g) ∩ Fu

ε (qg, g) �= ∅, this intersection is not transverse. Hence, after an

arbitrarily small perturbation, we can assume that the disks F s
ε (pg, g) and

Fu
ε (qg, g) are disjoint. As a conclusion, there is an open and dense subset Vp,q

of U such that, for every g ∈ Vp,q it holds that

F s
ε (pg, g) ∩ Fu

ε (qg, g) = ∅. (6.2.1)

By Remark 6.12, the set

V =
�

(p,q)∈B
Vp,q , where B = {(p, q) ∈ {Per(n, f|U )}2 | p �= q},
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is a finite intersection of open and dense subsets of U , so V is an open and

dense subset of U . By construction, every g ∈ U satisfies Equation (6.2.1). �
Next result follows from Lemma 6.13 using a standard genericity argu-

ment.

Lemma 6.14 Let U be a compatible neighborhood of f ∈ R with respect to

the attractor Λf (U). Fixed ε > 0, there is a residual subset G of U such that

for every g ∈ G and every pair of periodic points a, b of Λg(U) it holds that

F s
ε (a, g) ∩ Fu

ε (b, g) = ∅.

Proof : Let {fi}i∈N be a dense subset of U . Fixed n ∈ N, we apply Lemma 6.13
to each fi with respect to n, obtaining an open and dense subset Vn

i of

a neighborhood of fi satisfying the conclusion of Lemma 6.13. Note that

Gn =
�

i∈N Vi is an open and dense subset of U . Finally, setting G =
�

n∈N Gn

we obtain the residual subset of U satisfying the conclusion in the lemma. �
Note that, since Λ is an attractor, for any x ∈ Λ and ε > 0 the disk

Fu
ε (x) is a subset of Λ. Then, F s

ε (z) is well defined for every z ∈ Fu
ε (x). Given

x ∈ Λ, consider the topological disk of codimension one

Δ(x, ε) =
�

z∈Fu
ε (x)

F s
ε (z). (6.2.2)

Recall that, for every periodic point p, the central curve LU(p) is tangent

to the bundle Ec, and consequently transverse to Es ⊕ Eu. By Remark 6.7,

LU(p) contains a disk centered at p of length δ. Recall that δ does not depend

on p. Then, if p is sufficiently close to x, the central curve LU(p) meets

topologically transversely the disk Δ(x, ε), say at the point zp (see Figure

6.1).

Lemma 6.15 If zp lies in the stable manifold of some periodic point p̃ �= zp

in Γp, then p̃ ∈ Of (Fu(x)).

Proof :

By the definition of Δ(x, ε) and zp, there is a point wp ∈ Fu
ε (x) such that

zp ∈ F s
ε (wp). Then

lim
n→∞

d(fn(zp), f
n(wp)) = 0. (6.2.3)

Since, by hypothesis, zp ∈ W s(q, f), we get that

lim
n→∞

d(fn(zp), f
n(p̃) = 0. (6.2.4)

From Equations (6.2.3) and (6.2.4) we obtain that

lim
n→∞

d(fn(p̃), fn(wp)) → 0.
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Since wp ∈ Fu(x), this implies that the orbit of the leaf Fu(x) accumulates at

p̃. �
For notational simplicity let us replace f by f∗ in the statement of

Theorem 6.1 and reserve the symbol f to be a perturbation of f∗. In this

way, we adopt the notations of Sections 1, 2, and 8, where f is omitted (if no

misunderstanding occurs).

Given f∗ ∈ R, let Λf∗(U) be a (s, 1, u)-partially hyperbolic proper

attractor and U∗ be a compatible neighborhood of f∗. Let G∗ be the residual

subset of U∗ given by Lemma 6.14 for f∗.

To prove Theorem 6.1, it suffices to see that for every f ∈ G∗ ∩R either

Λf (U) is s-minimal or it is u-minimal.

End of the proof of Theorem 6.1.

Fix f ∈ G∗ ∩ R and Λ = Λf (U). We split the proof of the theorem into

several cases, according to which set Pi (see Section 6.1) is dense in Λ. Theorem

6.1 is an immediate consequence of the following proposition.

Proposition 6.16

1. If the set P1 is dense in Λ then Λ is u-minimal.

2. If the set P2 is dense in Λ then Λ is s-minimal.

3. If the set P3 is dense in Λ then Λ is u-minimal.

4. If the set P4 is dense in Λ then Λ is simultaneously s and u-minimal.

Proof : We consider three cases that imply the proposition.

Case (a): If the set P1 ∪ P4 is dense in Λ, then Λ is u-minimal.

As f ∈ R, Λ is a homoclinic class (see Remark 5.8). By Theorem 5.12, to

prove the u-minimality of Λ it is enough to see that, for every x ∈ Λ, it holds

that
O(Fu(x)) ∩ Pers+1(f|Λ) �= ∅. (6.2.5)

Since, by hypotheses, the set P1 ∪ P4 is dense in Λ, if p ∈ P1 ∪ P4 is

sufficiently close to x, then as in Lemma 6.15 there is a transverse intersection

point zp between LU(p) and Δ(x, ε) (see Figure 6.1).

By Remarks 6.8 and 6.9, the point zp is either in a stable manifold of

some periodic point p̃ ∈ Γp of index s+ 1, or zp is a hyperbolic periodic point

of index s.

Suppose that the first possibility holds. Then Lemma 6.15 implies Equa-

tion (6.2.5) to this situation.
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Figure 6.1: Case (a)

Now suppose that zp is a hyperbolic periodic point of index s. From

Equation (6.2.3) it follows that the orbit of Fu(x) accumulates on the orbit of

Fu(zp). Thus to get Equation (6.2.5) it is enough to show that

O(Fu(zp)) ∩ Pers+1(f|Λ) �= ∅. (6.2.6)

Consider the topological manifold Δ(zp, ε). For any q ∈ P1∪P4 sufficiently

close to zp, the curve LU(q) meets topologically transversely Δ(zp, ε) at some

point zq. By Lemma 6.14, zp is the only periodic point in Δ(zp, ε), and by

Remark 6.8, zq belongs to the stable manifold of some periodic point in LU(q)

with index s+ 1. Now we apply Lemma 6.15 to obtain Equation (6.2.6) and,

consequently, Equation (6.2.5).

As this holds for every x ∈ Λ, we end the proof of Case (a).

Case (b): If the set P2 ∪ P4 is dense in Λ, then Λ is s-minimal.

Note that, since the points in the strong stable disk may not belong to Λ,

we cannot argue as in Case (a) by saturating a strong stable disk with strong

unstable leaves. To bypass this difficulty, for each point in p ∈ P2 ∪ P4 we

introduce the following topological disk (see Figure 6.2).

∇(p, ε) =
�

y∈Lε,U (p)

Fu
ε (y). (6.2.7)

Note that, by Remark 6.9, the curve Lε,U (p) is contained in Λ. Thus

Fu
ε (y) is well defined for every small ε > 0, p ∈ P2 ∪ P4, and y ∈ Lε,U (p).

By Theorem 5.12, to prove the s-minimality of Λ it is enough to prove

that, for every x ∈ Λ, it holds that
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O(F s(x)) ∩ Pers(f|Λ) �= ∅. (6.2.8)

Recall that, by Remark 6.7, the curve LU(p) contains a disk centered at

p with length δ inside U . Hence, given any x ∈ Λ, if p ∈ P2 ∩ P4 is sufficiently

close to x then F s
ε (x) intersects (topologically transversely) ∇(p, ε) at some

point wp (see Figure 6.2). By the definition of ∇(p, ε), there is zp ∈ Lε,U (p)

such that wp ∈ Fu
ε (zp), and thus

lim
n→∞

d(f−n(zp), f
−n(wp)) = 0. (6.2.9)

By Remarks 6.8 and 6.9, either zp ∈ W u(p̃) for some periodic point p̃ ∈
Γp∩Pers(f|Λ), or zp ∈ Pers+1(f|Λ). Similarly to Case (a), in the former situation

we get that
lim
n→∞

d(f−n(zp), f
−n(p̃)) = 0. (6.2.10)

Combining Equations (6.2.3) and (6.2.4), it follows that

lim
n→∞

d(f−n(p̃), f−n(wp)) → 0,

which implies Equation (6.2.8), since wp ∈ F s(x).

Figure 6.2: Case (b)

In the latter situation, where zp ∈ Pers+1(f|Λ), the orbit of F s(x)

accumulates on the orbit of F s(zp). Then, to conclude Equation (6.2.8), it

is enough to prove that

O(F s(zp)) ∩ Pers(f|Λ) �= ∅. (6.2.11)

Consider a periodic point q ∈ P2 ∪ P4 close to zp and the topological

manifold ∇(q, ε) such that F s
ε (zp) intersects topologically transversely ∇(q, ε)

at a point wq. Then, there exist a point zq ∈ LU(q) such that wq ∈ Fu
ε (zq). By
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Lemma 6.14, zq cannot be a periodic point, so the only possibility is that zq is

in the unstable manifold of some periodic point of Γq of index s. Hence we fall

in the same situation we have treated in the first part of the proof, obtaining

Equation (6.2.11) and, consequently, Equation (6.2.8).

As this holds for every x ∈ Λ, we end the proof of Case (b).

Case (c): If the set P3 is dense in Λ, then Λ is u-minimal.

By Theorem 5.12, to prove the u-minimality of Λ it is enough to prove

that, for every x ∈ Λ, Equation (6.2.5) holds.

Consider the codimension one topological disk Δ(x, ε), see Equation

(6.2.2). Fix ε̃ and p ∈ P3 sufficiently close to x so that Lε̃,U (p) intersects

topologically transversely Δ(x, ε), say at the point zp. Let l be the curve

interval joining zp and p inside LU(p). We assume that ε̃ is sufficiently small

so that every periodic point q close to l has its central curve LU(q) meeting

topologically transversely Δ(x, ε). We also assume that there is no periodic

point in the interior of the curve l. Otherwise, we replace p by a periodic point

in LU(p) with this property. If zp = p then l is trivial and we fall in a particular

case of item (i) in the following list of possibilities.

By Remarks 6.8 and 6.9, there are three possible configurations:

(i) either zp is a periodic point or

(ii) zp ∈ W s(p) (if p has index s+ 1) or

(iii) zp ∈ W u(p) (if p has index s).

If zp ∈ W s(p), then Equation (6.2.5) follows from Lemma 6.15. If

Pers+1(f|Λ) then, as in case (a), Lemma 6.15 gives quation (6.2.6) and, con-

sequently, Equation (6.2.5). This ends item (ii) and half of item (i). The other

half of item (1) is when zp ∈ Pers(f|Λ) that will be treat later.

Let us consider item (iii) where zp ∈ W u(p). Note that in this case the

segment l ⊂ LU(p) joining p and zp is a subset of the unstable manifold of p,

so it is contained in the attractor Λ.

Let z̃p = f−2d(zp) ∈ l and Δ̃(x, ε) = f−2d(Δ(x, ε)), where d is the period

of p (see Figure 6.3). Denote by l̃ the curve joining zp and z̃p inside l. Since

the curve l̃ is a subset of Λ, it is accumulated by periodic points of Λ.

If q is close to z̃p then LU(q) meets Δ̃(x, ε) transversely. So we take a

point q ∈ P3 such that there are points zq, z̃q given by

zq = LU(q) � Δ(x, ε) and z̃q = LU(q) � Δ̃(x, ε), (6.2.12)

such that q lies in the curve bounded by zq and z̃q inside LU(q) (see

Figure 6.3).
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If the point zq belongs to the stable manifold of some periodic point of

index s+1 or zq is a periodic point of index s then, as in Case (a), Lemma 6.15

implies Equation (6.2.5). Thus we can assume that zq does not belong to the

stable manifold of any point of LU(q) and is not a periodic point of index s.

Hence the only possibility, as q ∈ P3, is that zq lies in the unstable manifold of

the extremal point of Γq of index s.

On the other hand, as q ∈ P3 we have that either z̃q ∈ Γq or z̃q is in the

stable manifold of the extremal point of Γq of index s+ 1.

By the coherent choice of the central curves and Equation 6.2.12, the

curve LU(f
2d(q)) = f 2d(LU(q)) meets transversely Δ(x, ε) at the point f 2d(z̃q).

By item (2) of Lemma 6.10, this intersection is either in Γf2d(q) or lies in the

stable manifold of the extremal point of Γf2d(q). In any case, we are again in

one of the situations treated in Case (a), where we apply Lemma 6.15 to obtain

Equation (6.2.5). This ends item (iii).

Figure 6.3: Case (c)

We are left with the last possibility in item (i), that is: zp ∈ Pers(f|Λ).

Observe that there exist wp ∈ Fu
ε (x) such that zp ∈ F s

ε (wp). This implies

that the orbit of F s(x) accumulates on the orbit of F s(zp). So to conclude

Equation (6.2.8) it is enough to prove that

O(Fu(zp)) ∩ Pers(f|Λ) �= ∅. (6.2.13)

To obtain this equation, we follow all the initial arguments in this proof

replacing the point x with zp.

Consider a point q ∈ P3 sufficiently close to zp so that Lε̃,U (q) intersects

topologically transversely Δ(zp, ε) in a point zq. In principle, we should verify
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all the three items (i), (ii), and (iii) to this new configuration. However, observe

that items (ii) and (iii) was already verified in the general case (for every x ∈ Λ)

in the scope of this proof. In addition, by Lemma 6.14, zp is the only periodic

point in Δ(zp, ε), so item (i) do not occur. Hence we obtain Equation (6.2.13)

and, consequently, Equation (6.2.5). This ends Case (c).

This completes the analysis of the three cases we need to consider to

prove Proposition 6.16. �
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