
3
A Linear Stochastic Programming Model for Optimal Leve-
raged Portfolio Selection

The portfolio selection theory has an extensive literature exploring

different objective functions and constraints to represent the well known risk-

return trade-off presented by Markowitz in (MARKOWITZ, 1952). In particular,

many works have focused in studying risk measures (see (ARTZNER et al., 1999;

ROCKAFELLAR; URYASEV, 2000; ROCKAFELLAR; URYASEV, 2002; Bion-Nadal,

2008; DETLEFSEN; SCANDOLO, 2005; RIEDEL, 2004; CHERIDITO; DELBAEN;

KUPPER, 2006; ROORDA; SCHUMACHER, 2007; KOVACEVIC; PFLUG, 2009)) and

their consequences to the optimal investment decisions (see (SHAPIRO, 2009;

RUDLOFF; STREET; VALLADÃO, 2011)). However, little attention is given to

loan modeling, in particular to borrowing costs and credit limits. In practice,

there is a finite number of lenders and each one offers a limited amount of

money for a fixed borrowing rate greater than the risk free interest rate due

to the credit risk involved.

In static models, it is common to assume a fixed borrowing rate such as

in the classical mean-variance approach. Indeed, (MARKOWITZ, 1952) assumes

an unbounded credit limit and risk-free borrowing rate allowing a short selling

position in the risk free asset. A more complex, but still unrealistic, assumption

is to define the borrowing rate as the risk free one plus a fixed positive risk

premium, as we see in many dynamic models for asset and liability management

(see (ZIEMBA; MULVEY, 1998; CARINO; ZIEMBA, 1998; KOUWENBERG, 2001;

MULVEY; SHETTY, 2004; HILLI et al., 2007; BIRGE; LOUVEAUX, 1997)) and debt

management (see (BALIBEK; MURAT, 2009; CONSIGLIO; STAINO, 2010; DATE

P., 2011)).

In this work, we propose a portfolio and leverage selection optimization

model with a piecewise linear borrowing cost function with the purpose of

representing multiple lenders as in practice.

This chapter is organized as follows: In section 3.1, we develop a two-stage

stochastic programming model with the proposed cost function. In section

3.2, we motivate our modeling choice with a numerical example showing

the practical consequences of sub-optimal decisions obtained using the usual
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linear borrowing cost approximations. Moreover, we develop in section 3.3

a multistage extension with a proportional credit limit and argue that, for

stage-wise independent returns and proportional credit limits (see (BLOMVALL;

SHAPIRO, 2006) for details), the optimal policy is myopic and the first stage

decision can be obtained by solving the proposed two-stage model on section

3.1. Moreover, we show that proportional credit limits are equivalent to upper

bounds, imposed by each lender, on the incremental leverage ratio of the

borrower.

3.1
The optimization model

In this section, we describe a model that optimizes the expected portfolio

return under a risk constraint. At the beginning of the period (t = 0) an

investor has an initial wealth W0 and wants to determine his asset allocation,

x = (x1, . . . , xN), and the amount borrowed, d. Let us denote X (W0) the

set of all feasible strategies, R(x, d) the stochastic portfolio return, E[.] the

unconditional expectation and D[.] a deviation measure. Then, we define the

following problem:

max
(x,d)∈X (W0)

{E [R(x, d)] | D [R(x, d)] ≤ ν} (3-1)

where ν is a risk averse parameter.

The set of all feasible strategies depending on the initial wealth is defined

as

X (W0) =

{
(x, d) ∈ R

N+1
+

∣∣∣∣∣
N∑
i=1

xi − d = W0

}
.

In addition, we consider the probability space (Ω,F , P ) and define the

stochastic portfolio return R(x, d) for each uncertainty realization ω as

R(x, d)(ω) =
W1(x, d)(ω)−W0

W0

, ∀ω ∈ Ω. (3-2)

where W1(x, d) is the stochastic terminal wealth depending on the asset and

debt allocation.

After that, let us denote ri to be the stochastic return of asset i, ∀i =
1, . . . , N and then define the terminal wealth W1(x, d) as

W1(x, d)(ω) =
N∑
i=1

(
1 + ri(ω)

)
xi − f(d), ∀ω ∈ Ω,

where f : R→ R is the borrowing cost function.
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Usually, past works have assumed a borrowing cost function with a fixed

rate, nonetheless in practice, one has to choose among a finite number of

lenders and each one of them has a different borrowing rate and credit limit.

This model approximate the actual borrowing cost by a linear function such

as f(d) =
(
1 + rd

)
d, where rd would be a “representative” borrowing rate.

But how should we choose this rate? And given a certain rate, how far are we

from the actual optimal solution?

For the purpose of avoiding sub-optimality, we model the borrowing cost

function exactly as in practice. For a given amount d, a borrower minimizes his

cost accounting for all available lenders. Let us consider K lenders and denote

δk the amount borrowed from a lender k whose rate and credit limit are given

rdk and δ̄k, respectively. Then, we denote δ = (δ1, . . . , δK) and δ̄ = (δ̄1, . . . , δ̄K),

and define the cost function as

f(d) = min
δ

{
K∑
k=1

(1 + rdk) δk

∣∣∣∣∣
K∑
k=1

δk = d; 0 ≤ δ ≤ δ̄

}
. (3-3)

The cost function f(d) proposed in (3-3) is convex and piecewise linear as

illustrated in Figure 3.1 for K = 3 and rd1 ≤ rd2 ≤ rd3. Indeed, this problem

can be interpreted as a continuous knapsack problem where the solution of

(3-3) has straightforward intuition of borrowing as much as you can from the

cheapest lender. For instance, let rd1 ≤ . . . ≤ rdK and
∑i

k=1 δ̄k ≤ d ≤∑i+1
k=1 δ̄k

with 1 ≤ i < K, the optimal solution is

δ∗k =

⎧⎪⎨⎪⎩
δ̄k, ∀k ≤ i

d−∑i
k=1 δ̄k, k = i+ 1

0, ∀k > i+ 1.

From this definition, one can see that the slopes and segment sizes can be

respectively interpreted as unit borrowing costs and credit limits of K different

lenders.

By virtue of solving (3-1) efficiently using (3-3), we need to rewrite it as

a linear stochastic programming model. Then, we must redefine the feasible

set, the terminal wealth and the portfolio return as

X̄ (W0) =

{
(x, δ) ∈ R

N+K
+

∣∣∣∣∣
N∑
i=1

xi −
N∑
k=1

δk = W0, δ ≤ δ̄

}
,

W̄1(x, δ)(ω) =
N∑
i=1

(1 + ri(ω)) xi −
K∑
k=1

(1 + rdk) δk, ∀ω ∈ Ω,

R̄(x, δ)(ω) =
W1(x, δ)(ω)−W0

W0

, ∀ω ∈ Ω.
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1+rd2,1 
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Figura 3.1: Borrowing cost function

Then, we can finally define the equivalent problem as

max
(x,δ)∈X̄ (W0)

{
E
[
R̄(x, δ)

] ∣∣D (R̄(x, δ)
) ≤ ν

}
. (3-4)

Now, to have a full description of our problem, we still need to choose a

deviation measure. In this paper, we choose a CVaR based deviation measure

defined in (ROCKAFELLAR; URYASEV; ZABARANKIN, 2006) and illustrate in

Figure 3.1. We choose the CVaR deviation since it is a coherent risk measure

(see (ARTZNER et al., 1999)) with a suitable economic interpretation (see

(STREET, 2009; BEN-TAL; TEBOULLE, 2007)) that can be written as a linear

stochastic programming problem as in (ROCKAFELLAR; URYASEV, 2000).

Letting R = R̄(x, δ) and W1 = W̄1(x, δ), we define

D(R) = E[R]− φα(R)

where φα(R) = −CV aRα(R) = supz

{
z − (1− α)−1

E
[
(R− z)−

]}
and α is

the significance level of the CVaR.

Note that maximizing the expected portfolio return is equivalent to

maximizing the expected terminal wealth since W0 is a constant and E[R] =

(E[W1] −W0)/W0. Note also that D(R) = D(W1)/W0 since E[.] and φ(.) are

both positively homogeneous and translation invariant, see (STREET, 2009) for

details. Then, we can write the following equivalent stochastic programming

model
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D(R)

E[R]φα(R)

1− α− α

Figura 3.2: CVaR based deviation measure

maximize
W1,x,δ,z

E [W1]

subject to
∑N

i=1 xi −
∑K

k=1 δk = W0

W1 −
∑N

i=1 (1 + ri) xi +
∑K

k=1 (1 + rdk) δk = 0

E
[
W1 −

(
z − (1− α)−1 (W1 − z)−

)] ≤ νW0

δ ≤ δ̄

x, δ ≥ 0.

(3-5)

Usually in a continuous distribution case, one would use Monte Carlo

simulation to approximate the true problem by its sample average approxi-

mation (SAA), see for instance (PAGNONCELLI; AHMED; SHAPIRO, 2009) and

(KLEYWEGT; SHAPIRO; MELLO, 2002). It is well known that the optimal value

of the SAA problem is a consistent estimator of the “true problem”. Said so,

let us solve the proposed model for a numerical example and show how bad it

would be the possible fixed borrowing rate approximations.

For a discrete distribution, which embodies the SAA problem, we can

write the deterministic equivalent linear program as follows:
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maximize
W1,x,δ,z,q

∑
ω∈Ω pωW1(ω)

subject to
∑N

i=1 xi −
∑N

k=1 δk = W0

W1(ω)−
∑N

i=1 (1 + ri(ω)) xi +
∑K

k=1 (1 + rdk) δk = 0, ∀ω ∈ Ω∑
ω∈Ω pω [W1(ω)− (z − (1− α)−1q(ω))] ≤ νW0

q(ω) ≥ z −W1(ω), ∀ω ∈ Ω

q(ω) ≥ 0, ∀ω ∈ Ω

δ ≤ δ̄

x, δ ≥ 0,

(3-6)
where pω is the probability of scenario ω ∈ Ω.

Note that the linear approximation approach solves problem (3-6) for

K = 1 using rd1 = rd which is a “representative” borrowing rate and for a

certain credit limit. The approximated problem is defined as

maximize
W1,x,δ1,z,q

∑
ω∈Ω pωW1(ω)

subject to
∑N

i=1 xi − δ1 = W0

W1(ω)−
∑N

i=1 (1 + ri(ω)) xi +
(
1 + rd

)
δ1 = 0, ∀ω ∈ Ω∑

ω∈Ω pω [W1(ω)− (z − (1− α)−1q(ω))] ≤ νW0

q(ω) ≥ z −W1(ω), ∀ω ∈ Ω

q(ω) ≥ 0, ∀ω ∈ Ω

δ1 ≤ δ̄1

x, δ ≥ 0.

(3-7)
The model proposed in (3-6) reflects the actual situation of leveraged

investment decision process while (3-7) is only a approximation that leads to a

suboptimal strategy. Even though (3-7) is smaller optimization problem than

(3-6), we argue that the complexity of problems (3-6) and (3-7) are almost

the same since, for practical applications, K is much smaller than the usual

number of scenarios S. Thus, our model generates the actual optimal solution

with very low extra computational cost when compared to the pre-existing

alternatives. We illustrate this advantage through a numerical example.

3.2
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Numerical example

Let us consider N = 4 assets, where the first one is risk free with

r1(ω) = 0, ∀ω ∈ Ω. In addition, we assume that the remaining assets have

log excess returns that follow a multivariate normal with mean and covariance

matrix estimated with historical data. The three risky assets are investments

in large, medium and small companies represented by the indexes S&P 500,

S&P Midcap 400 and S&P Smallcap 600, respectively. We used a monthly

database starting from February 1990 until December 2010, summing up 251

samples. The mean and covariance matrix estimates are

μ =

⎡⎢⎣ 0.003334853

0.007157464

0.006317372

⎤⎥⎦
and

Σ =

⎡⎢⎣ 0.001899971 0.001980483 0.001900386

0.001980483 0.002552800 0.002563507

0.001900386 0.002563507 0.002993681

⎤⎥⎦ .
Let us assume K = 3 lenders and their monthly borrowing rates and

credit limits are given by Table 3.1.

Borrowing Rate Credit Limit
Lender 1 0.10% 25% of W0

Lender 2 0.25% 25% of W0

Lender 3 0.50% 50% of W0

Tabela 3.1: Borrowing Rates and Credit Lines

To solve the numerical example, we sample S = 1000 scenario via Monte

Carlo simulation and formulate (3-6) with Ω = {1, . . . , S}. Table 3.2 gives the

descriptive statistics for the simulated (arithmetic) returns.

Asset 1 2 3 4
Mean 0.00% 0.93% 0.79% 0.56%
StdDev 0.00% 7.64% 3.50% 2.02%
V@Rα 0.00% 11.11% 4.96% 2.68%
CV@Rα 0.00% 14.74% 6.35% 3.59%
Max 0.00% 23.04% 12.04% 6.98%
Min 0.00% -27.29% -10.53% -5.29%

Tabela 3.2: Asset returns - Descriptive Statistics for α = 95%.

For comparison purposes, let us solve 4 models where the first three are

fixed-rate approximations and the forth is our modeling choice with a piecewise

linear cost function. The first approximation is to assume the borrowing rate
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as the cheapest one. The second approximation is to assume an weighted

average based on the credit limits. Finally, the third one is to assume the

most expensive rate. For all these approximations, we assume a 100% leverage

limit which means a credit limit equal to W0. The initial wealth is assumed to

be W0 = 1 without loss of generality.

Formally speaking, to obtain the optimal solution of model 1, 2 and 3

we solve (3-7) for δ̄1 = W0. In particular, we have for model 1: rd = 0.0010,

for model 2: rd = 0.25 · 0.001 + 0.25 · 0.0025 + 0.5 · 0.005 and for model 3:

rd = 0.005.

Moreover, for model 4 we solve (3-6) for K = 3 and

δ̄ =

⎡⎢⎣ 0.25

0.25

0.50

⎤⎥⎦W0, rd =

⎡⎢⎣ 0.0010

0.0025

0.0050

⎤⎥⎦ . (3-8)

where rd = (rd1, rd2, rd3).

We obtain the optimal solution of each model and for different values

of the risk parameter ν. Then, given the optimal strategies we evaluate the

portfolio return R = R(x, d) considering the cost function described by (3-3)

for the actual parameters as in (3-8). We compare the risk-return trade-off

(D[R] vs E[R]) of each approximation to the efficient frontier given by our

model. This comparison is given by Figure 3.3.
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Figura 3.3: Efficient Frontier under the actual cost function.

Model 1 - Cheapest: rd = 0.0010; Model 2 - W. Average: rd = 0.25 · 0.001 +
0.25 · 0.0025 + 0.5 · 0.005; Model 3 - Most exp.: rd = 0.005; Model 4 - PW
linear: δ̄ = W0 · (0.25, 0.25, 0.50)′ and rd = (0.0010, 0.0025, 0.0050)′.

We can see that all approximations are equally good when the agent is

too risk averse (small ν) or almost risk neutral (large ν). However, for the
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central region (4% ≤ D(R) ≤ 15%), the approximations are worse than the

piecewise linear model. This means that, for the same level of risk, choosing

any approximation for the borrowing cost function would give a lower expected

return of the portfolio in comparison to our model. Moreover, none of the

approximations perform better than the others for all values of ν.

For instance, the optimal strategies for ν = 5% are given by in Table 3.3.

We argue, using Figure 3.3 and Table 3.3, that the cheapest approximation is

the best proxy and it has the same solution as the piecewise linear as opposed

to the weighted average and the most expensive ones. This happens because

for this value of ν we have a high risk aversion and it is only worthwhile to

borrow with a cheap rate, e.g., the cheapest proxy and the first segment of

the piecewise linear. So, one could conclude that the cheapest approximation

is a good choice and our model does not have a significant improvement in

comparison to the existent literature.

Model x(1) x(2) x(3) x(4) d
Cheapest 0.00 0.00 0.10 1.06 0.16
Weighted Average 0.00 0.00 0.36 0.64 0.00
Most expensive 0.00 0.00 0.36 0.64 0.00
Piecewise linear 0.00 0.00 0.10 1.06 0.16

Tabela 3.3: Optimal Solutions for ν = 5%

However, note in Table 3.4 that we have completely different solutions

for ν = 10%. In this case, we argue that the weighted average and the most

expensive are better approximations, see Figure 3.3, than the cheapest one

whose strategies are completely different in comparison to our model.

Model x(1) x(2) x(3) x(4) d
Cheapest 0.00 0.00 0.73 1.27 1.00
Weighted Average 0.00 0.00 1.26 0.29 0.55
Most expensive 0.00 0.00 1.40 0.00 0.40
Piecewise linear 0.00 0.00 1.31 0.19 0.50

Tabela 3.4: Optimal Solutions for ν = 10%

Hence, using a linear borrowing cost approximation is not sufficient to

represent the complexity of the borrowing cost function in a leveraged invest-

ment decision process. Indeed, it is not possible to choose a “representative”

borrowing rate that consistently approximates the optimal strategy. For this

reason we argue that our model must be used instead of these proxies because

it is still tractable and guarantees optimality of the decisions.
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3.3
Multistage extension

Let us assume a multistage setting with a finite planning horizon T ,

where H = {0, . . . , T − 1}. We also consider the stochastic process rt (ω) and

the probability space (Ω,F ,P) with a related filtration F0 ⊆ . . . ⊆ FT , where

F0 = {∅,Ω} and F = FT . Then, we denote by ri,t the Ft-adapted stochastic

process for the return of asset i ∈ {1, . . . , N}. Moreover, we also develop the

following notation extension:

– Wt: wealth at time t.

– xi,t: amount invested in asset i ∈ {1, . . . , N} at time t.

– δk,t: amount borrowed from lender k ∈ {1, . . . , K} at time t.

– δ̄k,t: credit limit of lender k ∈ {1, . . . , K} at time t.

For the multistage extension, we assume that the credit limit of each

lender is a proportion of the current wealth, i.e.,

δ̄k,t = γ̄kWt, ∀k ∈ {1, . . . , K}, t ∈ {1, . . . , T}.

Note that this assumption is equivalent to a fixed upper bound, given by

each lender, on the leverage ratio increment. Let the leverage ratio increment

of lender k be γk,t = δk,t/Wt. Then, γk,t ≤ γ̄k is equivalent to δk,t ≤ γ̄kWt, since

Wt ≥ 0. We argue that it is a reasonable assumption since, in practice, credit

limit do depend on the current wealth of the borrower.

Then, we define a dynamic stochastic programming model where the

value function Vt(Wt) for t = T − 1 is defined as follows:

maximize
xT−1,δT−1,z

E

[∑N
i=1 (1 + ri,T ) xi,T−1 −

∑K
k=1 (1 + rdk) δk,T−1

∣∣∣ FT−1

]
subject to

∑N
i=1 xi,T−1 −

∑K
k=1 δk,T−1 = WT−1

E
[
WT −

(
z − (1− α)−1 (WT − z)−

)] ≤ νWT−1

δT−1 ≤ γ̄ WT−1

xt, δt ≥ 0.

For t ∈ H, Vt(Wt) is defined as
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maximize
xt,δT,z

E

[
Vt+1

(∑N
i=1 (1 + ri,t+1) xi,t −

∑K
k=1 (1 + rdk) δk,t

)∣∣∣Ft

]
subject to

∑N
i=1 xi,t −

∑K
k=1 δk,t = Wt

E
[
Wt+1 −

(
z − (1− α)−1 (Wt+1 − z)−

)] ≤ νWt

δt ≤ γ̄ Wt

xt, δt ≥ 0,

(3-9)

For stage-wise independent returns and homogeneous feasible sets, we

argue that this dynamic problem is easily solved since it has a myopic optimal

policy as described in (BLOMVALL; SHAPIRO, 2006). Indeed, the optimal

solution of the two-stage problem (3-5) is also the optimal for its multistage

extension (3-9). It is worth mentioning that, even though we use the CVaR in

a dynamic setting, our model generates time consistent optimal policies, see

(RUDLOFF; STREET; VALLADÃO, 2011; SHAPIRO, 2009) for details.
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