

Monica da Cunha Marroig

Estudo da Corrosão Induzida por Microoganismos em Aços Grau API

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-graduação em Engenharia de Materiais e de Processos Químicos e Metalúrgicos do Departamento de Engenharia de Materiais e de Processos Químicos e Metalúrgicos da PUC-Rio.

> Orientador: Prof.^a Ivani de Souza Bott Co-orientador: Dr.Walter Barreiro Cravo Junior

Rio de Janeiro Abril de 2014

Monica da Cunha Marroig

Estudo da Corrosão Induzida por Microoganismos em Aços Grau API

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pósgraduação em Engenharia de Materiais e de Processos Químicos e Metalúrgicos do Departamento de Engenharia de Materiais do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Profa. Ivani de Souza Bott

Orientadora e Presidente Departamento de Engenharia de Materiais – PUC Rio

Dr. Walter Barreiro Cravo Junior

Co-Orientador Pontifícia Universidade Católica do Rio de Janeiro – PUC Rio

Dra. Márcia Teresa Soares Lutterbach

Instituto Nacional de Tecnologia - INT

Dr. Marcos Henrique de Pinho Maurício

Departamento de Engenharia de Materiais - PUC Rio

Prof. José Eugênio Leal

Coordenador Setorial de Pós-Graduação do Centro Técnico Científico da PUC- Rio

Rio de Janeiro, 14 de abril de 2014.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Monica da Cunha Marroig

Graduou-se em Engenharia de Materiais na Universidade Federal do Rio de Janeiro em 2005. Trabalha na PETROBRAS, no SEQUI atuando na área de proteção anticorrosiva na fase de implementação de novas unidades.

Ficha Catalográfica

Marroig, Monica da Cunha

Estudo da corrosão induzida por microrganismos em aços grau API / Monica da Cunha Marroig ; orientador: Ivani de Souza Bott ; coorientador: Walter Barreiro Cravo Junior. – 2014.

193 f. : il. (color.) ; 30 cm

Dissertação (mestrado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia de Materiais, 2014.

Inclui bibliografia

1. Engenharia de materiais – Teses. 2. API 5L Gr. B. 3. API 5L X-80. 4. Biofilme. 5. Corrosão induzida por microrganismos (CIM). 6. Microestrutura. I. Bott, Ivani de Souza. II. Cravo Junior, Walter Barreiro. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia de Materiais. IV. Título.

CDD: 620.11

PUC-Rio - Certificação Digital Nº 1212419/CA

Agradecimentos

Ao meu Marido, por entender as crises de humor, as horas afastadas e por buscar sempre me estimular a continuar estudando e me desenvolvendo.

À PETROBRAS por permitir o desenvolvimento e capacitação.

Ao meu gerente, Paulo Montes e gerente setorial Helio Sartori Junior, pelo apoio e interesse no meu desenvolvimento.

À minha orientadora Professora Ivani de Souza Bott, pelo estímulo e parceria ao longo do trabalho.

Ao meu coorientador Walter Barreiro Cravo Junior pelo suporte na definição do estudo.

Agradecimento especial Karla de Avelar Motta, pelo auxílio técnico e moral oferecido ao longo deste trabalho.

Aos alunos de iniciação, em especial a Talita de Souza Ximenes Silva pela dedicação apresentada ao longo dos meses de trabalho.

À equipe do laboratório de Biocorrosão da PUC-RIO, pelo suporte durante a execução do estudo.

Ao SENAI – CTS SOLDA, pela execução das usinagens dos corpos de prova.

A Confab, por ter cedido os materiais estudados, permitindo a execução deste estudo.

Aos participantes da Comissão examinadora.

Dê um passo de cada vez, olhe onde pisa, mantenha o equilíbrio e não desista.

Autor desconhecido

Resumo

Marroig, Monica da Cunha; Bott, Ivani de Souza. **Estudo da Corrosão Induzida por Microrganismos em Aços Grau API**. Rio de Janeiro, 2014, 193p. Dissertação de Mestrado – Departamento de Engenharia de Materiais, Pontifícia Universidade Católica do Rio de Janeiro.

Em tubulações industriais e dutos, a presença de biofilme pode ocasionar danos localizados (pites e alvéolos), levando a vazamentos e redução da área de fluxo devido à formação de biomassa. Aços grau API são os materiais usualmente utilizados nas tubulações industriais e dutos que podem ser afetados pelo fenômeno de corrosão induzida por microrganismos (CIM). A CIM ocorre devido a interações entre os grupos microbianos presentes no biofilme formado, a liberação de produtos metabolitos, e a relação destes com a superfície do metal. Foi realizado um estudo do comportamento de aços graus API B, X-65 e X-80, em presença de água do mar sintética com adição de cultura mista de bactérias (BRS; BPF; BPA) em sistema dinâmico, e comparados com meio sem adição de microrganismos. Foram realizadas analises químicas do fluido de processo e a quantificação microbiana das bactérias planctônicas e sésseis que demonstraram a relação entre os grupos bacterianos dentro dos biofilmes formados e sua cinética ao longo do tempo. Microscopia eletrônica de varredura e espectroscopia de dispersão de energia foi aplicada para visualização do biofilme e seus produtos de corrosão. A extensão, severidade e morfologia da corrosão dos aços API foi avaliada por microscopia ótica, sendo possível relacionar o efeito no processo corrosivo com o consorcio de microrganismos presente, tendo sido ainda avaliado a influência da microestrutura dos diferentes aços nos sítios preferenciais de nucleação de pites.

Palavras-chave

API 5L Gr. B; API 5L X-65; API 5L X-80; biofilme; Corrosão Induzida por Microrganismos (CIM); Microestrutura.

Abstract

Marroig, Monica da Cunha; Bott, Ivani de Souza. **Study of Microbiologically influenced Corrosion in API steels pipes.** Rio de Janeiro, 2014, 193p. MSc. Dissertation - Departamento de Engenharia de Materiais, Pontifícia Universidade Católica do Rio de Janeiro.

In industrial and transportation pipelines, the presence of biofilms may cause localized damage (pitting), leading to leakages and reduction of flow area due to the formation of biomass. API grade steels pipes are the materials commonly used in industrial and transportation pipelines and may be affected by this type of phenomenon. The microbiologically influenced corrosion (MIC) occurs due to interactions between the microbial groups present in the biofilm, the release of metabolites and their relation with the metal surface. The present work study of the behavior of API pipe steels degrees B, X-65 and X-80 in synthetic sea water containing mixed culture of bacteria (SRB, APB, IOB) carried out on a dynamic system and compared to medium without added microorganisms. Chemical analysis of the process fluid and quantification of microbial planktonic and sessile bacteria performed showed the relation between bacterial groups within biofilms and their kinetics over time. Scanning electron microscopy and energy dispersive spectroscopy was applied for visualization of biofilms and their corrosion products. The extent, severity and morphology of corrosion of API pipe steels were assessed by optical microscopy, being possible to relate the effect of the consortium of microorganisms on the corrosion process. Also the influence of microstructure of different steels in preferential nucleation sites for pitting were evaluated.

Keywords

Microbiologically Influenced Corrosion (MIC); biofilm; API 5L X-80; API 5L X-65; API 5L Gr. B; microestructure.

Sumário

1. Introdução	23
2. Objetivos	26
2.1. Geral	26
2.2. Específicos	26
3. Revisão bibliográfica	28
3.1. Corrosão	28
3.2. Corrosão induzida por microrganismos	29
3.3. Custos da CIM	31
3.4. CIM na indústria do petróleo	33
3.5. Biofilme	36
3.5.1. Efeito do biofilme no processo corrosivo	40
3.6. Bactérias	42
3.6.1. Bactéria redutora de sulfato	45
3.6.2. Bactéria precipitante do ferro	51
3.6.3. Bactérias produtoras de ácidos	53
3.7. Corrosão localizada	55
3.7.1. Corrosão por pites	56
3.7.2. Corrosão por frestas	62
3.7.3.Corrosão sob tensão	62
3.7.4. Fragilização pelo hidrogênio	64
3.8. Prevenção da corrosão	67
3.8.1. Métodos físicos	69

3.8.2. Químico	70
3.8.3. Biocida	71
3.8.4. Revestimento	72
3.8.5. Proteção catódica	72
3.8.6. Biológico	73
3.9. Seleção de materiais	73
3.9.1. Influência do material	74
3.9.2. Influência da microestrutura	75
3.10. Aços API 5L	78
3.10.1. Corrosão de tubos API	81
3.11. O presente trabalho	87
4. Materiais e métodos	88
4.1. Material	88
4.2. Fluido de processo	90
4.3. Meios de cultura	93
4.4. Ensaios	95
4.5. Análises químicas	101
4.5.1. Análise carbono orgânico total	101
4.5.2. Análise por cromatografia de íons	102
4.6. Detecção e quantificação de bactérias	103
4.7. Quantificação de pites (MO)	105
4.8. Microscopia eletrônica de varredura (MEV) e espectroscopia de dispersão de energia (EDS)	106

109

5.1. Caracterização elementar do material testado	109
5.2. Comportamento de aços API submetido à água do mar sintética contendo cultura mista de bactérias	110
5.2.1. Caracterização química do fluido de processo	110
5.2.2. Quantificação microbiana	115
5.2.3. Análise por microscopia eletrônica de varredura e espectroscopia de disperção de energia	121
5.2.4. Análise morfológica da corrosão	137
5.2.5. Avaliação da influência de microestrutura	150
5.3. Comportamento de aços API submetido a água do mar sintética sem adição de microrganismos	159
5.3.1. Caracterização química do fluido de processo	160
5.3.2. Análise por microscopia eletrônica de varredura e	
espectroscopia de disperção de energia	161
5.3.3. Análise morfológica da corrosão	169
6. Conclusão	178
7. Referências Bibliograficas	180
ANEXOS	
ANEXO A - Quantificação Microbiana	189
ANEXO B - Espectros de EDS	190

Lista de figuras

Figura 1 – Alguns locais vulneráveis a CIM em plataformas offshore. Fonte: (JAVAHERDASHTI, 2008)	34
Figura 2 - Esquema representativo das etapas de adesão de bactérias a um substrato sólido. Adaptado de http://www.edstrom.com	37
Figura 3 - Estágios de desenvolvimento do biofilme. Fonte: (JAVAHERDASHTI, 2008)	38
Figura 4 - Curva de crescimento bacteriano. Fonte: (MOTA, 2003)	39
Figura 5 – a) MEV de produto de corrosão fissurado (provavelmente FeS) que havia sido formado em eletrodo de aço carbono exposto a um ambiente puro de BRS após a remoção do biofilme. b) MEV de outro tipo de aço carbono após exposição à cultura de BRS. Trincas foram identificadas em ambas as imagens. Fonte: (JAVARHERDASHTI, 2008)	41
Figura 6 - Curva de polarização esquematica para determinação de potencial de pite	41
Figura 7 - Ambiente de um típico biofilme aquático. Fonte: (JAVAHERDASHTI, 2008)	44
Figura 8 - Imagens de MEV apresentando a morfologias de BRS encontradas em cultura mista. Seta indicam a forma a- vibrio b- espiral. Fonte: (JAVAHERDASHTi 2010)	46
Figura 9 - Reações presentes no mecanismo de despolarização catódica. Fonte: (JAVAHERDASHTI, 2008)	48
Figura 10 - Diagrama esquemático do mecanismo de despolarização catódica. Fonte: (JAVAHERDASHTI, 1999)	49
Figura 11 - Diagrama esquemático do mecanismo de corrosão pelo composto volátil altamente de reativo de fósforo. Fonte: (JAVAHERDASHTI, 1999)	50
Figura 12 - Explicação da natureza do Ep, onde pites se tornam estáveis apenas em potenciais acima de E2. Fonte: (ALVAREZ; GALVELE, 2010)	57
Figura 13- Modelo bimodal para perdas de corrosão (e tamanho máximo de pite) em ambiente marinho como função do tempo de exposição. Fonte: (MELCHERS, 2013)	61

Figura 14 - Perda de corrosão X tempo para aço carbono em diferentes exposições a ambientes marinhos. Fonte: (SOUTHWELL, ALEXANDER, 1970 e SOUTHWELL, BULTMAN, ALEXANDER, 1976)	62
Figura 15- Esquema apresentando mecanismo de iniciação de SCC de: a) superfície dos pites, b) fundo dos pites. Fonte: (ESLAMI et al., 2010)	65
Figura 16 - a) Microscopia eletrônica de varredura (modo de Detecção de elétrons secundários) de espécime contendo a transição pit-trinca em solução aerada contendo 15ppm Cl- a 90°C por 668h, carregado com 90% σ0,2. b-e) Reconstrução das trincas identificadas em a) através de tomografia 3D. Fonte: (HORNER et al. 2011)	66
Figura 17 - Evolução dos Aços API. Fonte: (GRAY, 1987)	79
Figura 18 - Profundidade de pite ao longo do tempo apresentando os dados de pite mais profundo, média e máximo para o metal base. Fonte: (CHAVES; MELCHERS, 2011)	84
Figura 19 - Profundidade de pite ao longo do tempo apresentando os dados de pite mais profundo, média e máximo para a ZTA. Fonte: (CHAVES; MELCHERS, 2011)	84
Figura 20 - Profundidade de pite ao longo do tempo apresentando os dados de pite mais profundo, média e máximo para o metal de solda. Fonte: (CHAVES; MELCHERS, 2011)	85
Figura 21 - Gráfico de Gumble apresentando a variabilidade de profundidade máxima de pite por 3 anos de exposição	85
Figura 22 - Esquema do corpo de prova	89
Figura 23 -Foto do cupom	89
Figura 24 - Localização geográfica do ponto de coleta	90
Figura 25 - Foto do píer no dia da primeira coleta (30/07/2013)	91
Figura 26 - (a) Desenho esquemático do sistema dinâmico fechado. (b) Imagem do sistema real	96
Figura 27 - Loop contendo o fluido de processo e frascos tipo antibiótico contendo as bactérias a serem inoculadas	96
Figura 28- Suporte do sistema em material polimérico	100
Figura 29 - Esquema de localização dos corpos de prova no suporte	100

Figura 30 – Imagem demostra a ação de raspagem mecânico do biofilme	104
Figura 31 - Kits para NMP	104
Figura 32 - Foto do ponto crítico utilizado no preparo das amostras	107
Figura 33 - Foto do microscópio eletrônico de varredura	108
Figura 34 - Gráfico de temperatura pelo tempo	111
Figura 35 - Gráfico do oxigênio dissolvido ao longo do tempo	112
Figura 36 - Gráfico de pH ao longo do tempo para os ensaios contendo cultura mista de microrganismos (Teste 1, Teste 2 e Teste 3)	113
Figura 37 - Gráfico de quantificação de íons sulfato por cromatografia de íons	114
Figura 38 - Quantificação de bactérias planctônicas e sésseis anaeróbicas do grupo BRS ao longo do tempo para aços API 5L	116
Figura 39 - Quantificação de bactérias planctônicas e sésseis facultativas do grupo BPA ao longo do tempo para aços API 5L	117
Figura 40 - Quantificação de bactérias planctônicas e sésseis aeróbicas do grupo BPF ao longo do tempo para aços API 5L	118
Figura 41 – Comparativo entre grupos bacterianos planctônicos quantificados ao longo do tempo de exposição	119
Figura 42 - Comparativo entre grupos bacterianos quantificados ao longo do tempo de exposição para o material API 5L Gr. B	120
Figura 43 - Comparativo entre grupos bacterianos quantificados ao longo do tempo de exposição para o material API 5L X-65	120
Figura 44 - Comparativo entre grupos bacterianos quantificados ao longo do tempo de exposição para o material API 5L X-80	121
Figura 45 - Imagens da superfície dos corpos de prova por microscopia eletrônica de varredura por elétrons espalhados com aumento nominal de 500X representativos para os ensaios contendo cultura mista de microrganismos. (a) API 5L Grau B, (b) API 5L X-65 e (c) API 5L X-80. (1) após 7 dias, (2) após 14 dias, (3) após 21 dias, (4) após 28 dias e (5) após 35 dias de exposição	123

Figura 46 - Imagens da superfície dos corpos de prova por

microscopia eletrônica de varredura por elétrons espalhados após 7 dias de exposição representativos para os ensaios contendo cultura mista de microrganismos. (1) Aumento nominal de 20.000 X (2) Aumento nominal de 5.000 X. (a) API 5L Grau B, (b) API 5L X-65 e (c) API 5L X-80 125 Figura 47 - Imagens da superfície dos corpos de prova por microscopia eletrônica de varredura por elétrons espalhados após 14 dias de exposição representativos para os ensaios contendo cultura mista de microrganismos. (a) Aumento nominal de 20.000 X (b) Aumento nominal de 5.000 X. (1) API 5L Grau B, (2) API 5L X-65 e (3) API 5L X-80 126 Figura 48 - Imagens da superfície dos corpos de prova por microscopia eletrônica de varredura por elétrons espalhados após 21 dias de exposição representativos para os ensaios contendo cultura mista de microrganismos. (a) Aumento nominal de 20.000 X (b) Aumento nominal de 5.000 X. (1) API 5L Grau B, (2) API 5L X-65 e (3) API 5L X-80 128 Figura 49 - Imagens da superfície dos corpos de prova por microscopia eletrônica de varredura por elétrons espalhados após 28 dias de exposição representativos para os ensaios contendo cultura mista de microrganismos. (a) Aumento nominal de 20.000 X (b) Aumento nominal de 5.000 X. (1) API 5L Grau B, (2) API 5L X-65 e (3) API 5L X-80 129 Figura 50 - Imagens da superfície dos corpos de prova por microscopia eletrônica de varredura por elétrons espalhados após 35 dias de exposição representativos para os ensaios contendo cultura mista de microrganismos. (a) Aumento nominal de 20.000 X (b) Aumento nominal de 5.000 X. 130 (1) API 5L Grau B, (2) API 5L X-65 e (3) API 5L X-80 Figura 51 – Imagens da superfície dos corpos de prova por microscopia eletrônica de varrerura apresentando a indicação do produto de corrosão caracterizado quimicamente por EDS da após 7 dias de exposição representativos para os ensaios contendo cultura mista de microrganismos 133 Figura 52 – Imagens da superfície dos corpos de prova por microscopia eletrônica de varrerura apresentando a indicação do produto de corrosão caracterizado quimicamente por EDS da após 14 dias de exposição representativos para os ensaios contendo cultura mista de microrganismos 134 Figura 53 – Imagens da superfície dos corpos de prova por microscopia eletrônica de varrerura apresentando a indicação do produto de corrosão caracterizado quimicamente por EDS da após 21 dias de exposição representativos para os ensaios contendo cultura mista de microrganismos 135

PUC-Rio - Certificação Digital Nº 1212419/CA

Figura 54 – Imagens da superfície dos corpos de prova por microscopia eletrônica de varrerura apresentando a indicação do produto de corrosão caracterizado quimicamente por EDS da após 28 dias de exposição representativos para os ensaios contendo cultura mista de microrganismos	136
Figura 55 – Imagens da superfície dos corpos de prova por microscopia eletrônica de varrerura apresentando a indicação do produto de corrosão caracterizado quimicamente por EDS da após 28 dias de exposição representativos para os ensaios contendo cultura mista de microrganismos	137
Figura 56 - Imagens dos corpos de prova por microscopia ótica com objetiva de 10X após 21 dias de exposição. (a) API 5L Grau B, (b) API 5L X-65 e (c) API 5L X-80. Amostras referentes ao terceiro ensaio	139
Figura 57 - Imagens dos corpos de prova por microscopia ótica com aumento de 10X após 28 dias. Amostra referente ao primeiro ensaio, material API 5L X-65	140
Figura 58 – Imagem de microscopia ótica (objetiva 10X) de superifíces de corpos de prova após 35 dias de ensaio. API 5L X-65. Amostra referente ao primeiro ensaio	141
Figura 59 - Imagem de microscopia ótica (objetiva 10X) de superifíces de corpos de prova após 35 dias de ensaio. API 5L X-80. Amostra referente ao primeiro ensaio	141
Figura 60 - Densidade de pites ao longo do tempo de exposição	143
Figura 61 - Abertura máxima dos pites ao longo do período de exposição	145
Figura 62 – Abertura média dos pites ao longo do período de exposição	145
Figura 63 - Imagem de microscopia ótica (objetiva de 20X) de superfície de corpo de prova após 35 dias de ensaio. API 5L X-65. Amostra referente ao primeiro ensaio	146
Figura 64 - Gráfico de profundidade de pite e taxa de corrosão localizada ao longo do período de exposição	147
Figura 65 - Gráfico de profundidade de pite e taxa de corrosão localizada ao longo do período de exposição	147
Figura 66- Gráfico correlacionando a densidade, profundidade e abertura de pites ao longo do período de exposição para o aço API 5L Gr.B.	148

Figura 67 - Gráfico correlacionando a densidade, profundidade

e abertura de pites ao longo do período de exposição para o aço API 5L X-65	149
Figura 68- Gráfico correlacionando a densidade, profundidade e abertura de pites ao longo do período de exposição para o aço API 5L X-80	149
Figura 69 - Imagem de microscopia ótica (objetiva de 50X) de superfície de corpo de prova API 5L grau B após exposição de 7 dias para o segundo ensaio. Pite identificado pela seta	151
Figura 70 - Imagem de microscopia ótica (objetiva de 100X) de superfície de corpo de prova API 5L grau B após exposição de 7 dias para o segundo ensaio. Pite identificado pela seta.	151
Figura 71 - Imagem de microscopia ótica (objetiva de100X) de superfície de corpo de prova API 5L grau B após exposição de 14 dias para o primeiro ensaio. Indicação apresenta (a)pite nucleado em local de dano mecânico (b) pite nucleado em contorno de grão	152
Figura 72 - Imagem de microscopia ótica (objetiva de 50X) de superfície de corpo de prova API 5L grau B após exposição de 14 dias para o primeiro ensaio. Indicação apresenta (a) pite nucleado em local de dano mecânico (b) pite nucleado em contorno de grão	152
Figura 73 - Imagem de microscopia ótica (objetiva de 50X) de superfície de corpo de prova API 5L X-65 após exposição de 7 dias para o primeiro ensaio	153
Figura 74 - Imagem de microscopia ótica (objetiva de 100X) de superfície de corpo de prova API 5L X-65 após exposição de 7 dias para o primeiro ensaio	154
Figura 75 - Imagem de microscopia ótica (objetiva de 50X) de superfície de corpo de prova API 5L X-65 após exposição de 14 dias para o primeiro ensaio	154
Figura 76 - Imagem de microscopia ótica (objetiva de 100X) de superfície de corpo de prova API 5L X-65 após exposição de 14 dias para o primeiro ensaio	155
Figura 77 - Imagem de microscopia ótica (objetiva de 100X) de superfície de corpo de prova API 5L X-80 após exposição de 7 dias para o primeiro ensaio	156
Figura 78 - Imagem de microscopia ótica (objetiva de 50X) de superfície de corpo de prova API 5L X-80 após exposição de 7 dias para o primeiro ensaio	157

Figura 79 - Imagem de microscopia ótica (objetiva de 100X) de

superfície de corpo de prova API 5L X-80 após exposição de 14 dias para o segundo ensaio	157
Figura 80 - Imagem de microscopia ótica (objetiva de 50X) de superfície de corpo de prova API 5L X-80 após exposição de 14 dias para o segundo ensaio	158
Figura 81 – Foto do resultado da medida qualitativa do fluido de processo para os período de exposição de 14 dias (a) e 28 dias (b)	159
Figura 82 - Gráfico de pH ao longo do tempo de exposição	160
Figura 83 – Monitoramento do sulfato ao longo de experimento	161
Figura 82 - Imagens da superfície dos corpos de prova por microscopia eletrônica de varredura por elétrons espalhados com aumento nominal 500X. (a) API 5L Grau B, (b) API 5L X-65 e (c) API 5L X-80. (1) após 14 dias, (2) após 28 dias de exposição	162
Figura 85 - Imagens da superfície dos corpos de prova por microscopia eletrônica de varredura por elétrons espalhados após 14 dias de exposição. (1) Aumento nominal de 20.000 X (2) Aumento nominal de 5.000 X. (a) API 5L Grau B, (b) API 5L X-65 e (c) API 5L X-80	164
Figura 86 - Imagens da superfície dos corpos de prova por microscopia eletrônica de varredura por elétrons espalhados após 28 dias de exposição. (1) Aumento nominal de 20.000 X (2) Aumento nominal de 5.000 X. (a) API 5L Grau B, (b) API 5L X-65 e (c) API 5L X-80	165
Figura 87 – Imagens da superfície dos corpos de prova por microscopia eletrônica de varrerura apresentando a indicação do produto de corrosão caracterizado quimicamente por EDS da após 14 dias de exposição representativos para o ensaio sem adição de microrganismos	167
Figura 88 – Imagens da superfície dos corpos de prova por microscopia eletrônica de varrerura apresentando a indicação do produto de corrosão caracterizado quimicamente por EDS da após 14 dias de exposição representativos para o ensaio sem adição de microrganismos	168
Figura 89 - Imagens dos corpos de prova por microscopia ótica com objetiva de 10X após 21 dias de exposição. (a) API 5L Grau B, (b) API 5L X-65 e (c) API 5L X-80	170
Figura 90 - Densidade de pites ao longo do tempo de exposição	172

Figura 91 - Abertura máxima dos pites ao longo do período de

exposição	173
Figura 91 - Imagens dos corpos de prova por microscopia ótica com objetiva de 20X. (a) API 5L X-65 após 21 dias de exposição (b) API 5L grau B após 28 dias de exposição	173
Figura 93 - Abertura média dos pites ao longo do período de exposição	173
Figura 94 - Gráfico de profundidade de pite ao longo do período de exposição	174
Figura 95 - Gráfico de taxa de corrosão localizada ao longo do período de exposição	175
Figura 96 - Gráfico correlacionando a densidade, profundidade e abertura de pites ao longo do período de exposição para o aço API 5L Grau B	176
Figura 97 - Gráfico correlacionando a densidade, profundidade e abertura de pites ao longo do período de exposição para o aço API 5L X-65	176
Figura 98 - Gráfico correlacionando a densidade, profundidade e abertura de pites ao longo do período de exposição para o aço API 5L X-80	177
Figura B.1 – Imagens da superfície dos corpos de prova por microscopia eletrônica de varrerura apresentando a indicação do produto de corrosão caracterizado quimicamente e seu respectivo espectro de EDS para o ensaio com adição de microrganismos	190
Figura B.2 – Imagens da superfície dos corpos de prova por microscopia eletrônica de varrerura apresentando a indicação do produto de corrosão caracterizado quimicamente e seu respectivo espectro de EDS para o ensaio sem adição de microrganismos	193
·······	

Lista de tabelas

Tabela 1 - Indústrias afetadas pelo CIM. Fonte: (JAVAHERDASHTI, 1999)	31
Tabela 2 - Ânions produtores de pite em metais. Adaptado de ALVAREZ; GALVELE, 2010	55
Tabela 3 - Profundidade máxima média de corrosão por frestas encontradas em superfícies polarizadas eletroquimicamente. Fonte: (MACHUCA et al., 2013)	63
Tabela 4 - Biocidas comumente utilizados em sistemas de água industrial. Fonte: (VIDELA, 2002)	71
Tabela 5 - Composição Química dos Aços API 5L - PSL2. Fonte: (API 5L)	80
Tabela 6 - Tensão requerida para PSL2. Fonte: (API 5L)	80
Tabela 7 – Composição química dos materiais utilizados	88
Tabela 8 – Dimensões dos tubos utilizados para confecção dos corpos de prova	88
Tabela 9 - Condições de coleta. Fonte temperatura: Weatherbase.com. Fonte Maré: Banco Nacional de dados Oceanográficos (BNDO)	91
Tabela 10 – Composição química da água do mar sintética	92
Tabela 11 - Composição química do caldo nutriente	92
Tabela 12 – Composição da solução salina redutora	93
Tabela 13– Composição do meio de cultura Postgate E modificado	94
Tabela 14 - Composição para meio de vermelho de fenol	94
Tabela 15 - Composição de meio BPF	95
Tabela 16 - Composição da Solução A/B	95
Tabela 17 - Descrição dos ensaios	97
Tabela 18 – Análises do fluido de processo realizadas	98

Tabela 19 – Análises do aço realizadas	99
Tabela 20 – Análise química elementar dos aços estudados	109
Tabela 21- Ensaios contendo cultura mista de bactérias	110
Tabela 22 – Análise de sulfato por cromatografia de íons do fluido de processo (mg/L)	113
Tabela 23 - Análise de carbono orgânico total (ppm)	114
Tabela 24 - Valores de densidade de pites/m ² verificados	142
Tabela 25 - Valores de tamanho de pites verificados (µm²)	144
Tabela 26 – Valores obtidos de profundidade de pite e taxa de corrosão localizada	146
Tabela 27 – Classificação de corrosividade (NACE RP -7-75)	148
Tabela 28 - Análise qualitativa das bactérias planctónicas do fluido de processo em condições de controle	159
Tabela 29 – Classificação dos corpos de prova conforme ASTM G46	171
Tabela 30 - Valores de densidade de pites/m ² verificados	171
Tabela 31 - Valores de tamanho de pites verificados (µm²)	172
Tabela 32 – Valores obtidos de profundidade de pite e taxa de corrosão localizada	174
Tabela A.1 - Quantificação de bactérias planctônicas dos grupos das BRS, BPA e BPF	189

Tabela A.2 - Quantificação de bactérias sésseis para aços API 5L 189

Abreviações

API	american petroleum institute
BPA	bactérias produtoras de ácidos
BPF	bactérias precipitantes do ferro
BRS	bactérias redutoras de sulfato
Car. Micro	caracterização microestrutural
CIM	corrosão induzida por microrganismos
CL	cromatografia líquida
Cot	carbono orgânico total
E _p	potencial de pite
QqM	avaliação microbiana qualitativa
QtM	avaliação microbiana quantitativa
MEV	microscopia eletrônica de varredura
MO	microscopia ótica
ZTA	zona termicamente afetada
Od	oxigênio dissolvido
Temp.	temperatura
SCC	stress corrosion cracking