
0

Eduardo Santoro Morgan

Load Disaggregation in a Brazilian Industrial
Dataset Using Invertible Networks and

Variational Autoencoders

Dissertação de Mestrado

Dissertation presented to the Programa de Pós-graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática.

Advisor: Prof. Sergio Colcher

Rio de Janeiro
May 2021

Eduardo S Morgan

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Eduardo Santoro Morgan

Load Disaggregation in a Brazilian Industrial
Dataset Using Invertible Networks and

Variational Autoencoders

Dissertation presented to the Programa de Pós-graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática. Approved by the
Examination Committee.

Prof. Sergio Colcher
Advisor

Departamento de Informática – PUC-Rio

Prof. Edward Hermann Haeusler
Departamento de Informática – PUC-Rio

Prof. Sérgio Lifschitz
Departamento de Informática – PUC-Rio

Rio de Janeiro, May 7th, 2021

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

All rights reserved.

Eduardo Santoro Morgan

Graduated in Electronics and Computer Engineering by the
Federal University of Rio de Janeiro.

Bibliographic data
Morgan,Eduardo

Load Disaggregation in a Brazilian Industrial Dataset
Using Invertible Networks and Variational Autoencoders /
Eduardo Santoro Morgan; advisor: Sergio Colcher. – Rio de
janeiro: PUC-Rio, Departamento de Informática, 2021.

v., 78 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Informática.

Inclui bibliografia

1. Informática – Teses. 2. Desagregação de Cargas;. 3.
Aprendizado Profundo;. 4. Redes Neurais Inversíveis.. 5.
Autoencoders Variacionais.. 6. Base de dados industrial.. I.
Colcher, Sergio. II. Pontifícia Universidade Católica do Rio de
Janeiro. Departamento de Informática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

To my parents, for their support
and encouragement.

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Acknowledgments

To my adviser Professor Sergio Colcher for the stimulus and partnership to
carry out this work.

To CNPq and PUC-Rio, for the aids granted, without which this work does
not could have been accomplished.

A special thanks to Luis Felipe Müller, without your help and contributions
this work would not have been possible.

To Carla Coutinho, my love and the person who kept me confident and
motivated throughout the hard moments.

This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Abstract

Morgan,Eduardo; Colcher, Sergio (Advisor). Load Disaggregation in
a Brazilian Industrial Dataset Using Invertible Networks and
Variational Autoencoders. Rio de Janeiro, 2021. 78p. Dissertação
de Mestrado – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.

Load Disaggregation is the task of estimating appliance-level consump-
tion from a single aggregate consumption metering point. This work ex-
plores machine learning techniques applied to an industrial load disaggregation
dataset from a poultry feed factory in Brazil. It proposes a model that com-
bines variational autoencoders with invertible normalizing flows models. The
results obtained are, in general, better than the current best reported results
for this dataset, outperforming them by up to 86% in the Signal Aggregate
Error and by up to 81% in the Normalized Disaggregation Error.

Keywords
Load Disaggregation; Deep Learning; Invertible Neural Networks.

Variational Autoencoders. Industrial dataset.

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Resumo

Morgan,Eduardo; Colcher, Sergio. Desagregação de Cargas em um
Dataset coletado em uma Indústria Brasileira utilizando Auto-
encoders Variacionais e Redes Inversíveis. Rio de Janeiro, 2021.
78p. Dissertação de Mestrado – Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.

Desagregação de cargas é a tarefa de estimar o consumo individual de
aparelhos elétricos a partir de medições de consumo de energia coletadas em
um único ponto, em geral no quadro de distribuição do circuito. Este trabalho
explora o uso de técnicas de aprendizado de máquina para esta tarefa, em uma
base de dados coletada em uma fábrica de ração de aves no Brasil. É proposto
um modelo combinando arquiteturas de autoencoders variacionais com as de
fluxos normalizantes inversíveis. Os resultados obtidos são, de maneira geral,
superiores aos melhores resultados reportados para esta base de dados até
então, os superando em até 86% no Erro do Sinal Agregado e em até 81% no
Erro de Desagregação Normalizado dependendo do equipamento desagregado.

Palavras-chave
Desagregação de Cargas; Aprendizado Profundo; Redes Neurais

Inversíveis. Autoencoders Variacionais. Base de dados industrial.

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Table of contents

1 Introduction 14
1.1 Motivation 14
1.2 Objective 15
1.3 Constraints 16
1.4 Contributions and Dissertation Outline 17

2 Background Knowledge 18
2.1 Autoencoders 18
2.2 Variational Autoencoders 20
2.3 Variational Autoencoders Probabilistic Framework 21
2.4 VAEs using deep neural networks 24
2.5 Invertible Normalizing Flow-based Generative Models 25
2.6 Multi-scale architecture 28
2.7 ActNorm 29
2.8 Affine coupling layer 30
2.9 Invertible 1x1 convolution 31

3 Related Work 33
3.1 Background and History 33
3.2 Datasets 35
3.3 Neural NILM 37
3.4 WaveNILM 39

4 Methodology and Results 43
4.1 Dataset 43
4.2 WaveNILM Model 46
4.3 Prior Flow Variational Autoencoder 48
4.4 PFVAE Loss Function 50
4.5 PFVAE Architecture and Hyper-Parameters 51
4.6 Layout of the experiments and results 54
4.7 Qualitative Analysis 58
4.8 Ablation Studies 65

5 Conclusion and Future Work 70

6 References 74

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

List of figures

Figure 2.1 Autoencoder conceptual architecture. The encoded data z is
in a smaller dimension than the input data x which is reconstructed in the
output x̂. 19
Figure 2.2 Sample generation scheme with a Variatonal Autoencoder.
The space is regularized to follow a normal distribution. 20
Figure 2.3 Reparametrization Trick. This sampling scheme enables
gradients for the distribution parameters to be backpropagated through the
encoder network that generates them. 25
Figure 2.4 VAE conceptual architecture. The parameters µx and σx are
generated by two networks that share most of its parameters. In practice, it
can be implemented a single Encoder network with two outputs. Next the
latent space variable z is sampled using the reparametrization trick. Last, z
is served as input to the Decoder network for generating x̂. 25
Figure 2.5 Inference and Generation process of an Invertible Flow-based
Model. Source: (1) 26
Figure 2.6 Glow architecture. Source: Kingma et al. (2) 28
Figure 2.7 Affine coupling layer direct (above) and inverse (below)
transformations. 31

Figure 3.1 Appliance state-transitions over a period of time. Source: (3) 33
Figure 3.2 Pelletizer I active power demand over a 17-minute long window 34
Figure 3.3 Simplified AC electric circuit 35
Figure 3.4 Denoising Autoencoder (4) 38
Figure 3.5 Input-output scheme of a generic ANN using dilation convo-
lutions. Source: (5) 39
Figure 3.6 WaveNILM architecture. Source (6) 41

Figure 4.1 IMDELD diagram 44
Figure 4.2 Window containing 1024 samples of the active power demand
of the MV/LV transformer and of each appliance in the dataset. 45
Figure 4.3 PFVAE’s train and inference schemes. 49
Figure 4.4 Gated Linear Unit (GLU) block 51
Figure 4.5 Encoder block. 52
Figure 4.6 Decoder block. 52
Figure 4.7 Affine Coupling Layer’s backbone neural network architecture 53
Figure 4.8 25 PFVAE estimates compared to the PI machine’s ground
thruth. 59
Figure 4.9 Re-scaled plots for 3 of the 25 comparisons to observe the
signal in a more detailed view. 59
Figure 4.10 25 PFVAE estimates compared to the PII machine’s ground
thruth. 60
Figure 4.11 Re-scaled plots for 3 of the 25 comparisons to observe the
signal in a more detailed view. 60
Figure 4.12 25 PFVAE estimates compared to the DPCI machine’s ground
thruth. 61

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Figure 4.13 Re-scaled plots for 3 of the 25 comparisons to observe the
signal in a more detailed view. 61
Figure 4.14 25 PFVAE estimates compared to the DPCII machine’s
ground thruth. 62
Figure 4.15 Re-scaled plots for 3 of the 25 comparisons to observe the
signal in a more detailed view. 62
Figure 4.16 25 PFVAE estimates compared to the EFI machine’s ground
thruth. 63
Figure 4.17 Re-scaled plots for 3 of the 25 comparisons to observe the
signal in a more detailed view. 63
Figure 4.18 25 PFVAE estimates compared to the EFII machine’s ground
thruth. 64
Figure 4.19 Re-scaled plots for 3 of the 25 comparisons to observe the
signal in a more detailed view. 64
Figure 4.20 Simple Affine Layer ablation train and inference schemes. 66
Figure 4.21 Standard Normal ablation train and inference schemes. 66

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

List of tables

Table 2.1 Overview of each transformation in a step-flow block in the
Glow architecture. Source: (2). 29

Table 3.1 Main characteristics of the most cited NILM datasets 37
Table 3.2 WaveNILM results. Source (6) 42

Table 4.1 Comparison of our implementation of the WaveNILM model
against the report results in (6) 47
Table 4.2 Comparison between PFVAE model and WaveNILM result’s
reported by (6) 57
Table 4.3 Comparison of each modified architecture of the PFVAE
model. 67
Table 4.4 NDE comparison between PFVAE variants with 2, 4, 8, 16,
and 32 step-flow blocks in the CNF component. 68
Table 4.5 SAE comparison between PFVAE variants with 2, 4, 8, 16,
and 32 step-flow blocks in the CNF component. 68

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

List of symbols

– EPE – Empresa Brasileira de Energia

– NILM – Non-Intrusive Load Monitoring

– RMS – Root-Mean Squared

– PFVAE – Prior Flow Variational Autoencoder

– CDE – Conditional Density Estimation

– VAE – Variational Autoencoder

– PCA – Principal Component Analysis

– AE – Autoencoder

– SGD – Stochastic Gradient Descent

– Kullback-Leibler – KL

– Evidence Lower Bound – ELBO

– Invertible Normalizing Flow – INF

– ANN – Artificial Neural Network

– Maximum Likelihood Estimation – MLE

– identically distributed variables – iid

– ActNorm – Activation Normalization

– ACL – Affine Coupling Layer

– LF – Low Frequency

– HF – High Frequency

– IMDELD – Industrial Machinery Dataset for Electrical Load Disaggre-

gation

– DAE – Denoising Autoencoder

– LSTM – Long short-term memory

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

List of symbols 13

– RNN – Recurrent Neural Networks

– ReLU – Rectified Linear Unit

– SAE – Signal Aggregate Error

– NDE – Normalized Disaggregation Error

– PI – Pelletizer I

– PII – Pelletizer II

– DCPI – Double Pole Contactor I

– DCPII – Double Pole Contactor II

– EFI – Exhaust Fan I

– EFII – Exhaust Fan II

– MI – Milling Machine I

– MII – Milling Machine II

– MV/LV – Medium Voltage to Low Voltage

– MSE – Mean Squared Error

– CVAE – Conditional Variational Autoencoder

– NLP – Natural Language Processing

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

1
Introduction

1.1
Motivation

Nowadays energy efficiency has become a main worldwide concern for
governments and industries. Rising temperatures and scarcity of resources
are a few of the many reasons why there is a huge interest in providing
technical solutions that could potentially reduce the amount of energy usage
in residential, commercial and, especially industrial environments.

According to EPE (Brazil’s Energy Planning Company) (7), in 2018, to-
tal Brazilian electricity expenditure was 472.242 GWh , where industries ac-
counted for 35.9% of this amount, being responsible for the largest share among
residential, commercial and other usages. Besides there is a growth trend, the
country’s total expenditure has grown 1.2% and 1.1% in the periods of 2016-
2017 and 2017-2018 and in both years, industry alone rose its electrical con-
sumption in 1.3%. This is a common trend in developing countries with growing
economies since the effects of industrialization and urbanization both cause a
major impact in power demand.

The impact of economic growth poses a threat to worldwide concerns over
carbon emissions and energy resources, therefore energy efficiency programs
can potentially represent a huge amount of savings in developing countries’
energy expenditure. In the Brazilian case, savings in the industry can be
potentially even more fruitful when compared to savings in other sectors of
the economy.

Brazil’s current energy profile is highly dependent on hydro power, account-
ing for around 80% of total country energy expenditure (8), second is ther-
moeletric power, mostly from natural gas power plants. Even though hydro
power is an emission-free energy source, it has several problems due to dis-
patching and flooding of rain forests which pose both technical difficulties
to the system operator and immeasurable environmental damages. Thus, re-
ducing energy expenditure could be beneficial in terms of reducing electricity
transmission and distribution operational costs as well as avoiding environ-
mental damage. Also power plants dispatching is an issue that is generally

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 1. Introduction 15

solved by using oil and gas power plants which are more easily controllable
but contribute heavily to carbon emissions.

Non-intrusive Load Monitoring (NILM), also referred to as load disaggrega-
tion, is a set of techniques that aims at predicting appliance-level power con-
sumption from a single point of measurement in a circuit. These techniques
provide real-time and historic data on appliance consumption energy which
could help consumers take more conscious decisions in their energy expendi-
ture habits and potentially decrease their overall consumption.

According to Armel et al (9), real-time information on appliance-specific
energy consumption can provide over 12% savings in overall electricity con-
sumption. Therefore, load disaggregation can potentially be a powerful tool on
providing such information to be applied in energy efficiency solutions. Even
though research on load disaggregation was first introduced in 1992 by Hart
(3), only few work explore the problem in industrial environments (10) and
even fewer in Brazil or in other developing countries (6).

1.2
Objective

The main objective of this work is to investigate new deep learning
techniques to be applied to the load disaggregation problem with a focus in
industrial settings. Current state-of-the-art methodologies (4) (6) implement
appliance-specific models which, although have a reasonable accuracy, are hard
to train, especially in environments where there is big number of appliances
to be disaggregated since managing and running lots of models simultaneously
can be very time and resource consuming in real-life scenarios.

Therefore, this work aims to address this problem through the usage
of a Conditional Variational Autoencoder neural network model. The pro-
posed model is, in summary, a generative model which generates samples of
appliance-level data conditioned on examples of aggregate-level data. The gen-
erative process consists in a sampling scheme that uses invertible normalizing
flows to approximate the latent representation conditional prior distribution.
Next, in the decoding step, the latent representation is decoded into appliance-
level power consumption data. We address the problem of managing several
different models by jointly learning the generative process for all the appliances
available in the dataset in a single model.

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 1. Introduction 16

In this work we model load disaggregation as a conditioned generative
task, therefore, the proposed model could, in theory, be applied to any other
generative task on one-dimensional continuous data or be slightly adapted to
greater dimensions or discrete data. These tasks can include speech generation
conditioned on text encodings and vice-versa, image generation conditioned on
feature representations, audio generation conditioned on music scores, etc.

To achieve the main goal of this work, the following specific objectives are
considered:

1. to investigate the current work present in load disaggregation when
applied to an industrial energy consumption dataset;

2. to investigate the feasibility of applying a neural network model which
uses variational autoencoder and invertible normalizing flow techniques
for the disaggregation task using the industrial dataset;

3. to compare the results obtained by the proposed model against the best
performing model presented in the literature and verify if we were able
to improve the current best performing model.

1.3
Constraints

This work explores load disaggregation methods in an industrial setting
using the dataset provided by Martins et al (11). This dataset contains
electricity measurements from a poultry feed factory in Brazil, collected over
a period of around 1 year. One meter was used to measure the aggregate
consumption of the building, i.e., the building’s total consumption and 10
meters were used for measuring sub-circuits and machine-level data, which are
used for supervised training. The meters provide measurements of Root-Mean
Squared (RMS) voltage, RMS current, active, reactive and apparent power for
the circuit on which it is installed. All of the electrical quantities are sampled
at 1 Hz.

All models discussed in this work were trained using this dataset. The data
is split into fixed-size windows and the electricity consumption profile of the
industry is assumed to be stationary; therefore, we can apply cross-validation
by randomly selecting windows of data to be in the training and validation
sets in each fold.

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 1. Introduction 17

The implementations were done in Python using open-source machine
learning and data science libraries such as Pandas (12), Numpy (13), and
TensorFlow (14).

1.4
Contributions and Dissertation Outline

The main contributions of the dissertation are twofold: (1) we verify
the reproducibility of the best performing model reported in previous work
that uses the industrial dataset (2) we propose the Prior Flow Variational
Autoencoder (PFVAE), a model that advances the best results obtained so far
in the energy disaggregation task in an industrial setting.

Chapter 2 presents the background knowledge required for building the
model proposed in this work. Chapter 3 introduces the load disaggregation
task and goes over related work on the task, where deep neural networks
were used for addressing the task both in residential and industrial datasets.
Chapter 4 discusses the methodology used in this work and the proposed
PFVAE model, this Chapter also discusses publicly available datasets in both
residential and industrial settings and goes in-depth on the dataset used in this
work. In Chapter 4, as we discuss the experiments performed we also present
the results obtained in each one of them. Chapter 5 concludes this dissertation
by discussing the obtained results and contributions, it also proposes future
work to further advance in the field of energy disaggregation.

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

2
Background Knowledge

In this work, we present the Prior Flow Variational Autoencoder (PF-
VAE) model and its application in the load disaggregation task using a Brazil-
ian industrial dataset. The PFVAE model is a Conditional Density Estimation
(CDE) model which joins ideas of Variational Autoencoders (VAEs) along
with invertible normalizing flows. Therefore, this chapter provides background
concepts that inspired the formulation of the PFVAE model, along with the
required theory.

2.1
Autoencoders

Variational Autoencoders (VAEs), which are one of the main building
blocks of the PFVAE model architecture, were first proposed by Kingma et al.
(15). They are an extension to the traditional Autoencoders (AEs) that allows
for conditional generative sampling.

An Autoencoder is a model composed of two blocks, an Encoder q : x ∈
RN → z ∈ RM , that encodes input data into a lower dimensionality latent
space (M < N), and a Decoder p : z → x̂ that reconstructs the original data
from the encodings. Therefore, the objective function when training AEs is to
minimize the reconstruction error L(x, p(q(x)). This formulation is illustrated
in Figure 2.1.

In AEs, the Encoding process can be interpreted as a dimensionality reduc-
tion task, since the encoded the latent space has lower dimensionality than the
original feature space and the Decoder is trained to properly reconstruct the
original features with minimal error. For such goal, the Encoder learns to pre-
serve as much of the relevant information as possible in the limited encoding,
and to discard irrelevant parts.

Building deep neural autoencoders is fairly simple, requiring two neural
networks, one for the Encoder and another one for the Decoder, where the
Encoder’s output size is smaller than its input and the Decoder’s output size
is the same as the Encoder’s input. Training this model consists in feeding
input data to the whole model, computing the error between such inputs and
the outputs and applying a Stochastic Gradient Descent (SGD) such as Adam

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 2. Background Knowledge 19

Figure 2.1: Autoencoder conceptual architecture. The encoded data z is in a
smaller dimension than the input data x which is reconstructed in the output
x̂.

(16) with Backpropagation. An example of an application of AEs in the load
disaggreagtion domain is presented in Section 3.3.

Even though AEs can be trained to minimize the reconstruction error, this
formulation is only minimizing such goal and has no constraints over the
constructed latent space. This is due to the fact that both the Encoder and the
Decoder are nonlinear, deep neural networks, thus there are several possible
latent features that can be useful for the reconstruction goal. In order to be able
to apply a similar formulation to generative tasks, it is required that the latent
space has some degree of regularity so we could sample a point from such space
and run it through the Decoder to generate a new sample, similar to the ones
seen during training. Figure 2.2 illustrates this idea. In the following section
we present the Variational Autoencoder formulation proposed by (15) and how
it extends AEs for the generative task by constraining the latent space and
proposing a simple sampling process.

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 2. Background Knowledge 20

Figure 2.2: Sample generation scheme with a Variatonal Autoencoder. The
space is regularized to follow a normal distribution.

2.2
Variational Autoencoders

In simple terms, Kingma et al (15) formulate VAEs as an extension to
the AEs formulation that constrains the latent space generated by the Encoder
in order to enable a generative process by sampling points belonging to this
space and passing them through the Decoder.

For such task, the Encoder block in a VAE is trained to generate the
parameters of a distribution of a probability distribution over the latent space.
Another way of understanding this process that the inputs are encoded into a
distribution over the latent space. Thus, its training scheme can be defined as
follows:

1. the input data is passed through the Encoder block to generate the
distribution parameters;

2. a point from the distribution used is sampled following the parameters
generated in step 1;

3. the sample is passed through the Decoder block to reconstruct the
original input and compute the reconstruction error;

4. the gradients for the reconstructed error are backpropagated through the
network.

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 2. Background Knowledge 21

Generally, it is desirable to define the latent space through the usage of
gaussian distributions and have the Encoder output both a mean and a
variance for the sampling. Thus, the loss function for VAEs is composed of
(1) a "reconstruction term" and (2) a "regularization term" which is used for
making the latent space as close as possible to the target distribution where
standard gaussians are the most common choices. The regularization term is
expressed a Kullback-Leibler (KL) divergence (17) between the latent space
samples and the standard normal distribution.

In order to properly define the loss function and how it regularizes the space
to allow for the generative process to be successful, it is required to formalize
the so called Variational Inference framework, which is the probabilistic
framework from which VAEs are defined. The same framework and notation
will be used throughout the remaining of this work for describing the PFVAE
formulation.

2.3
Variational Autoencoders Probabilistic Framework

From a probability perspective, we can denote x as the variable we want
to generate and p(z) as the prior distribution defining the latent space of
variables z, which, in the VAE formulation are the encodings. From such
perspective, the generative process consists in sampling a point z from the prior
distribution and, next, sampling x from the conditional likelihood distribution
p(x|z).

With such a model, we can redefine a probabilistic decoder as p(x|z) which
decodes points z in the latent space into data points x and the probabilistic
encoder as q(z|x) which encodes points in the feature space x into the latent
space z. Given this formulation, it is natural to assume that the encoded
representations in the latent space follow the prior distribution p(z). Moreover,
applying Bayes theorem (Equation 2-1) we can see the relationship between the
prior p(z) and the posterior q(z|x) distributions and the conditional likelihood
p(x|z). It is important to note that the integral in this Equation is intractable,
since it needs to be evaluated over all configurations of possible latent variables
taking exponential time to compute.

q(z|x) = p(x|z)p(z)
p(x) = p(x|z)p(z)∫

p(x|u)p(u)du (2-1)

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 2. Background Knowledge 22

We can, generally, assume that the prior p(z) is a standard Gaussian
distribution and that the conditional p(x|z) is a Gaussian distribution whose
mean is defined by a deterministic function f(z) and whose covariance matrix
is the identity matrix I multiplied by a constant c, such as in Equation 2-2.

p(z) ∼ N (0, I)

p(x|z) = N (f(z), cI) f ∈ F, c > 0
(2-2)

For computing q(z|x), we need to use Variational Inference (VI) (18) which
is a technique to approximate complex distributions through the usage of op-
timization or machine learning methods. VI consists in setting a parametrised
family of probability distributions (usually Gaussians, where the parameters
are the mean and covariance) and to look for the best family by applying gra-
dient descient over the parameters that describe this family using an objective
function such as the KL divergence between the approximation and the target.

In the VAE formulation, the posterior q(z|x) is usually approximated by
a parametric Gaussian distribution qλ(z|x) whose mean and covariance are
defined by two functions, g and h of the parameter x, such that:

qλ(z|x) = N (g(x), h(x)) g ∈ G, h ∈ H (2-3)
Thus, the objective is to optimize the parameters of the function g and

h so that the divergence between the approximation qλ(z|x) and the target
p(z|x), measured by the KL divergence, is minimized, as described in Equation
2-4.

(g∗, h∗) = arg min
(g,h)∈G×H

(KL(qλ(z|x)||p(z|x)))

= arg min
(g,h)∈GxH

(
Ez∼qλ(log(qλ(z|x))− Ez∼qλ

(
log

(
p(x|z)p(x)

p(z)

)))

= arg min
(g,h)∈G×H

(Ez∼qλ(log(qλ(z|x))− Ez∼qλ(log(p(x|z)) + Ez∼qλ(log(p(x))− Ez∼qλ(log(p(z)))

(2-4)

Again, the evidence p(x) appears in Equation 2-4 and, as previously ex-
plained, it is intractable. However, we can use the so called Evidence Lower
Bound (ELBO) to compute such Equation, defined in Equation 2-5.

ELBO(λ) = E(log p(x, z))− E(log qλ(z|x)) (2-5)

Combining Equations 2-4 and 2-5, we can rewrite the evidence as:

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 2. Background Knowledge 23

log p(x) = ELBO(λ) + KL(qλ(z|x)||p(z|x)) (2-6)

The KL divergence is always greater than or equal to zero, therefore the
ELBO becomes a lower bound to the evidence p(x) as in Equation 2-7.

log p(x) ≥ ELBO(λ) (2-7)

Therefore, maximizing by maxiziming the ELBO we also minimize the
distribution p(x). And finding the optimal parameters for qλ(z|x) becomes:

(g∗, h∗) = arg max
(g,h)∈G×H

(Ez∼qλ log(p(x|z))−KL(qλ(z|x), p(z)))

= arg max
(g,h)∈G×H

(
Ez∼qλ

(
−||x− f(z)||2

2c

)
−KL(qλ(z|x), p(z))

) (2-8)

In Equation 2-8 we can see the tradeoff between regularizing the space (KL
term) versus minimizing the reconstruction error. In practice the function f ,
i.e., the decoder is also parametric and needs to be chosen. For such a goal,
let’s define q∗(z|z) as the optimal approximation of qλ(z|x). Thus, the optimal
choice for f is the one that maximises the expected log-likelihood of x given z
when z is sampled from q∗x(z). This way, the optimal encoder-decoder process
is such that for a given input x, the probability to have x̂ = x is maximized
when sampling z from the distribution q∗(z|x) and x̂ from the distribution
p(x|z). Thus, the optimal f ∗ defined in Equation 2-9.

f ∗ = arg max
f∈F

(Ez∼qλlog(p(x|z)))

= arg max
f∈F

(
Ez∼qλ

(
−||x− f(z)||2

2c

)) (2-9)

By combining Equations 2-8 and 2-9 we arrive at Equation 2-10, since the
right-hand side term of Equation 2-9 is contained in Equation 2-8.

(f ∗, g∗, h∗) = arg max
(f,g,h)∈F×G×H

(
Ez∼qλ

(
−||x− f(z)||2

2c

)
−KL(qλ(z|x), p(z))

)
(2-10)

In summary, Equation 2-10 is the negative of the ELBO we defined in
Equation 2-5, so for a training example i, the ELBO can computed as:

ELBOi(λ) = Eqλ(log(p(xi|z)))
c

−KL(qλ(z|xi)||p(z)) (2-11)

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 2. Background Knowledge 24

Equation 2-11 defines the loss function used when training VAEs for a
training example or a training batch. Note that the first term is expressed in
Equation 2-10 as the norm between the examples and the models prediction,
since it represents a reconstruction error (e.g. Mean-Squared Error). The KL
term acts as a regularizer for the latent space so that it follows the appropriate
prior distribution. The constant c can be used for favoring the regularization
error over the reconstruction error or vice-versa.

2.4
VAEs using deep neural networks

In order to find the optimal f ∗, g∗ and h∗, we can use neural networks for
modelling these three functions such that F , G andH are the family of possible
functions defined by the neural network architecture and the optimization
consists in finding the parameters for these functions that minimizes the loss
function described in Equation 2-10.

In the Encoder part of the model, where the networks G and H are built,
these two functions share most of its parameters and, for simplicity, it is
generally assumed that the covariance matrix defined by h(x) is a diagonal
matrix. This simplification has a drawback in the fact that it limits the power
of representation of the latent space, reducing the quality of the approximation
of q(z|x). Thus, the Encoder block receives the inputs x and outputs two
parameters µx = g(x) and σx = h(x) where h and g share most of its
parameters.

Next, a point z is sampled from the prior distribution, which is assumed to be
of fixed covariance and passed through the Decoder, f(z) = x̂. In the sampling
process, it is required to use the reparametrization trick instead of direct
sampling. This trick consists in sampling a point from a standard Gaussian
distribution and scaling and shifting this point using the parameters σx and
µx. This allows for the backpropagation algorithm to pass the gradients for
these parameters back to the Encoder, which otherwise would not be possible.
This reparametrization trick is described in Figure 2.3.

Finally, the VAEs conceptual architecture is illustrated in Figure 2.4 and its
loss function is defined in Equation 2-12.

L = c||x− f(z)||2 + KL(qλ(z|x), p(z))

= c||x− x̂||2 + KL(N (µx, σx),N (0, I))
(2-12)

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 2. Background Knowledge 25

Figure 2.3: Reparametrization Trick. This sampling scheme enables gradients
for the distribution parameters to be backpropagated through the encoder
network that generates them.

Figure 2.4: VAE conceptual architecture. The parameters µx and σx are
generated by two networks that share most of its parameters. In practice,
it can be implemented a single Encoder network with two outputs. Next the
latent space variable z is sampled using the reparametrization trick. Last, z is
served as input to the Decoder network for generating x̂.

2.5
Invertible Normalizing Flow-based Generative Models

The PFVAE model presented in this work joins ideas of both VAEs and
Invertible Normalizing Flow-based Generative Models, such as presented in
(19), (1) and (2). These are generative models trained using unsupervised
schemes. The central idea behind these models is to learn an invertible and
tractable bijective mapping between the a data distribution px and a latent
distribution pz, typically a Gaussian (1). There are other classes of invertible
networks, in this Chapter we refer to Invertible Normalizing Flows (INFs), on
which the inverse function of all the layers are tractable and easy to compute.

An Artificial Neural Network (ANN) learns a mapping f : x ∈ X → z ∈ Z,
where x are input data we want to be able to generate and z are samples from

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 2. Background Knowledge 26

a latent distribution. This ANN architecture is built such that the inverse
f−1(z) = x can be computed trivially, thus the generative process consists
in sampling a point z from the latent distribution and applying the function
f−1(z) = x to generate a sample x. Figure 2.5 illustrates this approximate
sampling and generation process.

Figure 2.5: Inference and Generation process of an Invertible Flow-based
Model. Source: (1)

.

The process of learning such a function f(z) = x is be done through
Maximum Likelihood Estimation (MLE) and is explained next.

Let x be a high-dimensional random vector with an unknown true proba-
bility distribution p∗(x), belonging to a dataset D of independent, identically
distributed variables (iid), such that each sample x ∈ D. We can approximate
p∗(x) using a parametric model pθ(x). In the case of continuous data, learning
the appropriate parameters θ is done through the log-likelihood objective, as
in Equation 2-14.

L(D) = 1
N

N∑
i=1
− log pθ(xi) (2-13)

In the case of discrete variables, the objective becomes as in Equation 2-14.
Where x̃i = xi + u, u ∼ U(0, a), and c = −M log a where a is determined by
the quantizatio level of the data and M is the dimensionality of x (2).

L(D) ' 1
N

N∑
i=1
− log pθ(x̃i) + c (2-14)

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 2. Background Knowledge 27

As previously defined, the generative process is defined as Equation 2-15.

z ∼ pθ(z)

x = gθ(z)
(2-15)

Where gθ(z) is an invertible, or bijective, function such that fθ(x) = z

and gθ(z) = f−1
θ (z) = x. The distribution pθ(z) is assumed to have a

tractable density, such as a spherical, multivariate Gaussian distribution
pθ(z) = N (z; 0, I). Moreover, the inference process fθ(x) = z is constructed a
series of stacked f1..K transformations. These transformations are the so called
Normalizing Flows (20) and are illustrated in Equation 2-16.

x
f1←−−→ h1

f2←−−→ h2
f3←−−→ ...

fK←−−→ z (2-16)

The log pθ(z) is computed using the change of variable formula to Equation
as in Equation 2-17 (2).

log pθ(x) = log pθ(z) + log |det(dz/dx)|

= log pθ(z) +
K∑
i=1

log |det(dhi/dhi−1)|
(2-17)

The term log |det(dhi/dhi−1)| is a scalar defined as the logarithm of the
absolute value of the determinant of the Jacobian matrix. For simplicity, we
will refer this this term as the log-determinant for the remaining of this
work. Its value can be interpreted as the change in the log-density when
applying the transformation fi(hi− 1) = hi. The ANN architectural blocks
proposed by (20), (1) and (2) provide simple computations for their log-
determinants, through transformation choices whose Jacobians are triangular
matrices. Computing the log-determinant for a triangular matrix only requires
taking the sum over the elements of its diagonal, such as in Equation 2-18.

log |det(dhi/dhi−1)| = sum(log |diag(dhi/dhi−1)|) (2-18)

Finally, the training procedure of an Invertible Normalizing Flow-based
Generative Model is as follows:

1. feed input data batches x into the model, i.e., compute f(x) = z;

2. compute the loss function as the negative of Equation 2-18;

3. apply the backpropagation algorithm to compute the update step in the
SGD procedure.

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 2. Background Knowledge 28

In the remaining sections of this Chapter, we describe the multi-scale
architecture proposed by (2) and each of the transformations it implements.
These are the basis for the invertible ANN part of the PFVAE model.

2.6
Multi-scale architecture

The Glow model architecture proposed by (2) is built upon ideas pre-
viously presented in (19), (20) and (1). This model was applied for image
generation using the CelebA HQ dataset, which contains celebrity faces im-
ages of size 256× 256. The PFVAE model also contains a INF block, however
much more simple than the Multi-scale architecture. Still its building blocks
were the main inspiration for building the PFVAE model INF, therefore we
present an overview of such architecture.

Glow uses a multi-scale architecture, originally proposed by (1), that consists
of L blocks, each containing K step-flows. Each step-flow is a sequence of
stacked bijective transformations designed to have a tractable and easy to
compute log-determinant. Figure 2.6 illustrates the step-flow blocks and the
multi-scale architecture.

(a) Step-flow block (b) Multi-scale architecture

Figure 2.6: Glow architecture. Source: Kingma et al. (2)

At each block, part of the data zi is outputted and its log-determinant is
added to the computation of the loss. This is possible through the combination
of split-squeeze operations, explained in the remaining sections of this chapter.
A summary of each operation in a step-flow block and their log-determinant
equations are shown in Table 2.1.

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 2. Background Knowledge 29

Description Function Inverse Function Log-Determinant
ActNorm ∀i, j : yi,j = s� xi,j + t ∀i, j : xi,j = (yi,j − b)/t h.w.sum(log(|s|))
Invertible 1× 1 convolution ∀i, j : yi,j = Wxi,j ∀i, j : xi,j = W−1yi,j h.w. log(det|W |)

Affine coupling layer

xa, xb = split(x)
log s, t = NN(xb)

s = elog s

ya = s� xa + t

yb = xb

y = concat(ya, yb)

ya, yb = split(y)
logs, t = NN(yb

s = elog s

xa = (ya − t)/s
xb = yb

x = concat(xa, xb)

sum(log(|s|))

Table 2.1: Overview of each transformation in a step-flow block in the Glow
architecture. Source: (2).

2.7
ActNorm

The Activation Normalization (ActNorm) operation performs an affine
transformation of the activations of the previous layer using a scale s and
bias parameter t, per channel, similar to batch normalization (21). Batch
normalization has been shown to alleviate problems encountered when training
deep models, such as the vanishing and explosive gradient problem (21). These
problems are phenomena where backpropagated gradients in deep networks
become either too small or too large and the model’s parameters either don’t
change after each iteration or they diverge. Dinh et. al (1) make use of batch
normalization in their RealNVP architecture. However, since the task where
the Glow model was applied involves generating large images, it has memory
constraints that require very small batch-sizes making the batch normalization
layer not suited for such scenario, since it requires bigger batch-sizes (2).

Thus, the ActNorm layer is similar to the traditional batch normalization
operation but more suited to handling very small mini-batches. In Glow, the
authors to use mini-batches of size 1. The parameters s and t of the ActNorm
layer are initialized such that the post-actnorm activations per-channel have
zero mean and unit variance given an initial mini-batch of data. This is called
data-dependent initialization. During training, both of these parameters are
updated as usual using the backpropagation algorithm along with stochastic
gradient descent.

The computations performed in this layer, both in the direct and inverse
mappings are as described in Equations 2-19 and 2-20, where x are inputs to the
direct function – forward pass – and y to the inverse function – backward pass.

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 2. Background Knowledge 30

The log-determinant computation for such operation is displayed in Equation
2-21 (2), where h and w are the size of the dimensions of the input data.

∀i, j : yi,j = s� xi,j + t (2-19)

∀i, j : xi,j = (yi,j − t)/s (2-20)

log |det(dy/dx)| = h.w.sum(log(|s|)) (2-21)

2.8
Affine coupling layer

The Affine coupling layer (ACL) is the layer where nonlinearities are
introduced into the architecture. In this layer, the input data x is split into
two parts xa and xb, each containing half of the input’s channels. Next, xb
is fed as inputs into a backbone ANN that outputs two parameters s and t.
These parameters are used in an affine transformation over the other half of
the inputs xa, such as ya = s � xa + t. The other half xb is passed through
without any transformation, i.e., yb = xb. Finally, the output y is constructed
by concatenating ya and yb channel-wise.

The inverse function can reuse the same backbone network’s parameters that
were used in the original function, only requiring to perform the inverse affine
transformation xa = (ya − t)/s. Figure 2.7 illustrates these transformation
schemes. The backbone neural network can be of any architecture and contain
nonlinear activation functions since, given the design of the ACL, it is bijective
regardless of the backbone architecture.

The last layer of the backbone ANN is initialized with zeroes, so that the
ACL performs an identity operation (it is applied an exponential function to
the parameter s) in the first training step. Kingma et al. (2) argue that this
helps when training very deep models.

In the ACL, it is important that the features extracted from each half of the
model are used to transform that half as well. This is not performed in the
ACL itself, but in some other layer that performs some type of permutation. In
both the Glow (2) and the PFVAE model, a 1 × 1 convolutional layer is used
for such purpose, since this operation is a generalization of the permutation
operation (2).

The log-determinant of the ACL is defined in Equation 2-22 (2).

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 2. Background Knowledge 31

Figure 2.7: Affine coupling layer direct (above) and inverse (below) transfor-
mations.

log |det(dy/dx)| = sum(log(|s|)) (2-22)

2.9
Invertible 1x1 convolution

The invertible 1×1 convolutional layer is used for applying a generalized
permutation into the channels of the data at each step flow. The weight matrix
of this layer is initialized as a random orthogonal matrix, for instance using QR-
Decomposition. In order to this layer to be the generalization of a permutation,
it is required for the number of input and output channels to be the same, which
is the case for invertible ANNs.

The log-determinant of an invertible 1× 1 convolution of a tensor of shape
h× w × c with a weight matrix W of shape c× c is defined in Equation 2-23.

log
∣∣∣∣∣det

(
dconv2D(h;W)

dh

)∣∣∣∣∣ = h.w. log | det(W)| (2-23)

According to Kingma et al. (2), the cost of computing or differenti-
ating det(W) is O(c3), which is often comparable to the cost comput-
ing conv2D(h;W) which is O(h.w.c2). In the first training step, the log-
determinant of this layer is 0 due to the initialization using a random rotation
matrix (from the QR-decoposition).

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 2. Background Knowledge 32

The cost of computing the log-determinant can be reduced to O(c) by
applying the LU-decomposition to the weight matrix, W = PL(U + diag(s)).
Where P is a permutation matrix, L is a lower diagonal matrix, U is an upper
diagonal matrix and s is a vector. In this case, the log-determinant becomes
as defined in Equation 2-24.

log | det(W)| = sum(log |s|) (2-24)

For implementing this parametrization, the weights matrix remains being
initialized from a random rotation matrix, next the LU-decomposition algo-
rithm is applied to compute the matrices P , L and U and the vector s. The
matrix P remains fixed and the other parameters are optimized during train-
ing. In the PFVAE, the LU-decomposition method was also applied since we
trained the models in TPUs that currently don’t support matrix inversion
operations.

In this chapter, we have presented the background knowledge requirements
for building the PFVAE model proposed in this work. A VAE is a generative
model that encodes data into a latent space described by a probability density
function, its generative process consists of sampling a point from this function
and decoding it into a data point. An Invertible Normalizing Flow-based Model
is also a type of generative model, it learns a bijective function that maps data
points into a latent space, also described by a probability density function
and has a similar generative process as a VAE, but, in this case, the sampled
point is decoded through a network that performs the inverse function used
for the encoding process. The PFVAE model is a VAE that uses an Invertible
Normalizing Flow-based block to build its latent space conditioned on the
aggregate data. A thorough description of such model is presented at Section
4.3.

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

3
Related Work

This Chapter defines the load disaggregation task, also known as Non-
Intrusive Load Monitoring (NILM), and it presents some of its background
and history, discusses its applications in energy efficiency and critically raises
a discussion on the efficacy of these applications, specially in the context of
industrial environments in Brazil. Next it introduces some of the background
concepts on Deep Learning and Invertible Neural Networks and some of its
applications.

3.1
Background and History

Load disaggregation was first introduced by Hart (3) in 1992. This task
is defined as the the blind-source separation of aggregate power consumption
into appliance-level power consumption. In his work, he introduced the con-
cept of a Non Intrusive Load Monitor (NILM) which would be a device that
would measure the aggregate power consumption of a household or commer-
cial building and apply algorithms to perform the load disaggregation task into
such measurements. The algorithmic framework consists in identifying tran-
sitions in the steady-state power consumption time series which are used as
features for an algorithm to match similar ON/OFF transitions and eventually
classify them as belonging to a certain appliance. The rationale behind this
approach is that appliances can be modelled as state machines with only two
states: ON and OFF. This idea is best illustrated in Figure 3.1

Figure 3.1: Appliance state-transitions over a period of time. Source: (3)

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 3. Related Work 34

Although this approach has shown good performance in previous work, it is
rather too simple, since many appliances can’t be properly model as two-state
machines. As an example, Figure 3.2 shows a state transition from a pelletizer
machine present in the dataset used in this work (11). From the Figure it
is evident that modelling the power consumption behavior of this machine
as a two-state state machine is rather too simplistic. To address this problem,
several approaches have been proposed in the literature, most notably Factorial
Hidden Markov Models (22), and more recently, deep neural networks (4), (6),
(23), (24).

Figure 3.2: Pelletizer I active power demand over a 17-minute long window

Recently, there has been work on investigating the possible benefits which
appliance-specific consumption information is an important feature, Zeifman
et al. (25) enumerated several of these applications. Among the applications
mentioned are:

– fault detection;
– behavioral pattern elucidation;
– appliance analysis based on usage;
– energy-aware appliance redesign;
– load forecasting;
– economic models;
– energy efficiency programs.

Following these ideas, Armel et al. (9) suggested that proper feedback and
detailed information can provide up to an 18% reduction in electricity con-
sumption for commercial and residential buildings.

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 3. Related Work 35

In the remaining of this chapter we describe the most important publicly
available datasets for NILM, and present related work that applies deep
learning to NILM, the reference work for the task and the only previous
application that uses the same dataset as we use in this work.

3.2
Datasets

In the load disaggregation task, it is usually desired to estimate either
the active power demand P (t) and the total active energy consumption EA,
where EA =

∫
P (t) dt. The reason for this is explained next, along with a

brief introduction to the electrical quantities that are related to the load
disaggregation task.

In general, an electrical installation can be simplified as an alternate-current
(AC) sinusoidal voltage power source V (t) and an impedance Z = R + j X,
where j =

√
−1, the real part R is the resistance and the imaginary part

is the reactance X. Figure 3.3 illustrates such circuit. In practice, most
electrical installations are composed of three-phases and some appliances can
be connected to multiple phases, which is the case of the appliances in the
dataset used in this work – this issue is discussed in Section 4.1. In the current
Section, we present a single-phase representation of a circuit for simplifying
the explanation of the concepts discussed.

Figure 3.3: Simplified AC electric circuit

In Equation 3-1, we define S(t) as the apparent power demand of such
a circuit. In the last equation we can see that S(t) can be split into a real
part P (t) and an imaginary part Q(t), which we call, respectively active and
reactive power demand. Since all these quantities, except for the impedance,
are dependant on the time instant t, we omit this variable for simplicity.

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 3. Related Work 36

S = V i

i = V

Z

S = V

Z

S = V (A+ jB)

S = P + jQ

(3-1)

The real part of the power consumption P is responsible for the actual
energy consumption, therefore, electricity is generally billed proportionally to
this quantity. In some scenarios, energy utilities also impose costs on consumers
who have a low power factor PF = P

S
, which is inversely proportional to the

reactive power Q.

Datasets for load disaggregation usually contain, at least, the active power
demand for both the aggregate consumption and for each appliance. Other
common quantities available are the root-mean square (RMS) voltage and
current, described in Equation 3-2, where T is a period of the sinusoidal wave-
forms V (t) and i(t).

VRMS =
√

1
T

∫ T

0
V (t)2 dt

iRMS =
√

1
T

∫ T

0
i(t)2 dt

(3-2)

The aggregate consumption is collected at the circuit’s main voltage distri-
bution board and it is the total consumption of such a circuit, which can be
a household, a commercial building, a factory, etc. The electrical quantities
for the aggregate consumption are used as features to a NILM model and, in
general, the active power consumption of each appliance is the target.

Another important factor of a NILM dataset is the sampling rate of the data
acquisition, which can be either low-frequency (LF) (≤ 1Hz) or high-frequency
(HF) (≥ 1kHz). In low-frequency acquisition, the wave-forms are avaible in
their RMS version, whereas in high-frequency acquisition, their instantaneous
value is available. The NILM modeling should be adapted depending on these
settings in order to properly capture and learn the information necessary for
the task.

Table 3.1 presents a summary of the most cited load disaggregation datasets,
including the available features, sampling rate and whether they are collected

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 3. Related Work 37

in commercial, residential or industrial environments. In this work we use the
Industrial Machinery Dataset for Electrical Load Disaggreagtion (IMDELD).

Dataset Features Type of Location Sampling Rate Num Buildings Appliances
IMDELD (11) V, i, P, Q, S, E Industrial 1 Hz 1 8
REDD LF (26) P Residential 1 Hz 6 24
REDD HF (26) V, i Residential 16.5 kHz 2 0
UK-Dale HF (27) P Residential 16.5 kHz 3 0
UK-Dale LF (27) S, P Residential 0.1667 Hz 5 32
GREEND (28) P Residential 1 Hz 8 9
BLUED (29) V, i Residential 12 kHz 1 43
WHITED (30) i Residential/Industrial 44 kHz 1 46
COOLL (31) V, i Residential 100 Khz 1 42
Dataport (32) V, P, S Residential 1 Hz ≥ 1000 ≥ 70

Table 3.1: Main characteristics of the most cited NILM datasets

In this work, our goal is to perform the load disaggreagtion in a Brazilian
industrial setting and the IMDELD (11) is the only one that fits both of
these requirements. WHITED (30) also contains a couple of light industrial
machinery but, as in COOLL, it only contains appliance-level activations data.
UK-Dale (27) and REDD (26), in their LF versions, are the most cited datasets
in NILM work, however they only contain residential data and differ from
IMDELD in this sense.

3.3
Neural NILM

Presented by Kelly and Knottenbelt (4), Neural NILM was the first pub-
lished work to apply deep neural networks for addressing the load disaggre-
gation task. The authors proposed three different neural network model and
compared their results using the UK-Dale Low Frequency dataset.

The three models were trained for load disaggregating a single appliance
at once. The subset of appliances considered in their work were the kettle,
the fridge, the washing machine, the microwave and the dishwasher. Before-
hand they implemented a simple algorithm to retrieve the activations of
each appliance, i.e., parts of the data when each appliance was turned on.
This algorithm followed a simple heuristic that considered a minimum and
maximum power demand and duration for each activation. The complete
subset of data used for training each model was, next, balanced by adding
parts of the data without any activations so that the model could both learn
how to predict that the appliance was turned on and off.

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 3. Related Work 38

In Neural NILM, the authors investigated the capability of the models to
generalize over different houses, thus they performed a cross validation scheme
were they trained each model to disaggregate each appliance using a subset of
houses, leaving-out one of the houses for testing. The three model architectures
proposed in Neural NILM are:

– Denoising AutoEncoder (DAE);
– Long short-term memory (LSTM) based architecture;
– Rectangles architecture.

In the UK-Dale dataset the only electrical quantities available for the
aggregate data is the apparent power S and the appliance-level data is the
active power P , both down-sampled to a period T = 6 seconds. Both the
DAE and the LSTM models learn a sequence-to-sequence mapping from the
aggregate apparent power demand time series into the appliance’s active power
demand. On the other hand, the Rectangles model only predicts three scalar
values for each activation window: the start and ending timestamps and the
average active power demand.

The best performing model was the Denoising AutoEncoder (DAE), which
we conceptually described in Section 2.1. This model is based on the assump-
tion that, for each appliance, the input data is composed by the consumption
data of its target appliance corrupted by noise caused by the other appliances.
The architecture is quite simple and is illustrated in Figure 3.4. Despite not
being a specially deep model it has a very big number of parameters due to its
three fully-connected layers.

Figure 3.4: Denoising Autoencoder (4)

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 3. Related Work 39

3.4
WaveNILM

Two different authors proposed similar models with the title WaveNILM,
Makonin et al. (33) and Martins et al. (6). In this work we will be referring to
the latter (6), which is, currently, the work that reports the best results using
the IMDELD dataset as of the time of writing this work.

WaveNILM follows the WaveNet architecture, first developed by (5) as a gen-
erative model for raw audio. This model is inspired by autoregressive generative
models and, in its original application, it was used for generating raw audio,
both free-text speech and speech conditioned on text encodings. The model
achieved state-of-the-art results without the usage of any recursive neural net-
work architecture, therefore being much more computationally efficient than
previous work that used Recurrent Neural Networks (RNN) such as LSTM-
based architectures.

The WaveNet formulation proposes an original attention mechanism which
is based on dilated convolutions and gated activation units. The dilated
convolutions enable the model to process data from previous timestamps at
several different combined positions and through the gated activation units it
is capable of learning which combinations contain the most feature importance
for the task during the training phase. This idea is illustrated in Figure 3.5.

Figure 3.5: Input-output scheme of a generic ANN using dilation convolutions.
Source: (5)

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 3. Related Work 40

The gated activation units implement the mathematical expression defined
in Equation 3-3. Where ∗ denotes the convolution operator, � denotes an
element-wise multiplication operator, σ(·) is a sigmoid function, k is the layer
index, f and g denote filter and gate, respectively, and W is a trainable
convolution filter. Combined with the dilation convolutions, it implements an
efficient attention mechanism (5).

z = tanh(Wf,k ∗ x)� σ(Wg,k ∗ x) (3-3)

The complete WaveNILM architecture is illustrated in Figure 3.6. Its first
layer contains a causal convolution, it guarantees that the predictions for a
given time-step don’t rely on data from future time-steps, which is a general
requirement in audio generation applications and also showed good results in
the load disaggregation task and, at the same time, allows for performing real-
time predictions of the appliances’ power demand. Next, it contains 5 blocks
of the attention mechanism using the combination of dilated convolutions and
gated units; in each of these blocks, there is also a residual connection between
its input and output. Finally, the outputs from each block are summed and
combined using two subsequent 1× 1 convolutions with Rectified Linear Unit
(ReLU) activation.

Similarly to NeuralNILM, the models were trained for predicting each
appliance at once, therefore, it is required to train 8 different models since
there are 8 machines in the dataset. The training and validation sets were
chosen based on a seven-fold method, while the test set was fixed as the last
15% of the remaining data (6). We assume that the authors used the standard
error computed during the cross validation when reporting their final results.

Martins et al. (6) compared the results of their proposed WaveNILM model
against a Factorial Hidden Markov Model (FHMM) implementation previously
proposed by (22). The FHMM approach was the state-of-the-art in NILM
applications until Kelly and Knottenbelt presented the Neural Nilm models.

Martins et al. used three different metrics for evaluating their models: (1) the
Signal Aggregate Error (SAE), the Normalized Disaggregation Error (NDE)
and the F1-Score. We present the definition and intution of (1) and (2) in
Section 4.6. It is not clear how the authors computed the F1-Score reported in
their paper, the WaveNILM’s final layer contains a ReLU activation making
it so that the predictions are in the continuous space and the F1-Score is used

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 3. Related Work 41

Figure 3.6: WaveNILM architecture. Source (6)

for classification tasks where the output data is discrete. Table 3.2 presents
the results reported in the paper.

An important result reported in (6) is how close the performance was for
the MIs when compared to the other machines’. This is challenge when using
the IMDELD dataset since the amount of data for the MIs is much lower than
for the other machines. In Section 4.1 we present a detailed explanation of the
contents of the dataset and a discussion on this topic.

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 3. Related Work 42

NDE SAE F1-Score
PI 0.045± 0.002 0.047± 0.009 96.81%± 0.08%
PII 0.056± 0.002 0.022± 0.009 95.99%± 0.08%
DCPI 0.08± 0.01 0.13± 0.04 96.11%± 0.02%
DCPII 0.202± 0.006 0.19± 0.02 90.84%± 0.01%
EFI 0.0460± 0.0004 0.007± 0.006 98.52%± 0.01%
EFII 0.041± 0.003 0.016± 0.009 98.29%± 0.09%
MI 0.08± 0.02 0.09± 0.04 95.6%± 0.8%
MII 0.06± 0.01 0.03± 0.02 95%± 1%

Table 3.2: WaveNILM results. Source (6)

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

4
Methodology and Results

This Chapter thoroughly describes the methodology used in this work to
reach the objectives enumerated in Chapter 1. It describes the dataset used in
the experiments, their setup, evaluation metrics, the baseline model and the
invertible architecture proposed in this work.

4.1
Dataset

In this work, we use the only publicly available dataset collected for the
energy disaggregation task in a Brazilian industry. It is called the Industrial
Machinery Dataset of Electrical Load Disaggregation (IMDELD) and it was
collected and published by Martins et. al (11) in a poultry feed factory in
the state of Minas Gerais. The factory processes corn and soybeans to create
pellets of kibble for poultry. It operates throughout the year at full scale from
Mondays through Fridays on three-turn daily shifts and it only stops operating
from 5:00 PM to 10:00 PM since electricity prices are higher during this period.

The electrical entry-point of the factory is at medium voltage – 13.4 kV –
therefore there is a medium to low voltage transformer (MV/LV) to power the
other subcircuits at 380 V. The four low-voltage distribution boards (LVBD)
that power these other circuits, are the ones listed below:

1. Lights and administrative sites

2. Pelletizing-related machinery

3. Milling-related machinery

4. General production machinery

The dataset contains measurements of the MV/LV transformer, which is
used as the aggregate consumption and of the 8 (eight) following machines:

1. Pelletizer I (PI);

2. Pelletizer II (PII);

3. Double-pole Conctator I (DPCI);

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 4. Methodology and Results 44

4. Double-pole Contactor II (DPCII);

5. Exhaust Fan I (EFI);

6. Exhaust Fan II (EFII);

7. Milling Machine I (MI);

8. Milling Machine II (MII);

The energy meters internally sample the data at 8 KHz to enable computation
of the current’s phase shift. The data provided is next subsampled to 1 Hz and
contains measurements of RMS voltage, RMS current, active power, reactive
power and apparent power. In this work we use all of these electrical quantities
as input to our proposed NILM model.

Figure 4.1 illustrates the electrical installation of the factory. The elements
in squares represent voltage distribution boards whereas the ones in circles
represents the machines. The blue background elements are the ones that are
available in the dataset.

Figure 4.1: IMDELD diagram

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 4. Methodology and Results 45

(a) Actual scale

(b) Normalized

Figure 4.2: Window containing 1024 samples of the active power demand of
the MV/LV transformer and of each appliance in the dataset.

Figure 4.2 displays a window of 1024 samples of the data contained in the
dataset. It displays the active power demand of the aggregate (measured at
the MV/LV transformer) and of each machine. We present both the data at its
normal scale and normalized between 0 and 1, per channel. It is possible to see
that the some of the machines, such as the PIs and DPCs, are responsible for
most of the energy consumption in the factory. Another important point is that
these machines represent only a fraction of the aggregate energy consumption,
therefore the NILM model must learn to denoise the remaining consumption
from the machines’.

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 4. Methodology and Results 46

The data is only collected for a single phase even though the electrical
installation of the factory is three-phase. The authors claim that the factory
is well-balanced, therefore the total consumption can be obtained by simply
multiplying the samples by a factor of 3, and the decision of not collecting the
other phases was taken in order to reduce the amount of data stored.

The samples contains timestamps from the range 2017-12-11 18:43:52 UTC
until 2018-04-01 21:33:17 UTC, corresponding to approximately 111 days. The
milling machines’ data were only collected over the last 12 days. The much
lower data availability for these machines makes it a challenge in obtaining a
load disaggregation performance comparable to the ones obtained for the other
machines.

4.2
WaveNILM Model

In this section we present the results obtained in our implementation of
the WaveNILM model proposed by Martins et al. (6). We tested the model
using a 7-fold cross validation, at each fold we train the model in roughly
85% of the data and test it in the remaining 15%. We split the data into
non-overlapping windows of size 1024 and randomly mix these windows before
splitting the data. The data is pre-processed in order to normalize each window
by the mean and standard deviation computed in the training set.

We trained one model per appliance, therefore, in ours experiments we train
a total of 56 models, being 7 models per appliance, with a total of 8 appliances.
For the aggregate feature, we only used the active power demand, as in (6).

We trained the models using the Adam optimizer with Nesterov momentum
(34), using a starting learning rate of 0.001 for 200 epochs. The loss function
we used is the Mean Square Error (MSE) between the predictions and ground
truth targets. Each model takes around 1 hour for training, so the complete
experiments took around 56 hours.

The results are presented Table 4.1 as the mean and the standard error for
each metric computed in the cross-validation. For the metrics we use the Signal
Aggregate Error (SAE) and the Normalized Disaggregation Error (NDE) which
are discussed in Section 4.6.

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 4. Methodology and Results 47

WaveNILM our implementation WaveNILM original
SAE NDE SAE NDE

PI 0.12± 0.05 0.05± 0.01 0.047± 0.009 0.045± 0.002
PII 0.12± 0.03 0.05± 0.01 0.022± 0.009 0.056± 0.002
DPCI 0.12± 0.05 0.054± 0.009 0.13± 0.04 0.08± 0.01
DPCII 0.12± 0.07 0.06± 0.02 0.19± 0.02 0.202± 0.006
EFI 0.13± 0.04 0.056± 0.009 0.007± 0.006 0.0460± 0.0004
EFII 0.15± 0.06 0.08± 0.02 0.016± 0.009 0.041± 0.003
MI 0.01± 0.01 0.09± 0.01 0.09± 0.04 0.08± 0.02
MII 0.03± 0.01 0.01± 0.02 0.03± 0.02 0.06± 0.01

Table 4.1: Comparison of our implementation of the WaveNILM model against
the report results in (6)

From the results presented in Table 3.2, we can see that the NDE we obtained
in our experiments is very close to the ones reported in the paper, for most
machines, the results we obtained are within the confidence intervals reported.
For the DPCII, we even achieved better results in the NDE. Meanwhile, when
comparing using the SAE, our results were around 10 times worse for most
machines, except for the Double-Pole Contactors and for the Milling Machines.
There could be a couple of reasons for such differences, such as:

– in the original paper the authors are very not clear on which features
they used when training the WaveNILM, even though they explicitly say
they only used the active power demand when training the FHMM; in
our preliminary experiments with the WaveNILM model, using only the
active power demand was presenting a better performance than using
other features, but in could be not the case when running the complete
experiment;

– the paper is also not clear about data normalization, we assumed that
the targets were not normalized at all but we normalized the features by
their mean and standard deviation, computed in the training set.

Since the results reported in the original paper are slightly better than
the ones we were able to reproduce, we used the former when presenting the
comparison with the results we achieved using our proposed PFVAE model.
In the remaining of this chapter we present the detailed architecture of such
model and the experiments we performed using it.

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 4. Methodology and Results 48

4.3
Prior Flow Variational Autoencoder

In this section, we describe our proposed Prior Flow Variational Autoen-
coder (PFVAE) model. Our approach is to model NILM as a result of esti-
mating a noisy distribution which is conditioned on the observed aggregated
power demand. We denote the aggregate power demand y and the appliance-
level data x.

Inspired by ideas found in (35), we propose a formulation for Conditional
Density Estimation (CDE), which joins Conditional Variational Autoencoders
(CVAE) (15, 36) with invertible normalizing flows (19, 1, 2) to estimate the
conditional density of individual power demand appliances.

The resulting PFVAE model is an extension to the CVAE modeling using
an invertible conditional normalizing flow model to learn the prior distribution
π(z0|y). Therefore, the model still learns an inference model qφ(z0|x, y) and a
generative model pθ(x|z0, y) in the CVAE part. The CNF fraction, in its turn,
is responsible for learning the prior distribution π(z0|y).

During the training procedure, the inference model outputs z0. After that,
z0 is passed throughout the CNF model, which encodes z0 into zk. The prior
probability π(z0|y) is then computed using the change of variable formula (1),
as described more in-depth in Section 2.5. Concurrently, z0 is also given as
input to the generative model, decoding z0 back to x.

In its turn, the generative process is done by first sampling zk from a simple
base density, such as a diagonal Gaussian distribution whose parameters are
calculated by the ConditioningNet using the examples from the aggregate data
y. The conditioning network also outputs a hidden state h(y), which is passed
as input to the inverse mapping together with zk to recover the latent variable
z0 such that z0 = f−1(zk, h(y)). Thus, the conditioning network has three
outputs µ(h(y)), σ(h(y)), and h(y). At last, z0 is decoded by the generative
model pθ(x|z0, h(y)).

Note that, in order to maintain compatibility with the CVAE formulation,
h(y) is also passed as input to the generative model.

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 4. Methodology and Results 49

(a) PFVAE training scheme. (b) PFVAE inference scheme.

Figure 4.3: PFVAE’s train and inference schemes.

Figure 4.3 illustrates the model’s training and inference schemes. In (a),
we present the training flow scheme, where the outputs x̂ and zk are used to
compute the loss function, which will be derived in the following section. In (b),
we present the inference flow scheme, where we use the conditioning network
outputs, µ(h(y)) and σ(h(y)), to sample zk through the reparametrization trick
and passing it through the CNF inverse pass pass to recover z0. In both (a)
and (b), we concatenate z0 and h(y) into a single tensor before serving them
as inputs to the decoder network, but the inputs are not concatenated in the
CNF. It is omitted from the diagrams for simplicity. The main differences when
running the model in inference mode is that we remove the Encoder block and
that we process the CNF model in its reverse mode for generating the variable
z0, which is the Encoder block’s output in the training mode.

Note that we condition the generative process of x̂ on the aggregate data
y in three different ways: (1) sampling zk ∼ N (µ(h(y)), σ(h(y))), (2) passing
h(y) to the CNF model over its affine-coupling layers and (3) passing h(y) as
inputs to the decoder block pθ(x|z0, y). In Section 4.8 we investigate the model’s
performance when removing the connections that enable the conditioning in 1
and 2.

The whole model is jointly trained using the Adam algorithm (16), which is
an extension of the traditional stochastic gradient descent algorithm that has
been widely used in deep learning applications.

4.4

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 4. Methodology and Results 50

PFVAE Loss Function

We can derive the loss function of the PFVAE from the original VAE
formulation presented in Section 2.3. We showed that the VAE loss is composed
of a reconstruction term and the KL divergence between the distribution
defined in the encoded latent space and some base distribution, usually set as a
diagonal Gaussian. However, in the PFVAE architecture, the base distribution
is defined, concurrently, by the sampling zk whose parameters are produced
by the ConditioningNet and by applying the CNF model over the latent space
variables z0, such that zk = πω(z0|y). In this setting the Evidence Lower-Bound
(ELBO) can be defined as in Equation 4-1, where ω, φ and θ are the model’s
trainable parameters.

log pθ(x|y) >= E[log pθ(x|z0, y)]− E[log qφ(z0|x, y)] + E[log πω(z0|y)] (4-1)

By passing the expected value of the logarithm of the posterior distribution
E[log qφ(z0|x, y)] to the left-hand side, Equation 4-1 becomes:

log pθ(x|y) + E[log qφ(z0|x, y)] >= E[log pθ(x|z0, y)] + E[log πω(z0|y)] (4-2)

Since E[log qφ(z0|x, y)] can not be negative, by minimizing the right-hand
side of the equation we indirectly minimize the log likelihood of the prior
pθ(x|y) distribution as well. Therefore the loss function can be simplified as in
Equation 4-3.

L = −E[log pθ(x|z0, y)]− E[log πω(z0|y)] (4-3)

Similarly to the traditional VAE loss, the PFVAE loss also contains a
reconstruction term and a regularization term. The latter encourages the model
to adjust the encoded space z0 to be close to the estimated prior distribution
πω(z0|y); this term is computed using the change of variable formula, as
explained in Section 2.5.

The decoder targets are the appliance-level power demand data x which
are continuous variables, therefore the reconstruction error is chosen as the
mean-squared error as in Equation 4-4.

MSE(x, x̂) = 1
N

N∑
i

(xi − x̂i)2 (4-4)

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 4. Methodology and Results 51

In the next section we go into details of the neural network architectural
blocks that we use for building the PFVAE model; we also discuss the choice
of the model’s hyper-parameters.

4.5
PFVAE Architecture and Hyper-Parameters

In both the Encoder and ConditioningNet we use full gated convolutional
neural networks, which are based on the work of Dauphin et al. (37), who
proposed a gating mechanism for sequence-to-sequence modeling similar to
the one proposed by Oord et al. (5) in the WaveNet model.

According to the authors, gated linear units are a simplified gating mecha-
nism for non-deterministic gates that reduce the vanishing gradient problem
by having linear units coupled to the gates. This retains the non-linear capa-
bilities of the layer while allowing the gradient to propagate through the linear
unit without scaling. A gated linear unit (GLU) is illustrated in Figure 4.4. It
contains two pathways, the convolution layer followed by a Linear activation is
the main one, whereas the hyperbolic tangent is used as the gating mechanism.

Figure 4.4: Gated Linear Unit (GLU) block

The encoder receives the concatenated vectors [x; y] as inputs and then
encodes them into a latent representation z0; the concatenation is performed
channel-wise. In other words, it receives a concatenation of the aggregated
power demand features x with the individual appliances’ active power y and
then encodes it into the latent space z0. Thus, the encoder network learns a
mapping f : x, y → z0, where z0 follows the posterior distribution.

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 4. Methodology and Results 52

The encoder and conditioning network diverges only in the last layers and
outputs. Therefore the conditioning network receives the data y, encodes it into
a rich representation h(y) and into the base distribution π(zk|y) parameters
µ(h(y)) and σ(h(y)).

Both of these networks are composed of 4 blocks built by stacking two gated
convolutional layers. Figure 4.5 illustrates each of these blocks.

Gated Convolution Gated Convolution

Figure 4.5: Encoder block.

At each block, the input’s temporal dimension is halved by the second gated
convolutional layer, which has strides equal to 2, in contrast to the first layer
with strides equal to 1. Additionally, both gated convolutional layers have
256 filters of size 5. Subsequently, after 4 blocks, both the encoder and the
conditioning networks have an additional gated convolutional layer with 256
filters of size 5.

The encoder network has one additional convolutional layer that receives
the last Gated Convolution outputs as its inputs, outputting z0. This convo-
lutional layer has 10 filters of size 1 and stride 1.

In its turn, the conditioning network has two additional convolutional
layers which both receive the outputs h(y) of the last Gated Convolution as
its inputs, outputting µ(h(y)) and σ(h(y)). These convolutional layers have 10
filters of size 1 and stride 1. Additionally, the convolutional layer that outputs
σ(h(y)) uses the sigmoid as its activation function.

The Decoder network is a much simpler convolutional neural network. It
is responsible for the decoding the data z0 in the latent space back to the
observation space x, thus, estimating each appliance’s power demand. It is
composed of 4 decoder blocks, followed by two simple convolutional layers.

These blocks are illustrated in Figure 4.6 and are composed of a gated
convolution layer and a transposed convolutional layer. The latter performs
the reverse operation as in the Encoder, it doubles the temporal dimensional
at each block. Both layers have 256 filters of size 3.

Gated Convolution Transposed Gated Convolution

Figure 4.6: Decoder block.

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 4. Methodology and Results 53

Figure 4.7: Affine Coupling Layer’s backbone neural network architecture

After being passed through the 4 decoder blocks, the inputs are passed
through two additional convolutional layers. The first containing 256 filters of
size 3 and the second containing the number of filters equal to the number of
appliances in the data x. Both of these final layers have stride 1 and linear
activation function.

At last, the CNF network is an invertible conditional normalizing flow model
inspired by the Glow architecture (2). This networks is responsible for learning
the latent space prior distribution πω(z0|y). Which, in its turn, conditions the
generative process by the aggregate data y.

The CNF network consists of 8 step-flow blocks, following the multi-
scale architecture thoroughly described in Section 2.6. Each step-flow block,
therefore is built of an ActNorm layer, and Invertible 1× 1 Convolution layer
and an Affine Coupling Layer (ACL), in this order.

The outputs of the Invertible 1×1 Convolution layer are passed as inputs to
the ACL. These are split into two halves; the first half is concatenated with the
ConditioningNet’s outputs h(y) before being served as inputs to a backbone
network that computes the ACL operators s and t, as described in Section
2.8. Such backbone network is a standard convolutional neural network block,
illustrated in Figure 4.7.

The complete model has 42, 799, 920 trainable parameters, as opposed to
only 156, 929 in our implementation of the WaveNILM model. Even though
models with more parameters have a tendency to present a greater level of
overfitting, the experimental results we obtained using a cross-validation setup
indicate that this was not the case for the PFVAE model when compared to the
WaveNILM model. Import factors that cause such a difference in the number
of parameters are (1) the WaveNILM model only uses the active power demand
as its single feature, as opposed to five features in the PFVAE; and (2) the

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 4. Methodology and Results 54

PFVAE model is trained to disaggregate multiple appliances at once, whilst
the WaveNILM model only disaggregates a single appliance, requiring multiple
models to perform the disaggregation for all of the appliances, therefore the
models combined have as many as eight times the number of parameters of a
single model, since there are eight appliances in the dataset.

In this Section we described the details of the PFVAE model architecture
and its hyper-parameters. These were chosen in our preliminary tests. The
next Section describes the experimental setup we used for achieving the best
performing results in the IMDELD dataset.

4.6
Layout of the experiments and results

We tested our model in the IMDELD dataset using the following aggregate
electrical quantities as features:

– active power;

– reactive power;

– apparent power;

– RMS voltage;

– RMS current.

Unlike in previous work using this dataset (6), our goal is to predict the
individual active power demand for each appliance from all those quantities
measured by the site meter (the aggregated data) using a single model.
Therefore, our model’s target is a multi-channel time window, where each
channel contains the active power demand for each target appliance.

In this work, the measurements are processed to create an overlapping
grid of intervals used as inputs and ground-truth targets by our model. The
windows width was decided during our preliminary experiments with the
dataset.

Our experiments were performed in a 7-fold cross-validation setting, simi-
larly to what was performed in (6). We split the data into overlapping windows
of size W and stride S and randomly split them into 7 equal-sized parts, at
each run, we train the model in 6 of these parts and test it in the remaining
part. In our preliminary experiments we found that W = 256 and S = 128

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 4. Methodology and Results 55

were good choices for the PFVAE model. Such window sizes are long enough
to capture most activation transition for all of the machines presented in the
dataset. It is important to note that increasing or decreasing the window size
could improve some individual machinery results. Still, since our goal is to
work with a single model for all machinery such a window size presented a
good tradeoff between the performance for each appliance.

The decision to split into windows and randomly mix them is due to the fact
that we’re trying to model the power signature of each appliance instead of
learning their temporal behavior over time. Similar methods of splitting data
in NILM applications are performed in (6), (27), (33).

The performance of the model is evaluated using two commonly used metrics
in NILM tasks (38): (I) the normalized disaggregation error (NDE) and (II)
the signal aggregated error (SAE). Equation 4-5 defines each of these metrics,
where t is the temporal dimension and i represents each example, i.e, a window
of data.

NDE =
∑
i,t(x̂i,t − xi,t)2∑

i,t x
2
i,t

SAE = 1
I

I∑
i

∣∣∣∑T
t x̂i,t −

∑T
t xi,t

∣∣∣∑T
t xi,t

(4-5)

The NDE is used to verify a NILM model’s capability in predicting the
appliance’s instantaneous power demand. In its turn, the SAE is used to verify
the model’s ability in predicting the appliance’s total energy consumption.
Those metrics are calculated from the average of 20 samples taken with the
trained models using the aggregated data y as input.

The experiments were performed on Google Colab Pro, on a TPU v2-8 node.
All models are trained via gradient descent with mini-batches of size 50, for
2, 000 epochs using the Adam optimizer (16) with its default parameters and
a learning rate of 0.00007. The training procedure took an average of 17 hours
per fold.

Additionally, since the amount of available data for the milling machines (MI
and MII) is much smaller than the available data for the other appliances, we
perform the cross-validation apart for these machines. Thus, we have perform
two 7-fold cross validation experiments, one for the six machines under the
LVDB-2 (PI, PII, DCPI, DCPII, EFI, EFII) and another one for the two milling

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 4. Methodology and Results 56

machines (MI, MII). We use the data collected at the MV/LV transformer as
the aggregate features for both experiments.

Table 4.2 presents a comparison of the results we obtained against the ones
reported by Martins et al. (6). Unlike in such work, we did not use the F1-Score
as an evaluation metric since both of our models perform regressive tasks, thus
is it not clear how the authors computed this metric.

In the results comparison we can see that the PFVAE model outperforms
the WaveNILM model for 6 out of 8 appliances in the NDE and for 5 out of 8
appliances in the SAE. For the Pelletizers, the most significant improvement
in the performance is seen for the DPCII, where the PFVAE results are better
by one order of magnitude.

The WaveNILM model’s results are superior to the PFVAE’s for the two
Exhaust Fans in both metrics, although, for the EFII, the results are very
close, being inside the confidence intervals in both metrics. Similar results are
seen for the MII. It is only in the EFI where the WaveNILM presented a clear
winning performance in comparison to the PFVAE.

In summary, in the SAE, the PFVAE model outperforms the WaveNILM
model for all of the appliances, except for the Exhaust Fans. A few key
differences between both models could be the reasons for the difference in
performance.

First, the PFVAE model uses five electric quantities as features as opposed
to the WaveNILM model. In our preliminary experiments with the WaveNILM
model, by adding more features, the model’s performance would degrade,
even though, from the electric circuits perspective we would expect otherwise.
The improved performance of the PFVAE model suggests that, due to its
higher capacity of representation, it was more capable of learning significant
relations between the features that resulted in improving the disaggregation
task performance.

Moreover, it is important to note that the machines in each pair have similar
activation patterns to each other, therefore performing the disaggregation task
for them together might help with differentiating between each of them, which
was possible in the PFVAE model.

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 4. Methodology and Results 57

On the other hand, the same two reasons mentioned could explain the
degraded performance for the Exhaust Fans which might present a very specific
behavior in the active power demand, in such a way that adding more features
only makes the task harder for the model.

In the NDE, the comparison is similar to the SAE, however, the WaveNILM
model also outperforms the PFVAE for the MII, although the results are close.

Another important point is the comparison between the standard error
obtained for each model. We can see that the standard error in the PFVAE
is generally a little bit higher than the WaveNILM’s. This can be due to the
PFVAE having around 10 to 100 times more parameters than the WaveNILM,
which, in its turn, could be a reason for slightly more overfitting in the PFVAE.
Still, the errors are small and, in most cases, the mean value in each metric was
smaller to a point that even when accounting for the standard error the general
performance would still be better in the PFVAE, especially in the DPCs.

NDE
WN PFVAE

PI 0.045 ± 0.002 0.032 ± 0.005
PII 0.056 ± 0.002 0.027 ± 0.005
DPCI 0.08 ± 0.01 0.031 ± 0.004
DPCII 0.202 ± 0.006 0.034 ± 0.004
EFI 0.046 ± 0.0004 0.125 ± 0.031
EFII 0.041 ± 0.003 0.042 ± 0.007
MI 0.08 ± 0.02 0.015 ± 0.002
MII 0.06 ± 0.01 0.039 ± 0.010

SAE
WN PFVAE

PI 0.047 ± 0.009 0.018 ± 0.002
PII 0.022 ± 0.009 0.016 ± 0.002
DPCI 0.13 ± 0.04 0.026 ± 0.003
DPCII 0.19 ± 0.02 0.026 ± 0.003
EFI 0.007 ± 0.006 0.033 ± 0.004
EFII 0.016 ± 0.009 0.020 ± 0.002
MI 0.09 ± 0.04 0.063 ± 0.010
MII 0.03 ± 0.02 0.073 ± 0.009

Table 4.2: Comparison between PFVAE model and WaveNILM result’s re-
ported by (6)

In this section we explained the details of our experiments setup and
presented its results in comparison to the current reported results from the

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 4. Methodology and Results 58

WaveNILM reference model. In the following section we present a qualitative
analysis of the results by displaying plots of the model’s output predictions
versus the ground truth, which helps us in understanding what the models are
actually learning.

4.7
Qualitative Analysis

In this section, we present a qualitative analysis of the results obtained.
For this goal, we present plots of the outputs versus the ground truth data
when using the PFVAE model from one of the cross validation folds, trained
for the predicting the first six appliances (pelletizers, double-pole contactors
and exhaust fans). The plots were generated using examples from the test set.

Moreover, this model has an intrinsic characteristic of enabling the compu-
tation of a confidence level for the predictions. This is possible since the predic-
tions can vary slightly depending on the sampling of zk ∼ N (µ(h(y)), σ(h(y)).
Therefore, we display the plots whose values are the mean of 10 predictions
performed for each example exhibited, at 95% confidence level, illustrated by
the green shaded areas in the plots.

Figures 4.8 and 4.9 display ground truth versus estimates for the Pelletizer
I. We can see that the model’s predictions are very close to the ground truth
data, having a very tight confidence interval, which suggests that the that
latent space successfully models the distribution required for the generative
task.

The only plot where the confidence interval is to as tight is in the third
row and second column in Figure 4.8, where the appliance looks to be turning
ON. It is expected that these parts of the activations are harder to predict
due to these examples not being very frequent in the dataset. On the other
hand, in Figure 4.9, where we zoom in in three of the plots from the former
Figure, we can see how the confidence intervals where very tight, even though
the appliance’s power load were not steady.

Figures 4.10 and 4.11 display ground truth versus estimates for the Pelletizer
II. The qualitative analysis suggests that the performance of the model is close
to the PI’s. Even better, we can see that for this machine, when the model’s
confidence interval was quite tight even in an example where the machine was
turning on (row three, column two). Figure 4.11 has a similar interpretation

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 4. Methodology and Results 59

Figure 4.8: 25 PFVAE estimates compared to the PI machine’s ground thruth.

Figure 4.9: Re-scaled plots for 3 of the 25 comparisons to observe the signal in
a more detailed view.

to the PI’s, where we can see tight confidence intervals for non-steady power
load windows.

Figures 4.12, 4.13, and 4.14, 4.15 display the plots for the Double-Pole
Contactors. The mean predictions are still very close to the ground truth
targets for both machines, but their confidence interval is not as close as the
ones obtained for the Pelletizers. This is expected from the slightly bigger
NDE and SAE obtained for both of these machines when compared to the
Pelletizers.

In the zoomed in Figures for the DPCs (4.13 and 4.15) we can see that
the model’s confidence intervals remain tight even when these appliances are

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 4. Methodology and Results 60

Figure 4.10: 25 PFVAE estimates compared to the PII machine’s ground
thruth.

Figure 4.11: Re-scaled plots for 3 of the 25 comparisons to observe the signal
in a more detailed view.

turning on or off. This is a good sign of how the model is properly learning
their power signature behavior.

Figures 4.16, 4.17, and 4.18, 4.19 display the plots for the Exhaust Fans.
Although the WaveNILM model outperformed the PFVAE for both of these
machines, the mean predictions are still very close to the targets and the
confidence level only seems to be big for quick transitions, as in 12th plot for
both machines.

The plots presented in this section help us visualize how the model is
performing when compared to its targets. It is worthy mentioning that the

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 4. Methodology and Results 61

Figure 4.12: 25 PFVAE estimates compared to the DPCI machine’s ground
thruth.

Figure 4.13: Re-scaled plots for 3 of the 25 comparisons to observe the signal
in a more detailed view.

confidence ranges are very small, even though the model has to learn quite
different behaviors in each of its channels. For instance, from the second picture
of each machine, we can see that, while the PI, EFI and EFII are operating at
steady-state, all the other machines are transitioning between states. Therefore
the model must learn to extract specific features for predicting each channel
correctly.

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 4. Methodology and Results 62

Figure 4.14: 25 PFVAE estimates compared to the DPCII machine’s ground
thruth.

Figure 4.15: Re-scaled plots for 3 of the 25 comparisons to observe the signal
in a more detailed view.

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 4. Methodology and Results 63

Figure 4.16: 25 PFVAE estimates compared to the EFI machine’s ground
thruth.

Figure 4.17: Re-scaled plots for 3 of the 25 comparisons to observe the signal
in a more detailed view.

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 4. Methodology and Results 64

Figure 4.18: 25 PFVAE estimates compared to the EFII machine’s ground
thruth.

Figure 4.19: Re-scaled plots for 3 of the 25 comparisons to observe the signal
in a more detailed view.

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 4. Methodology and Results 65

4.8
Ablation Studies

In the final section of this chapter we discuss some ablation studies
performed in order to learn how each different block of the model impact
its performance.

In the PFVAE architecture, we included two components that work for
conditioning the generative process on the aggregate data y, which are (1) the
h(y) connections in the affine coupling layers and (2) the conditioning from
zk base distribution in the CNF. Therefore, to investigate these components’
importance to the model, we conducted two experiments consisting of training
and testing PFVAE variations without each of these components.

In both experiments, the data and the model hyper-parameters were kept
constant while different PFVAE versions were evaluated. The models were
trained for six of the eight machines, using 80% of the dataset. The remaining
20% of the dataset was used for testing.

First, we compared the complete PFVAE model’s performance against
two modified versions. In the first modified version, we removed the h(y)
connections from the affine coupling layers by exchanging them for its simple
– and original – version. In the second modified version, we removed the
conditioning from the zk base distribution, in the CNF, by fixing its parameters
to match the diagonal standard normal distribution such that π(zk|y) ∼
N (0, 1). As a consequence, we removed the µ(h(y)) and σ(h(y)) calculations
from the model and the need for the reparametrization trick in the output of
the ConditioningNet block.

1. Simple Affine Layer

Figure 4.20 presents the training and inference shcemes for the first
ablation study. In this modified architecture, we simply removed the h(y)
connection in the affine coupling layers in the CNF, turning it into its
original version, described in Section 2.8.

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 4. Methodology and Results 66

(a) Training scheme. (b) Inference scheme.

Figure 4.20: Simple Affine Layer ablation train and inference schemes.

2. Standard Normal Figure 4.21 illustrates the PFVAE’s modified ar-
chitecture for our second ablation study, which consisted in removing
the conditioning on h(y) of the base distribution zk in the CNF. The
distribution π(zk|y) turns into a simple standard diagonal multivariate
Gaussian.

(a) Training scheme. (b) Inference scheme.

Figure 4.21: Standard Normal ablation train and inference schemes.

Table 4.3 presents the results obtained for each machine in each ablation
study as well as the full model’s. It also presents the total sum of each error
metric.

The standard normal base distribution version results were around ten times
worse in both metrics than the other versions, which might indicate that
learning the base distribution parameters allows the CNF to estimate tighter
and more flexible distributions for z0.

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 4. Methodology and Results 67

Comparing the simple affine coupling layer version against the complete
model indicates that both versions’ capability in predicting the overall energy
consumption for the appliances is quite similar since the SAE for these two
versions is very close.

However, the more significant difference in the NDE indicates that the
complete model has a stronger capability to predict appliance instantaneous
power demand. Therefore, the usage of the h(y) connections in the affine
coupling layers seem to be necessary for the model’s performance, which
justifies its use, even though it increases the total number of parameters.

Simple Affine Standard Normal Full Model
SAE NDE SAE NDE SAE NDE

PI 0.034 0.083 0.149 0.242 0.018 0.042
PII 0.036 0.071 0.154 0.224 0.020 0.044
DPCI 0.030 0.046 0.535 0.695 0.035 0.052
DPCII 0.029 0.048 0.542 0.701 0.036 0.055
EFI 0.046 0.153 0.759 2.863 0.047 0.131
EFII 0.022 0.047 0.329 0.574 0.027 0.046

TOTAL 0.200 0.452 2.470 5.301 0.185 0.373

Table 4.3: Comparison of each modified architecture of the PFVAE model.

Next, we performed one final ablation study, which consisted of analyzing
the PFVAE model’s performance when varying the number of step-flow blocks
used in the CNF.

Similarly to what was done for the first two ablation studies, the models
were also trained for six of the eight machines, using 80% of the dataset,
keeping the remaining 20% of the dataset was used for testing.

Tables 4.4 and 4.5 compares the resulting metrics for five trained model
variants with 2, 4, 8, 16, and 32 step-flow blocks in the CNF component, for
each machine.

The model with 8 step-flow blocks presented the best performance in both
metrics for all the machines, except for the PI, where the best performing
variation was using 32 blocks. It is worth noting that the performance improves
by adding more blocks until 8, starting to degrade when adding more blocks,
as seen in the results for 16 and 32 blocks. It indicates that we must choose
the number of step-flows sparingly and that the model’s performance degrades

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 4. Methodology and Results 68

NDE
2 4 8 16 32

PI 0.070 0.094 0.042 0.051 0.039
PII 0.085 0.064 0.044 0.046 0.046
DPCI 0.337 0.073 0.052 0.107 0.513
DPCII 0.412 0.076 0.055 0.118 0.529
EFI 1.192 0.220 0.131 0.272 2.838
EFII 0.218 0.083 0.046 0.066 0.228

TOTAL 2.317 0.611 0.373 0.663 4.196

Table 4.4: NDE comparison between PFVAE variants with 2, 4, 8, 16, and 32
step-flow blocks in the CNF component.

SAE
2 4 8 16 32

PI 0.036 0.037 0.018 0.035 0.036
PII 0.043 0.031 0.020 0.033 0.036
DPCI 0.280 0.043 0.035 0.088 0.355
DPCII 0.272 0.045 0.035 0.093 0.344
EFI 0.388 0.062 0.047 0.118 0.631
EFII 0.168 0.040 0.027 0.062 0.194

TOTAL 1.189 0.261 0.185 0.431 1.598

Table 4.5: SAE comparison between PFVAE variants with 2, 4, 8, 16, and 32
step-flow blocks in the CNF component.

with very deep CNFs, even though a too shallow model is not powerful enough
to capture the latent space distribution.

In summary, these experiments suggest that the best version of the PFVAE
for the task is the one where the CNF is built with 8 step-flow blocks, uses
learned features h(y) in its affine coupling layers, and is conditioned on the zk
base distribution.

This chapter presented the methodology applied in this work for advancing
the current best achieved results in NILM in an industrial setting through the
usage of variational generative models. We presented a detailed description
of the dataset used and the proposed PFVAE model. We also described the
experimental setup we used for training and testing the proposed model,
as well as the results obtained, both quantitative and qualitative – through
visualization of some of its predictions. Finally, we discussed the key points
in the model architecture through ablation studies that included removing
parts of the model and varying the hyper-parameters which defines the depth

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 4. Methodology and Results 69

of the CNF model. In the next chapter we conclude our work by revisiting
the proposed objectives and contributions, and discussing future work that
can potentially improve the results we obtained even further, and to help
investigating the potential of our proposed model in generalization in different
environments, such as residential and commercial buildings.

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

5
Conclusion and Future Work

In this Chapter, we revisit our proposed objects for this work in order
to check if we were able to met them and propose future work that could
potentially improve the results obtained and explore new applications for our
proposed model within the NILM domain.

In this work, our main goal was to address the load disaggregation, or NILM,
using Conditional Density Estimation models such as Invertible Normalizing
Flows and Variational Autoencoders in an industrial energy consumption
setting. For such objective we enumerated three objectives, next we go over
each of them and discuss whether we sucessfully achieved them

Our first objective was to study the state-of-the-art work that present
methodologies for solving the load disaggregation task in industrial environ-
ments. For this purpose, we performed a literature review of previous work in
NILM and presented a few of the most relevant work in Chapter 3. First, we
described the work in Hart (3) which was the first to define the NILM task and
to propose an algorithmic approach to solving it. Next we briefly presented the
electricity background required for understanding the basics of a NILM model
and the general characteristics of the publicly available datasets. Third, we
presented the most cited of these datasets; we also verified that the only avail-
able dataset that fulfills the requirement of being collected in an industrial
environment is the IMDELD (11), which is the one we decided to use in our
experiments. Finally, we presented two of the most relevant work, the first is
Neural NILM, proposed by Kelly and Knottenbelt (4) as the first approach
to NILM using neural networks; second is the WaveNILM model (6), which
state-of-the-art work when addressing the load disaggregation task in the same
dataset. We also reimplemented the WaveNILM model in order to investigate
the reproducibility of the results reported in (6).

The second objective was to verify the feasibility of applying a model that
joins a Variational Autoencoder (VAE) with Invertible Normalizing Flows
(Invertible NFs) to the load disaggregation task. For such an objective,
we proposed the Prior Flow Variational Autoencoder (PFVAE) in Chapter
4; we also present the background knowledge required for formulating the
architecture and its loss function in Chapter 2. We trained our model in a

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 5. Conclusion and Future Work 71

seven-fold cross-validation setting using the IMDELD dataset in two runs. In
the first run, we train the model to predict the power consumption of the first
six machines in the dataset; whereas in the second run we only predict the
two milling machines. This is done since the amount of available data for the
milling machines is much lower than for the other six machines. We assume
the general load profile of the factory to be stationary which allow us to split
the dataset into equally sized windows, randomly shuffle them and split them
into the train and validation sets at each fold. The same approach is done in
previous work both using the same dataset (6) or in different datasets (4),
(39). From the results obtained on their own, we can conclude that this model
is indeed adequate to applied to this task.

Our final objective was to compare our results against the current best
performing work in order to verify how competitive our proposed model is. For
this objective, we compared our results against the ones reported in Martins et
al. (6) in a similar experimental setup. We used two metrics for the comparison:
the Signal Aggregate Error (SAE) and the Normalized Disaggregation Error
(NDE). The SAE measures how well the model is able to predict the total
energy consumption of each appliance over a period of time; the NDE measures
the point-wise error between the targets and the predictions. We found our
model to outperform the WaveNILM model for six out of the eight machines
in the NDE and for five in the SAE. The Exhaust Fans (EFI and EFII) were the
only two machines for which the WaveNILM model outperforms the PFVAE in
both metrics. We believe that this is due to the choice of the window size; the
PFVAE jointly learns the distributions for estimating multiple appliances at
once, therefore we need to pick a fixed window size, which, in its turn imposes
a trade-off between the performance achieved for each machine.

Finally, we performed more in-depth investigations on the PFVAE model.
First, we presented a qualitative analysis through the visualization of the
predictions, taken from the validation set in one of the folds. Through these
visualization we were able to check that the model estimates are very close
to the ground truth data; the PFVAE model also provides us confidence
intervals for the predictions, we empirically found these intervals to be very
tight. Next, we performed some ablations studies, where we removed parts
of the model architecture and compared the results obtained in each of these
different versions. We also experimented with sweeping through the number of
step flows in the CNF part of the model, in order to provide an intuition on
how the depth of the CNF impacts the general performance of the PFVAE.

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 5. Conclusion and Future Work 72

We verified that the complete PFVAE model has the best performance overall
and that 8 step flows was the the best choice as a trade-off between depth and
number of parameters.

Therefore, our contributions are threefold:

– we investigated the reproducibility of the WaveNILM model proposed
by Martins et al. (6), we were able to achieve similar results which
were slightly worse, we attribute this difference to some details in the
experiments setup which are not very clear in their paper;

– we proposed the PFVAE, a novel conditioned generative model that we
applied to load disaggregation;

– we showed that the PFVAE model outperforms the current state-of-the-
art (6) for the load disaggregation task in a Brazilian industrial dataset
for most appliances.

On the other hand, our proposed model has a few limitations that could be
addressed in future work. First, the number of machines it is able to perform
disaggregation on is fixed, therefore improving the architecture in order to be
able to add new channels into the predictions on top of a pre trained model
and could potentially tackle this issue. Second, we only tested our model in an
industrial dataset containing data from a single factory, future work could go
in the direction of collecting data of another factory with similar machines and
characteristics, and testing our model on these data in order to verify if it is
able to generalize the predictions at different scenarios. Finally, we only used
our model for performing regression of the active power demand of each target
appliance, in NILM, classifying the appliance as being ON or OFF is usually
an easier, but valuable, task, therefore, in future work, the architecture could
be adjusted in order to perform binary classification instead of regression.

In order to further improve the results we achieved with the proposed
PFVAE model, future work could investigate the usage of augmented flows
(40), which remove the constraint of having a fixed number of channels
throughout the CNF block imposed by the type of architecture we used.
Investigating different and more complex backbone architectures in the affine
coupling layers such as incorporating efficient self-attention mechanisms which
have also shown good results in the NILM domain (24).

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 5. Conclusion and Future Work 73

Still in the NILM domain, the PFVAE model could also be applied into
reference residential datasets, such as UK-Dale (27) and REDD (26) with
similar experimental setups to Kelly and Knottenbelt (4) and Zhang et. al.
(39).

Future work could also investigate applying the PFVAE model architecture
for other traditional generative tasks as well such as text, speech and image
generation. Recent work combining VAEs and NFs has been done in other
domains, for instance Ziegler et al. (41) and Ma et al. (42) applied similar
model architectures to the natural language processing (NLP) domain which
uses discrete sequences.

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

6
References

[1] DINH, L.; SOHL-DICKSTEIN, J. ; BENGIO, S.. Density estimation
using real nvp. arXiv preprint arXiv:1605.08803, 2016. (document), 2.5,
2.5, 2.5, 2.6, 2.6, 2.7, 4.3, 4.3

[2] KINGMA, D. P.; DHARIWAL, P.. Glow: Generative flow with invert-
ible 1x1 convolutions, 2018. (document), 2.5, 2.5, 2.5, 2.5, 2.5, 2.6, 2.6,
2.1, 2.7, 2.7, 2.8, 2.8, 2.8, 2.9, 4.3, 4.5

[3] HART, G. W.. Nonintrusive appliance load monitoring. Proceedings
of the IEEE, 80(12):1870–1891, 1992. (document), 1.1, 3.1, 3.1, 5

[4] KELLY, J.; KNOTTENBELT, W.. Neural nilm: Deep neural networks
applied to energy disaggregation. In: PROCEEDINGS OF THE
2ND ACM INTERNATIONAL CONFERENCE ON EMBEDDED SYSTEMS
FOR ENERGY-EFFICIENT BUILT ENVIRONMENTS, p. 55–64. ACM, 2015.
(document), 1.2, 3.1, 3.3, 3.4, 5, 5, 5

[5] OORD, A. V. D.; DIELEMAN, S.; ZEN, H.; SIMONYAN, K.; VINYALS,
O.; GRAVES, A.; KALCHBRENNER, N.; SENIOR, A. ; KAVUKCUOGLU,
K.. Wavenet: A generative model for raw audio. arXiv preprint
arXiv:1609.03499, 2016. (document), 3.4, 3.5, 3.4, 4.5

[6] MARTINS, P. B.; GOMES, J. G.; NASCIMENTO, V. B. ; DE FREITAS, A. R..
Application of a deep learning generative model to load disag-
gregation for industrial machinery power consumption monitor-
ing. In: 2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICA-
TIONS, CONTROL, AND COMPUTING TECHNOLOGIES FOR SMART
GRIDS (SMARTGRIDCOMM), p. 1–6. IEEE, 2018. (document), 1.1, 1.2,
3.1, 3.4, 3.4, 3.4, 3.6, 3.4, 3.2, 4.2, 4.2, 4.1, 4.6, 4.6, 4.6, 4.6, 4.2, 5, 5, 5, 5

[7] Balanço energético brasileiro. http://www.epe.
gov.br/pt/publicacoes-dados-abertos/publicacoes/
balanco-energetico-nacional-2019. Accessed: 2019-09-266. 1.1

[8] Consumo brasileiro. http://www.epe.gov.
br/pt/publicacoes-dados-abertos/publicacoes/
Consumo-Anual-de-Energia-Eletrica-por-classe-nacional. Ac-
cessed: 2019-09-266. 1.1

http://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/balanco-energetico-nacional-2019
http://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/balanco-energetico-nacional-2019
http://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/balanco-energetico-nacional-2019
http://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/Consumo-Anual-de-Energia-Eletrica-por-classe-nacional
http://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/Consumo-Anual-de-Energia-Eletrica-por-classe-nacional
http://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/Consumo-Anual-de-Energia-Eletrica-por-classe-nacional
DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 6. References 75

[9] ARMEL, K. C.; GUPTA, A.; SHRIMALI, G. ; ALBERT, A.. Is disaggre-
gation the holy grail of energy efficiency? the case of electricity.
Energy Policy, 52:213–234, 2013. 1.1, 3.1

[10] HOLMEGAARD, E.; KJAERGAARD, M. B.. Nilm in an industrial
setting: A load characterization and algorithm evaluation. In:
2016 IEEE INTERNATIONAL CONFERENCE ON SMART COMPUTING
(SMARTCOMP), p. 1–8. IEEE, 2016. 1.1

[11] BANDEIRA DE MELLO MARTINS, P.; BARBOSA NASCIMENTO, V.;
DE FREITAS, A. R.; BITTENCOURT E SILVA, P. ; GUIMARÃES
DUARTE PINTO, R.. Industrial machines dataset for electrical load
disaggregation. 2018. 1.3, 3.1, ??, 3.2, 4.1, 5

[12] MCKINNEY, W.; OTHERS. Data structures for statistical comput-
ing in python. In: PROCEEDINGS OF THE 9TH PYTHON IN SCIENCE
CONFERENCE, volumen 445, p. 51–56. Austin, TX, 2010. 1.3

[13] OLIPHANT, T.. NumPy: A guide to NumPy. USA: Trelgol Publishing,
2006–. [Online; accessed <today>]. 1.3

[14] ABADI, M.; AGARWAL, A.; BARHAM, P.; BREVDO, E.; CHEN, Z.; CITRO,
C.; CORRADO, G. S.; DAVIS, A.; DEAN, J.; DEVIN, M.; GHEMAWAT, S.;
GOODFELLOW, I.; HARP, A.; IRVING, G.; ISARD, M.; JIA, Y.; JOZEFOW-
ICZ, R.; KAISER, L.; KUDLUR, M.; LEVENBERG, J.; MANÉ, D.; MONGA,
R.; MOORE, S.; MURRAY, D.; OLAH, C.; SCHUSTER, M.; SHLENS, J.;
STEINER, B.; SUTSKEVER, I.; TALWAR, K.; TUCKER, P.; VANHOUCKE,
V.; VASUDEVAN, V.; VIÉGAS, F.; VINYALS, O.; WARDEN, P.; WATTEN-
BERG, M.; WICKE, M.; YU, Y. ; ZHENG, X.. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. Software avail-
able from tensorflow.org. 1.3

[15] KINGMA, D. P.; WELLING, M.. Auto-encoding variational bayes.
CoRR, abs/1312.6114, 2013. 2.1, 2.1, 2.2, 4.3

[16] KINGMA, D. P.; BA, J.. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014. 2.1, 4.3, 4.6

[17] KULLBACK, S.; LEIBLER, R. A.. On information and sufficiency. The
annals of mathematical statistics, 22(1):79–86, 1951. 2.2

[18] JORDAN, M. I.; GHAHRAMANI, Z.; JAAKKOLA, T. S. ; SAUL, L. K..
An introduction to variational methods for graphical models.
Machine learning, 37(2):183–233, 1999. 2.3

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 6. References 76

[19] DINH, L.; KRUEGER, D. ; BENGIO, Y.. Nice: Non-linear independent
components estimation. arXiv preprint arXiv:1410.8516, 2014. 2.5, 2.6,
4.3

[20] REZENDE, D.; MOHAMED, S.. Variational inference with normal-
izing flows. In: Bach, F.; Blei, D., editors, PROCEEDINGS OF THE 32ND
INTERNATIONAL CONFERENCE ON MACHINE LEARNING, volumen 37
de Proceedings of Machine Learning Research, p. 1530–1538, Lille,
France, 07–09 Jul 2015. PMLR. 2.5, 2.5, 2.6

[21] IOFFE, S.; SZEGEDY, C.. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In: INTER-
NATIONAL CONFERENCE ON MACHINE LEARNING, p. 448–456. PMLR,
2015. 2.7

[22] KOLTER, J. Z.; JAAKKOLA, T.. Approximate inference in additive
factorial hmms with application to energy disaggregation. In:
ARTIFICIAL INTELLIGENCE AND STATISTICS, p. 1472–1482, 2012. 3.1,
3.4

[23] HARELL, A.; MAKONIN, S. ; BAJIĆ, I. V.. Wavenilm: A causal neu-
ral network for power disaggregation from the complex power
signal. In: ICASSP 2019-2019 IEEE INTERNATIONAL CONFERENCE ON
ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), p. 8335–
8339. IEEE, 2019. 3.1

[24] YUE, Z.; WITZIG, C. R.; JORDE, D. ; JACOBSEN, H.-A.. Bert4nilm: A
bidirectional transformer model for non-intrusive load monitor-
ing. In: PROCEEDINGS OF THE 5TH INTERNATIONAL WORKSHOP ON
NON-INTRUSIVE LOAD MONITORING, p. 89–93, 2020. 3.1, 5

[25] ZEIFMAN, M.; ROTH, K.. Nonintrusive appliance load monitor-
ing: Review and outlook. IEEE transactions on Consumer Electronics,
57(1):76–84, 2011. 3.1

[26] KOLTER, J. Z.; JOHNSON, M. J.. Redd: A public data set for energy
disaggregation research. In: WORKSHOP ON DATA MINING APPLI-
CATIONS IN SUSTAINABILITY (SIGKDD), SAN DIEGO, CA, volumen 25,
p. 59–62, 2011. ??, ??, 3.2, 5

[27] KELLY, J.; KNOTTENBELT, W.. The uk-dale dataset, domes-
tic appliance-level electricity demand and whole-house demand
from five uk homes. Scientific data, 2(1):1–14, 2015. ??, ??, 3.2, 4.6, 5

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 6. References 77

[28] MONACCHI, A.; EGARTER, D.; ELMENREICH, W.; D’ALESSANDRO, S.
; TONELLO, A. M.. Greend: An energy consumption dataset of
households in italy and austria. In: 2014 IEEE INTERNATIONAL CON-
FERENCE ON SMART GRID COMMUNICATIONS (SMARTGRIDCOMM),
p. 511–516. IEEE, 2014. ??

[29] ANDERSON, K.; OCNEANU, A.; BENITEZ, D.; CARLSON, D.; ROWE, A.
; BERGES, M.. Blued: A fully labeled public dataset for event-
based non-intrusive load monitoring research. In: PROCEEDINGS
OF THE 2ND KDD WORKSHOP ON DATA MINING APPLICATIONS IN
SUSTAINABILITY (SUSTKDD), volumen 7, p. 1–5. ACM, 2012. ??

[30] KAHL, M.; HAQ, A. U.; KRIECHBAUMER, T. ; JACOBSEN, H.-A..
Whited-a worldwide household and industry transient energy
data set. In: 3RD INTERNATIONAL WORKSHOP ON NON-INTRUSIVE
LOAD MONITORING, p. 1–4, 2016. ??, 3.2

[31] PICON, T.; MEZIANE, M. N.; RAVIER, P.; LAMARQUE, G.; NOVELLO,
C.; BUNETEL, J.-C. L. ; RAINGEAUD, Y.. Cooll: Controlled on/off
loads library, a public dataset of high-sampled electrical signals
for appliance identification. arXiv preprint arXiv:1611.05803, 2016. ??

[32] INCORPORATION, P. S.. Dataport. Pecan Street Inc., Austin, TX,
accessed Dec, 11:2018, 2015. ??

[33] HARELL, A.; MAKONIN, S. ; BAJIĆ, I. V.. Wavenilm: A causal neural
network for power disaggregation from the complex power sig-
nal. In: ICASSP 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON
ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), p. 8335–
8339, 2019. 3.4, 4.6

[34] DOZAT, T.. Incorporating nesterov momentum into adam. 2016.
4.2

[35] BERG, R. V. D.; HASENCLEVER, L.; TOMCZAK, J. M. ; WELLING, M..
Sylvester normalizing flows for variational inference. arXiv preprint
arXiv:1803.05649, 2018. 4.3

[36] SOHN, K.; LEE, H. ; YAN, X.. Learning structured output repre-
sentation using deep conditional generative models. Advances in
neural information processing systems, 28:3483–3491, 2015. 4.3

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

Chapter 6. References 78

[37] DAUPHIN, Y. N.; FAN, A.; AULI, M. ; GRANGIER, D.. Language
modeling with gated convolutional networks. In: INTERNATIONAL
CONFERENCE ON MACHINE LEARNING, p. 933–941. PMLR, 2017. 4.5

[38] ZHONG, M.; GODDARD, N.; SUTTON, C. ; OTHERS. Signal aggre-
gate constraints in additive factorial hmms, with application to
energy disaggregation. 2014. 4.6

[39] ZHANG, C.; ZHONG, M.; WANG, Z.; GODDARD, N. ; SUTTON,
C.. Sequence-to-point learning with neural networks for non-
intrusive load monitoring. In: PROCEEDINGS OF THE AAAI CON-
FERENCE ON ARTIFICIAL INTELLIGENCE, volumen 32, 2018. 5, 5

[40] CHEN, J.; LU, C.; CHENLI, B.; ZHU, J. ; TIAN, T.. Vflow: More
expressive generative flows with variational data augmentation.
In: INTERNATIONAL CONFERENCE ON MACHINE LEARNING, p. 1660–
1669. PMLR, 2020. 5

[41] ZIEGLER, Z.; RUSH, A.. Latent normalizing flows for discrete se-
quences. In: INTERNATIONAL CONFERENCE ON MACHINE LEARNING,
p. 7673–7682. PMLR, 2019. 5

[42] MA, X.; ZHOU, C.; LI, X.; NEUBIG, G. ; HOVY, E.. Flowseq: Non-
autoregressive conditional sequence generation with generative
flow. arXiv preprint arXiv:1909.02480, 2019. 5

DBD
PUC-Rio - Certificação Digital Nº 1812772/CA

	Load Disaggregation in a Brazilian Industrial Dataset Using Invertible Networks and Variational Autoencoders
	Resumo
	Table of contents
	Introduction
	Motivation
	Objective
	Constraints
	Contributions and Dissertation Outline

	Background Knowledge
	Autoencoders
	Variational Autoencoders
	Variational Autoencoders Probabilistic Framework
	VAEs using deep neural networks
	Invertible Normalizing Flow-based Generative Models
	Multi-scale architecture
	ActNorm
	Affine coupling layer
	Invertible 1x1 convolution

	Related Work
	Background and History
	Datasets
	Neural NILM
	WaveNILM

	Methodology and Results
	Dataset
	WaveNILM Model
	Prior Flow Variational Autoencoder
	PFVAE Loss Function
	PFVAE Architecture and Hyper-Parameters
	Layout of the experiments and results
	Qualitative Analysis
	Ablation Studies

	Conclusion and Future Work
	References

