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Abstract

Fontes, Vinicius Oliveira; Pereira, Anderson (Advisor). Topology
optimization of hyperelastic structures based on interpola-
tion methods. Rio de Janeiro, 2020. 88p. Dissertação de Mestrado
— Departamento de Engenharia Mecânica, Pontifícia Universidade
Católica do Rio de Janeiro.

The optimized design of structures considering nonlinearities has been
widely researched in the recent decades. The finite element analysis applied
to topology optimization is jeopardized by the excessive deformation of
low-density elements under high compression, which hinders the process of
finding an optimal solution. Two methods, the Energy Interpolation scheme
and the Additive Hyperelasticity technique, are implemented to overcome
this difficulty in the minimum compliance problem, and hyperelastic
material models are used to investigate their influence on the optimized
topology. The Method of Moving Asymptotes is used to update the design
variables whose sensitivities were calculated from the adjoint method. The
state equation is solved through the Newton-Raphson method with an
adjusting load step to reduce computational cost. Results for two benchmark
problems are compared with those already established in the literature.
The use of different hyperelastic models presented little influence on the
final design of the structure. The Energy Interpolation method was able to
converge for much higher loads than the default method, while the Additive
Hyperelasticity presented convergence difficulties in plane strain.

Keywords
Topology Optimization; Geometrical Nonlinearity; Finite Elements;

Energy Interpolation; Additive Hyperelasticity;
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Resumo

Fontes, Vinicius Oliveira; Pereira, Anderson (Orientador). Otimi-
zação topológica de estruturas hiperelásticas baseada em
métodos de interpolação. Rio de Janeiro, 2020. 88p. Dissertação
de Mestrado — Departamento de Engenharia Mecânica, Pontifícia
Universidade Católica do Rio de Janeiro.

O design otimizado de estruturas considerando não-linearidades tem sido
amplamente pesquisado nas décadas recentes. A análise de elementos finitos
aplicada à otimização topológica é prejudicada pela deformação excessiva de
elementos de baixa densidade sob alta compressão, o que impede o processo
de encontrar uma solução ótima. Dois métodos, o esquema Interpolação
de Energia e a técnica de Hiperelasticidade Aditiva, são implementados
para superar essa dificuldade no problema de minimização da flexibilidade,
e modelos de materiais hiperelásticos são usados para investigar suas
influências na topologia otimizada. O Método das Assíntotas Móveis é usado
para atualizar as variáves de projeto cujas sensibilidades foram calculadas
pelo método adjunto. A equação de estado é resolvida através do método de
Newton-Raphson com um incremento de carga ajustável para reduzir o custo
computacional. Resultados de dois problemas de referência são comparados
com aqueles já estabelecidos na literatura. O uso de diferentes modelos
hiperelásticos apresentou pouca influência no design final da estrutura.
O método de Interpolação de Energia foi capaz de convergir para cargas
muito maiores que o método padrão, enquanto a Hiperelasticidade Aditiva
apresentou dificuldades de convergência em estado plano de deformação.

Palavras-chave
Otimização Topológica; Não-linearidade Geométrica; Elementos Finitos;

Interpolação de Energia; Hiperelasticidade Aditiva;
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1
Introduction

The analysis of structures is based on solving differential equations that often
are difficult or impossible to do analytically. The advent of the digital computer
has given effectiveness and applicability in solving these problems with the
Finite Element Analysis (FEA) which, due to its practical implementation,
“found wide appeal in engineering practice” (Bathe, 2014). In the same fashion,
other fields of interest in engineering have risen since the past century, such
as numerical optimization. These fields of research combined lead to the study
of structural optimization, which is often divided in three types: sizing, shape
and topology optimization (Figure 1.1).

Sizing Op�miza�on(a)

(b)

(c)

Figure 1.1: Types of structural optimization (Bendsøe & Sigmund, 2002).

Sizing optimization aims to find the optimal structural parameters in
an already known structure (e.g., thickness of members in a truss, see Figure
1.1a); shape optimization seeks to find the optimal boundary shape of a domain
with an already known topology (e.g., the holes in a beam, see Figure 1.1b);
topology optimization (TO) involves determining the optimal distribution of
material in a given domain (e.g., material layout of a beam, see Figure 1.1c). In
topology optimization, the only information known is the boundary conditions
(loads and supports, for the purposes of this text) and the desired volume of
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Chapter 1. Introduction 19

material in a previously chosen domain which may or may not include fixed
solid and void regions (Bendsøe & Sigmund, 2002).

When it was first introduced by Bendsøe & Kikuchi (1988) with the
homogenization method, topology optimization was implemented using linear
finite elements in order to solve the minimum compliance problem (i.e., to
find the topology that minimizes the work of the external forces). Bendsøe
(1989) later introduced the approach known as Solid Isotropic Material with
Penalization (SIMP) where a penalized continuous design variable would serve
to determine the existence of material (or lack thereof) in a chosen domain.
This continuous variable xe, often called element density, is used to change
the stiffness of each element that composes the domain of a structure to
be optimized, such that an element e is solid when xe = 1 and void (or
nonexistent) when xe = 0. One of the first published results for the cantilever
beam using this method is shown in Figure 1.2, a problem that has been
revisited by many authors in the following decades.

Figure 1.2: Optimized cantilever beam (Bendsøe, 1989).

The SIMP method helps recover the discrete nature of the original prob-
lem, since xe might assume any value within the continuous range [0, 1] during
the TO process, a requirement for using gradient-based optimization. When
a convergence criterion is met, some post-processing of the optimized design
may be required to comply with necessary restrictions, such as manufacturing
limitations.

Although intermediate values of density xe may be physically meaningful
for composite materials, e.g., in the work by Huang et al. (2013) , in many cases
(such as this work), only the 0 and 1 values are desirable at the end of the TO
process. Therefore, the set of low-density elements in the mesh, often referred
to as “void region” by some authors, is disregarded in the optimized design.
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Chapter 1. Introduction 20

1.1
Motivation

Many TO applications, such as the first works in the area, consider linear
analysis that assume small displacements and linear elastic material. However,
when structures deform past a limit, such assumptions may not be valid, as it is
expected for soft or slender structures and mechanisms (Bendsøe & Sigmund,
2002). For instance, the high aspect ratio of flexible wings in modern aircraft
deforms enough to require nonlinear formulation for its analysis, as observed
by Jie et al. (2020) and references therein.

1.3(a): Suspension bridge considering material nonlinearities (adapted from Zhang
et al. (2017)).

1.3(b): Bistable mechanism considering material and geometric nonlinearities (adapted
from Chen et al. (2019b)).

Figure 1.3: Examples of optimized 3D printed designs.

Many authors have explored the intricacies of the TO applications to
additive manufacturing (also referred to as 3D printing), where the linear
framework may be unsuitable, thus more robust methods have been explored:
Zhang et al. (2017) optimized the trusses that support a suspension bridge
using the ground structure method, considering material nonlinearities (see
Figure 1.3(a)); James & Waisman (2016) and Chen et al. (2019b) designed a
structure with two stable equilibrium positions known as a bistable mechanism
(see Figure 1.3(b)), where both material and geometric nonlinearities are
fundamental in the analysis. For a more comprehensive review on TO and
additive manufacturing, the reader is referred to Liu et al. (2018).

Nonlinear TO has also been succesfully applied to the design of Micro-
ElectroMechanical Systems (MEMS) and compliant mechanisms in general,
structures optimized to maximize displacement rather than minimizing struc-
tural compliance. Although early works such as Frecker et al. (1997) have
considered a linear setting, others have optimized compliant mechanisms un-
dergoing large displacement, such as Bruns & Tortorelli (1998); Pedersen et al.
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Chapter 1. Introduction 21

(2001); Lazarov et al. (2011), which is intrinsic to their application. The use
of hyperelastic material models, which are often applied to polymers, may also
be used to model metallic compliant mechanisms and other structures that
undergo large displacements.

The difficulty in working with geometrically non-linear (GNL) TO is
due to the behavior of low-density elements under large deformation. Even
if the void region is fictitious and disregarded in the end design, it may still
significantly affect the FEA and jeopardize convergence when higher loads are
considered. Although many solutions to this problem have been suggested in
the literature, it is still being investigated by many authors as presented in
the next section. It is noted that this work is motivated by the suggestions
of the master thesis by Leitão (2019), from which a substantial part of the
terminology and implementation derived.

1.2
Literature Review

The fields of study that compose this work can be divided into three main
parts: structural analysis, sensitivity analysis and topology optimization. This
section is dedicated to reviewing the solutions for numerical instabilities in the
structural analysis of nonlinear TO.

Early works by Bruns & Tortorelli (1998), Buhl et al. (2000) and others
considered the use of a total Lagrangian formulation in GNL TO in order to
investigate the optimized designs of structures under large displacements that
depend on the applied load, unlike its linear counterpart. It is well-known in
the literature that FEA convergence is particularly difficult when low-density
elements are subject to large deformation. One cause of this problem is the
loss of the positive definite property of the stiffness matrix for elements under
excessive deformation. It is worthy of note that the use of robust solution
techniques such as the arc-length method (ALM) described by Crisfield (1981)
does not guarantee convergence. Some solutions to this problem have been
proposed and are outlined in the following paragraphs.
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Chapter 1. Introduction 22

Figure 1.4: Representation of nodes surrounded by void elements (Buhl et al.,
2000).

Buhl et al. (2000) first proposed to remove nodes surrounded by void
elements from the convergence criterion, but not from the mesh itself (see
Figure 1.4). Bruns & Tortorelli (2003) removed and reintroduced elements
from the mesh using a mesh-independent Gaussian weighted discrete filter,
whose application is shown in Figure 1.5 for the cantilever beam problem.
Luo & Tong (2016) also proposed the removal of void elements from FEA but
considered them for the response function. Applying the Moving Iso-Surface
Threshold (MIST) method allowed removed elements to be considered in the
design variable update, reappering when needed.

1.5(a): Without element removal.

1.5(b): With element removal.

Figure 1.5: Mesh of an optimized beam with and without element removal
(Bruns & Tortorelli, 2003).
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Yoon & Kim (2005) penalized artificial zero-length elastic links that
connected the elements, instead of penalizing each element’s stiffness, as shown
in Figure 1.6. Kawamoto (2009) implemented the Levenberg-Marquardt to
achieve convergence of the FEA during TO of compliant mechanisms.

Figure 1.6: Artificial zero-length link penalization (Yoon & Kim, 2005).

Lahuerta et al. (2013) provided an important discussion of the use of
polyconvex materials along a relaxation filter to avoid the loss of ellipticity.
They compared the deformation of the void region of a C-shaped structure
formulated with the conventional St.Venant-Kirchhoff (SVK) model and an
enhaced polyconvex neo-Hookean (nH) model. Figure 1.7 shows that the
former presents a undesirable stiffer response compared to the latter. Further
discussion of the importance of polyconvexity for hyperelasticity in FEA is
provided by Suchocki & Jemioło (2019) and references therein. Klarbring
& Strömberg (2013) also proposed the use of different hyperelastic material
models in TO, while also considering prescribed displacement.
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1.7(a): St.Venant-Kirchhoff. 1.7(b): neo-Hookean of Simo-Ciarlet.

Figure 1.7: Influence of material models on the deformation of a C-shaped
structure with a void region composed by low-density elements in gray
(Lahuerta et al., 2013).

van Dijk et al. (2014) have shown that the Green-Lagrange strain measure
is problematic due to the loss of its physical meaning under compression. The
proposed solution was to scale the displacement of low-density elements to
maintain them in their applicable range.

Few authors have proposed to interpolate the energy function for each
element to alleviate numerical instabilities. Depending on its density, each
element would be modeled after either the original model (for solid regions)
or a “soft” model (for void regions). Wang et al. (2014) suggested using small
deformation theory for the soft material. Figure 1.8 shows another deformed C-
shaped structure, where it is seen that modeling only the low-density elements
with linear elements from small deformation theory results in a less distorted
mesh.
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1.8(a): Using nonlinear elements. 1.8(b): Using small deformation theory.

Figure 1.8: Deformed C-shaped structure with the low-density elements (in
white) modeled after two different formulations (Wang et al., 2014).

Some authors were influenced by this work and have made modifications
to the original idea in order to improve its performance: Wallin et al. (2018)
slightly altered the transition parameter to a continuous one and used a neo-
Hookean material; Jie et al. (2020) adapted the Super Element Method (SEM)
to consider elements with density below a given threshold as a single macro-
element confined to linear elastic deformation.

Luo et al. (2015) proposed interpolating the energy with the Yeoh model,
which was later implemented by Chen et al. (2019a) using Ansys with a slightly
different model.

Table 1.1 displays the previously presented methods in chronological
order. To the best of this author’s knowledge, there have been no efforts to
compare different interpolation methods in plane strain assumption in TO. The
main goal of this thesis is to develop a MATLAB code for topology optimization
with support for material and geometrical nonlinearities, as discussed in the
following section. The code was written based on the implementation by Leitão
& Pereira (2019) and with the help of their authors.
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Table 1.1: Methods for dealing with numerical instabilities in TO.

Year Authors Method

2000
Buhl, T.

Relaxing Convergence CriterionPedersen, C. B. W.
Sigmund, O.

2003 Bruns, T.E Element removal and reintroductionTortorelli, D. A.

2005 Yoon, H. G. Element connectivity parametrizationKim, Y. Y.
2009 Kawamoto, A. Levenberg-Marquardt method

2012 Lee, H. Equivalent Static Load MethodPark, G.

2013

Lahuerta, R. D.

Use of polyconvex material models
Simões, E. T.

Campello, E. M. B.
Pimenta, P. M.
Silva, E. C. N.

2014
van Dijk, N. P.

Element deformation scalingLangelaar M.
van Keulen, F.

2014

Wang, F.

Energy Interpolation SchemeLazarov, B. S.
Sigmund, O.
Jensen, J. S.

2015
Luo, Y.

Additive hyperelasticity techniqueWang, M. Y.
Kang, Z.

2016 Luo, Q. Moving iso-surface thresholdTong, L.

2018
Wallin, M.

Modified Energy Interpolation schemeIvarsson, N.
Tortorelli, D.

2019
Chen, Q.

Additive hyperelasticity techniqueZhang, X.
Zhu, B.

2020

Hou, J.

Super Elements Method
Gu, X.
Zhu, J.
Wang, J.
Zhang, W.
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1.3
Objectives

A complete TO code including the FEA was written on MATLAB to achieve
the following goals:

1. Compare the optimized topology obtained using several hyperelastic
material models;

2. Compare the applicability of two interpolation methods (Additive Hy-
perelasticity technique and Energy Interpolation scheme) to problems in
plane strain condition.

All problems in this work are analyzed assuming plane strain condition,
unless otherwise stated. Some adaptations to the original interpolation meth-
ods were adopted in order to both provide a fair comparison and to enable the
use of the aforementioned hyperelastic models.

1.4
Chapter index

The topics discussed in this thesis are divided as follows:

Chapter 2 is a brief review on fundamental concepts and equations from
hyperelasticity and FEA;

Chapter 3 introduces TO concepts and their implementation using interpo-
lations;

Chapter 4 presents the results of two benchmark problems using various
hyperelastic materials and two interpolation techniques;

Chapter 5 concludes the work and presents proposals for future works.

Some problems and results are shown throughout the following chapters
to either better illustrate the topics or validate results.
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2
Fundamentals of the Finite Element Method

This chapter is dedicated to describing basic notions and formulas for future
reference in this text. The Finite Element Method (FEM) is a well-spread
tool in engineering used to numerically solve partial-differential equations by
dividing it into geometrical parts called finite elements whose behavior is
approximated by simpler functions. Then, they are assembled into a system of
algebraic equations that can be solved by any desirable method, often based
on the Newton-Raphson (NR) method.

FEM equations can be derived using the Calculus of Variations and its ap-
plication extends to many different fields other than structural analysis. Hence,
a wider definition of FEM has been proposed as “a general discretization pro-
cedure of continuum problems posed by mathematically defined statements”
(Zienkiewicz et al., 2005).

This chapter starts by defining important concepts from Continuum
Mechanics applied to finite elasticity. General remarks on the FEM are
presented, along with by the definition of the hyperelastic models used in this
thesis, which are illustrated by a problem solved with an FEA code written in
MATLAB.

For the sake of conciseness, most proofs and derivations are avoided, so
the reader is referred to Bonet & Wood (2008); Kim (2014); Bathe (2014) for
further information.

2.1
Basics of Continuum Mechanics

Although matter is not continuous, the continuum theory assumes that it “may
be divided indefinitely into smaller and smaller portions, each of which retains
all of the physical properties of the parent body” (Mase et al., 1999, p. 16).

The following equations can be formulated by taking either the initial or
current configuration as a reference. The Lagrangian (or material) description
assumes the former, while the Eulerian (or spatial) description assumes the
latter. Material description is adopted unless otherwise stated.
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2.1.1
Kinematics of Deformation

The deformation of a body may be computed from the displacement field d
by the deformation gradient F , calculated from the equation

F = ∇0d+ I, (2.1)

where ∇0d is the gradient of the displacement field d and I is the second
order identity tensor. The 0 subscript enforces that the gradient is taken with
respect to the initial configuration of the body. Another important measure,
known as the right Cauchy-Green deformation tensor, is defined as

C = F TF . (2.2)

An important measure known as the Green-Lagrange strain is computed
from the following equation:

E = 1
2(C − I), (2.3)

that can also be expressed in terms of the displacement as

E = 1
2
[
∇0d+ (∇0d)T + (∇0d)T∇0d

]
. (2.4)

When small strains are considered, the second order terms in (2.4) may
be neglected. Thus, the small strain tensor is defined as

ε = 1
2
[
∇0d+ (∇0d)T

]
. (2.5)

2.1.2
Stress Measures

Stress is the ratio of internal force on a body per unit area, and can be defined
in many ways. The Cauchy (or true) stress tensor σ is the ratio between the
aforementioned quantities taken in the current configuration of the system.
Moreso, from the conservation of angular momentum, it may be shown that
σ = σT , i.e., the Cauchy stress tensor is symmetric (Mase et al., 1999).
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Albeit physically meaningful, σ is defined in a spatial description. The
first Piola-Kirchhoff tensor is defined through a procedure called pull-back,
that yields

P = JσF−T , (2.6)

where

J = det(F ) (2.7)

is the Jacobian, a measure of volume change during deformation, such that
J = 1 for an isochoric change. Unfortunately, P is not a symmetric tensor.
Thus the second Piola-Kirchhoff tensor, shortened to PK2, is defined as

S = F−1P , (2.8)

which is symmetric. Although not physically meaningful, PK2 is a most useful
stress measure for solid mechanics, and is more convenient for many numerical
implementations. It is often necessary, however, to express the stress back in
the current configuration, which can be done by solving (2.8) for σ, that is

σ = 1
J
FSF T . (2.9)

When considering a body’s behavior in two dimensions, there are two
approximations often used to simplify the description. Let a plane be defined
by directions 1 and 2, with 3 being the out-of-plane direction. Furthemore,
assume that loading is applied only in plane 1-2.

Plane stress assumes that out-of-plane stress components are zero, that is

σ13 = σ31 = σ23 = σ32 = σ33 = 0. (2.10)

This approximation is often assumed when a structure’s thickness is
much smaller than the other dimensions, e.g. a thin metal plate, where
the stress across the thickness is negligible.

Plane strain assumes that out-of-plane strain components are zero, that is
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E13 = E31 = E23 = E32 = E33 = 0. (2.11)

Likewise, for small displacements,

ε13 = ε31 = ε23 = ε32 = ε33 = 0. (2.12)

Plane strain is a fair assumption when displacement is constrained in
one direction or if the thickness of a body is comparable to the other
dimensions, such that strain in the out-of-plane direction is negligible.

2.1.3
Hyperelasticity

A hyperelastic material is defined by a functional that depends solely on its
current strain state, so it is not dependent on deformation history (Holzapfel,
2000). This functional measures the stored energy per unit volume in a body
and is only a function of F . For ease of reading, this text uses the term strain
energy density instead, represented by the letterW . A measure of deformation
such as C and E may also be used to define W , since they depend on F .

Holzapfel (2000) derives stress and strain relationships for hyperelastic
materials from the strain energy density, forming pairs known as work con-
jugates. The work conjugate of PK2 stress is the Green-Lagrange strain and
their relationship is given by

S = ∂W

∂E
· (2.13)

Isotropic materials are those whose properties do not depend on direction.
The strain energy density of an isotropic material can be defined as a function
of its strain’s principal invariants, according to the representation theorem for
tensor valued functions (Gurtin, 1981). This allows one to define the strain
energy density as W = W (I1, I2, I3), where Ii are the principal invariants of
C, which is itself a function of F . The invariants can be calculated from the
principal stretches λi, that is
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I1 = λ2
1 + λ2

2 + λ2
3, (2.14)

I2 = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1, (2.15)

I3 = λ2
1λ

2
2λ

2
3. (2.16)

The principal invariants may be computed in terms of the right Cauchy-
Green strain tensor instead:

I1 = tr(C), (2.17)

I2 = 1
2
[
tr2(C)− tr(C2)

]
, (2.18)

I3 = det(C). (2.19)

A more convenient definition of PK2 is defined by substituting (2.3) into
(2.13) and applying the chain rule that yields

S = 2∂W
∂C
· (2.20)

Likewise, the constitutive tensor D is defined as the partial derivative of
S with respect to E. Repeating the same procedure as above for D gives

D = 2 ∂S
∂C
· (2.21)

Other definitions of the strain energy density are found in the literature,
such as defining it in terms of λi (useful for anisotropic materials) or as a
function of E. A useful definition is as follows:

W =
∞∑

m+n+k=1
Amnk(I1 − 3)m(I2 − 3)n(I3 − 1)k (2.22)

where Amnk are constants to be defined for each model and material. The first
two invariants in (2.22) are subtracted by 3 to ensure their respective terms are
null when strain is zero (Mase et al., 1999). The third invariant is subtracted
by 1 to nullify the terms that consider volumetric dilation during isochoric
deformation (i.e., I3 = J2 = 1).

Finally, many materials can be defined in terms of the Young modulus
E and the Poisson coefficient ν taken from experimental data. On the other
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hand, defining a material in terms of Lamé’s parameters is useful in many
implementations, which can be calculated from

λ = Eν

(1 + ν)(1− 2ν) , (2.23)

µ = E

2(1 + ν) (2.24)

where λ is Lamé’s first parameter and µ is the second parameter, also known
as the shear modulus. An important compressibility parameter is the bulk
modulus, computed from Lamé’s parameters by

K = λ+ 2
3µ. (2.25)

2.1.4
Compressibility formulations

Hyperelastic models are used to simulate the behavior of solids which usually
show some degree of incompressibility. Notice that the formulations presented
in Section 2.1.3 do not enforce incompressibility by default, and also may
not realistically represent the physical behavior of a material under significant
compression. Three types of compressibility formulations are often used to
enhance these models and provide some resistance to the change of volume.

– Near incompressibility

A nearly incompressible material has its strain energy density separated
into two parts: Wvol considers the effects of volumetric dilation and Wiso

considers the effects of isochoric distortion, that is:

W (C) = Wvol(J) +Wiso(J1, J2) (2.26)

where J1 and J2, known as the reduced invariants, do not depend on the
effects of volumetric dilation and are defined as

J1 = J−
2
3 I1, (2.27)

J2 = J−
4
3 I2. (2.28)
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Many commercial programs implement this formulation in two fashions.
The first, known as the penalty method (Kim, 2014, p. 192-193):

Wvol(J) = K

2 (J − 1)2. (2.29)

Near incompressible behavior is achieved by setting the bulk modulus
to a high value, e.g., 103µ − 104µ (Bonet & Wood, 2008, p. 171). Some
material models are often implemented using a more complex version of
this formulation by adding higher order terms, that is,

Wvol(J) =
N∑
n=1

1
Dn

(J − 1)2 (2.30)

where Dn are compressibility constants. In order to agree with (2.29),

D1 = 2
K
, (2.31)

but other values may be used according to the application.

– Incompressibility

Incompressible behavior can be mathematically implemented with a
Lagrange multiplier into (2.26) as follows:

Wvol(J) = p(J − 1), (2.32)

where p physically represents a workless hydrostatic pressure, determined
from the boundary conditions. Some degree of compressibility can be
observed due to numerical approximations in computational implemen-
tations.

– Jacobian terms

Adding functionsWJ(J) to the strain energy density functional has been
proposed in the literature, such as

WJ = 1
2(ln J)2, (2.33)

WJ = λ(J − ln J − 1), (2.34)

WJ = λ

2 (J − 1)2. (2.35)
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Equation (2.34) was suggested by Curnier (1994), but (2.33) and (2.35)
were proposed by Klarbring & Strömberg (2013). The term

WJ(J) = −µ ln J (2.36)

is also found in the literature applied to neo-Hookean models to give
them resistance to compression.

2.2
Hyperelastic Material Models

Hyperelastic models are inspired by either a phenomenological description of a
material behavior or from a mathematical representation of its micro structure.
These aspects are not addressed in this text due to the focus being mainly their
implementation in the FEA, so the reader is referred to Holzapfel (2000) and
references therein for further information. It is possible, then, to implement
the same material with different models, as is done in examples throughout
this thesis.

Table 2.1 is a comprehensive list of the models used in this work, includ-
ing the linear model WL and the following hyperelastic models: St.Venant-
Kirchhoff, neo-Hookean, Mooney-Rivlin (MR) and Yeoh.

Table 2.1: Material models

Model Type Formulation Strain energy density

WL Linear† - λ
2 (εkk)2 + µεijεij

W 1 SVK - λ
8 (I1 − 3)2 + µ

4 (I2
1 − 2I2 − 2I1 + 3)

W 2

SVK‡
(2.33) λ

2 (ln J)2 + µ
4 (I2

1 − 2I2 − 2I1 + 3)
W 3 (2.34) λ(J − ln J − 1) + µ

4 (I2
1 − 2I2 − 2I1 + 3)

W 4 (2.35) λ
2 (J − 1)2 + µ

4 (I2
1 − 2I2 − 2I1 + 3)

W 5

nH‡
(2.33) λ

2 (ln J)2 − µ ln J + µ
2 (I1 − 3)

W 6 (2.34) λ(J − ln J − 1)− µ ln J + µ
2 (I1 − 3)

W 7 (2.35) λ
2 (J − 1)2 − µ ln J + µ

2 (I1 − 3)

W 8 MR (2.29) A10(J1 − 3) + A01(J2 − 3) + K
2 (J − 1)2

W 9 Yeoh (2.30) ∑3
m=1Am0(J1 − 3)m +∑N

n=1
1
Dn

(J − 1)2n

† Linear model from small deformation theory;
‡Modified versions proposed by Curnier (1994) and Klarbring & Strömberg
(2013).
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The linear model WL from small deformation theory is defined in terms
of the linearized strain ε, a linear function of the displacements (cf. (2.5)). The
column Formulation lists the compressibility formulation of each model as
presented in Section 2.1.4, when there is one.

From consistency conditions, the constants A10 and A01 can be deter-
mined in terms of µ from the following equation (Kim, 2014, p. 189):

A10 + A01 = µ

2 . (2.37)

The tensors S andD were calculated from (2.20) and (2.21) using MAT-
LAB’s Symbolic Math Toolbox, with the exception of WL, whose equations
can be readily found in FEM literature, e.g., Kim (2014).

Plane strain is assumed in every problem in this work unless otherwise
stated. This condition can be enforced by first solving (2.3) for C:

C = 2E + I. (2.38)

Then, substituting (2.11) into (2.38) in matrix form gives


C11 C12 C13

C12 C22 C23

C13 C23 C33

 = 2


E11 E12 0
E12 E22 0
0 0 0

+


1 0 0
0 1 0
0 0 1

 · (2.39)

The deformation tensor should be defined as

C =


C11 C12 0
C12 C22 0
0 0 1

 . (2.40)

Since every strain component in the out-of-plane direction is zero, ac-
cording to (2.11), plane strain is enforced. To illustrate the differences between
models, the uniaxial deformation problem is considered, where one dimension
is stretched by δ, while the other dimensions are kept constant. The deforma-
tion tensor is
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C =


δ2 0 0
0 1 0
0 0 1

 (2.41)

which satisfies (2.40). The energy and stress curves are shown in Figure 2.1
where the superscript identifies the model as defined in Table 2.1.
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2.1(a): Energy for SVK-based mate-
rials.
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2.1(b): Stress for SVK-based mate-
rials.
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2.1(c): Energy for nH-based materi-
als.
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2.1(d): Stress for nH-based materi-
als.
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2.1(e): Energy for MR and Yeoh.
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2.1(f): Stress for MR and Yeoh.

Figure 2.1: Strain energy density and first principal Cauchy stress curves for
different models in uniaxial deformation. Similar behavior is observed in the
light gray region.
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The stretch range in this analysis is 0.2 ≤ λ1 ≤ 2.0, with E = 1000
and ν = 0.3. From (2.23), (2.24), (2.25) the Lamé’s parameters and bulk
modulus were computed. The remaining constants were set to the following:
A10 = A01 = A20 = µ/4, A30 = D3 = 0 and D2 = 109. The remaining
quantities were calculated from (2.23), (2.24), (2.25) and (2.31).

It is important to observe that the stress in some models (e.g., W 1) does
not tend to negative infinity as they are compressed, which may result either in
non-realistic behavior or numerical instabilities. This issue is easily addressed
in models with one or more compressibility parameters that can be changed
independently, to make the material more or less stiff, facilitating convergence.

Lastly, most models perform very similarly within the range 0.8 ≤ λ1 ≤
1.4 (shown as the light gray region in Figure 2.1), so their behavior is very
similar in most applications with small enough deformation.

2.3
Finite Element Equations

In static structural analysis, displacement-based nonlinear FEA consists of
finding the nodal displacement vector u of a mesh subject to applied loads and
boundary conditions. Most steps of the following derivations will be skipped
for conciseness of this text. Hence, for further information on these derivations,
the reader is referred to Kim (2014).

For hyperelastic materials, the finite element equations can be derived
from the principle of minimum potential energy which states that an elastic
system is in equilibrium when its potential energy is minimum. The system’s
potential energy Π is defined as

Π(d) = Πint(d)− Πext(d) (2.42)

where Πint(d) is the stored strain energy and Πext(d) is the work done by ex-
ternal forces. Notice that Πint depends only on the current state of deformation
for hyperelastic materials, as defined in Section 2.1.3. The minimum potential
energy can be obtained from the perturbation method, which states that the
potential Π is at a minimum when its first variation δΠ is zero, that is:

δΠ(d,d) ≡ d

dα
Π(d+ αd)

∣∣∣∣
α=0

= 0 ∀d (2.43)

where α is the perturbation and d is the variation of the displacement.
Substituting (2.43) into (2.42) yields an equation in the form
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a(d,d) = l(d) (2.44)

where the left-hand side is called the energy form and the right-hand side
is the load form. The variational problem is then linearized and discretized
into finite elements, whose nodal displacements u are sought in the deformed
configuration. To do so, the problem is posed as finding the increment of nodal
displacement ∆u that satisfies the following linear system:

r = KT∆u (2.45)

where KT is the tangent stiffness matrix and r is the residual (or unbalanced
force vector) given by

r = fext − fint, (2.46)

where fext and fint are the nodal external and internal force vectors, respec-
tively, in the global scope. The applied load is divided in smaller parts, called
load steps, where fext is assembled proportionally to a given load factor, a
procedure known as load control.

The standard NR method is based on iteratively solving the linear system
(2.45) until a convergence criterion is satisfied. In this work, the criterion is
that the euclidean norm of the residual must be smaller than a given tolerance
(10−3 unless otherwise stated). At every iteration, fint and KT are computed
from the contributions of each element fe andKe. These quantities are derived
for a hyperelastic material at element level (assuming that the external force
does not depend on u) from the following equations:

fe = ∂

∂ue

∫
Ω0

e

WedV =
∫

Ω0
e

∂We

∂ue
dV, (2.47)

Ke = ∂fe
∂ue

. (2.48)

where We is the element’s strain energy in the deformed configuration and Ω0
e

is the the undeformed configuration of element e. Equations (2.47) and (2.48)
are particularly useful when deriving the interpolation’s expressions in Section
3.2. For implementation purposes, it can be shown that the aforementioned
quantities may also be obtained from the following equations:
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fe =
∫

Ω0
e

BT
NSdV, (2.49)

Ke =
∫

Ω0
e

[
BT
NDBN +BT

GΣBG

]
dV, (2.50)

where the quantities in the integrands are evaluted at element-level in the
reference configuration of the element;BN andBG are the nonlinear and linear
(geometric) displacement-strain matrix, respectively; S and D are computed
from (2.20) and (2.21), respectively.

The matrix Σ is defined as

Σ =
S 0

0 S

 (2.51)

where 0 is a 2 × 2 null matrix. These integrals were solved using Gaussian
integration rule with 2x2 integration points for both the 4- and 8-nodes
quadrilateral elements, known as Q4 and Q8, respectively.

The contribution of each element is stored in a global vector (or matrix)
through a procedure known as assembly, that is:

fint =
Ne⋂
e=1
fe, (2.52)

KT =
Ne⋂
e=1
Ke, (2.53)

where ⋂ is the assembly operator required to arrange the components into fint
and KT . For the linear FEM, the stored strain energy WL

e of each element
can be computed from it linear tangent stiffness matrix KL

e by the following
quadratic form:

WL
e = 1

2u
T
eK

L
e ue. (2.54)

2.3.1
Cook’s membrane problem

A benchmark problem is used to verify the FEA code and compare the different
nonlinear models: Cook’s problem, a “test for combined bending and shear
response with moderate distortion” (Dassault, 2010, section 2.1.5). Figure
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2.2(a) shows the structure’s geometry which is fixed on the left side and a
unitary shear force P is applied on the right edge, whose uppermost node,
A, is used as a reference. The external force is vertical at every loading step,
i.e., it does not follow nodal rotation. The mesh is composed of 30 x 30 Q8
plane strain elements with unitary thickness as shown in Figure 2.2(b) in the
deformed state .

2.2(a): Problem’s domain.

2.2(b): Vertical displacement field using model W 1

(undeformed mesh in light gray).

Figure 2.2: Cook’s membrane problem (units in mm).

This problem is often solved for a nearly incompressible neo-Hookean
material with µ = 0.8 and K = 8000, where the vertical displacement uy of
node A is used as a reference for comparison. The results of this analysis for
the SVK and nH models in Table 2.1 are shown in Table 2.2 where the ANSYS’
nearly incompressible neo-Hookean model is equivalent to W 8 with A01 = 0.
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Table 2.2: uy for SVK and nH materials.

Material model W uy (mm)

W 1 6.6282
W 2 6.8393
W 3 6.8393
W 4 6.8393
W 5 6.8918
W 6 6.8918
W 7 6.8918
nH (ANSYS) 6.8918

Despite the small differences between each model, the modified nH mod-
els were used for comparison with other authors (Simo & Armero, 1992; Brink
& Stein, 1996) and have presented excellent agreement with the references, thus
validating the analysis. The equilibrium path is shown in Figure 2.3 for the
neo-Hookean models from the MATLAB code and using Ansys. Notice that all
formulations seem to have similar performances, and further tests have shown
that significant differences in displacements and deformation are only observed
for very high loads.
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Figure 2.3: Vertical displacement (in millimeters) of the reference node for nH
based models.

The same analysis was reproduced for the SVK models in Table 2.1
using similar parameters, with the same adaptations described in Section 2.2.
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A slight discrepancy between Ansys andW 1 occurs at higher loadings as shown
in the enhanced plot in Figure 2.4. This is because commercial programs like
ABAQUS and Ansys define σ as a linear function of ε by default (Kim, 2014,
p. 211-212), instead of S and E, respectively.

5.5 6 6.5

0.75
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0.85
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1

Figure 2.4: Vertical displacement (in millimeters) of the reference node for
SVK based materials and Ansys’ default model.

The displacement of the reference node for a neo-Hookean material and
the equilibrium path depicted in Figure 2.3 agree with the aforementioned
references and Ansys, respectively.
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3
Topology Optimization

FEM implementation of density-based TO begins with choosing a suitable
domain Ω whose mesh properly defines the analyzed structure in bitmap
representation. Figure 3.1 illustrates the design domain during an optimization,
where ∂Ω is the domain’s boundary, which is divided into ΩS and ΩV , the solid
and void regions, respectively. Displacement boundary conditions and traction
t are applied to ΓD and ΓN , respectively.

Figure 3.1: Design domain of a TO problem (Leitão & Pereira, 2019, adapted).

To distinguish both regions, a design variable xe is associated to each
element, such that xe = 1 for solid and xe = 0 for void. An optimized domain
formed only by “ones and zeros” is sought. However, in order to avoid using
discrete valued design variables,

“the most commonly used approach to solve this problem is
to replace the integer variables with continuous ones and then
introduce some form of penalty that steers the solution to discrete
0-1 values” (Bendsøe & Sigmund, 2002, p. 5, adapted).

Topology optimization can be posed as a minimization problem, essen-
tially, where a vector of design variables x that minimizes a measure of struc-
tural performance is sought. This objective function can be computed from a
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FEA, where each element’s stiffness is affected by its respective design variable
xe, as described in Section 3.2. The optimization problem is posed as follows:

min
x

c = fTextu (3.1a)

s.t. V (x)
VΩ
− Vfrac 6 0 (3.1b)

0 6 xe 6 1 (3.1c)

with r(x,u) = fext − fint ≈ 0. (3.1d)

The objective function in (3.1a) is the end compliance. The constraint in
(3.1b) determines that the ratio between the current volume V and the volume
of the initial domain VΩ should be less than a fraction Vfrac. V is computed
from each element’s contribution by the following expression

V (x) =
Ne∑
e=1

Vex̄e(x) (3.2)

where Ve is the volume of element e and x̄e(x) is the projected variable defined
in Section 3.1.2. Equation (3.1c) establishes the lower and upper bounds of the
design variable. Equation (3.1d) states that structural equilibrium is satisfied
at every TO iteration (whithin the NR tolerance).

This chapter is divided in three parts:

Section 3.1 briefly introduces the optimization method, filter, projection and
penalization used;

Section 3.2 presents the interpolation methods used in this thesis and com-
pares their performance analyzing the deformation of a C-shaped struc-
ture;

Section 3.3 closes the chapter by deducing the sensitivity equations that are
validated with a numerical example.
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3.1
Optimization algorithm

Many optimization algorithms have been proposed in the literature and seek
to minimize a given objective function in a sequence of guesses for the optimal
vector of design variables x. This procedure may or may not require further
information from the objective function, namely its derivatives with respect to
the design variables, called the sensitivities.

A well-spread algorithm known as Optimality Criteria (OC) has been
widely used in linear topology optimization since it considers a single con-
straint, usually the structure’s volume or weight. However, the standard OC
method found in the literature (Talischi et al., 2012) presents a notable draw-
back: for usual parameters, the square root of the sensitivity is needed. While in
linear analysis it may be shown that sensitivity is always non-negative (Bend-
søe & Sigmund, 2002), the same is not true in nonlinear analysis and may
hinder the optimization process.

The Method of Moving Asymptotes (MMA) proposed by Svanberg (1987)
is often used for structural optimization with more than one constraint or
nonlinearities in general. It works by minimizing an extended objective function
that can be written as the following minimization problem:

min
x

f0(x) + a0z +
m∑
i=1

(
ciyi + 1

2diy
2
1

)
(3.3a)

s.t. fi − aiz − yi ≤ 0 i = 1, . . . ,m (3.3b)

where y and z are artificial optimization variables and a0, ci and di are
constants to be adjusted according to the problem. In order to apply the MMA
to the minimum compliance problem, f0 is the end-compliance in (3.1a) and
fi is a single volume constraint in (3.1b).

The reader is referred to the original article for information on this
method’s derivation (Svanberg, 1987). Details on a MATLAB implementation
were provided by Svanberg (2007) along with a proper choice of the constants
in the standard optimization problem (with i = 1 constraint): a0 = d1 = 1,
a1 = 0 and c1 is a large number. This set of parameters ensures that the
artificial variables go to zero, yielding the optimal values for x as desired. The
choice of c1 has shown to largely influence the results and has been set to 107

unless otherwise stated.
The optimization algorithm uses the value of the objective function and

its derivatives to find a new set of design variables at every iteration. In
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practice, however, an element’s stiffness is penalized by its respective density
x̂, which is indirectly calculated from the design variable through a sequence
of techniques shown in Figure 3.2 .

Figure 3.2: Design variable, filtered, projected and penalized.

3.1.1
Filtering

Filters are often implemented in TO algorithms to avoid mesh dependency
problems, as depicted in Figure 3.3. Notice that the end optimized topology
changes noticeably instead of simply getting more well-defined as the mesh is
refined.

3.3(a): 2700 elements.

3.3(b): 4800 elements.

3.3(c): 17200 elements.

Figure 3.3: Variation of optimal result as a function of refinement of the mesh
for the MBB beam (Bendsøe & Sigmund, 2002, adapted).
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Many solutions were proposed to circumvent this problem including
the linear filter of the design variables used by Bruns & Tortorelli (2001).
This solution is adopted in this work, as it provides a smoother gradient of
the density variable field. Mathematically, this filter is essentially a weighted
average of the design variables given by

x̃e =
∑Ne
i=1we,ixi∑Ne
i=1we,i

(3.4)

where we,i is the weight of the average defined as

we,i = max
(

1− de,i
rmin

, 0
)

(3.5)

where de,i is the Euclidian distance between the centroids of elements e and i,
and rmin is the radius of the filter. Implementation-wise, the filter is applied
in matrix form, that is,

x̃ = Mx (3.6)

where elements of M are defined directly from (3.4) as

Me,i = we,i∑Ne
i=1we,i

. (3.7)

Figure 3.4 shows a illustration of the top and front views of the filter in
a regular mesh.
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3.4(a): Top view. 3.4(b): Front view.

Figure 3.4: Linear filter (Leitão & Pereira, 2019, adapted).

3.1.2
Projection and Penalization

A Heaviside projection can be utilized to remove gray tones (values that are
not close to the limits 0 and 1) in the final topology. However, in order to
provide a steep transition, without the loss of continuity, a smoothed Heaviside
projection introduced by Wang et al. (2011) is used as follows

x̄e(x̃e) = tanh(βη) + tanh[β(x̃e − η)]
tanh(βη) + tanh[β(1− η)] . (3.8)

where β and η are the sharpness parameter and the threshold variable,
respectively. The effects of the smoothed Heaviside projection are shown
in Figure 3.5, where it’s clear that the transition from zero to one gets
progressively steeper with the increase of β. The values β = 4 and η = 0.5 are
used in this work unless otherwise stated.
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Figure 3.5: Smoothed Heaviside projection (η = 0.5) for different values of β.

The penalization is “used to ensure black-and-white designs in density-
based topology optimization (typically p = 3)” (Wang et al., 2014, adapted).
The SIMP method introduced by Bendsøe (1989) is used, where the design
variable is raised to a power p > 1 subject to continuation. The element density
is calculated from

x̂e(x̄e) = (1− ε)x̄pe + ε (3.9)

where p is the penalization factor and ε, the so-called Ersatz parameter, is
set to 10−9 unless otherwise stated, and helps avoiding numerical instabilities
during the solution of the linear systems in FEA. Figure 3.6 shows the effect
of the SIMP method for common values of the penalization parameter, where
it can be seen that the curve get steeper as p increases.
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Figure 3.6: Penalization of the projected variable for different values of p.

3.2
Interpolation methods

During the TO process, the mesh is composed of elements whose behavior
depends on its strain energy. Two methods presented in the literature proposed
interpolating the strain energy density We of each element as a function
of its density, such that low-density elements are formulated utilizing a less
stiff model. To better illustrate this concept, consider the C-shaped structure
depicted in Figure 3.7.

Figure 3.7: C-shape problem domain (units in mm) (Luo et al., 2015, adapted).
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A regular mesh of Q4 elements properly describes the structure to be
analyzed, however, during a TO process, a rectangular domain may have
been chosen, such that the same structure would have to be represented with
both solid and low-density elements. Figure 3.8 shows the two domains that
represent the problem’s geometry, where xe = 1 for elements in the solid
region Ωsolid and xe = xlow > 0 for elements in the void region Ωlow. The mesh
is omitted for legibility.

3.8(a): Domain without
low-density elements
(1400 elements in the
mesh).

3.8(b): Domain with low-
density elements (3200 el-
ements in the mesh).

Figure 3.8: C-shape domain using Q4 elements (dark gray: solid elements; light
gray: low-density elements).

Although performing a FEA on a mesh composed only by solid elements
is more desirable, every element in the domain should be considered in the
calculations (unless an element removal technique is used, such as those
presented in Section 1.2). Table 3.1 presents the interpolation methods for low-
density elements considered in this work, which aim to help the FEA converge
in more difficult cases.

In the following subsections, the superscripts L and NL are used to refer
to linear and nonlinear models, respectively. Thus, implementation-wise, NL is
a number that represents a hyperelastic material model as defined in Table 2.1).
Some alterations have been made to the original methods (e.g., penalization,
convergence criteria and update schemes) to compare them on even ground.
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Table 3.1: Model of the void region for each interpolation methods.

Author Method Void Region Model

Wang et al. (2014) Energy Interpolation Linear
(
WL

)
Luo et al. (2015) Additive Hyperelasticity YeohChen et al. (2019a)

3.2.1
No interpolation (None)

Early works in GNL TO such as Buhl et al. (2000) and Pedersen et al. (2001)
proposed a penalization of the constitutive tensor in order to change each
element stiffness, without any interpolation method. This penalization does
not work for hyperelastic materials that may not have a linear stress-strain
relationship, since the stress S in (2.50) (assembled in matrix Σ) is not
necessarily computed from the constitutive tensor. In this sense, penalizing
only the constitutive tensor would not affect both terms that compose the
tangent stiffness matrix in a GNL analysis.

A more general approach similar to that used by Klarbring & Strömberg
(2013), is reproduced here by penalizing the element’s strain energy instead,
that is,

We(x̂e,ue) = x̂eW
NL
e (ue) (3.10)

Notice that the same equation is used to penalize every element’s
stiffness, so both solid and void elements are modeled after the same nonlinear
formulation. The element’s internal force vector and tangent stiffness matrix
can be calculated from its strain energy. Substituting (3.10) into (2.47) yields

fe(x̂e,ue) = x̂ef
NL
e (ue), (3.11)

Likewise, substituting (3.11) into (2.48) yields

Ke(x̂e,ue) = x̂eK
NL
e (ue). (3.12)
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3.2.2
Energy Interpolation (EI)

This technique proposed by Wang et al. (2014) is based on interpolating the
strain energy density of an element between a nonlinear and linear model given
by

We(x̂e, γe,ue) =
[
WNL
e (γeue)−WL

e (γeue) +WL
e (ue)

]
x̂e (3.13)

where γe is the element’s interpolation factor. For the purposes of this work,
the strain energy density of the element is penalized (instead of the Young
modulus, as in the original work) in order to enable the use of different
material models defined in terms of its strain energy (instead of just E and ν).
Substituting (2.54) in (3.13), after a few manipulations, yields

We(x̂e, γe(x̄e),ue) =
[
WNL
e (γeue) + (1− γ2

e )WL
e (ue)

]
x̂e. (3.14)

Notice that, due to the nonlinearity of WNL
e , γe cannot be explicitly

written as done for the WL
e . A smoothed Heaviside projection is used to

calculate the interpolation factor as a function of the projected variable x̄e
as follows:

γe(x̄e) = tanh(β1ρ0) + tanh[β1(x̄pe − ρ0)]
tanh(β1ρ0) + tanh[β1(1− ρ0)] . (3.15)

This projection provides a continuous yet swift transition between linear
to nonlinear formulation as x̄e increases, where p is the penalization factor
described in Section 3.1.2. The sharpness parameter β1 affects the transition
slope whose midpoint is determined by the threshold variable ρ0.

Despite the similarities between (3.8) and (3.15), these projections are
used in different contexts and should not be confused. For the purposes of this
text, unless otherwise stated, it has been chosen β1 = 500 and ρ0 = 0.01, the
same as Wang et al. (2014), which provide a steep transition close to x̄e = 0.01
for p = 1, as shown in Figure 3.9.
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Figure 3.9: Interpolation parameter’s projection for different values of p.

The element’s internal force is obtained for this interpolation technique
by substituting (3.14) into (2.47), which yields

fe(x̂e, γe,u) =
∫

Ω0
e

∂

∂u

{[
WNL
e (γeue) + (1− γ2

e )WL
e (ue)

]
x̂e
}
dV

=
[∫

Ω0
e

∂WNL
e (γeue)
∂(γeu)

∂(γeu)
∂u

dV + (1− γ2
e )
∫

Ω0
e

∂WL
e (ue)
∂u

dV

]
x̂e

=
[
γef

NL
e (γeue) + (1− γ2

e )fLe (ue)
]
x̂e (3.16)

where L and NL subscripts refer to the linear and nonlinear force vectors.
Likewise for the tangent stiffness matrix, substituting (3.16) into (2.48) yields

Ke(x̂e, γe,u) = ∂

∂u

[
γef

NL
e (γeue) + (1− γ2

e )fLe (ue)
]
x̂e

=
[
γe
∂fNLe (γeue)
∂(γeu)

∂(γeu)
∂u

+ (1− γ2
e )
∂fLe (ue)
∂u

]
x̂e

=
[
γ2
eK

NL
e (γeue) + (1− γ2

e )KL
e (ue)

]
x̂e. (3.17)

3.2.3
Additive Hyperelasticity (AH)

The last technique presented in this section was idealized by Luo et al. (2015)
and is based on interpolating (or adding) the strain energy density of a “soft”
hyperelastic model to each element in a mesh. In this method, the parameters
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of an added hyperelastic material can be adjusted during the TO procedure in
order to help NR convergence in TO iteration where elements’ deformation is
excessive.

The original author proposed an explicit interpolation between SVK and
a soft incompressible Yeoh material for the void regions. Chen et al. (2019a)
implemented this technique using ANSYS to perform the FEA, which led to
two important changes: first, the use of a nearly incompressible nH material
instead of SVK due to its better performance under compression; second, the
use of nearly incompressible Yeoh model for the additive material.

Table 3.2: Models used with the AH interpolation by different authors.

Author Assumption Base model Additive Yeoh model

Luo et al. (2015) Plane stress SVK Incompressible
Chen et al. (2019a) nH Nearly incomp.

This work Plane strain Varies Nearly incomp.

Table 3.2 shows important details on the different iterations of the AH
method throughout these works, where it is important to notice that this
work implements it to plane strain problems, whereas the first works have
implemented it to analyses in plane stress. The strain energy density for the
AH is given by the following interpolation

We(x̂e,u) = x̂eW
NL
e + (1− x̂e)W Y

e (3.18)

where W Y
e is a the strain energy density of the added Yeoh material, as

described in Table 3.1. The parameters A10, A20, A30, D1 and D2 of the added
material are the same for all elements e during the FEA. Figure 3.10 illustrates
the remodeled element after the interpolation, which behaves exactly as if an
element with the hyperelastic material (1− x̂e)W Y

e was added “on top of” the
original one.
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Figure 3.10: Schematic representation of the AH method (Luo et al., 2015,
adapted)

The internal force vector of an element is obtained following the same
steps as in Section 3.2.1, but considering the term W Y

e :

fe(x̂e,ue) = x̂ef
NL
e (ue) + (1− x̂e)fYe (ue) (3.19)

where fYe is the force vector computed from the added Yeoh material. Likewise,
the element’s tangent stiffness matrix is obtained from the nonlinear partKNL

e

and the one from the Yeoh model KY . Substituting (3.19) into (2.48) yields

Ke(x̂e,ue) = x̂eK
NL
e (ue) + (1− x̂e)KY

e (ue). (3.20)

The nearly incompressible Yeoh model was used in this work, rather
than the incompressible Yeoh model, due to difficulties intrinsic to plane strain
problems. Commercial programs such as ABAQUS address this limitation in
its documentation:

“Except for plane stress and uniaxial cases, it is not possible
to assume that the material is fully incompressible in ABAQUS/-
Explicit because the program has no mechanism for imposing such
a constraint at each material calculation point. Instead, we must
provide some compressibility.” (Dassault, 2007, section 17.5.1)

3.2.3.1
Additive Hyperelasticity parameters

The proper choice of parameters Am0 and Di are paramount to the AH
interpolation method. While the former influences the distortional aspect of
the low-density elements, the latter affects their compressibility. The choice
of the model’s parameters for this work are explained in greater detail in the
following paragraphs.
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– Hyperelastic parameters A10, A20 and A30:

The original article (Luo et al., 2015) investigated the effects of constants
Am0 on the model’s performance. A10 was set to a small enough value
(i.e., A10 = 10−9E) to make the material sufficiently soft while constants
A20 and A30 were analyzed which concluded that both have similar
effects. Thus, A30 was set to zero (as it is in this work) and an update
scheme for A20 was proposed.

A useful range for A20 between 10−6E and 10−4E was determined from
analytical results in simple tension (Luo et al., 2015, p. 428), using an
incompressible Yeoh model and is reproduced in Figure 3.11(a).

0 0.5 1 1.5 2
-1

-0.5

0

0.5

1
10-3

3.11(a): Simple tension assuming in-
compressibility in plane stress.

0.5 1 1.5 2
-1

-0.5

0

0.5

1
10-3

3.11(b): Near incompressibility (W 9)
assuming plane strain (D1 = 2/K and
D2 = 109).

Figure 3.11: Stress-stretch curves for Yeoh models with different values of A20

and compressibility formulations.

A similar analysis is shown in Figure 3.11(b) for the nearly incompressible
model W 9: an element is subject to principal stretches λ1 = λ, λ2 = λ−1

and λ3 = 1 (ensuring plane strain and incompressibility, since λ3 = 1 and
J = 1). The first principal Cauchy stress as a function of λ1 is shown in
Figure 3.11 for both formulations and different values of A20.

It may be observed that a useful range of parameters depends on the
formulation considered, so it is expected that A20 should range between
10−5E and 10−3E for plane strain applications.

– Compressibility parameters D1, and D2:

First, it is recalled that W 9 is a Yeoh model with nearly incompressible
formulation, where the compressibility parameters D1 = 2/K is a
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measure of how compressible the material is. In order to simplify this
analysis, D2 is set to a high value such that its respective term vanishes
(see W 9 in Table 2.1 for N = 2).

It follows that the incompressible behavior may be approximated by
using a low enough compressibility parameter D1. However, it has been
noticed that if both of these compressibility constants are too high (thus,
making the added material more compressible), e.g., D1 = D2 = 106, the
FEA may not converge (Chen et al., 2019a, p. 1866 and 1877)1.

The parameters used for the additive material, unless otherwise stated,
are presented in Table 3.3 alongside those used by the original authors.

Table 3.3: Parameters of the additive Yeoh material by different authors.

Author A10 A20 D1 D2

Luo et al. (2015) (10−3)pE/6
Variable

- -
Chen et al. (2019a) 10−9E 10−9 106

This work 10−9E/6 10−9E 109 109

A constant set of parameters were chosen to simplify the implementation
while retaining the low stiffness of the added material. The following example
illustrates the influence of A20 and D1 in an analysis with significant compres-
sion of the void region.

3.2.3.2
C-shape example

The C-shape problem depicted in Figure 3.7 is solved with and without the
void region using the AH method. The model used in this analysis is W 2 with
E = 1 Pa, ν = 0.4 and the load is P = 0.4 N. The element’s density was set
to x̂e = 1 and x̂e = 10−9 for solid and low-density elements, respectively, and
unitary thickness is assumed.

The analysis was performed with a constant load step of 5% of the total
and a maximum of 20 NR iterations per step. The deformed structure is shown
for each case in Figure 3.12 in two scenarios: without the void region and no
interpolation (Figure 3.12(a)); with the void region for high compressibility
parameter D1 = 109 × 2/K (Figure 3.12(b)) and A20 = 10−3 × E.

1The authors in that work chose not to penalyze the compressibility constants in order to
preserve convergence properties during the FEA. Since this workaround could introduce a
small error to the sensitivity analysis, all parameters are penalized in this work, in agreement
with (3.18).
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3.12(a): Original mesh
(without void region).

3.12(b): Mesh with void re-
gion with high compress-
ibility.

Figure 3.12: Deformed mesh for the C-shape problem. Undeformed mesh in
lighter shades of gray.

It is noted that the analysis did not converge for D1 smaller than 10−6

even for the first load step, since the nearly compressible additive material
has no room to deform in plane strain condition. This observation explains
the choice of high values for both D1 and D2 shown in Table 3.3, but
further investigation on the influence of these parameters may enhance the
performance of the AH method.

The C-shape problem was reproduced with different values of A20 (Figure
3.13), where it can be seen that the analysis tends to converge for higher
applied loads as A20 increases. The compliance vs load curve is used to justify
the choice of the range for A20 in this work: a higher value in the order of
10−3E makes convergence easier at the cost of a more stiff structural response,
while a smaller value in the order of 10−5E yields a minor error but converges
for smaller loads. Thus, a value A20 = 10−9E was chosen to further minimize
the error.
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Without void region
A20 = 10!3E (92 iterations)
A20 = 10!4E (74 iterations)
A20 = 10!5E (67 iterations)
A20 = 10!6E (86 iterations)

Figure 3.13: Compliance of the C-shape for different values of A20 (total NR
iterations indicated).

3.2.4
Comparison of the interpolation methods

In order to better compare the differences in the void region’s behavior of each
interpolation, a second C-shape problem proposed by Yoon & Kim (2005) as
shown Figure 3.14 is analyzed, where the same set of parameters used in the
previous analysis in Section 3.2.3.2 is considered, except for ν = 0.3 and the
applied loads, which are f1 = 0.018 N and f2 = 0.027 N.

Figure 3.14: Second C-shape problem domain adapted from Wang et al. (2014)
(units in m).

The mesh is composed by 100 and 28 Q4 elements for the cases with
and without the void region, respectively, and the analysis was run with a
constant load step size of 5% of the total. Figure 3.15 shows the behavior of
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the void region under significant compression, that is noticeably higher than
the previous case shown in Figure 3.12.

3.15(a): Original mesh (without
void region).

3.15(b): No interpolation.

3.15(c): Energy Interpolation. 3.15(d): Additive Hyperelasticity
(A20 = 2.5× 10−5E).

Figure 3.15: Deformed mesh for the second C-shape problem. Undeformed
mesh in lighter shades of gray.

Figure 3.15(b) presents a distorted void region due to the GNL formu-
lation adopted, whereas 3.15(c) shows a smooth deformed mesh. Wang et al.
(2014) observed that this is due to the FEA not considering the inversion of the
low-density elements, since the stiffness matrices are calculated in the unde-
formed geometry for linear elements. This is not the case for elements modeled
after W Y

e , thus 3.15(d) presents a more distorted response. However, the total
iterations required to converge are significantly reduced using AH compared
to not using any interpolation, as shown in Table 3.4.
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Table 3.4: Results of the second C-shape problem using a step size of .05

Interpolation method Iterations Compliance ×10−1N ·m

(a) Without void region 80 1.445585
(b) None 157 1.445585
(c) Energy Interpolation 82 1.445585
(d) Additive Hyperelasticity 85 1.384415

The same problem was solved with a unitary step size and the results
are listed in Table 3.5. The EI method was the only one able to converge with
a unitary step size, and performed the best in both cases (other than the case
without the void region).

Table 3.5: Results of the second C-shape problem using a step size of 1.0

Method Iterations Compliance ×10−1N ·m

(a) Without void region 12 1.445585
(b) None Did not converge in 200 iterations
(c) Energy Interpolation 12 1.445585
(d) Additional Hyperelasticity Did not converge in 200 iterations

The problem was solved for a standard value D1 = 2/K as shown in
Figure 3.16 where it is seen that the behavior of nearly incompressibile low-
density elements under plane strain condition is significantly affected by D1,
as discussed in Section 3.2.3.1.

Figure 3.16: Deformed mesh for the second C-shape problem using AH with
D1 = 2/K. Undeformed mesh in lighter shades of gray.
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3.3
Sensitivity Analysis

The sensitivity is the derivative of a function with respect to the design
variables. The sensitivity of the volume constraint is trivial and will not be
reproduced in this text, so the reader is referred to Talischi et al. (2012),
where its derivation is found. The sensitivity of the objective function (3.1a)
is derived at element level (for the most part) using the following chain rule:

∂c(u, z)
∂xe

= ∂x̃e
∂xe

∂x̄e
∂x̃e

∂x̂e
∂x̄e

∂c

∂x̂e
· (3.21)

Starting from the first term on the right-hand side, the derivative of
the filtered variables with respect to the design variables can be conveniently
obtained in matrix form. Deriving (3.6) with respect to the vector of design
variables yields

∂x̃

∂x
= ∂

∂x
(Mx) = MT . (3.22)

Since the filter is linear, its derivative is the transpose of the filtering
matrix. The second term on the right-hand side in (3.21) is obtained by deriving
(3.8) with respect to x̃e as follows

∂x̄e
∂x̃e

= βsech2[β(x̃e − η)]
tanh(βη) + tanh[β(1− η)] (3.23)

The third term comes from the SIMP technique and is obtained by
deriving (3.9) with respect to x̄e as follows:

∂x̂e
∂x̄e

= p(1− ε)x̄p−1
e . (3.24)

To find the last term in (3.21), it is useful to rewrite the end compliance
as a function of the vector of element densities x̂, that implicitly depends on
x. An adjoint vector λ is added to (3.1a), which gives

c(u, x̂) = fTextu+ λTr(u, x̂) (3.25)

where the last term on the right-hand side does not affect the expression, since
fint = fext so r = 0 at equilibrium (see (2.46)). Deriving (3.25) at element
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level yields

∂c(u, x̂)
∂x̂e

=
�
�
�
�
�>

0(
∂fext
∂x̂e

)
Tu+ fText

∂u

∂x̂e

+ λT
(
∂r

∂x̂e

∣∣∣∣
u=const

+ ∂r

∂u

∣∣∣∣
x̂e=const

∂u

∂x̂e

)
+ ∂λT

∂x̂e
��>

0
r (3.26)

where the first term on the right-hand side was canceled because fext does not
depend on x̂e. Moreso, the last term is also neglected since the residual is zero
at equilibrium. Rearranging the remaining terms that depend on the derivative
of u with respect to x̂e yields

∂c(u, x̂)
∂x̂e

=
(
fText + λT ∂r

∂u

∣∣∣∣
x̂e=const

)
∂u

∂x̂e
+ λT ∂r

∂x̂e

∣∣∣∣
u=const

· (3.27)

In order to simplify (3.27), the parenthesis on the right-hand side is set
to zero, that is,

fText + λT ∂r
∂u

∣∣∣∣
x̂e=const

= 0. (3.28)

The derivatives of the residual are deducted separately for legibility.
Deriving the residual r in (2.46) with respect to u, considering that fext does
not depend on u, yields

∂r

∂u

∣∣∣∣
x̂e=const

=
�
�
���

0
∂fext
∂u

∣∣∣∣
x̂e=const

− ∂fint
∂u

∣∣∣∣
x̂e=const

= −KT . (3.29)

where (2.48) was used to further simplify the equation. Likewise, deriving
(2.46) with respect to x̂e yields

∂r

∂x̂e

∣∣∣∣
ue=const

=
�
�
���

0
∂fext
∂x̂e

∣∣∣∣
ue=const

− ∂fint
∂x̂e

∣∣∣∣
ue=const

= −∂fint
∂x̂e

∣∣∣∣
ue=const

. (3.30)
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Substituting (3.29) into (3.28) and solving for λ yields

λ = K−1
T fext, (3.31)

where the symmetric property of KT was invoked. Substituting (3.28) and
(3.30) into (3.27) yields:

∂c(u, x̂)
∂x̂e

= −λT ∂fint(u, x̂)
∂x̂e

∣∣∣∣
ue=const

. (3.32)

The derivative of the internal force with respect to the x̂e is derived for
each interpolation in the following subsections. Although the contribution fe
of all elements is necessary to compute fint, only one element needs to be
considered at a time. This is proved in Section 3.3.1, but is not repeated in
the following subsections for brevity.

3.3.1
No interpolation (None)

At first, the sensitivity analysis is performed at global level. Substituting (3.11)
in (2.52) and deriving it with respect to x̂e at e = e∗ yields

∂fint
∂x̂e

∣∣∣∣
e=e∗

= ∂

∂x̂e

∣∣∣∣
e=e∗

Ne⋂
e=1

x̂ef
NL
e

=
Ne⋂
e=1

∂
(
x̂ef

NL
e

)
∂x̂e

∣∣∣∣
e=e∗

=
Ne⋂
e=1
fNLe

∣∣∣∣
e=e∗

=
Ne⋂
e=1
fNLe∗ (3.33)

From (3.33), it follows that only an element e∗ is assembled in the
derivative with respect to x̂e at e = e∗. For implementation purposes, the
derivative of the compliance with respect to x̂e may be easily computed from
equations (3.32) and (3.33) as

∂c

∂x̂e
= −λTe fNLe (3.34)

where λe is a vector formed by the adjoint vector’s components respective to
the degrees of freedom of fNLe .
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3.3.2
Energy Interpolation

The element’s force vector for this case depends implicitly on γe(x̄e), so the
original equation for the sensitivity should be rewritten from (3.21) and (3.32),
the chain rule can be expressed as follows:

∂c(u,x)
∂xe

= −λTe
dfe
dx̄e

∂x̄e
∂x̃e

∂x̃e
∂xe

(3.35)

where the derivative of fe with respect to x̄e should be obtained. To do so, it
is necessary to use the chain rule in order to obtain the total derivative of fe
with respect to x̄ (instead of x̂) by deriving (3.16), that is

dfe
dx̄e

= ∂fe
∂x̂e

∂x̂e
∂x̄e

+ ∂fe
∂γe

∂γe
∂x̄e
· (3.36)

The first term on the right-hand side is the partial derivative of (3.16)
with respect to x̂e, that is

∂fe
∂x̂e

= γef
NL
e (γeue) + (1− γ2

e )fLe (ue). (3.37)

The second term on the right-hand side of (3.36) has already been
determined in (3.24). The third term is obtained by deriving (3.16) with respect
to γe which gives

∂fe
∂γe

=
[
fNLe (γeue) + γe

∂fNLe (γeue)
∂(γeue)

∂(γeue)
∂γe

− 2γefLe (ue)
]
x̂e. (3.38)

The second term from the right-hand side in (3.38) may be simplified
from (2.48) as follows:

KNL
e (γeue) = ∂fNLe (γeue)

∂(γeue)
· (3.39)

The last partial derivative in (3.38) is reduced to

∂(γeue)
∂γe

= ue. (3.40)

Substituting (3.39) and (3.40) into (3.38) gives
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∂fe
∂γe

=
[
fNLe (γeue) + γeK

NL
e (γeue)ue − 2γefLe (ue)

]
x̂e. (3.41)

Unlike the linear case, the product KNL
e (γeue)γeue cannot be simplified

to fNLe (γeue). Finally, the last term in (3.36) is obtained by deriving (3.15)
with respect to x̂e, that yields

∂γe(x̄e)
∂x̄e

= β1x̄
p−1
e sech2[β1(x̄pe − ρ0)]

tanh(β1ρ0) + tanh [β1(1− ρ0)] · (3.42)

3.3.3
Additive Hyperelasticity

The derivative of fe with respect to x̂e is obtained by deriving (3.19) as follows

∂fe
∂x̂e

= ∂

∂x̂e

[
x̂ef

NL
e (ue) + (1− x̂e)fYe (ue)

]
= fNLe (ue)− fYe (ue). (3.43)

Similar to (3.34), the derivative of the compliance with respect to x̂e is
obtained by substituting (3.43) in (3.34), which yields

∂c

∂x̂e
= −λTe

[
fNLe (ue)− fYe (ue)

]
. (3.44)

3.3.4
Validation of the sensitivity

A validation of the sensitivity is presented in this subsection. Each element’s
design variable is set to an initial value xe = x∗ that is perturbed one element
at a time by a factor ∆x = 10−3. The sensitivity components are approximated
using Central Finite Differences (CFD) given by the expression

∂c

∂xe
≈ c(x∗e + ∆x)− c(x∗e −∆x)

2∆x , (3.45)

and the maximum relative error given is considered for this analysis using the
following approximation:
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Error ≈ max
∣∣∣∣∣dcA − dcNdcN

∣∣∣∣∣ (3.46)

where dcA and dcN are the sensitivities computed analytically and numerically,
respectively . To perform the validation, a common problem in the literature
(Chen et al., 2019a, Appendix B, adapted) is used: a unitary thickness
cantilever beam subject to a point load on the right edge’s central node (see
Figure 3.17). The NR tolerance was set to 10−6 for all FEA in this section.

3.17(a): Domain meshed with 2x8 Q4 elements.
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3.17(b): Deformed beam with design variable in a gray scale.

Figure 3.17: Clamped beam subject to a point load.

Table 3.6: Parameters of the clamped beam problem

Parameter Value

Material model W 1

Length (L) 1.6 m
Height (H) 0.4 m

Young modulus (E) 3 GPa
Poisson coefficient (ν) 0.4

Filter radius (rmin) 0.4
Penalization factor (p) 3

Applied load (P ) 25 kN

Each design variable is set to xe = e/16 with e = 1, . . . , 16. This choice
ensures the filter is effectively considered in the validation and that there are
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elements modeled after linear and nonlinear formulations for the EI method.
Table 3.6 lists the parameters used in this analysis.

Table 3.7 lists the sensitivities for each element and method, which agree
with the values approximated using CFD. The last row of the table is the
maximum relative error for each method. It is pointed out that the similarities
between the values for no interpolation and AH are due to the term fYe (ue)
in (3.44) being too small to presents a significant difference to (3.34).

Table 3.7: Numerical sensitivity analysis for the interpolation methods

e
No interpolation EI AH

dcN dcA dcN dcA

1 −7.57E3 −7.57E3 −7.19E3 −7.19E3 −7.57E3 −7.57E3
2 −5.77E3 −5.77E3 −5.45E3 −5.45E3 −5.77E3 −5.77E3
3 −1.59E3 −1.59E3 −1.41E3 −1.41E3 −1.59E3 −1.59E3
4 −382 −382 −308 −308 −382 −382
5 −101 −101 −103 −103 −101 −101
6 −26.5 −26.5 −26.8 −26.8 −26.5 −26.5
7 −6.87 −6.87 −6.92 −6.92 −6.87 −6.87
8 −1.92 −1.92 −1.92 −1.92 −1.92 −1.92
9 −9.6E3 −9.6E3 −8.96E3 −8.96E3 −9.6E3 −9.6E3
10 −6.91E3 −6.91E3 −6.43E3 −6.43E3 −6.91E3 −6.91E3
11 −1.76E3 −1.76E3 −1.6E3 −1.6E3 −1.76E3 −1.76E3
12 −387 −387 −333 −333 −387 −387
13 −91.5 −91.5 −91.7 −91.7 −91.5 −91.5
14 −22.1 −22.1 −22.1 −22.1 −22.1 −22.1
15 −5.41 −5.41 −5.42 −5.42 −5.41 −5.41
16 −1.44 −1.44 −1.44 −1.44 −1.44 −1.44
Error 1.0109e− 05 9.5371e− 05 1.0109e− 05

Notice that the greatest relative error is below 0.01% for all methods, so it
is considered that the numerical and analytical sensitivities are sufficiently close
for a range of design variables’ values, including those in transition between
linear and nonlinear in the EI method. The validation of the sensitivities’
equations is thereby complete.
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4
Results and discussions

This chapter is dedicated to comparing the influence of material models
and interpolation methods on the topology optimization of two well-known
problems in the literature: the cantilever beam and the clamped beam.
Although these problems may be analyzed in plane stress condition, they are
considered in plane strain in this chapter to enable comparison with other
authors.

The optimization procedure detailed in chapter 3 is used to solve these
problems, but some techniques were required to help the MMA optimizer
converge to an optimal topology. The design variables are set to unity, i.e.,
xe = 1 for every element, at the start of the optimization.

The penalization factor p is incremented by ∆p every few TO iterations,
starting at 1 up to 3. The sharpness parameter β is set to 4 initially, but it is
updated at the end of the process, as follows:

– For 1 ≤ p < 2: p is updated every 2 iterations;
– For 2 ≤ p < 3: p is updated every 5 iterations;
– For p = 3: p is not updated anymore. β is doubled every 10 iterations up
to 64.

The increment is ∆p = 0.05 for the cantilever beam and ∆p = 0.10
for the clamped beam. This continuation procedure is based on the original
article, used as reference (Wang et al., 2014). To avoid abrupt changes of the
design at later stages of the optimization process (i.e., p = 3), the update of
the design variables is scaled so the maximum change is ∆xlim = 0.10, called
the move limit.

The load step is set to 10% of the maximum load by default. However,
if the analysis does not converge in 20 iterations (per load step), the step is
reduced to 1%.

Since significant displacement is necessary to properly analyze the results
considering geometrically nonlinearities, a soft material, Nylon, is used for both
problems in this chapter. The material parameters suggested by Buhl et al.
(2000) are used: E = 3 GPa and ν = 0.4. The remaining parameters were
computed from (2.23), (2.24), (2.25) and (2.37).
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4.1
Comparison of hyperelastic models

The cantilever beam is used here to compare the optimized topologies using the
different material models. Wang et al. (2014) showed the different optimized
topologies obtained usingW 1,W 4 andW 7. However, that implementation was
limited to the use of models whose strain energy densities were proportional to
the Young modulus. This work’s version of the EI method is used to solve the
current problem and is able to handle more general models such as Mooney-
Rivlin and Yeoh, as described in Section 3.2.2.

The problem’s domain is represented in Figure 4.1, where a thickness
t = 0.1 m is considered, the filter radius rmin is the height divided by 8 and
Vfrac = 0.5.

Figure 4.1: Cantilever beam domain, dimensions in meters (Leitão & Pereira,
2019, adapted).

The results shown in this section were calculated for a load P = 300 kN
and are compared with two different authors who used the standard St. Venant-
Kirchhoff model (W 1). Leitão & Pereira (2019) used the Residual Interpolation
(RI) proposed by the original author (Wang et al., 2014, Appendix A), which
led to a less compliant structure. Figure 4.2 shows the deformed optimized
beam obtained by other authors, from which it is notable that qualitatively
different designs can be obtained.
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4.2(a): Wang et al. (2014): c = 84.94 kJ. 4.2(b): Leitão & Pereira (2019): c = 84.83
kJ.

4.2(c): This work: c = 84.72 kJ.

Figure 4.2: Deformed mesh of the optimized cantilever beam using EI from
different authors.

Table 4.1: Comparison of optimized topologies for models that use Jacobian
terms added to the base SVK and nH. V/VΩ in parenthesis.

Formulation St. Venant-Kirchhoff neo-Hookean

(2.33)

W 2: c = 85.74 kJ (48.3%)† W 5: c = 84.89 kJ (49.5%)‡

(2.34)

W 3: c = 84.81 kJ (49.3%) W 6: c = 85.61 kJ (48.5%)†‡

(2.35)

W 4: c = 84.79 kJ (49.3%) W 7: c = 86.57 kJ (48.2%)†

† Results for β = 32;
‡∆xlim set to 0.2 at p = 2.5 and step size reduced to 0.5%.

Table 4.1 shows the optimized structures for the models with Jacobian
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terms defined in Section 2.1.4 applied to SVK and nH base models. In some
cases where β = 64 led to convergence difficulties or generated an undesirable
topology, a previous result was used. Alterations to the move limit and further
reductions of the minimum step size were also implemented as shown in the
table.

Tests have shown that, for the set of optimization parameters chosen,
β = 64 is a higher end value than desirable in some cases: Figure 4.3(a) shows
an anomalous deformation of the “tip” of the beam; Figures 4.3(b) and 4.3(c)
depicts topologies where the “tip” of the beam is connected to the rest of the
structure by low-density elements.

4.3(a): W 2: c = 59.2216 kJ (49.4%).

4.3(b): W 6: c = 86.9761 kJ (49.1%). 4.3(c): W 7: c = 86.5410 kJ (48.9%).

Figure 4.3: Undesirable topologies obtained at β = 64. V/VΩ in parenthesis.

The topology obtained in Figure 4.2(c) is the least compliant, and is
analyzed with the models in Table 4.1. The results are shown in Table 4.2,
where all the compliance values were similar. With the exception of W 4 and
W 5, every model has shown better performance compared to its respective
previous result. These discrepancies were also observed by Wang et al. (2014)
and are due to the difficulties of fine-tuning the optimization process for highly
nonlinear problems.
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Table 4.2: Deformed structures for models that use Jacobian terms added to
SVK and nH using the topology from Figure 4.2(c). V/VΩ = 49.2% for every
case.

Added term St. Venant-Kirchhoff neo-Hookean

(2.33)

W 2 : c = 84.77 kJ W 5 : c = 85.49 kJ

(2.34)

W 3 : c = 84.78 kJ W 6 : c = 85.48 kJ

(2.35)

W 4 : c = 84.81 kJ W 7 : c = 85.46 kJ

It can be observed from Table 4.2 that the use of hyperelastic models
did not seem to significantly influence the end design, as the differences found
between the results seem to be due to the optimization method itself rather
than the material used. Wang et al. (2014) has attributed this to the fact that
the strain in most elements is between 0.8 and 1.2, a range where the chosen
models behave very similarly to each other (see Figure 2.1).

The cantilever beam has been optimized with nearly incompressible
Mooney-Rivlin and Yeoh models, i.e., W 8 and W 9. The parameters used for
this analysis were defined as follows: the bulk modulus was calculated from
(2.25), the compressibility constants were set to D1 = D2 = 2/K, and the
remaining constants were set to the same value A10 = A01 = A20 = µ/2.
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4.4(a): W 8: c = 52.19 kJ (49.4 %).

4.4(b): W 9: c = 85.12 kJ (49.5 %).

Figure 4.4: Optimized cantilever beam using Mooney-Rivlin and Yeoh models
and their compliances. V/VΩ in parenthesis.

As described in Chapter 3, the proposed approach of penalizing the
strain energy density instead of the material’s parameters works for a general
hyperelastic model, depicted in Figure 4.4. The topology found using W 8 in
Figure 4.4(a) is significantly different than the others presented so far in this
chapter. Since A10 = A01 = µ/2 were chosen, from (2.24) and (2.37), it follows
that this material’s Young modulus is effectively twice as much as the others,
thus the less compliant solution.

Furthermore, the compliance for the topology in Figure 4.4(b) is close
to previous results shown in this work, further confirming that the use of
hyperelastic models does not seem to significantly affect this benchmark
problem’s results. Let it be noted that the use of more complex models can
influence computing time, since the tangent stiffness matrix may take longer
to compute depending on the complexity of the constitutive tensor.

4.2
Comparison of interpolation methods

The cantilever problem is considered again using W 1 model with the interpo-
lation methods presented in this thesis: None, EI and AH. The applied load P
for this problem is usually set to 144, 240 and 300 kN in the literature (Leitão
& Pereira, 2019; Wang et al., 2014; Lahuerta et al., 2013). Even though the
EI method was able to converge for higher loads, the other two did not con-
verge for P = 240 kN or higher within 200 NR iterations (per load step) even
when reducing the stepsize to 0.05 % (which corresponds to 1.2 kN). Thus the
results shown are for P = 144 kN, the highest value for which every method
converged.
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The procedures presented at the start of the chapter were used, except
for the initial load step which was considered to be 100 % of the applied load,
reduced to 1 % when it did not converge in 20 NR iterations.

4.5(a): None (c = 20.87 kJ).

4.5(b): Energy interpolation (c = 20.90 kJ).

4.5(c): Additive hyperelasticity (c = 20.87 kJ).

4.5(d): Residual interpolation (Leitão & Pereira
(2019)) (c = 20.88 kJ).

Figure 4.5: Deformed optimized cantilever beam for P = 144 kN with different
interpolation methods. End-compliance values in parenthesis.

Figure 4.5 shows the topologies obtained using the different methods,
and the results show that they all converged to a similar topology and end-
compliance value.
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Table 4.3: Performance of interpolation methods for the results shown in
Figures 4.5(a) to 4.5(c).

Method Compliance (kJ) V/VΩ (%) NR iterations Time (s)

None 20.8750 49.7 523 589
EI 20.9029 49.6 524 754
AH 20.8750 49.6 523 2245

The performance of the interpolation methods is analyzed from the
metrics shown in Table 4.3, where the computing time was calculated using
the functions tic and toc, as recommended by MATLAB’s documentation, but
should be considered as rough estimates. The version of MATLAB is R2019b
and specifications of the computer used in this analysis are as follows: Intel
Core i7 4790s at 3.20 GHz and 12 GB DDR3 of RAM.

All methods performed similarly in every aspect, except for the elapsed
time, for which using no interpolation has performed best. This is due to the
extra cost required to compute the contribution of linear and Yeoh models in
EI and AH methods, respectively. It is noted that the extra cost of the linear
models in EI could be removed by computing the matrices KL

e in (3.17) on the
first time the FEA is performed, and stored for the subsequent analyses.

Given that even the case with no interpolation converged with a single
unitary load step, no significant improvement is observed by using an interpo-
lation method. On the other hand, the EI method has converged for P up to
500 kN in this work and Wang et al. (2014) (see Figure 4.6(a)). The following
changes were implemented to ensure convergence in the result presented in
Figure 4.6(b): β1 = 200, ε = 10−4 and the parameter c1 in (3.3a) was set to
109.

4.6(a): Wang et al. (2014) (c = 204.534 kJ). 4.6(b): This work (c = 204.445 kJ).

Figure 4.6: Deformed optimized cantilever beam for P = 500 kN using EI and
W 1. End-compliance values in parenthesis.
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4.3
Clamped beam

The clamped beam problem is considered to compare the performance of the
interpolation methods. It is known that the optimized topology for a 10%
volume restriction using the linear formulation is drastically different than
the one obtained for higher loads in nonlinear analysis, which will be shown
throughout this section. The problem’s domain is shown in Figure 4.7, where
the thickness of the beam is t = 0.1 m and the black square represents a region
of 2 by 2 elements where the load is evenly divided to better distribute it. The
mesh is composed of 120 by 40 Q4 elements that are fixed on the left and right
edges, rmin = 0.05 m and Vfrac = 0.1.

Figure 4.7: Clamped beam domain, dimensions in meters (Leitão & Pereira,
2019, adapted).

The standard procedure described at the start of this chapter was able to
lead to an optimum using all methods for smaller loads. Due to the similarities
in results between using no interpolation and AH, only the latter is compared
to EI method in Figure 4.8.

4.8(a): Energy Interpolation (c =
280.867 J and V/VΩ = 9.96 %).

4.8(b): Additive Hyperelasticity (c =
297.738 J and V/VΩ = 9.67 %).

Figure 4.8: Optimized topology for P = 50 kN using two interpolation
methods. End-compliance and V/VΩ in parenthesis.

DBD
PUC-Rio - Certificação Digital Nº 1821049/CA



Chapter 4. Results and discussions 80

The optimal topology is significantly different for high loadings due to
buckling effects. By using β1 = 100 and ε = 10−4, the problem could be solved
for P = 230 kN, as shown in Figure 4.9.

4.9(a): Lahuerta et al. (2013) (c = 13.290
kJ).

4.9(b): Wang et al. (2014) (c = 11.368 kJ).

4.9(c): Leitão & Pereira (2019) (c = 11.945
kJ).

4.9(d): This work (c = 11.503 kJ).

Figure 4.9: Optimized topology for P = 230 kN with different interpolation
methods. W 1 in plane strain was used in every case. End-compliance values in
parenthesis.

4.4
Final remarks

The TO process is very reliant on the fine tuning of techniques, including,
but not limited to: types of filter, projection and penalization, continuation
parameters, and load steps. It is possible to make all methods converge for
even higher applied loads by adjusting these factors and the load step, at the
cost of possibly unreasonably increasing the time taken to optimize a structure.

It is noted that the AH method has been designed specifically to work in
plane stress Luo et al. (2015) with an update scheme, and its shortcomings are
due to unrealistic behavior of the additive nearly incompressible Yeoh material
in plane strain under significant compression. Still, a proper implementation
of the update scheme in plane strain should lead to more promising results.
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5
Conclusion

A theoretical and practical comparison of interpolation methods that formulate
the low-density elements using a lower stiffness material has been presented
in this work, alongside the use of different hyperelastic models. However, little
numerical and topological differences were found in the benchmark problems
using different material models.

Two C-shape problems were analyzed: the former was used to investigate
the influence of the hyperelastic parameter A20 on the convergence of the
analysis using the AH method in plane strain; the latter compared the
interpolation methods and showed the behavior of the low-density elements
under high compression, from which it has been found that the AH method
does not provide as smooth results as the EI method. Moreso, it is possible
that any model that provides resistance to compression could be improper to
model low-density elements in plane strain, due to the undesirable behavior
of the void region under compression. However, it is noted that these results
were obtained for plane strain problems, while the AH method was originally
intended to work in plane stress with an update scheme of the Yeoh model’s
parameters, which was not successfully implemented in this work.

The optimization algorithm used has been able to converge to optimized
designs of the cantilever beam using different materials and interpolations.
However, the continuation procedures and parameters were very sensitive to
change and could be improved with further investigation. Thus, even though
convergence was achieved, some cases required adjusting parameters such as
the move limit and the Ersatz stiffness.

The EI method was able to converge for much higher loads than the
case with no interpolation at the cost of extra computational time. A proper
implementation of the AH method to plane strain could present better results
or solve more difficult problems, however, the arguably simpler and more robust
implementation of the EI method has been preferred by some authors (cited
in the Introduction of this work) and found success.
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5.1
Suggestions for future works

To further extend this research field, a few suggestions are made in this
section, from problems that could not be directly addressed in this thesis.
First, implementing the interpolation methods to three dimensions would help
determine whether AH could be useful outside plane stress.

The use of optimization algorithms (other than MMA and OC) and
continuation procedures may be investigated, since the proper adjustment of
these processes may greatly enhance the robustness of the TO.

The update scheme originally introduced for the AH by Luo et al. (2015)
could be adapted to better work in plane strain. Chen et al. (2019a) used an
equivalent logarithmic strain for the update scheme instead of the von Mises
strain used originally, so further investigation on the influence of this choice
could be made. Furthermore, the use of a logarithmic strain measure to define
a material model could be useful for applications with large displacements and
deformations.

5.1.1
Update scheme for Additive Hyperelasticity in plane strain

An adaptation of the update scheme proposed by Luo et al. (2015) is suggested
for future works: A20 is computed at the start of every TO iteration k according
to the following criterion

A
(k)
20 =


max

√E(k−1)
von
E∗

, 0.8
 · A(k−1)

20 , if E(k−1)
von 6 E∗(

E(k−1)
von
E∗

)2

· A(k−1)
20 , if E(k−1)

von > E∗
(5.1)

where E∗ is a reference strain value set to 1.2. Evon is the maximal von Mises
(equivalent) strain given by

Evon = max
e

√2
3E

dev
e : Edev

e

 (5.2)

andEdev
e is the deviatoric part of the strain tensor of the e-th element computed

from
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Edev
e = EGP

e −
1
3tr(EGP

e )I. (5.3)

The components of EGP
e are the average of those computed at each Gauss

point in element e. Notice from (5.1) that if the maximal strain at a TO
iteration is smaller than the reference E∗, the parameter A20 is reduced to
diminish the error introduced by the additive material, whereas if the strain is
higher than E∗, A20 is increased to strengthen the material and supress local
instability (Chen et al., 2019a). This parameter is A20,ini = 10−4E at the start
of the TO procedure and is limited by the lower boundary A20,min = 10−5E.

It is noted that some of the aforementioned parameters may need to be
adjusted. Furthermore it is yet to be verified whether an update scheme for
the compressibility parameters Di should also be implemented to applications
outside plane stress.
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