
4
Computational Framework

In this chapter we will discuss the main issues involving computational ef-

ficiency and implementation. The results of performance were obtained in a

machine with the following specification:

– Intel R© CoreTM i7 CPU X990 @ 3.47GHz 2.79GHz

– Installed memory: 24.0GB

– Windows 7 64 bits

4.1
Implementation

This work was developed in C++ (26, 24) using many libraries with C and

C++ API. API stands for Application Programming Interface and is a set

of rules – functions, classes, methods – to enable software components to

communicate with each other. In our case, the software is communicating with

the libraries – or libs. The libs are used basically to add to the software an

interface, a linear system solver, sparse matrix manipulation and 3D drawings.

4.1.1
User Interface

The interface was developed with IUP (22) and OpenGL (25). OpenGL was

chosen to enable the drawing of 3D objects – the domain, particles and so on.

4.1.2
File Formats

The software reads and writes binary and text files for different purposes. The

text files are to set the data of the simulation. The parameters of the fluid,

such as ρ and μ, the boundary conditions – moving wall or no tension – and the

particles parameters. These files are saved in Lua (20) format to enable easy

additions of parameters on the file and to store data in tables. The user can

modify these files outside the software, as it is straightforward to understand.

DBD
PUC-Rio - Certificação Digital Nº 0921468/CA

Chapter 4. Computational Framework 41

The simulation results are stored in binary files not to lose numeric

precision. Besides, it takes less time to write and read and also avoids the

user to modify it. Only the software can read or write these files.

4.2
System Solving

The Jacobian matrix that arises in the Newton Method is a sparse matrix

and it is assembled with the triplets (i, j, value), where i is the row index, j

the column index and value the value itself. The triplets can be duplicated,

what speeds up the matrix assembly. We implemented a C++ class to hold

the sparse matrix and deal with the solver libraries. It is commonly called a

wrapper, because the rest of the code does not need to worry about the solver.

It just tells the class to solve the system and it does the job internally.

The matrix has the dimension NDOF × NDOF , where NDOF is the total

number of degrees of freedom.

NDOF = 6Nnodes + 4Nelems + 6Nparts (4.1)

Nnodes is the total number of nodes (with 6 DOFs: 3 of
−→
V and 3 of

−→
λ), Nelems

the total number of elements and Nparts the total number of particles (with 6

DOFs: 3 of
−→
V Pk

and 3 of −→ω Pk
).

As the mesh used is regular, the number of nodes and elements is the

product of the number of nodes and elements in each direction.

Nnodes = Nx
nodesN

y
nodesN

z
nodes (4.2)

Nelems = Nx
elemsN

y
elemsN

z
elems (4.3)

The number of nodes in x, y and z directions are, respectively, Nx
nodes,

Ny
nodes and N z

nodes. They depend on the number of elements in each direction,

Nx
elems, N

y
elems and N z

elems.

N�
nodes = 2N�

elems + 1 (4.4)

where � denotes the directions x, y or z.

The dimension of the Jacobian matrix may be large enough to make it

important to find an efficient solver. Our first approach was to try the iterative

solver library IML++ (1). The same one used by Lage (21). We tried all the

solvers provided, however we did not manage to make it converge to a solution.

Even for non-particulate flows.

Then we tried a direct solver library: UMFPACK (9, 8, 11, 10). It works

fine for non-particulate flows and for particulate flows with coarse meshes – up

DBD
PUC-Rio - Certificação Digital Nº 0921468/CA

Chapter 4. Computational Framework 42

to (6×6×6) elements. For more refined meshes we compiled the code in 64 bits,

because it required more than 2GB to be allocated. It works, fine for meshes up

to (11×11×11), when the system solving takes more than 2 hours, see fig 4.2.

The band of the Jacobian matrix explodes as the last DOFs are the DOFs

of the particles. So we have the last 6×Nparts rows and columns with nonzero

values at any column or row respectively. This is due to the movement of the

particles through the mesh. We did not use reordering algorithms because it

would have to be used at every time step. So, we focused on solving this bad

shaped Jacobian.

However we use a direct solver, an iterative one would be better. It is

recommended as future work to look for an iterative solver that deals with this

Jacobian.

4.3
Jacobian Sparsity and DOF numbering

The sparsity of the Jacobian matrix was studied in order to find a way to

speed up the system solver. The non-zero values of the global matrix –for a

mesh 5 × 5 × 5 and one particle– are depicted in figure 4.1. Observe the this

matrix is banded except for the last columns and lines. In these columns and

lines, there are the DOFs of the particles (
−→
VPk

and −→ωPk
).

Figure 4.1: Global Jacobian matrix for a mesh 5x5x5 with one particle. Notice
the bottom lines and the right hand side columns.

4.3.1
System Partitioning

Taking the sparsity of the Jacobian into account, we partitioned it into four

sub matrices to try to speedup the solver. We decomposed the Jacobian J into

DBD
PUC-Rio - Certificação Digital Nº 0921468/CA

Chapter 4. Computational Framework 43

the matrices J11, J21, J12 and J22.

J =

⎡
⎢⎢⎢⎢⎣

J11 J12

J21 J22

⎤
⎥⎥⎥⎥⎦

(4.5)

Consider a 5× 5 matrix J for simplicity. The system to solve is Jx = b
⎡
⎢⎢⎢⎢⎢⎢⎣

J11 J12 J13 J14 J15

J21 J22 J23 J24 J25

J31 J32 J33 J34 J35

J41 J42 J43 J44 J45

J51 J52 J53 J54 J55

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

b1

b2

b3

b4

b5

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.6)

or
⎡
⎢⎢⎢⎢⎣

J11 J12

J21 J22

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x1

x2

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

b1

b2

⎤
⎥⎥⎥⎥⎦

(4.7)

With the previous partitioning we have the following relations:

J11x1 + J12x2 = b1 (4.8)

J21x1 + J22x2 = b2 (4.9)

(4.10)

We can solve for x1 and obtain x2 by matrix computations. One important

characteristic of our Jacobioan matrix is that the last 6Nparts rows and columns

represent the DOFs of the particles. They are clustered in the sub matrices

J21, J12 and J22. The sub matrix J22 is diagonal – see Appendix B.4 – then it

is easily inverted. Solving for x1 we have:

[J11 − J12J22−1

J21]x1 = b1 − J12J22−1

b2 (4.11)

and to compute x2 we have:

x2 = J22−1

b2 − J22−1

J21x1 (4.12)

4.3.2
Performance Results

We ran the problem with one particle and different meshes to compare the

performance between the solver with the partitioning and without it. The

DBD
PUC-Rio - Certificação Digital Nº 0921468/CA

Chapter 4. Computational Framework 44

meshes range was from 3 × 3 × 3 to 11 × 11 × 11, always keeping the same

number of elements in each direction.

3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

120

140

160

Mesh

Ti
m

e
(m

in
)

 not partitioned

partitioned

Solver Performance

Figure 4.2: Elapsed time in the solver with partitioned Jacobian matrix and
not partitioned

After running the problem with both approaches, we found out that

partitioning was not really speeding up the process. So we remained using

the non partitioned Jacobian. Even the best result that we had was not good

enough. The time is still very high for the system solving, what makes it

unfeasible. We should take into account that for each time step, the system

must be solved for each iteration in the Newton Method. So, the system is

solved at least once for each time step.

4.4
Regular Mesh Generation

In this work we use regular meshes on the whole domain. The domain is always

a 3D box with its 6 faces. The mesh generation follows successive interpolations

as in the next algorithm.

1 Po int3 i I (0) ; /∗3D in t e g e r i t e r a t o r ∗/
2 Point3d p00z , p10z , p11z , p01z ; /∗ b i l i n e a r su r f a c e v e r t i c e s ∗/
3 Point3d p0yz , p1yz ; /∗ s t r a i g h t l i n e v e r t i c e s ∗/
4 Point3d pxyz ; /∗3D po in t ∗/
5 Point3d d00z , d10z , d11z , d01z ; /∗ s t e p s f o r the su r f a c e s ∗/
6 Point3d d0yz , d1yz ; /∗ s t e p s f o r the s t r a i g h t l i n e s ∗/
7 Point3d dxyz ; /∗ s t ep f o r the po in t ∗/
8

9 /∗ I n i t i a l i z e the f i r s t b i l i n e a r su r f a c e ∗/
10 p00z = p000 ; p10z = p100 ; p11z = p110 ; p01z = p010 ;

11

DBD
PUC-Rio - Certificação Digital Nº 0921468/CA

Chapter 4. Computational Framework 45

12 /∗ s t e p s in each d i r e c t i o n ∗/
13 Point3d d = Point3d (1 . 0/ s t a t i c c a s t<double>(nnodes . x−1) ,
14 1 .0/ s t a t i c c a s t<double>(nnodes . y−1) ,
15 1 .0/ s t a t i c c a s t<double>(nnodes . z−1)) ;
16 d00z = (p001−p000) ∗d . z ;
17 d10z = (p101−p100) ∗d . z ;
18 d11z = (p111−p110) ∗d . z ;
19 d01z = (p011−p010) ∗d . z ;
20 i n t g l o b a l i d = 0 ; /∗ g l o b a l i d o f the node∗/
21 f o r (I . z=0; I . z<nnodes . z;++I . z)

22 {
23 p0yz = p00z ;

24 p1yz = p10z ;

25 d0yz = (p01z−p00z) ∗d . y ;
26 d1yz = (p11z−p10z) ∗d . y ;
27

28 f o r (I . y=0; I . y<nnodes . y;++I . y)

29 {
30 pxyz = p0yz ;

31 dxyz = (p1yz−p0yz) ∗d . x ;
32 f o r (I . x=0; I . x<nnodes . x;++I . x)

33 {
34 nodes . push back (new Node (pxyz , g l o b a l i d++)) ;

35 pxyz += dxyz ;

36 }
37 p0yz += d0yz ;

38 p1yz += d1yz ;

39 }
40 p00z += d00z ;

41 p10z += d10z ;

42 p11z += d11z ;

43 p01z += d01z ;

44 }

From the 3D box, we generate bilinear surfaces, as in figure 4.3. To

define this surface, we only need 4 points (p00z, p10z, p11z and p01z). Then,

straight lines are generated (p0yz,p1yz) in the surfaces and, finally, points are

interpolated in all lines. This algorithm can take any set of six points enclosing

a concave volume. The faces of the box do not need to be parallel, neither

plane. They can be bilinear surfaces. However, in this work, we only use plane

faces and parallel to their corresponding pair.

The reader may have noticed the classes Point3d, Point3i and Node.

Point3i is basically a holder for 3 integers (x, y, z). Point3d is a holder for

3 real numbers (x, y, z) and provides methods to manipulate it such as a

DBD
PUC-Rio - Certificação Digital Nº 0921468/CA

Chapter 4. Computational Framework 46

p000 p100

p110p010

p00z p10z

p11zp01z

p1yzp0yz
pxyz

p001

x

y

z

p101

p111p011

surface

volume

line point

Figure 4.3: The steps of mesh generation. From the volume, we generate
surfaces, then lines and points.

3D vector. Node derives from Point3d and have also other attributes, such as

global id, that identifies it among other nodes. It also has informations about

boundary conditions and particles.

The variables nnodes.x, nnodes.y and nnodes.z correspond to Nx
nodes,

Ny
nodes and N z

nodes. They are given as well as the points that define the volume

(p000, p100, p110, p010, p001, p101, p111 and p011).

4.5
Parallelization

Parts of the code were parallelized with OpenMP (7). We used the pragma

directive of compilation for a for loop:

#pragma omp p a r a l l e l f o r

f o r (i n t i (0) ; i<n;++ i)

{
/∗ f o r loop body . . . ∗/
}

This gave us some speedups, however the bottleneck was not parallelized: the

Jacobian assembly. It could be parallelized, but to do so, some changes should

be done. Our Jacobian Matrix should be partitioned into as many blocks as

threads, but we didn’t focus on that. We tried to parallelize the assembly

DBD
PUC-Rio - Certificação Digital Nº 0921468/CA

Chapter 4. Computational Framework 47

without taking proper care of this aspect, but no substantial speedup was

gained. Besides, we considered it out of the scope, so we left this for future

works.

DBD
PUC-Rio - Certificação Digital Nº 0921468/CA

