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Abstract

Queiroz, Eduardo Ravaglia Campos; Oliveira, Fernando Luiz Cy-
rino (Advisor); Aguiar, Eduardo Pestana de (Co-Advisor). Vari-
able Step-Size evolving Participatory Learning with Ker-
nel Recursive Least Squares model applied to Gas Prices
Forecasting in Brazil. Rio de Janeiro, 2021. 61p. Dissertação
de Mestrado – Departamento de Engenharia Industrial, Pontifícia
Universidade Católica do Rio de Janeiro.

A prediction model is an indispensable tool in business, helping to
make decisions, whether in the short, medium, or long term. In this context,
the implementation of machine learning techniques in time series forecasting
models has a notorious relevance, as information processing and efficient
and dynamic knowledge uncovering are increasingly demanded. This work
develops a model called Variable Step-Size evolving Participatory Learning
with Kernel Recursive Least Squares, VS-ePL-KRLS, applied to the forecast
of weekly prices for S500 and S10 diesel oil, at the Brazilian level, for
biweekly and monthly horizons. The presented model demonstrates a better
accuracy compared with analogous models in the literature, without loss of
computational performance for all time series analyzed.

Keywords
Time Series Forecasting; Evolving Fuzzy Models; Variable Step-Size.

DBD
PUC-Rio - Certificação Digital Nº 1913214/CA



Resumo

Queiroz, Eduardo Ravaglia Campos; Oliveira, Fernando Luiz Cy-
rino; Aguiar, Eduardo Pestana de. Modelo Variable Step-Size
evolving Participatory Learning with Kernel Recursive Le-
ast Squares aplicado à previsão de preços do Óleo Diesel
no Brasil. Rio de Janeiro, 2021. 61p. Dissertação de Mestrado
– Departamento de Engenharia Industrial, Pontifícia Universidade
Católica do Rio de Janeiro.

Um modelo de previsão é uma ferramenta indispensável nos negócios,
ajudando na tomada de decisões, seja a curto, médio ou longo prazo. Neste
contexto, a implementação de técnicas de aprendizagem de máquina em
modelos de previsão de séries temporais assume notória relevância, visto que o
processamento da informação e a extração de conhecimento são cada vez mais
exigidos de forma eficiente e dinâmica. Este trabalho desenvolve um modelo
denominado Variable Step-Size evolving Participatory Learning with Kernel
Recursive Least Squares, VS-ePL-KRLS, aplicado à previsão de preços do óleo
diesel S500 e S10. O modelo apresentado demonstra uma melhor acurácia em
comparação com os modelos análogos na literatura, sem perda de desempenho
computacional para todas as séries temporais analisadas.

Palavras-chave
Previsão de Séries Temporais; Modelos Nebulosos Evolutivos; Passo de

Adaptação Variável.
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1
Introduction

Forecasting is an essential tool in business, where it helps in making
decisions about operational (short term), tactical (medium term), and strategic
(long term) planning [1]. In a world that demands information processing
and knowledge extraction in an increasingly efficient and dynamic way, the
combination of Forecasting and Machine Learning techniques has gained
notorious relevance in modeling real-world phenomena, which are characterized
by complexity and uncertainties. Several authors have developed methods to
achieve an optimal model setup under some circumstances, that is, a solution
that trades off the quality of decisions and response times.

In the logistical context, the ability to make predictions with high
accuracy and low computational cost is a competitive advantage. In transport
management, for example, responsible for connecting suppliers, production,
and customers, it is important to predict the price of the diesel oil, which
may be responsible for approximately 21% of the logistics costs [2, 3]. This
importance is maximized in a country of continental dimensions such as Brazil,
which primarily uses road networks to transport cargo and people.

Several models in the Machine Learning field have been developed with
the ability to make predictions in real-time. These are driven mainly by the
increasing availability of data and the need to make quick decisions. The
Evolving Intelligent Systems are a notorious segment of learning models that
concept can be considered a higher level adaptation that concerns model
structure as well as model parameters and performed as an effective tool to
address the problem of modeling non-stationary, highly non-linear processes
online in real-time [4].

Evolving fuzzy rule-based models can be used for clustering, classifica-
tion, forecasting, control, diagnosis, and regression where learning and model
development should be performed incrementally to deal with data stream, that
increases continuously and changes rapidly over time. Their differential is to
simultaneously manage any significant changes (drift, shifts, non-stationary
behaviors, environmental conditions) in the system by using parameter and
structural adaptation algorithms to process a data sample at most once [5].

A renowned approach to develop evolving fuzzy rule-based models is
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Chapter 1. Introduction 16

based on the idea of participatory learning. It is a means to learn and re-
vise beliefs based on what is already known about the system itself through
the induction of unsupervised dynamic fuzzy clustering algorithms for online,
real-time domains and applications, resulting in an effective alternative con-
struction evolving functional fuzzy models and adaptive fuzzy systems [6]. This
work aims to propose the Variable Step-Size evolving Participatory Learning
with Kernel Recursive Least Squares (VS-ePL-KRLS) model that makes two
changes in this approach: The Kernel Recursive Least Squares (KRLS) tech-
nique to estimate consequent parameters as in [7] and The Variable Step-Size
(VS) technique to update the parameter responsible for control the rate of
change of arousal, as a novelty.

The Kernel Recursive Least Squares acts as an adaptation mechanism to
maintain and store past knowledge in a robust and efficient manner whose
advantage is a greater sensitivity to variations in the input data and a
better ability to approximate nonlinear systems accurately and with moderate
computational cost [7].

The Variable Step updates parameters recursively based on estimation
errors. This technique, discussed in [8], is an extension of earlier ideas in
stochastic approximation for varying the step size in the method of steepest
descent. According to [9], VS are adaptive filtering, which can provide improved
performance while maintaining the simplicity and robustness of conventional
Fixed Step-Size. This approach is easier to implement and, consequently,
additional computational complexity savings are obtained as noted by [10] in a
fault classification problem in an electromechanical switch machine, equipment
used for handling railroad switches.

1.1
Objectives

The general objective of this research is to propose a new Evolving
Fuzzy modeling approach with high accuracy and low computational cost,
with a focus on prediction tasks. The specific objective of this research is to
propose an incremental learning method we called Variable Step-Size evolving
Participatory Learning with Kernel Recursive Least Squares (VS-ePL-KRLS)
for time series forecasting. It expands the ePL-KRLS and replaces the SM-ePL-
KRLS and ESM-ePL-KRLS with an error-based Variable Step-Size parameter-
updating method.
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1.2
Contributions

The major contributions of this dissertation are an online modeling
approach that has shown encouraging results in different applications and
datasets compared to state-of-the-art evolving approaches; a method with
a low percentage of system-wide Central Processing Unit (CPU) utilization,
suggesting that the forecasting model can deal with complex dynamics; and
an unexplored and important application, which is the fuels prices forecasting,
more specifically Brazilian S500 and S10 diesel oil, with weekly data periodicity
for biweekly and monthly horizons and monthly data periodicity for monthly,
semiannual and yearly horizons.

1.3
Text Organization

The dissertation is divided into six chapters. This chapter introduces the
key subjects and describes the motivation and relevance of conducting this
research, the general and specific objectives, and the contributions related to
the new online modeling approach. Chapter 2 addresses the literature review of
intelligent models, emphasizing the Evolving Fuzzy model. Chapter 3 describes
the proposed model, VS-ePL-KRLS, as well as its online learning algorithm.
Chapter 4 presents the methodology, that is, how we structure the oil diesel
price forecasting problem. We provide a historical context, statistical analysis,
and metrics used to Forecasting Evaluation and Computational Performance.
Chapter 5 gives experimental and comparative results for the algorithm.
Chapter 6 concludes this text and suggests further research issues.
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2
Literature Review

In recent years, several methods have emerged in the context of online
machine learning. The area has become prominent in nonstationary time series
prediction. It was stimulated due to the increasing availability of data and the
need to real-time predict their behavior to support decision-making. There
are three main model groups of this class. Evolutionary models are driven by
concepts of biological evolution, which uses selection, crossover, and mutation
operators as adaptation mechanisms. Adaptive models are usually referred to
as models with a fixed structure and variable parameters. This means that the
overall structure is defined before the online learning process. Evolving models
are able to process information and extract knowledge in real-time, resulting
in a higher level adaptation of their structure and parameters.

This work is focused on evolving fuzzy models due to their characteristic
of reacting to data changes by creating, merging, updating, and deleting lo-
cal models, e.g., fuzzy rules [4]. A wide variety of algorithms and models can
be found in the literature. The authors in [11] discussed recent advances that
have improved stability, reliability, and useability as well as aspects related
to greater interpretability in real-world applications such as online condition
monitoring, visual inspection, human-machine interaction, smart sensors, pro-
duction systems, and other applications. Another important contribution is
presented by [5], a systematic survey on evolving intelligent systems with a fo-
cus on fuzzy and neuro-fuzzy methods for clustering, classification, regression
and system identification in real-world applications as online trading, financial
analysis, e-commerce and business, smart home, health care, transportation
systems, global supply logistic chains, smart grids, industrial control, cyber-
security, and many other areas.

The evolving Takagi-Sugeno (eTS) model [12] is considered the precursor
of many evolving fuzzy systems. An incremental learning algorithm updates
the eTS model recursively by adding new rules or updating existing rules.
Antecedent terms of Takagi-Sugeno (TS) rules are determined through a
subtractive clustering approach [13] based on the notion of potential function.
Consequent parameters of rules are updated through Recursive Least Squares
(RLS) [14]. It has been evaluated on data from a residential air-conditioning
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Chapter 2. Literature Review 19

installation and Mackey-Glass time series. The results illustrate the viability,
efficiency, and potential of the approach when used with a limited amount of
initial information, especially important in autonomous systems and robotics.
Other models have arisen as variations of the eTS model, such as Simpl_eTS
[15], xTS [16], Mod_eTS [17], eTS+ [18], Simpl_eTS+ [19], eTS-LS-SVM [20]
and eTS-KRLS [21].

The Simpl_eTS model is a simplified version of the eTS. It addresses
new concepts such as Cauchy type antecedent membership functions instead
of Gaussian, scatter as a measure of data density and summarization ability
of rules instead of potential, and aging indicator as a representation of the
stationarity of the rules. It has been evaluated on data from the Box-Jenkins
time series. The results don’t negatively affect the performance of the algorithm
but contributed substantially towards its simplification.

The xTS model is an extended version of the eTS. It introduces a
new perspective to the online classification of streaming data (e.g., video,
speech, sensory data generated from robotic, advanced industrial applications,
financial and retail chain transactions, and intruder detection). It has been
evaluated on data from intrusion detection and several benchmark problems
such as Sonar, Credit Card, Ten-Digit, Ionosphere, Pima, and Wine datasets.
The results demonstrate that a flexible evolving classifier can be generated
online from streaming data achieving high classification rates and using limited
computational resources.

The Mod_eTS model is a modified version of the eTS. It incorporates
a modification in the dynamic update of cluster radii while accommodating
newly available data is proposed. It has been evaluated on data from a leakage
faced by one of the leading United Kingdom water supplying companies. The
results show higher accuracy and a smaller number of clusters than standard
fuzzy forecasting methods.

The eTS+ model is an enhanced version of the eTS. It uses criteria
such as age, utility, local density, and zone of influence to update a rule base
structure. This arose as a result of the need to increase the quality, autonomy,
and robustness of its rules base, thus enabling a smaller number of local models
could be created to represent knowledge of a particular type of problem. The
Simpl_eTS+ model is also an enhanced version of the Simpl_eTS, which uses
the same idea as eTS+.

The eTS-LS-SVM and eTS-KRLS are an altered versions of the eTS in
relation to how consequent parameters are estimated. The eTS updates their
parameters by Recursive Least Squares (RLS) while eTS-LS-SVM uses Least
Squares (LS) Support Vector Machine (SVM) [22], and eTS-KRLS uses Kernel
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Recursive Least Squares (KRLS) [23]. They have been evaluated on data from
the Mackey-Glass time series. The results present the smallest number of rules
in eTS-LS-SVM and the smallest metrics of errors in eTS-KRLS.

The aforementioned updating procedures, as noted by [24], are not robust
in the presence of white noise, that is, noisy data and outliers tend to be
incorporated into the model instead of being regularized. In a way to fill that
gap, [6] proposed an algorithm called evolving Participatory Learning (ePL),
which uses an unsupervised dynamic fuzzy clustering algorithm for Antecedent
terms. Consequent parameters of rules are updated through Recursive Least
Squares (RLS). This approach mimics human learning [25], which updating
the rule base of a model depends on a function whose arguments are the
existing rules and new information received. A similar process occurs with
human learning, which is amplified if there exists prior knowledge on a given
subject. It has been evaluated on data from a workload of electrical energy and
Box-Jenkins time series. The results illustrate the competitiveness, efficiency,
and parsimony of the approach. Other models have arisen as variations of the
ePL model, such ePL+ [26], ePL-KRLS [7], SM-ePL-KRLS [27] and ESM-ePL-
KRLS [27].

The ePL+ model is an enhanced version of the eTS. Similarly to [18], it
uses criteria such as utility, age, area of influence, and local density to update
a rule base structure. It has been evaluated on data from finance variables,
Mackey-Glass time series, Box-Jenkins time series, and Non-linear synthetic
time series time-variant. The results show the adequacy of the probabilistic
fuzzy modeling given the high precision and computational efficiency. Both
models, ePL and ePL+, use the RLS to estimate consequent parameters such
as eTS and eTS+.

The ePL-KRLS model is an altered version of the ePL in relation to how
consequent parameters are estimated. The ePL updates their parameters by
Recursive Least Squares (RLS) while ePL-KRLS uses Kernel Recursive Least
Squares (KRLS), inspired by [21]. The advantage of using this approach is
Kernel-based methods that are more sensitive to variations in the input data
and are able to approximate nonlinear systems accurately and efficiently with
moderate computational cost. It has been evaluated on data from a wind speed
and Mackey-Glass time series. The results present more accuracy (especially for
several steps ahead), less quantity and variations of rules, and less sensitivity
to changes in its control parameters.

The SM-ePL-KRLS and ESM-ePL-KRLS models are an extended version
of the ePL-KRLS. These models have their parameters updated incrementally
according to the estimation errors, which, in turn, are based on the concept
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of Set-Membership filtering [10]. The first is the implementation of Set-
Membership in the evolving Participatory Learning with Kernel Recursive
Least Squares and the second is a combination of the evolving Participatory
Learning with Kernel Recursive Least Squares and the improved version of the
Set-Membership concept. They have been evaluated on data from a hot-spot
temperature of power transformers. The results demonstrate lower errors and
a competitive number of final rules and, consequently, failure prevention, cost
reduction, maintenance of safety, and providing reliable service to consumers.

All in all, we notice that there is ample discussion regarding ways of
improving evolving fuzzy models in two lines of research: eTS and ePL. This
work aims to propose a variation in the recursively updating parameters based
on estimation errors, replacing the Set-Membership filtering with the Variable
Step-Size technique. The main goal of this change is to improve the algorithm,
that is, to reduce errors and computational complexity.
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3
Variable Step-Size evolving Participatory Learning with Ker-
nel Recursive Least Squares Algorithm

The online learning flowchart of the modeling approach we propose,
namely, Variable Step-Size evolving Participatory Learning with Kernel Re-
cursive Least Squares, VS-ePL-KRLS, is shown in Figure 3.1. Fundamentally,
we have extended known evolving fuzzy models such as ePL [6], ePL-KRLS
[7], SM-ePL-KRLS [27] and ESM-ePL-KRLS [27]. The new forecasting model
is based on the Variable Step-Size [8] to adjust the parameter that controls
the rate of change of arousal as a function of the error. The flowchart con-
sists of input-output streaming data pairs and five main stages. The learning
procedures within each stage are described in the next sections.

Figure 3.1: VS-ePL-KRLS online learning procedure to construct and update
prediction models from scratch
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In general, Figure 3.1 shows an evolving fuzzy model based on Takagi-
Sugeno-Kang (TSK) rules [28, 29]. The rules are of the type: “IF <an-
tecedent>, THEN <consequent>” as shown in Equation 3-1.

Ri : IF x is Ai THEN ŷi = fi (x, θi) (3-1)
in which Ri is the i-th fuzzy rule, x = [x1, . . . , xm]T ∈ Rm is the input data
vector, θi = [θi1, . . . , θini

]T ∈ Rni is the consequent parameters vector of the
i-th rule, Ai (x) : R → [0, 1] is the membership function in the antecedent
fuzzy set of the i-th rule, and ŷi : Rm x Rni → R is the local output of the i-th
rule.

The antecedent part of the rule is expressed by a set of premise terms
which can be associated to linguistic values; and the consequent part of the
rule is expressed by a mathematical function. A feature of TSK fuzzy models
is that they are universal approximators of functions [30]. In other words, TSK
models are capable of approximating, with any pre-specified accuracy, a general
nonlinear continuous function on a compact set through the combination of
local functions.

3.1
First Stage: Unsupervised Fuzzy Clustering

This stage of the model performs the unsupervised fuzzy clustering
proposed by [31]. It proved to be as efficient as the Gustafson-Kessel (GK)
algorithm [32] and the Modified Fuzzy K-Means (MFKM) algorithm [33] –
two major fuzzy clustering algorithms. The objective of this learning stage is to
update the number of fuzzy rules and the centers of the Gaussian membership
functions that describe the antecedent part of fuzzy rules. The algorithm is
initialized with a single rule (R = 1) whose center is the first input (v1

1 = x1).
During the computational procedure, new rules can be added and existing
rules can be updated or merged and it will be explained in the next stage.

3.2
Second Stage: Evolving Participatory Learning

This stage of the model carries out the evolving participatory learning
proposed by [6]. Such learning paradigm has a convergent conception with that
of the human learning [25]. In humans, the greater the prior knowledge in a
given subject, the more amplified the learning will be. The computer learns
in the same way in which each new information will be related to the existing
model, and the greater the similarity, the greater the learning. This stage is
divided in two steps.
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In the first step consists in calculating the compatibility
(
ρki
)
and arousal(

aki
)
indices using Equations 3-2 and 3-3, respectively.

ρki = 1−

∥∥∥xk − vki ∥∥∥
m

(3-2)

in which ρki ∈ [0, 1] is the compatibility index of the i-th rule at the k-th
step, xk ∈ Rm is the m-dimensional input data vector at the k-th step, and
vki ∈ [0, 1]m is the center of the i-th rule at the k-th step.

aki = ak−1
i + βk−1

(
1− ρki − ak−1

i

)
(3-3)

in which aki ∈ [0, 1] is the arousal index of the i-th rule at the k-th step, and
βk ∈ [0, 1] is a parameter that controls the rate of change of arousal. The
default initialization values is a0

1 = 0.
The compatibility index measures how well data and model rules are

compatible. The arousal index evaluates whether a new rule should be added
to the model, or an existing rule should be updated by comparing it with a
parameter τ k ∈ [0, 1]. If

∣∣∣aki ∣∣∣ > τ k, a new rule is added. Otherwise, an existing
rule with more compatibility is updated. The center of a new rule added

(
vk+1
R

)
or an existing rule updated

(
vk+1
i

)
is represented by Equation 3-4.

vk+1
R = xk, if

∣∣∣aki ∣∣∣ > τ k

vk+1
i = vki + α

(
vki
)1−ak+1

i
(
xk − vki

)
, otherwise

(3-4)

in which α ∈ [0, 1] is the learning rate. At each step, the parameter is updated
as τ k = βk−1.

In the second step the compatibility index between two rules
(
ρkij
)
is

calculated as in Equation 3-5.

ρkij = 1− 1
m

m∑
l=1

∣∣∣vkil − vkjl∣∣∣ (3-5)

in which ρkij ∈ [0, 1] is the compatibility index between the i-th and j-th rules
at the k-th step, for i 6= j.

This index measures how redundant the rules are, and evaluates whether
an existing rule should be removed by comparing it with a parameter γk ∈
[0, 1]. If ρkij > γk, the least compatible rule is removed, and its center

(
vkj
)
is

merged with the most compatibility rule center
(
vki
)
according to Equation

3-6. {
vkij = vk

i +vk
j

2 , if ρkij > γk (3-6)

in which vkij is the merged center between the i-th and j-th rules at the k-th
step, for i 6= j. At each step, the parameter is updated as γk = 1− βk−1.
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3.3
Third Stage: β Parameter Updating

This stage of the model updates the value of β, which is the great innova-
tion in relation to previous eTS and ePL approaches. The β parameter, which
controls the rate of change of arousal, is updated with the concept of Vari-
able Step proposed by [8]. The normalized error is compared with a parameter
γ̄ ∈ [0, 1]. If

∣∣∣ẽk∣∣∣ > γ̄, β increases and arousal index increases. Otherwise, β
decreases and the arousal index decreases. Equation 3-7 represents this proce-
dure:

βk+1 =


βk

αV S1
, if

∣∣∣ẽk∣∣∣ > γ̄

βk αV S2, otherwise
(3-7)

in which αV S1 ∈ ]0, 1[ and αV S2 ∈ ]0, 1[ are the factors that increases or
decreases parameter β, respectively.

3.4
Fourth Stage: θ Parameter Estimation

This stage of the model estimates the value of θ according to the strategy
described in [7]. As shown in Equation 3-1, each rule results in a local output
(ŷi), which can be rewritten as:

ŷki =
ni∑
j=1

θkij κ
(
dkij, x

k
)

ŷki =
ni∑
j=1

θkijexp

−
∥∥∥dkij − xk∥∥∥√

2νkij

2 (3-8)

in which ŷki is the local output of the i-th rule at the k-th step, θkij ∈ R is the
j-th consequent parameters of the i-th rule at the k-th step, and κ (·) is the
Gaussian kernel function and its parameter νkij is the kernel size. A dictionary
with ni elements

(
Dki
)
is defined for the i-th rule at the k-th step and dkij ∈ Rm

is the j-th element of the i-th dictionary.
The consequent parameters are estimated using an adaptive method

known as Kernel Recursive Least Squares (KRLS). It is an extension of
Recursive Least Squares (RLS) that increases the dimension of the input data
space using a nonlinear function, generating simpler solutions. These values
are calculated by determining the weight vector (ω) with the minimization
cost function (L (ω)). The optimization is represented by:

min
ω
L (ω) =

k∑
j=1

∣∣∣yj − ωTφj∣∣∣2 + λ ||ω||2 (3-9)
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in which λ ∈ [10−5, 10−2] is a regularization parameter [34], φ : Rm → H is a
nonlinear function, where operations with the input data is viewed in a high
dimensional Hilbert space (neither the φ nor the H needs to be explicitly found
due to kernel trick [35]) and yj is the output at the k-th step.

The solution of Equation 3-9 is obtained from:

ωk =
[
λI + Φk

(
Φk
)T ]−1

ΦkY k

ωk = Φk
[
λI +

(
Φk
)T

Φk
]−1

Y k

ωk = Φk
[
λI + Kk

]−1
Y k

ωk = ΦkQkY k

ωk = Φkθk

(3-10)

in which I is the identity matrix, Φ =
[
φ1, . . . , φk

]
is the high dimensional

space vector, and Y =
[
y1, . . . , yk

]T
is the output vector.

The kernel function can be used for generalizations of linear methods
written as internal products in a Reproducing Kernel Hilbert Space (RKHS)
[36], reducing its dimension and making it possible to solve Equation 3-10. It
is represented by:

Kk =
(
Φk
)T

Φk

Kk =


κ (x1, x1) . . . κ

(
x1, xk

)
... . . . ...

κ
(
xk, x1

)
. . . κ

(
xk, xk

)


Kk =
Kk−1 gk(
gk
)T

1


(3-11)

in which Kk is the kernel matrix and gk =
[
Φk−1

]T
φk =[

κ
(
x1, xk

)
, . . . , κ

(
xk−1, xk

)]T
.

The calculation of matrix
[
λI + Kk

]
is computationally expensive. Thus,

Qk variable is defined to recursively approximate it as follows:

Qk =
[
λI + Kk

]−1

Qk =
(
rk
)−1

Qk−1rk + zk
(
zk
)T
−zk

−
(
zk
)T

1

 (3-12)

in which zk = Qk−1gk, rk = λ +
[
φk
]T
φk −

[
zk
]T
gk, and ẽk is the error, that

is, the difference between a real value (yk) and a predicted value (ŷk).
The updated solution of consequent parameters is expressed by:
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θk = QkY k

θk =
θk−1 − zk[rk]−1ẽk

[rk]−1ẽk

 (3-13)

in which θk contains the consequent parameters at the k-th step.
It is important to note that the size of the kernel matrix increases

quadratically in relation to the amount of data and, consequently, Qk increases
in the same way. This implies more and more expensive operations over time.
To get around this situation, a sparcification procedure is used as in [7], because
it significantly decreases the required simulation time and memory, and also
increases the generalization ability [36]. The dictionary belonging to the rule
with the highest compatibility is changed, which means that only the subset
of the most relevant samples is considered to update the kernel matrix and
parameters vector.

In this model, the novelty criteria [37] are used because they compactly
represent knowledge in each local dictionary, being therefore computationally
inexpensive. The technique consists in calculating the minimum distance (ψ)
between an input and each element of the dictionary by means of:

ψ = min
(∀dij∈Dk

i )

∥∥∥xk − dkij∥∥∥ (3-14)

in which ψ is the minimum distance between an input and each element in the
dictionary.

Two error scenarios are possible. The first considers the new sample at a
local dictionary (ε); and the second assumes that the sample is not at the local
dictionary (ε). If ψ < δ, the sample and all elements of the local dictionary
are coherent and are not added to the local dictionary. Otherwise, the sample
and all elements of the local dictionary are not coherent and are added to the
local dictionary if and only if ε < ε. The value of δ = vk

ij

10 is calculated by an
heuristic method [37], where νkij is the kernel size of the element dkij, which is
the nearest in relation to xk.

The process for choosing an appropriate value of kernel size is complex.
If it is too large, then the inner products for all data become closer to one.
If it is too small, then all the data look distinct. The first results in a linear
regression and the second results in over-fitting. In this model, the recursive
Levenberg-Marquardt algorithm [38] is used. It is a non-linear optimization
method that is an intermediate version between gradient and Newton and it
has better convergence properties among the three algorithms. Each element
νkij in the vector of kernel parameters

(
νki =

[
νki1, ..., ν

k
ini

])
is associated with

an element dkij in the local dictionary vector Dki =
[
dki1, ..., d

k
ini

]
. The objective
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is to minimize the local error function. This value is initialized with 0.5 for a
new rule. Additionally, this value for an existing rule is expressed by:

νki = νk−1
i + P k

i ∇k
i ẽ
k
i (3-15)

in which P k
i =

[
P k−1
i − Pk−1

i ∇k
i [∇k

i ]TPk−1
i

1+[∇k
i ]TPk−1

i ∇k
i

]
,

∇k
i = Λk

i


θk−1
i1 − ‖x

k−dk
i1‖

2

(vk−1
i1 )3 k(xk, dki1)
...

θk−1
in1 −

‖xk−dk
in1‖

2

(vk−1
in1

)3 k(xk, dkin1)

 and

Λk
i ∈ [0, 1] is the normalized activation degree of the i-th rule.

3.5
Fifth Stage: Global Output

This stage consists of providing a global output. The estimated value is
the weighted average of local outputs considering individual rules contribu-
tions, resulting in the non-linear nature of the model. The global estimation is
given by Equation 3-16:

ŷ =
R∑
i=1

ŷiΛi (3-16)

in which, ŷ is the global output, ŷi is the local output of the i-th rule and Λi

is the normalized activation degree of the i-th rule.
Next we summarize the learning algorithm to produce and keep a VS-

ePL-KRLS model updated from an online data stream.
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Algorithm 1: VS-ePL-KRLS
input : xk, k = 1, . . . , n
output: ŷk, k = 1, . . . , n

1 for k = 2, 3, . . . , n do
2 for i = 1, 2, . . . , R do
3 calculate compatibility: ρki = 1− ‖x

k−vk
i ‖

m

4 calculate arousal: aki = ak−1
i + βk−1

(
1− ρki − ak−1

i

)
5 calculate local output: ŷki = ∑|Di|

j=1 θ
k−1
ij κ

(
dkij, x

k
)

6 calculate parameter controls rate of change of arousal:
7 if

∣∣∣ẽk∣∣∣ > γ̄ then
8 βk = βk−1

αV S1

9 else
10 βk = βk−1αV S2

11 if βk < IL then
12 βk = IL

13 if βk > SL then
14 βk = SL

15 τ k = βk−1

16 γk = 1− βk−1

17 if min
∣∣∣ak∣∣∣ > τ then

18 calculate added center: vk+1
R = xk

19 initialize local dictionary with sample value: Dki = xk

20 calculate kernel size: νkR1 = 0.5
21 calculate parameter consequent: θki =

[
λ+ κ(xk, xk)

]−1
yk−1

22 else

23 calculate updated center: vk+1
i = vki + α

(
vki
)1−ak+1

i
(
xk − vki

)
24 calculate minimum distance: ψ = min(∀dij∈Dk

i )

∥∥∥xk − dkij∥∥∥
25 calculate errors: ẽki =

∣∣∣yki − ŷki ∣∣∣
26 if ψ ≥ δ & ε < ε then
27 add sample at local dictionary: Dki = Dki U xk

28 calculate kernel size: νkR1 = 0.5

29 calculate parameter consequent: θki =
[
θk−1
i − zki [rki ]−1ẽki

[rki ]−1ẽki

]
30 for i, j = 1, 2, . . . , c, i 6= j do
31 calculate centers compatibility: ρkij = 1− 1

m

∑m
l=1

∣∣∣vkil − vkjl∣∣∣
32 if ρkij > γ then
33 calculate merged center: vki = vk

i +vk
j

2

34 calculate global output: ŷk = ∑R
i=1 ŷiΛi
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4
Methodology

Transport management is a main logistical process responsible for in-
tegrating the links in a supply chain, that is, the supply of inputs and raw
materials between suppliers and producers and the distribution of final prod-
ucts between producers and customers, respectively. Such management must
be done efficiently and effectively to minimize costs and maximize the quality
of service.

According to [2], transportation costs correspond to approximately 60%
of a company’s logistical costs. Of these expenses, 40% represent fixed costs,
such as salaries for drivers, helpers, and mechanics. The remaining 60%
represents variable costs, particularly maintenance, tolls, and fuel, in the case
of a heavy truck used to transport cargo [3]. This study estimates that the
fuel is equivalent to about 58% of the variable costs and, consequently, 35%
of the transport expenses. In a country of continental dimensions such as
Brazil, which primarily uses road networks to transport cargo and people,
a computational tool that allows reliable forecasts of the prices of the S500
and S10 diesel oil becomes a competitive differential for logistic operations.
As an example, the model can be used to optimize delivery, defining better
dates and locations for supply, aiming at minimizing the costs of delivery and,
consequently, maximizing the profit of a company.

The fuel price dataset used to evaluate the VS-ePL-KRLS modeling
approach described in Chapter 3 was obtained from the website of the National
Agency for Petroleum, Natural Gas and Biofuels (ANP) [39]. Resale and
distribution prices are considered. The main difference between diesel oils is
related to the concentration of sulfur that each contains: S500 has 500 parts
per million and S10 has 10 parts per million. This directly affects engine
performance and the environment, in which the S10 diesel oil has better
ignition and combustion functioning, suffers less from corrosion and is less
polluting.

The diesel oil market in Brazil is regulated by the ANP and Federal Law
9.478/97. The price of diesel oil is composed of: 40% pure diesel, 11% biodiesel,
11% state taxes, 16% national taxes, and 20% profit (the final product must
contain a mixture of 88% of pure diesel and 12% of biodiesel) [40].
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4.1
Historic Contextualization of the Fuel Price Policy in Brazil

Until 2016, the diesel oil price in Brazil was controlled by Petrobras,
which delayed the transfer of its international variations as a tool to control
inflation. After several financial losses, Petrobras, as a state-owned company,
changed this policy. The price started to be controlled by the barrel of oil in
the international market, which depends on the price of the dollar and oil.
As the company prices are due to several political and economic factors on
a global scale, which has dynamic characteristics, some nonstationarities are
noticeable since 2017.

Successive increases occurred in fuel prices, especially S500 diesel oil and
S10 diesel oil which increased R$ 0.293 (8.383%) and R$ 0.278 (7.755%) in the
first three weeks of May 2018, respectively. This resulted in the truckers’ strike
(also called the diesel crisis) which lasted from May 21st, 2018 to May 30th,
2018 throughout the national territory which had several claims, including a
reduction in the price of diesel.

The international price of a barrel of oil plummeted, reached -US$ 37.63
on April 20th, 2020, an unprecedented event in history. Its dynamic character
is an example of behavior that requires prediction models to be adapted or
redesigned to keep their accuracies up.

4.2
Statistical Analysis

The behavior of historical prices can be observed in Figure 4.1 and
a preliminary statistical analysis is presented in Table 4.1 for weekly data
periodicity. The dataset is from December 30th, 2012 to May 30th, 2020.

2013 2014 2015 2016 2017 2018 2019 2020
Date

2.25

2.50

2.75

3.00

3.25

3.50
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ice

 (R
$)

S500 diesel oil
S10 diesel oil

Figure 4.1: Historical diesel oil prices for weekly data periodicity
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Table 4.1: Statistical Analysis for weekly data periodicity

S500 diesel oil S10 diesel oil
Data Samples 386 386

Mean 3.008 3.124
Standard Deviation 0.454 0.447

Minimum 2.152 2.202
First Quartile 2.518 2.660

Median 3.014 3.155
Third Quartile 3.391 3.504

Maximum 3.828 3.899

The behavior of historical prices can be observed in Figure 4.2 and a
preliminary statistical analysis is presented in Table 4.2 for monthly data
periodicity. The dataset is from December 2012 to May 2020.

2013 2014 2015 2016 2017 2018 2019 2020
Date
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S500 diesel oil
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Figure 4.2: Historical diesel oil prices for monthly data periodicity

Table 4.2: Statistical Analysis for monthly data periodicity

S500 diesel oil S10 diesel oil
Data Samples 90 90

Mean 2.999 3.114
Standard Deviation 0.460 0.453

Minimum 2.151 2.226
First Quartile 2.518 2.658

Median 3.014 3.152
Third Quartile 3.387 3.505

Maximum 3.788 3.856
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4.3
Forecasting Evaluation and Computational Performance

The forecasting evaluation is measured by means of three error metrics:
Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Non-
Dimensional Error Index (NDEI), expressed by Equations 4-1, 4-2 and 4-3,
respectively.

RMSE =
√√√√ 1
n

n∑
k=1

(yk − ŷk)2 (4-1)

in which n is the sample size, yk is the actual value and ŷk is the predicted
value.

MAE = 1
n

n∑
k=1

∣∣∣yk − ŷk∣∣∣ (4-2)

in which n is the sample size, yk is the actual value and ŷk is the predicted
value.

NDEI = 1
n

n∑
k=1

∣∣∣∣∣yk − ŷkyk

∣∣∣∣∣ (4-3)

in which n is the sample size, yk is the actual value and ŷk is the predicted
value.

The RMSE and MAE are in the same unit that dataset (for this case, it
is the Real (R$) unit). The main difference between them is that the RMSE
penalizes large errors and benefits small errors (between 0 and 1). The NDEI
is a percentage error. The training data and test data are divided into 80%
and 20% of the entire dataset, respectively.

This approach was statistically validated with Morgan Granger Newbold
(MGN) Test [41] to evaluate if the accuracy between models is equivalent or
not. MGN test follows a student’s t distribution with n− 1 degrees of freedom
and it is represented by Equation 4-4:

MGN = %̂√
1−%̂
n−1

(4-4)

in which %̂ is the correlation coefficient (Pearson coefficient) between sum and
difference of errors for a time series with a size equal to n. The null hypothesis
is that two forecast error variances are equivalent.

The computational performance evaluation is measured by calculating
the average value in 30 simulations of the percentage of the current system-
wide CPU utilization. The test is performed in a computer with Intel(R)
Core(TM) Processor i3-7020U CPU @ 2.30GHz 2.30 GHz, 4.00 GB installed
memory(RAM) (with 3.87 GB usable) and 64-bit Operating System.
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5
Experimental Results

To evaluate the effectiveness of the method proposed in Chapter 3, the
VS-ePL-KRLS is applied for a real time series (S500 and S10 diesel oil Prices)
and a benchmark time series (Box-Jenkins Gas Furnace). Thus, it is compared
with the best models presented in this context as ePL-KRLS [7], SM-ePL-
KRLS [27] and ESM-ePL-KRLS [27].

The hyperparameters are defined using an optimized method in which
every possible combination of a finite number of these values is tested and
the composition that results in the smallest RMSE is chosen. This technique
is used to define the learning rate (α) and the parameter that controls the
rate of change of arousal (β) for ePL-KRLS, both varying between 0.01 and
1.00 (in 0.01 increments). The threshold value for creating or updating the
rules (τ) and the threshold value for merging the rules (γ) are set equal to β
value and β complement as in SM-ePL-KRLS, ESM-ePL-KRLS and VS-ePL-
KRLS). For these three models, the same α, β, τ , and γ were used. However,
γ, αV S1 and αV S2 are optimized. The first varying between 0.001 and 0.050
(in 0.001 increments) for SM-ePL-KRLS, ESM-ePL-KRLS and VS-ePL-KRLS,
the second and third varying between 0.01 and 1.00 (in 0.01 increments) for
VS-ePL-KRLS.

The results are measured in terms of Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), and Non-Dimensional Error Index (NDEI).
Then, they are statistically validated with Morgan Granger Newbold (MGN)
Test. Finally, the computational performance is measured by calculating the
average value in 30 simulations of the percentage of the current system-wide
CPU utilization, and the rules are described as a rounded average through the
process.

5.1
Diesel Oil Price

The real application is composed of ten time series divided into two
data periodicity: weekly and monthly. The first is to predict the biweekly and
monthly horizons, both S500 and S10 diesel oil. The second is to predict the
monthly, semiannual and yearly horizons, both S500 and S10 diesel oil.
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The hyperparameters for S500 diesel oil weekly prices for a biweekly
forecasting horizon (two steps ahead) are represented at Table 5.1. In addition,
α = 0.10, β = 0.02, τ = 0.02, and γ = 0.98.

Table 5.1: Hyperparameters – S500 diesel oil for a biweekly forecasting horizon
and weekly data periodicity

Algorithm γ̄ αV S1 αV S2
SM-ePL-KRLS 0.010 - -
ESM-ePL-KRLS 0.016 - -
VS-ePL-KRLS 0.003 0.79 0.64

The experimental results are represented in Table 5.2, which shows
the average number of rules, error metrics (RMSE, MAE, and NDEI), and
computational complexity (percentage of CPU cycles).

Table 5.2: Results – S500 diesel oil for a biweekly forecasting horizon and
weekly data periodicity

Algorithm Rules RMSE MAE NDEI %CPU
ePL-KRLS 2 0.04834 0.03750 0.10736 19.02 ± 5.84

SM-ePL-KRLS 9 0.04753 0.03367 0.10557 18.44 ± 3.07
ESM-ePL-KRLS 3 0.05038 0.03921 0.11189 17.09 ± 2.87
VS-ePL-KRLS 3 0.03865 0.03018 0.08584 16.65 ± 2.76

The VS-ePL-KRLS model presents the lowest errors with a reduction of
18.68% of the RMSE, 10.37% of the MAE, and 18.69% of the NDEI about
the second-best model (SM-ePL-KRLS). The lowest percentage of the current
system-wide CPU utilization is seen in VS-ePL-KRLS. Concerning the average
number of rules, ePL-KRLS, ESM-ePL-KRLS, and VS-ePL-KRLS return the
lowest values. Figures 5.1 and 5.2 illustrate the prediction values and rules
evolution, respectively.
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Figure 5.1: Prediction – two steps ahead S500 diesel oil price using weekly data
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Figure 5.2: VS-ePL-KRLS rules evolution – two steps ahead S500 diesel oil
price using weekly data

This result is analyzed statistically in Table 5.3. The null hypothesis
(which assumes the models have equal accuracy) is rejected with a significance
of 5% when comparing the VS-ePL-KRLS with all the other three models.

Table 5.3: MGN test – S500 diesel oil for a biweekly forecasting horizon and
weekly data periodicity

Comparison MGN p-value Observation
VS-ePL-KRLS x ePL-KRLS -4.178 8.06 ×10−5 H0 is rejected

VS-ePL-KRLS x SM-ePL-RKLS -4.966 4.34 ×10−6 H0 is rejected
VS-ePL-KRLS x ESM-ePL-KRLS -5.328 1.06 ×10−6 H0 is rejected

DBD
PUC-Rio - Certificação Digital Nº 1913214/CA



Chapter 5. Experimental Results 37

The hyperparameters for S10 diesel oil weekly prices for a biweekly
forecasting horizon (two steps ahead) are represented at Table 5.4. In addition,
α = 0.02, β = 0.05, τ = 0.05, and γ = 0.95.

Table 5.4: Hyperparameters – S10 diesel oil for a biweekly forecasting horizon
and weekly data periodicity

Algorithm γ̄ αV S1 αV S2
SM-ePL-KRLS 0.008 - -
ESM-ePL-KRLS 0.015 - -
VS-ePL-KRLS 0.001 0.94 0.74

The experimental results are represented in Table 5.5, which shows
the average number of rules, error metrics (RMSE, MAE, and NDEI), and
computational complexity (percentage of CPU cycles).

Table 5.5: Results – S10 diesel oil for a biweekly forecasting horizon and weekly
data periodicity

Algorithm Rules RMSE MAE NDEI %CPU
ePL-KRLS 2 0.03974 0.03087 0.08979 15.13 ± 2.75

SM-ePL-KRLS 11 0.04238 0.02920 0.09575 17.54 ± 2.36
ESM-ePL-KRLS 7 0.04402 0.03316 0.09947 19.01 ± 6.36
VS-ePL-KRLS 2 0.03616 0.02755 0.08170 15.27 ± 2.69

The VS-ePL-KRLS model presents the lowest errors with a reduction of
9.01% of the RMSE, 10.75% of the MAE, and 9.01% of the NDEI about the
second-best model (ePL-KRLS). The lowest percentage of the current system-
wide CPU utilization is seen in ePL-KRLS. Concerning the average number of
rules, ePL-KRLS and VS-ePL-KRLS return the lowest values. Figures 5.3 and
5.4 illustrate the prediction values and rules evolution, respectively.
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Figure 5.3: Prediction – two steps ahead S10 diesel oil price using weekly data
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Figure 5.4: VS-ePL-KRLS rules evolution – two steps ahead S10 diesel oil price
using weekly data

This result is analyzed statistically in Table 5.6. The null hypothesis
(which assumes the models have equal accuracy) is rejected with a significance
of 5% when comparing the VS-ePL-KRLS with all the other three models.

Table 5.6: MGN test – S10 diesel oil for a biweekly forecasting horizon and
weekly data periodicity

Comparison MGN p-value Observation
VS-ePL-KRLS x ePL-KRLS -2.672 9.31 ×10−3 H0 is rejected

VS-ePL-KRLS x SM-ePL-RKLS -2.544 1.31 ×10−2 H0 is rejected
VS-ePL-KRLS x ESM-ePL-KRLS -2.605 1.11 ×10−2 H0 is rejected
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The hyperparameters for S500 diesel oil weekly prices for a monthly
forecasting horizon (four steps ahead) are represented at Table 5.7. In addition,
α = 0.28, β = 0.01, τ = 0.01, and γ = 0.99.

Table 5.7: Hyperparameters – S500 diesel oil for a monthly forecasting horizon
and weekly data periodicity

Algorithm γ̄ αV S1 αV S2
SM-ePL-KRLS 0.028 - -
ESM-ePL-KRLS 0.002 - -
VS-ePL-KRLS 0.008 0.57 0.34

The experimental results are represented in Table 5.8, which shows
the average number of rules, error metrics (RMSE, MAE, and NDEI), and
computational complexity (percentage of CPU cycles).

Table 5.8: Results – S500 diesel oil for a monthly forecasting horizon and weekly
data periodicity

Algorithm Rules RMSE MAE NDEI %CPU
ePL-KRLS 2 0.08350 0.06421 0.18675 16.22 ± 2.38

SM-ePL-KRLS 17 0.08725 0.06780 0.19512 20.07 ± 5.70
ESM-ePL-KRLS 1 0.09526 0.07033 0.21304 17.39 ± 4.54
VS-ePL-KRLS 4 0.06011 0.04886 0.13442 17.78 ± 3.17

The VS-ePL-KRLS model presents the lowest errors with a reduction of
28.01% of the RMSE, 23.91% of the MAE, and 28.02% of the NDEI about the
second-best model (ePL-KRLS). The lowest percentage of the current system-
wide CPU utilization is seen in ePL-KRLS. Concerning the average number
of rules, ESM-ePL-KRLS and ePL-KRLS return the lowest values. Figures 5.5
and 5.6 illustrate the prediction values and rules evolution, respectively.
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Figure 5.5: Prediction – four steps ahead S500 diesel oil price using weekly
data
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Figure 5.6: VS-ePL-KRLS rules evolution – four steps ahead S500 diesel oil
price using weekly data

This result is analyzed statistically in Table 5.9. The null hypothesis
(which assumes the models have equal accuracy) is rejected with a significance
of 5% when comparing the VS-ePL-KRLS with all the other three models.

Table 5.9: MGN test – S500 diesel oil for a monthly forecasting horizon and
weekly data periodicity

Comparison MGN p-value Observation
VS-ePL-KRLS x ePL-KRLS -5.593 3.67 ×10−7 H0 is rejected

VS-ePL-KRLS x SM-ePL-RKLS -5.445 6.63 ×10−7 H0 is rejected
VS-ePL-KRLS x ESM-ePL-KRLS -7.364 2.19 ×10−10 H0 is rejected
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The hyperparameters for S10 diesel oil weekly prices for a monthly
forecasting horizon (four steps ahead) are represented at Table 5.10. In
addition, α = 0.26, β = 0.01, τ = 0.01, and γ = 0.99.

Table 5.10: Hyperparameters – S10 diesel oil for a monthly forecasting horizon
and weekly data periodicity

Algorithm γ̄ αV S1 αV S2
SM-ePL-KRLS 0.020 - -
ESM-ePL-KRLS 0.027 - -
VS-ePL-KRLS 0.002 0.89 0.62

The experimental results are represented in Table 5.11, which shows
the average number of rules, error metrics (RMSE, MAE, and NDEI), and
computational complexity (percentage of CPU cycles).

Table 5.11: Results – S10 diesel oil for a monthly forecasting horizon and weekly
data periodicity

Algorithm Rules RMSE MAE NDEI %CPU
ePL-KRLS 2 0.07830 0.06252 0.17840 15.76 ± 3.93

SM-ePL-KRLS 16 0.08045 0.06023 0.18330 18.81 ± 2.44
ESM-ePL-KRLS 6 0.08170 0.06526 0.18613 17.43 ± 3.15
VS-ePL-KRLS 3 0.06190 0.04841 0.14104 17.33 ± 5.58

The VS-ePL-KRLS model presents the lowest errors with a reduction of
20.95% of the RMSE, 22.57% of the MAE, and 20.94% of the NDEI about the
second-best model (ePL-KRLS). The lowest percentage of the current system-
wide CPU utilization is seen in ePL-KRLS. Concerning the average number of
rules, ePL-KRLS and VS-ePL-KRLS return the lowest values. Figures 5.7 and
5.8 illustrate the prediction values and rules evolution, respectively.
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Figure 5.7: Prediction – four steps ahead S10 diesel oil price using weekly data
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Figure 5.8: VS-ePL-KRLS rules evolution – four steps ahead S10 diesel oil
price using weekly data

This result is analyzed statistically in Table 5.12. The null hypothesis
(which assumes the models have equal accuracy) is rejected with a significance
of 5% when comparing the VS-ePL-KRLS with all the other three models.

Table 5.12: MGN test – S10 diesel oil for a monthly forecasting horizon and
weekly data periodicity

Comparison MGN p-value Observation
VS-ePL-KRLS x ePL-KRLS -3.381 1.16 ×10−3 H0 is rejected

VS-ePL-KRLS x SM-ePL-RKLS -3.718 3.91 ×10−4 H0 is rejected
VS-ePL-KRLS x ESM-ePL-KRLS -3.716 3.93 ×10−4 H0 is rejected
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The hyperparameters for S500 diesel oil monthly prices for a monthly
forecasting horizon (one step ahead) are represented at Table 5.13. In addition,
α = 0.12, β = 0.01, τ = 0.01, and γ = 0.99.

Table 5.13: Hyperparameters – S500 diesel oil for a monthly forecasting horizon
and monthly data periodicity

Algorithm γ̄ αV S1 αV S2
SM-ePL-KRLS 0.016 - -
ESM-ePL-KRLS 0.001 - -
VS-ePL-KRLS 0.015 0.49 0.60

The experimental results are represented in Table 5.14, which shows
the average number of rules, error metrics (RMSE, MAE, and NDEI), and
computational complexity (percentage of CPU cycles).

Table 5.14: Results – S500 diesel oil for a monthly forecasting horizon and
monthly data periodicity

Algorithm Rules RMSE MAE NDEI %CPU
ePL-KRLS 2 0.09682 0.07434 0.21475 14.92 ± 3.34

SM-ePL-KRLS 4 0.09335 0.07206 0.20704 15.62 ± 2.61
ESM-ePL-KRLS 1 0.10189 0.07537 0.22599 15.51 ± 2.51
VS-ePL-KRLS 2 0.07002 0.06026 0.15530 16.92 ± 6.19

The VS-ePL-KRLS model presents the lowest errors with a reduction of
24.99% of the RMSE, 16.38% of the MAE, and 24.99% of the NDEI about
the second-best model (SM-ePL-KRLS). The lowest percentage of the current
system-wide CPU utilization is seen in ePL-KRLS. Concerning the average
number of rules, ESM-ePL-KRLS, ePL-KRLS, and VS-ePL-KRLS return the
lowest values. Figures 5.9 and 5.10 illustrate the prediction values and rules
evolution, respectively.

DBD
PUC-Rio - Certificação Digital Nº 1913214/CA



Chapter 5. Experimental Results 44

2013 2014 2015 2016 2017 2018 2019 2020
Date

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

Pr
ice

 (R
$)

Historical
ePL-KRLS
SM-ePL-KRLS
ESM-ePL-KRLS
VS-ePL-KRLS

Figure 5.9: Prediction – one step ahead S500 diesel oil price using monthly
data
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Figure 5.10: VS-ePL-KRLS rules evolution – one step ahead S500 diesel oil
price using monthly data

This result is analyzed statistically in Table 5.15. The null hypothesis
(which assumes the models have equal accuracy) is rejected with a significance
of 5 % when comparing the VS-ePL-KRLS with all the other three models.

Table 5.15: MGN test – S500 diesel oil for a monthly forecasting horizon and
monthly data periodicity

Comparison MGN p-value Observation
VS-ePL-KRLS x ePL-KRLS -4.016 9.98 ×10−4 H0 is rejected

VS-ePL-KRLS x SM-ePL-RKLS -2.915 1.01 ×10−2 H0 is rejected
VS-ePL-KRLS x ESM-ePL-KRLS -3.711 1.90 ×10−3 H0 is rejected
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The hyperparameters for S10 diesel oil monthly prices for a monthly
forecasting horizon (one step ahead) are represented at Table 5.16. In addition,
α = 0.13, β = 0.01, τ = 0.01, and γ = 0.99.

Table 5.16: Hyperparameters – S10 diesel oil for a monthly forecasting horizon
and monthly data periodicity

Algorithm γ̄ αV S1 αV S2
SM-ePL-KRLS 0.014 - -
ESM-ePL-KRLS 0.001 - -
VS-ePL-KRLS 0.006 0.91 0.89

The experimental results are represented in Table 5.17, which shows
the average number of rules, error metrics (RMSE, MAE, and NDEI), and
computational complexity (percentage of CPU cycles).

Table 5.17: Results – S10 diesel oil for a monthly forecasting horizon and
monthly data periodicity

Algorithm Rules RMSE MAE NDEI %CPU
ePL-KRLS 2 0.08736 0.06752 0.19709 16.30 ± 3.78

SM-ePL-KRLS 4 0.08221 0.06369 0.18549 18.04 ± 7.29
ESM-ePL-KRLS 1 0.09232 0.06737 0.20829 14.97 ± 3.03
VS-ePL-KRLS 2 0.05612 0.04889 0.12661 15.20 ± 2.69

The VS-ePL-KRLS model presents the lowest errors with a reduction
of 31.74% of the RMSE, 23.24% of the MAE, and 31.74% of the NDEI
about the second-best model (SM-ePL-KRLS). The lowest percentage of the
current system-wide CPU utilization is seen in ESM-ePL-KRLS. Concerning
the average number of rules, ESM-ePL-KRLS, ePL-KRLS, and VS-ePL-KRLS
return the lowest values. Figures 5.11 and 5.12 illustrate the prediction values
and rules evolution, respectively.
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Figure 5.11: Prediction – one step ahead S10 diesel oil price using monthly
data

0 20 40 60 80
Sample

1

2

Ru
le
s

Figure 5.12: VS-ePL-KRLS rules evolution – one step ahead S10 diesel oil price
using monthly data

This result is analyzed statistically in Table 5.18. The null hypothesis
(which assumes the models have equal accuracy) is rejected with a significance
of 5 % when comparing the VS-ePL-KRLS with all the other three models.

Table 5.18: MGN test – S10 diesel oil for a monthly forecasting horizon and
monthly data periodicity

Comparison MGN p-value Observation
VS-ePL-KRLS x ePL-KRLS -3.861 1.38 ×10−3 H0 is rejected

VS-ePL-KRLS x SM-ePL-RKLS -3.113 6.70 ×10−3 H0 is rejected
VS-ePL-KRLS x ESM-ePL-KRLS -3.824 1.50 ×10−3 H0 is rejected
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The hyperparameters for S500 diesel oil monthly prices for a semiannual
forecasting horizon (six steps ahead) are represented at Table 5.19. In addition,
α = 0.02, β = 0.07, τ = 0.07, and γ = 0.93.

Table 5.19: Hyperparameters – S500 diesel oil for a semiannual forecasting
horizon and monthly data periodicity

Algorithm γ̄ αV S1 αV S2
SM-ePL-KRLS 0.046 - -
ESM-ePL-KRLS 0.040 - -
VS-ePL-KRLS 0.009 0.26 0.12

The experimental results are represented in Table 5.20, which shows
the average number of rules, error metrics (RMSE, MAE, and NDEI), and
computational complexity (percentage of CPU cycles).

Table 5.20: Results – S500 diesel oil for a semiannual forecasting horizon and
monthly data periodicity

Algorithm Rules RMSE MAE NDEI %CPU
ePL-KRLS 2 0.16321 0.11897 0.38342 19.08 ± 12.93

SM-ePL-KRLS 11 0.17548 0.13178 0.41223 17.08 ± 5.46
ESM-ePL-KRLS 4 0.19936 0.12122 0.46835 16.48 ± 2.86
VS-ePL-KRLS 4 0.11720 0.09244 0.27534 16.31 ± 3.07

The VS-ePL-KRLS model presents the lowest errors with a reduction of
28.19% of the RMSE, 22.30% of the MAE, and 28.19% of the NDEI about the
second-best model (ePL-KRLS). The lowest percentage of the current system-
wide CPU utilization is seen in VS-ePL-KRLS. Concerning the average number
of rules, ePL-KRLS returns the lowest values. Figures 5.13 and 5.14 illustrate
the prediction values and rules evolution, respectively.

DBD
PUC-Rio - Certificação Digital Nº 1913214/CA



Chapter 5. Experimental Results 48

2014 2015 2016 2017 2018 2019 2020
Date

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

Pr
ice

 (R
$)

Historical
ePL-KRLS
SM-ePL-KRLS
ESM-ePL-KRLS
VS-ePL-KRLS

Figure 5.13: Prediction – six steps ahead S500 diesel oil price using monthly
data
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Figure 5.14: VS-ePL-KRLS rules evolution – six steps ahead S500 diesel oil
price using monthly data

This result is analyzed statistically in Table 5.21. The null hypothesis
(which assumes the models have equal accuracy) is rejected when comparing
the VS-ePL-KRLS with ESM-ePL-KRLS and is accepted when comparing the
VS-ePL-KRLS with ePL-KRLS and SM-ePL-KRLS, with a significance of 5%.

Table 5.21: MGN test – S500 diesel oil for a semiannual forecasting horizon
and monthly data periodicity

Comparison MGN p-value Observation
VS-ePL-KRLS x ePL-KRLS -2.105 5.15 ×10−2 H0 is accepted

VS-ePL-KRLS x SM-ePL-RKLS -1.962 6.74 ×10−2 H0 is accepted
VS-ePL-KRLS x ESM-ePL-KRLS -2.154 4.69 ×10−2 H0 is rejected
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The hyperparameters for S10 diesel oil monthly prices for a semiannual
forecasting horizon (six steps ahead) are represented at Table 5.22. In addition,
α = 0.17, β = 0.01, τ = 0.01, and γ = 0.99.

Table 5.22: Hyperparameters – S10 diesel oil for a semiannual forecasting
horizon and monthly data periodicity

Algorithm γ̄ αV S1 αV S2
SM-ePL-KRLS 0.038 - -
ESM-ePL-KRLS 0.049 - -
VS-ePL-KRLS 0.004 0.54 0.08

The experimental results are represented in Table 5.23, which shows
the average number of rules, error metrics (RMSE, MAE, and NDEI), and
computational complexity (percentage of CPU cycles).

Table 5.23: Results – S10 diesel oil for a semiannual forecasting horizon and
monthly data periodicity

Algorithm Rules RMSE MAE NDEI %CPU
ePL-KRLS 2 0.16829 0.11702 0.40672 14.11 ± 2.19

SM-ePL-KRLS 10 0.14097 0.10742 0.34069 15.88 ± 2.93
ESM-ePL-KRLS 6 0.18468 0.11673 0.44634 15.46 ± 2.46
VS-ePL-KRLS 3 0.11922 0.09442 0.28813 15.56 ± 2.58

The VS-ePL-KRLS model presents the lowest errors with a reduction of
15.43% of the RMSE, 12.10% of the MAE, and 15.43% of the NDEI about
the second-best model (SM-ePL-KRLS). The lowest percentage of the current
system-wide CPU utilization is seen in ePL-KRLS. Concerning the average
number of rules, ePL-KRLS and VS-ePL-KRLS return the lowest values.
Figures 5.15 and 5.16 illustrate the prediction values and rules evolution,
respectively.
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Figure 5.15: Prediction – six steps ahead S10 diesel oil price using monthly
data

0 20 40 60 80
Sample

1

2

3

Ru
le
s

Figure 5.16: VS-ePL-KRLS rules evolution – six steps ahead S10 diesel oil price
using monthly data

This result is analyzed statistically in Table 5.24. The null hypothesis
(which assumes the models have equal accuracy) is rejected when comparing
the VS-ePL-KRLS with ePL-KRLS and ESM-ePL-KRLS and is accepted when
comparing the VS-ePL-KRLS with SM-ePL-KRLS, with a significance of 5%.

Table 5.24: MGN test – S10 diesel oil for a semiannual forecasting horizon and
monthly data periodicity

Comparison MGN p-value Observation
VS-ePL-KRLS x ePL-KRLS -6.775 4.46 ×10−6 H0 is rejected

VS-ePL-KRLS x SM-ePL-RKLS -1.872 7.96 ×10−2 H0 is accepted
VS-ePL-KRLS x ESM-ePL-KRLS -5.402 5.87 ×10−5 H0 is rejected
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The hyperparameters for S500 diesel oil monthly prices for a yearly
forecasting horizon (twelve steps ahead) are represented at Table 5.25. In
addition, α = 0.02, β = 0.06, τ = 0.06, and γ = 0.94.

Table 5.25: Hyperparameters – S500 diesel oil for a yearly forecasting horizon
and monthly data periodicity

Algorithm γ̄ αV S1 αV S2
SM-ePL-KRLS 0.047 - -
ESM-ePL-KRLS 0.009 - -
VS-ePL-KRLS 0.009 0.49 0.28

The experimental results are represented in Table 5.26, which shows
the average number of rules, error metrics (RMSE, MAE, and NDEI), and
computational complexity (percentage of CPU cycles).

Table 5.26: Results – S500 diesel oil for a yearly forecasting horizon and
monthly data periodicity

Algorithm Rules RMSE MAE NDEI %CPU
ePL-KRLS 2 0.16514 0.12451 0.42327 16.15 ± 3.10

SM-ePL-KRLS 10 0.18711 0.13054 0.47957 17.42 ± 4.87
ESM-ePL-KRLS 2 0.24931 0.18501 0.63900 16.90 ± 4.54
VS-ePL-KRLS 4 0.11889 0.08874 0.30474 17.95 ± 5.40

The VS-ePL-KRLS model presents the lowest errors with a reduction of
28.01% of the RMSE, 28.73% of the MAE, and 28.00% of the NDEI about the
second-best model (ePL-KRLS). The lowest percentage of the current system-
wide CPU utilization is seen in ePL-KRLS. Concerning the average number of
rules, ePL-KRLS and ESM-ePL-KRLS return the lowest values. Figures 5.17
and 5.18 illustrate the prediction values and rules evolution, respectively.
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Figure 5.17: Prediction – twelve steps ahead S500 diesel oil price using monthly
data

0 10 20 30 40 50 60 70 80
Sample

1

2

3

4

5

Ru
le
s

Figure 5.18: VS-ePL-KRLS rules evolution – twelve steps ahead S500 diesel oil
price using monthly data

This result is analyzed statistically in Table 5.27. The null hypothesis
(which assumes the models have equal accuracy) is rejected when comparing
the VS-ePL-KRLS with SM-ePL-KRLS and ESM-ePL-KRLS and is accepted
when comparing the VS-ePL-KRLS with ePL-KRLS, with a significance of
5%.

Table 5.27: MGN test – S500 diesel oil for a yearly forecasting horizon and
monthly data periodicity

Comparison MGN p-value Observation
VS-ePL-KRLS x ePL-KRLS -1.375 1.88 ×10−1 H0 is accepted

VS-ePL-KRLS x SM-ePL-RKLS -2.340 3.26 ×10−2 H0 is rejected
VS-ePL-KRLS x ESM-ePL-KRLS -2.612 1.89 ×10−2 H0 is rejected
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The hyperparameters for S10 diesel oil monthly prices for a yearly
forecasting horizon (twelve steps ahead) are represented at Table 5.28. In
addition, α = 0.02, β = 0.07, τ = 0.07, and γ = 0.93.

Table 5.28: Hyperparameters – S10 diesel oil for a yearly forecasting horizon
and monthly data periodicity

Algorithm γ̄ αV S1 αV S2
SM-ePL-KRLS 0.045 - -
ESM-ePL-KRLS 0.032 - -
VS-ePL-KRLS 0.009 0.48 0.29

The experimental results are represented in Table 5.29, which shows
the average number of rules, error metrics (RMSE, MAE, and NDEI), and
computational complexity (percentage of CPU cycles).

Table 5.29: Results – S10 diesel oil for a yearly forecasting horizon and monthly
data periodicity

Algorithm Rules RMSE MAE NDEI %CPU
ePL-KRLS 2 0.15564 0.11972 0.41732 15.28 ± 3.10

SM-ePL-KRLS 10 0.16295 0.12255 0.43692 15.39 ± 2.37
ESM-ePL-KRLS 4 0.19517 0.11999 0.52333 15.82 ± 2.71
VS-ePL-KRLS 4 0.10946 0.08238 0.29349 15.54 ± 2.75

The VS-ePL-KRLS model presents the lowest errors with a reduction of
29.67% of the RMSE, 31.19% of the MAE, and 29.67% of the NDEI about the
second-best model (ePL-KRLS). The lowest percentage of the current system-
wide CPU utilization is seen in ePL-KRLS. Concerning the average number
of rules, ePL-KRLS returns the lowest values. Figures 5.19 and 5.20 illustrate
the prediction values and rules evolution, respectively.
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Figure 5.19: Prediction – twelve steps ahead S10 diesel oil price using monthly
data
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Figure 5.20: VS-ePL-KRLS rules evolution – twelve steps ahead S10 diesel oil
price using monthly data

This result is analyzed statistically in Table 5.30. The null hypothesis
(which assumes the models have equal accuracy) is rejected when comparing
the VS-ePL-KRLS with SM-ePL-KRLS and ESM-ePL-KRLS and is accepted
when comparing the VS-ePL-KRLS with ePL-KRLS, with a significance of
5%.

Table 5.30: MGN test – S10 diesel oil for a yearly forecasting horizon and
monthly data periodicity

Comparison MGN p-value Observation
VS-ePL-KRLS x ePL-KRLS -1.974 6.60 ×10−2 H0 is accepted

VS-ePL-KRLS x SM-ePL-RKLS -2.694 1.60 ×10−2 H0 is rejected
VS-ePL-KRLS x ESM-ePL-KRLS -2.710 1.55 ×10−2 H0 is rejected
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5.2
Box-Jenkins Gas Furnace

The benchmark application consists of the methane flow rate (input
variable, xk) and the carbon dioxide concentration in off gas (output variable,
yk) taken from a laboratory furnace [42]. The equation that best describes the
Box-Jenkins dataset is given by:

y(k) = f (x(k − 4), y(k − 1)) (5-1)
The hyperparameters are represented at Table 5.31. In addition, α =

0.85, β = 0.07, τ = 0.07 and γ = 0.93.

Table 5.31: Hyperparameters – Box-Jenkins Gas Furnace

Algorithm γ̄ αV S1 αV S2
SM-ePL-KRLS 0.006 - -
ESM-ePL-KRLS 0.025 - -
VS-ePL-KRLS 0.002 0.60 0.30

The experimental results are represented in Table 5.32, which shows
the average number of rules, error metrics (RMSE, MAE, and NDEI), and
computational complexity (percentage of CPU cycles).

Table 5.32: Results – Box-Jenkins Gas Furnace

Algorithm Rules RMSE MAE NDEI %CPU
ePL-KRLS 3 1.08214 0.83738 0.33623 19.53 ± 2.49

SM-ePL-KRLS 2 1.11876 0.85494 0.34760 18.48 ± 3.87
ESM-ePL-KRLS 8 1.20342 0.90552 0.37391 19.60 ± 2.75
VS-ePL-KRLS 2 0.73350 0.52865 0.22790 20.38 ± 3.90

The VS-ePL-KRLS model presents the lowest errors with a reduction of
32.22% of the RMSE, 36.87% of the MAE, and 32.22% of the NDEI about
the second-best model (ePL-KRLS). The lowest percentage of the current
system-wide CPU utilization is seen in SM-ePL-KRLS. Concerning the average
number of rules, VS-ePL-KRLS and SM-ePL-KRLS return the lowest values.
Figures 5.21 and 5.22 illustrate the prediction values and rules evolution,
respectively.
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Figure 5.21: Prediction – Box-Jenkins Gas Furnace
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Figure 5.22: VS-ePL-KRLS rules evolution – Box-Jenkins Gas Furnace

This result is analyzed statistically in Table 5.33. The null hypothesis
(which assumes the models have equal accuracy) is rejected with a significance
of 5 % when comparing the VS-ePL-KRLS with all the other three models.

Table 5.33: MGN test – Box-Jenkins Gas Furnace

Comparison MGN p-value Observation
VS-ePL-KRLS x ePL-KRLS -4.227 5.61 ×10−5 H0 is rejected

VS-ePL-KRLS x SM-ePL-RKLS -6.529 3.70 ×10−9 H0 is rejected
VS-ePL-KRLS x ESM-ePL-KRLS -7.028 3.74 ×10−10 H0 is rejected
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6
Conclusions

In this work, a new forecasting model is suggested to deal with the
problem of fuel price forecasting: the Variable Step-Size evolving Participatory
Learning with Kernel Recursive Least Squares, VS-ePL-KRLS. This model is
tested for the prediction of S500 and S10 diesel oil weekly prices in the context
of Brazil for biweekly and monthly horizons and it appears as a better choice
to integrate a decision support tool to assist the operational, tactical, and
strategic logistic planning, for example. In addition, it was also applied to a
benchmarks problem which is that of Box-Jenkins Gas Furnace.

The evaluation of this model is done in terms of error, number of final
rules, and computational complexity. The proposed model had the smallest
error in all time series with gains ranging between 9.01 % and 32.22 % with
the second-best model and it was statistically validated in MGN Test through
the rejection of the null hypothesis in 28 of the 33 comparisons, indicating that
two forecast error variances are not equivalent to a significance level of 5%.
The computational cost and the average number of rules were satisfactory in
the proposed model.

The proposed model proved to be a decision support tool in planning
operational, tactical, and strategic logistics. As an example, the model can
be used to optimize delivery, defining better dates and locations for supply,
aiming at minimizing the costs of delivery and, consequently, maximizing the
profit of the logistic operator.

Suggestions for future work are the application of VS-ePL-KRLS model
in other types of time series or the implementation of the Variable Step-Size
in other types of Evolving Fuzzy models.
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