
Pedro Araujo Villarinho

A Simheuristic Algorithm for the Stochastic
Permutation Flow-Shop Scheduling Problem
with Delivery Dates and Cumulative Payoffs

Dissertação de Mestrado

Dissertation presented to the Programa de Pós–graduação em
Engenharia de Produção of PUC-Rio in partial fulfillment of
the requirements for the degree of Mestre em Engenharia de
Produção.

Advisor : Prof. Luciana de Souza Pessôa
Co-advisor: Prof. Fernando Luiz Cyrino Oliveira

Rio de Janeiro
July 2020

DBD
PUC-Rio - Certificação Digital Nº 1821414/CA



Pedro Araujo Villarinho

A Simheuristic Algorithm for the Stochastic
Permutation Flow-Shop Scheduling Problem
with Delivery Dates and Cumulative Payoffs

Dissertation presented to the Programa de Pós–graduação em
Engenharia de Produção of PUC-Rio in partial fulfillment of
the requirements for the degree of Mestre em Engenharia de
Produção. Approved by the Examination Committee.

Prof. Luciana de Souza Pessôa
Advisor

Departamento de Engenharia Industrial – PUC-Rio

Prof. Fernando Luiz Cyrino Oliveira
Co-advisor

Departamento de Engenharia Industrial – PUC-Rio

Prof. Helena Ramalhinho Dias Lourenço
Universitat Pompeu Fabra – UPF

Prof. Rafael Martinelli Pinto
Departamento de Engenharia Industrial – PUC-Rio

Rio de Janeiro, July the 16th, 2020

DBD
PUC-Rio - Certificação Digital Nº 1821414/CA



All rights reserved.

Pedro Araujo Villarinho

Majored in Industrial Engineering by Pontifical Catholic Uni-
versity of Rio de Janeiro - PUC-Rio

Bibliographic data
Villarinho, Pedro Araujo

A Simheuristic Algorithm for the Stochastic Permutation
Flow-Shop Scheduling Problem with Delivery Dates and Cu-
mulative Payoffs / Pedro Araujo Villarinho; advisor: Luciana
de Souza Pessôa; co-advisor: Fernando Luiz Cyrino Oliveira.
– Rio de janeiro: PUC-Rio, Departamento de Engenharia In-
dustrial. - 2020.

v., 57 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Engenharia Industrial,
2020.

Inclui bibliografia

1. Engenharia Industrial – Teses. 2. Problema de Progra-
mação de Máquinas em Série;. 3. Heurísticas;. 4. Simulação;.
5. Métricas de risco.. I. Pessôa, Luciana de Souza. II. Cyrino
Oliveira, Fernando Luiz. III. Pontifícia Universidade Católica
do Rio de Janeiro. Departamento de Engenharia Industrial.
IV. Título.

CDD: 658.5

DBD
PUC-Rio - Certificação Digital Nº 1821414/CA



To my family.

DBD
PUC-Rio - Certificação Digital Nº 1821414/CA



Acknowledgments

To my family, in special, to my mother Fernanda, my father Alvaro, my brother
Gabriel for the unconditional support.
I would like to thank my advisor Luciana Pessôa and my co-advisor Fernando
Cyrino, for all the support, learning, ideas, patience, opportunities, motivation,
guidance, and friendship during my master’s.
I am also thankful to Professor Bruno Fanzeres for all the enriched discussion
and help whenever I need.
I wish to thank Professor Angel Juan and Professor Javier Panadero, for
receiving me as visiting student at Internet Computing Systems Optimization
(ICSO) - UOC Barcelona, for the opportunity, for all the enriching discussions,
guidance, patience, ideas, and friendship that have certainly assisted on the
development of this and other works.
To all the Professors, colleagues, and employees of the Industrial Engineering
Department (DEI) for all the knowledge and support.
To all of my friends.
To PUC-Rio and the Industrial Engineering Department (DEI) for the oppor-
tunity.
This work was partially supported by own financial resources, Conselho
Nacional de Desenvolvimento Científico e Tecnológico (CNPq).
This study was financed in part by the Coordenação de Aperfeiçoaento de
Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

DBD
PUC-Rio - Certificação Digital Nº 1821414/CA



Abstract

Villarinho, Pedro Araujo; Pessôa, Luciana de Souza (Advisor); Cy-
rino Oliveira, Fernando Luiz (Co-Advisor).A Simheuristic Algo-
rithm for the Stochastic Permutation Flow-Shop Schedu-
ling Problem with Delivery Dates and Cumulative Payoffs.
Rio de Janeiro, 2020. 57p. Dissertação de mestrado – Departamento
de Engenharia Industrial, Pontifícia Universidade Católica do Rio
de Janeiro.

This master’s thesis analyzes the Permutation Flow-shop Scheduling
Problem with Delivery Dates and Cumulative Payoffs under uncertainty
conditions. In particular, the work considers the realistic situation in which
processing times and release dates are stochastics. The main goal is to
solve this Permutation Flow-shop problem in the stochastic environment
and analyze the relationship between different levels of uncertainty and
the expected payoff. In order to achieve this goal, first a biased-randomized
heuristic is proposed for the deterministic version of the problem. Then, this
heuristic is extended into a metaheuristic by encapsulating it into a variable
neighborhood descent framework. Finally, the metaheuristic is extended
into a simheuristic by incorporating Monte Carlo simulation. According
to the computational experiments, the level of uncertainty has a direct
impact on the solutions provided by the simheuristic. Moreover, a risk
analysis is performed using two well-known metrics: the value at risk and
the conditional value at risk.

Keywords
Permutation Flow-shop Scheduling Problem; Heuristic; Simulation;

Risk-metrics.
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Resumo

Villarinho, Pedro Araujo; Pessôa, Luciana de Souza; Cyrino Oli-
veira, Fernando Luiz. Um algoritmo de sim-heuristica para
um problema estocástico de Permutation Flow-shop Sche-
duling com datas de entrega e ganhos cumulativos. Rio de
Janeiro, 2020. 57p. Dissertação de Mestrado – Departamento de
Engenharia Industrial, Pontifícia Universidade Católica do Rio de
Janeiro.

Esta dissertação de mestrado analisa um problema de programação de má-
quinas em série com datas de entrega e ganhos cumulativos sob incerteza.
Em particular, este trabalho considera situações reais na quais os tempos
de processamento e datas de liberação são estocásticos. O objetivo principal
deste trabalho é a resolução deste problema de programação de máquinas
em série em um ambiente estocástico buscando analisar a relação entre di-
ferentes niveis de incerteza e o benefício esperado. Visando atingir este ob-
jetivo, primeiramente uma heurística é proposta utilizando-se da técnica de
biased-randomization para a versão determinística do problema. Então, esta
heurística é extendida para uma metaheurística a partir do encapsulamento
dentro da estrutura de um variable neighborhood descend. Finalmente, a me-
taheurística é extendida para uma simheurística a partir da incorporação
da simulação de Monte Carlo. De acordo com os experimentos computacio-
nais, o nível de incerteza tem um impacto direto nas soluções geradas pela
simheurística. Além disso, análise de risco foram desenvolvidas utilizando
as conhecidas métricas de risco: value at risk e conditional value at risk.

Palavras-chave
Problema de Programação de Máquinas em Série; Heurísticas; Si-

mulação; Métricas de risco.
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1
Introduction

In the Permutation Flow-shop Scheduling problem with Delivery Dates
and Cumulative Payoff (PFSPDP), a finite number of jobs j is processed –
following the same order from a release date rj – by a finite number of machines
m. Each time a job finishes before a delivery date, a reward is obtained.
Hence, the main goal is to find the permutation of jobs that maximizes the
total reward related to the jobs completion times. Typically, job rewards are
assigned based on a decreasing step-wise function, i.e., delivery dates define
a series of time intervals, and the sooner a job is completed the greater the
associated reward. This problem was first studied by Seddik et al. [1], who
modeled a book digitization service in a one-machine environment. Then,
Pessoa and Andrade [2] extended the aforementioned problem into a flow-
shop context, and proposed a mathematical formulation and a set of heuristic
and metaheuristic methods.

This research takes one step forward and proposes a biased-randomized
(BR) algorithm (Grasas et al. [3]) based on the FF heuristic developed
by Fernandez-Viagas and Framinan [4]. The BR-FF heuristic has shown a
remarkable performance when solving the benchmarks proposed in Pessoa
and Andrade [2]. This is coherent with previous results in which biased-
randomized algorithms have shown to be competitive in different flow-shop
problems (Ferrer et al. [5]; Ferone et al. [6]).

Since uncertainty is often present in many services and production
systems, the main motivation of this research is to solve this PFSPDP in
the stochastic environment, aiming at answering two research question: (i)
the behavior of the reward in different scenarios of uncertainty and (ii) the
worst expected scenarios concerning the reward in each different scenario
of uncertainty, to do it so two stochastic versions were proposed. First,
the PFSPDP was studied in an environment in which the processing times
were considered as random variables, named PFSPDP with Stochastic Times
(PFSPDPST). Then, the aforesaid version was extended to a new one in which
not only considers the uncertainty in the processing times of each job in each
machine but also considers the uncertainty present in the release date of each
job in the first machine, named PFSPSP with Stochastic Times and Release
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Chapter 1. Introduction 14

Dates (PFSPSTRD).
In order to solve those challenging versions, the previous BR-FF algo-

rithm is first integrated into a variable neighborhood descent (VND) meta-
heuristic framework. Then, this BR-FF-VND metaheuristic is extended into a
simheuristic algorithm (Juan et al. [7]) by combining the VND metaheuristic
with Monte Carlo simulation (MCS). In fact, simheuristics have been suc-
cessfully used in the recent past to cope with stochastic versions of different
flow-shop problems (Gonzalez-Neira et al. [8]; Hatami et al. [9]). Another sig-
nificant contribution of this work relates to the use of two risk metrics: the
value at risk (VaRα) and the conditional value at risk (CVaRα). They are
used to complement the simheuristics approach, offering the decision-maker
an analysis of the worst expected cases concerning the rewards.

This work is divided into several Chapters. Chapter 2 contains a detailed
description of the problem under consideration. A literature review on related
work is provided in Chapter 3. In Chapter 4 the proposed methods are
described, to do it so, Section 4.1 describes a biased-randomized algorithm
for solving the deterministic version of the problem, as well as its extension
into a metaheuristic. Section 4.2 extends the previous metaheuristic into a
simheuristic to cope with the stochastic versions of the problem. In Chapter 5
the settings of the computational experiments are provided in Section 5.1, while
the actual experiments are provided in Sections 5.2 (deterministic variant)
and 5.3 (stochastic and risk variant). Finally, Chapter 6 highlights the main
contributions of this work and discusses some open research lines.
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2
Problem Definition

In this Chapter the problem carried out in this work will be detailed in
two environments deterministic and stochastic.

Aiming at contextualizing this PFSPDP in a real-life context to a better
comprehension of the reader, the environment of book digitization studied by
Seddik et al. [1] and extended by Pessoa e Andrade [2] will be address in
this research. However, it is important to highlight that this PFSP could be
addressed in other environments, which aims at finishing the process as soon
as possible, for instance in the retailing when the company wants to release
the product as soon as possible for their customer.

As described in the previous references, the problem is motivated by a
book-digitization project in a library. The book digitization is a job and this
has to be processed in two consecutive stages (machines): digitization and
segmentation. Each book requires a given amount of time to be processed in
each stage. Due to the operational constraints in the library, not all books
are available for digitization at the same time. Hence, a release date is set
for each one. This problem is modeled by taking into account two entities: the
library – which establishes the delivery dates –, and the digitization firm. Each
delivery date is a reference point for computing the payment: the sooner each
book is processed the higher the corresponding reward. This research consider
the problem from the point of view of the digitization firm, which wants to
maximize its profits.

Therefore, the hired company wants to identify the best permutation of
books that provides the hired rewards, and the worst expected scenarios of
rewards.

2.1
Deterministic PFSPDP

The deterministic version of the PFSPDP is described in this Section.
A finite set of n jobs, J = {1, 2, . . . , n} is processed in a subsequent way
by m machines M = {1, 2, . . . ,m}. For each job j ∈ J and machine
l ∈ M, the processing time of job j in machine l is a known constant
pjl > 0 (notice that no uncertainty is considered in this deterministic version
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Chapter 2. Problem Definition 16

of the problem). Furthermore, let S (schedule) be a finite set containing
the times sjl at which each job j starts being processed at each machine
l, i.e., S = {s11, . . . , s1m, s21, . . . , s2m, . . . , sn1, . . . , snm}. Given a schedule S,
the completion time of a job j in a machine l is given by cjl = sjl + pjl.
For simplicity, let cj denote the completion time of job j in the last machine
m ∈M, i.e., cj = cjm.

The problem addressed in this work also considers release dates, rj ≥ 0,
in which job j becomes available to start being processed by machine 1.
Additionally, a set of k delivery dates D = {d1, d2, . . . , dk} is given. Each
job j has an associated reward, F(cj) , which depends upon the time it is
completed:

F(cj) =



0 if dk < cj

1 if dk−1 < cj ≤ dk
...

k if 0 < cj ≤ d1

(2-1)

Hence, the goal is to obtain a permutation of jobs that maximizes the
aggregated reward obtained, i.e., the objective function is: max

n∑
j=1
F(cj).

To illustrate how the reward function works, consider the following simple
example (Figure 2.1):

– Number of machines m = 2, number of jobs n = 4.

– Release dates: r1 = 14, r2 = 2, r3 = 9, and r4 = 7.

– Processing times: p1l = (5, 1), p2l = (3, 2), p3l = (3, 6), and p4l = (6, 3).

– Delivery dates: d1 = 10, d2 = 20.

Figure 2.1: Example of a flow-shop scheduling with delivery dates.

For this instance, which contains 2 delivery dates, the reward step-wise
function has the following configuration:
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Chapter 2. Problem Definition 17

F(Cj) =


0 if d2 < cj

1 if d1 < cj ≤ d2

2 if 0 < cj ≤ d1

(2-2)

As illustrated in Figure 2.1, since job 2 has a completion time c2 = 7,
which is lower than delivery date d1 = 10, there is an associated reward of 2
units. In addition, job 4 has a completion time c4 = 16, which is lower than
delivery date d2 = 20, thus generating a reward of 1 units. Also, since jobs
3 and 1 have completion times beyond the delivery date d2 = 20 (c3 = 22
and c1 = 23), no associated rewards are obtained. All in all, the accumulated
reward in this case is 3 units.

2.1.1
Formal Definition

The formal definition of the problem follows the proposed definition in
Pessoa and Andrade [2] for a Mixed-Integer Linear Program (MILP) to model
this PFSP.

Hence, consider the binary decision variable Xij as Xij = 1 if job Ji is
the jth job of the sequence and Xij = 0 if not. Variable Cpos

j` ∈ Z+ denotes the
completion time of the job on the jth position on machine M` for Jj ∈ J and
M` ∈M. The F |rj, perm|

∑n
j=1F(Cj) can be formulated as following:

max
n∑
j=1
F(Cpos

jm ) (2-3)

s.t.
n∑
i=1

Xij = 1 ∀j ∈ {1, . . . , n}, (2-4)
n∑
j=1

Xij = 1 ∀i ∈ {1, . . . , n}, (2-5)

Cpos
j1 ≥

n∑
i=1

(pi1 + ri)Xij ∀j ∈ {1, . . . , n}, (2-6)

Cpos
j` ≥ Cpos

j−1,` +
n∑
i=1

pi`Xij ∀j ∈ {2, . . . , n} ∀` ∈ {i, . . . ,m}, (2-7)

Cpos
j,`+1 ≥ Cpos

j` +
n∑
i=1

pi,`+1Xij ∀j ∈ {2, . . . , n} ∀` ∈ {1, . . . ,m− 1}, (2-8)

Cpos
j` ≥ 0 ∀j ∈ {2, . . . , n} ∀` ∈ {i, . . . ,m}, (2-9)

Xij ∈ {0, 1} ∀i, j ∈ {1, . . . , n}. (2-10)
The Objective Function (2-3) seeks to maximize sum of the rewards.

Constraints (2-4) and (2-5) ensure that each job is allocated in one position of
the scheduling and vice-versa. Constraint (2-6) establishes the job Jj in the first
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can only start when their release date is met or after it. Constraint (2-7) avoids
the overlapping of a job and its predecessor on a machine. Constraint (2-8)
guarantees that a job can only be processed on a machine after it has finished
on the former one. Constraints (2-9) and (2-10) give the definition domain of
the variables.

2.2
Stochastic PFSPDP

In the stochastic version of the PFSPDP, a finite set of n jobs J =
{1, 2, . . . , n}, are processed by m machinesM = {1, 2, . . . ,m} following in the
same order. For each job j ∈ J and machine l ∈ M, the processing time of
job j in each machine l is not-known beforehand and follows a non-negative
probability distribution pjl > 0. The stochastic version of this problem has
the same constraints as the deterministic version, which has been defined in
Section 2.1, and aims at obtaining a permutation of jobs that maximizes the
expected reward obtained.

To do it so, an assumption of a strong correlation between the best
deterministic solution and the best stochastic solution, in moderate levels of
uncertainty, i.e., lower and medium levels of variance, is taken into account
(Juan et al. [10]). Therefore, is it possible to consider that the scheduling
provided by the deterministic environment is the same provided by the
stochastic environment.

However, it is important to highlight, that the permutation of jobs that
generate the best solution on the deterministic environment not necessarily
will be the same permutation of jobs that generate the best solution in
the stochastic environment since the reward calculated by step-wise function
defined on Section 2.1 is directly impacted by the variations on the processing
times.

Figure 2.2 portrays the PFSPDPST, in which, the same permutation of
jobs illustrated in Section 2.1 is used, following the instances defined bellow,
which considers increases and reductions on processing times.

– Number of machines m = 2, number of jobs n = 4.

– Release dates: r1 = 14, r2 = 2, r3 = 9, and r4 = 7.

– Processing times: p1l = (4, 2), p2l = (4, 5), p3l = (8, 4), and p4l = (6, 9).

– Delivery dates: d1 = 10, d2 = 20.

While on the deterministic environment, i.e, with fixed and known
beforehand processing times, the reward generated is equal to 3 units as it
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Figure 2.2: Example of a flow-shop scheduling with delivery dates with stochas-
tic times.

was discussed in Section 2.1, on the stochastic environment, increases and
reductions on the processing times, directly impact on the reward generated.

On this permutation of jobs portrayed on Figure 2.2, it is notice that there
are no jobs finished on the machine M2 before the delivery date d1. Moreover,
there is just one job J2 with completion time on the machine M2 (C2 = 11)
between the delivery dates d1 and d2, having all the others jobs finished after
the delivery date d2 = 20. Therefore, the expected reward generated by this
permutation of jobs on the stochastic environment is equal to 1 unit.

Aiming to study this PFSPDP in a more realist environment, another
stochastic scenario is approached in this work.

Since in real life the availability of a job j could be affected by uncertain-
ties it is reasonable to consider their variation in the problem’s formulation.

To do it so, the assumption of the release date rj is not known in
advance and follows a non-negative probability distribution rj > 0 has been
taken into account, making this Permutation Flow-shop Scheduling Problem
with Stochastic Times ( PFSPDPST ) extended to a Permutation Flow-shop
Scheduling Problem with Stochastic Times and Release Dates (PFSPSTRD).

Figure 2.3 illustrates the PFSPSTRD, following the same permutation of
jobs illustrated in Section 2.1, and whose instance is defined bellow, considering
variation in the processing times and release dates.

– Number of machines m = 2, number of jobs n = 4.

– Release dates: r1 = 18, r2 = 1, r3 = 11, and r4 = 7.

– Processing times: p1l = (4, 2), p2l = (4, 5), p3l = (8, 4), and p4l = (6, 9).

– Delivery dates: d1 = 10, d2 = 20.

As it could be notice in Figure 2.3 the job J2 has completion time on
the machine M2 (C2 = 10) equal to the delivery date d1, having received the
associated reward of 2 units. Furthermore, there are no jobs with completion
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Figure 2.3: Example of a flow-shop scheduling with delivery dates with stochas-
tic times and stochastic release date.

time on the machine M2 between the delivery dates d1 and d2, having all the
remaining jobs finished after the delivery date d2 = 20. Hence, the expected
reward generated by this permutation of jobs on the stochastic environment is
equal to 2 units.

Those aforementioned Permutation Flow-shop Scheduling Problems
(PFSP), are examples that there is a need to identify and build solutions to
deal with uncertainty environments by finding good solutions in a reasonable
time.
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3
Related Work

The simplest version of the problem described in Section 2.1 was initially
addressed by Seddik et al. [1]. Their work is inspired by a real-life case related
to the book digitalization with delivery dates. These authors consider a single
machine, being the problem known as the 1|rj|

∑n
j=1 F (cj) as defined by Gra-

ham et al. [11]. Later, Pessoa and Andrade [2] extended the model to consider
a flow-shop environment with m machines, i.e.: F |rj, perm|

∑n
j=1 F (cj). This

Section reviews some related work on the PFSP, both in its deterministic and
stochastic versions.

3.1
The Deterministic PFSP with Different Time-Related Goals

Since the first formulation proposed by Johnson [12], which aimed at
minimizing the makespan in two machines, other formulations were developed
on the Flow-shop Scheduling Problem (FSP) as well as heuristic and meta-
heuristic methods. For complete reviews on deterministic FSP employing the
makespan minimization criterion, readers are referred to Framinan et al. [13]
and Fernandez-Viagas et al. [14]. For an overview of FSP, readers are referred
to Gupta and Stafford Jr [15]. Despite the makespan minimization has been
the most popular goal in FSP, other objective functions have been considered
as well. Thus, Framinan and Leisten [16] proposed a new greedy algorithm
based on the variable neighborhood search (Mladenovic and Hansen [17]) to
minimize the total tardiness. Regarding to the minimization of total flow time,
Liu and Reeves [18] presented the LR constructive. Similarly, Framinan and
Leisten [19] proposed another constructive heuristic for the same purpose. Also,
Framinan et al. [20] compared several heuristics and proposed two new ones,
which have shown to be efficient to minimize the total flow time. A bi-objective
problem considering the minimization of the makespan and the total flow
time was tackled by Pasupathy et al. [21]. These authors proposed a genetic
algorithm (GA) to construct a Pareto frontier. Nagano and Moccellin [22]
aimed at minimizing the flow time by proposing a new heuristic based on
the well-known NEH heuristic (Nawaz et al. [23]) and some local search
procedures. Also aiming at minimizing the total flow time, an iterated local
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Chapter 3. Related Work 22

search was proposed by Dong et al. [24]. Tasgetiren et al. [25] expanded the
discrete differential evolution algorithm proposed by Pan et al. [26] into a
hybrid version, and proposed a discrete artificial bee colony algorithm aimed at
minimize the total flow time. Della Croce et al. [27] proposed a metaheuristic
algorithm for minimizing the total completion time in a two-machine flow-
shop problem. Pan and Ruiz [28] made a comprehensive evaluation of 22
heuristics using as objective function the minimization of the total flow time.
Fernandez-Viagas and Framinan [4] proposed a new heuristic, named FF, based
on the LR heuristic proposed by Liu and Reeves [18]. Lee and Chung [29]
addressed an m-machine flow-shop problem with learning effects. The goal was
to minimize the total tardiness by proposing a branch-and-bound method and
two heuristics. Molina-Sánchez and González-Neira [30] introduced a greedy
randomized adaptive search procedure (GRASP) to tackle the minimization
of the total weighted tardiness.

Also to minimize the flow time, Abedinnia et al. [31] introduced a
constructive heuristic based on the one proposed by Laha and Sarin [32]. Yu
and Seif [33] proposed a lower bound based on a GA to minimize the total
tardiness and maintenance cost. Rossi et al. [34] sought to minimize the total
flow time by employing a new constructive heuristic based on the FF-NEH
heuristic introduced by Fernandez-Viagas and Framinan [4]. With the aim of
minimizing the total completion time, Fernandez-Viagas and Framinan [35]
proposed a beam-search-based constructive heuristic. The minimization of
total tardiness was tackled by Fernandez-Viagas et al. [36]. More recently,
Rossi and Nagano [37] tackled a mixed no-idle PFSP with sequence-dependent
setup times. With the goal of minimizing the total flow time, they proposed
a new set of heuristics based on the beam-search algorithm. Likewise, several
matheurisitc algorithms were proposed and compared to a GA by Ta et al. [38],
with the purpose of minimizing the total tardiness. Finally, Andrade et al. [39]
proposed a biased random-key genetic algorithm (BRKGA), with a feature
called shaking, to minimize the total completion time.

3.2
The Stochastic PFSP

Considering the great complexity in troubleshooting NP-hard problems,
the difficulty of making decisions on time and the fact that those decisions are
taken in the real world, where the behavior of its parts is not deterministic, it
is clear the need to identify and develop techniques and tools that allow the
balance between good quality solutions and appropriate execution times.

In the real world, unforeseen events are often present in daily-life situ-
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ations, as in the service and production systems which are subject to uncer-
tainties as, for example: machine failures, imprecise processing times, employee
absences, material unavailability, variations in demand, rush orders and order
cancellations, changes in due dates, etc. (Elyasi and Salmasi [40]). The litera-
ture on flow-shop problems with stochastic components is not as extensive as
in the case of the deterministic version. Thus, while in the deterministic ver-
sion of the PFSP one assumes that the processing time of a job j in a machine
l, pjl > 0, is known in advance and cannot change over time, in the stochastic
version it is usual to consider this processing time as a random variable, Pjl,
following a non-negative probability distribution (Gonzalez-Neira et al. [41]).
By modeling processing times this way, it is possible to represent the uncer-
tainty that is present in real-life scenarios. However, the inclusion of random
variables in the optimization problem also increases the difficulty of solving it
(Baker and Altheimer [42]).

Banerjee [43] and Makino [44] were among the pioneers in the study of
the PFSP with stochastic processing times. The former aimed at minimizing
the expected of lateness in a single machine problem, with random processing
times following a known probability distribution. In order to do it, the author
proposed a decision rule for the single machine problem. The latter author
aimed at minimizing the expected makespan considering that processing times
follow exponential or k-Erlang probability distributions. He also proposed a
sequence rule to find a solution in a scenario with two jobs and three ma-
chines. This work was expanded by Talwar [45], who aimed at minimizing the
idle time of the last machine by considering the processing times as random
variables following exponential probability distributions. Likewise, Cunning-
ham and Dutta [46] considered the processing times being exponentially dis-
tributed to minimize the expected makespan in a problem with two machines.
Mittal and Bagga [47] also aimed at minimizing the expected makespan in a
problem with exponentially distributed processing times. Dodin [48] sought to
minimize the expected makespan by representing processing times as random
variables following different probability distributions (uniform, Normal, and
exponential). Kamburowski [49] drew up an approach aimed at minimizing
the makespan in a scenario with two machines and independent processing
times. Later, Kamburowski [50] expanded the previous work to a scenario in-
volving three machines. Gourgand et al. [51] completed a review about the
stochastic flow-shop scheduling problem. Wang et al. [52] also sought to min-
imize the makespan while modeling processing times using uniform probabil-
ity distributions and employing a GA. With the same goal,Kalczynski and
Kamburowski [53] modeled processing times using Weibull probability distri-

DBD
PUC-Rio - Certificação Digital Nº 1821414/CA



Chapter 3. Related Work 24

butions. Baker and Trietsch [54] developed three heuristic procedures for the
two-machine permutation flow-shop problem with stochastic processing times.
Choi and Wang [55] used a Gamma probability distribution to model pro-
cessing times. Liefooghe et al. [56] proposed an indicator-based evolutionary
algorithm to deal with a bi-objective PFSP with stochastic processing times.
Baker and Altheimer [42] evaluated and compared several heuristic procedures
for the stochastic version of the problem. Juan et al. [10] and Framinan and
Perez-Gonzalez [57] targeted the minimization of the expected makespan by
modeling processing times as random variables following log-Normal proba-
bility distributions. Gonzalez-Neira et al. [58] presented an overview of PFSP
variants with stochastic components. Gholami-Zanjani et al. [59] introduced
robust optimization and fuzzy optimization to model the uncertainty of the
input data, and minimized weighted mean completion time in a PFSP consid-
ering set-up and non-deterministic processing times. Cui et al. [60] analyzed
a bi-objective problem including the quality robustness and solution robust-
ness in environments subject to failure uncertainty, which was modeled using
Weibull probability distributions. Recently, Framinan et al. [61] explored the
use of real-time information to job rescheduling in a PFSP with stochastic
processing times.

In this context, this work contributes to the literature by proposing a new
heuristic and metaheuristic methods to deal with PFSPDP. Furthermore, this
research extends the aforesaid proposed metaheuristic into a simheuristic to
solve PFSPDP in two stochastic environments (PFSPDPST and PFSPSTRD)
and presents a risk metrics analysis to complement the analyses of the
simheuristic results using the well-known risk metrics VaRα and CVaRα.
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4
Proposed Methods

This Chapter detailed the proposed methods used to solve the PFSPDP
in the deterministic and stochastic environments defined in Chapter 2.

4.1
A Biased-Randomized Algorithm for the PFSPDP

In this Section, a biased-randomized algorithm is proposed for the
deterministic version of the PFSP with delivery dates and cumulative payoff.
The algorithm is based on the constructive heuristic FF by Fernandez-Viagas
and Framinan [4]. This heuristic was also examined by Pessoa and Andrade [2],
who showed its superior performance when compared to other constructive
procedures for the PFSPDP.

4.1.1
The FF Heuristic

The FF heuristic proposed by Fernandez-Viagas and Framinan [4] aiming
at minimizing the total completion time in a permutation flow-shop problem,
can be considered as an improved version of the LR heuristic proposed by
Liu and Reeves [18]. A solution is built by attaching, at each iteration, an
unscheduled job in the last position of a partial solution, according to the
index function ξ′ given in Equation 4-1.

At each iteration, the index function ξ′ is computed considering the
weighted idle time, IT ′jk, between the last job in the partial solution – being
represented as k – and each remaining job outside the partial solution – being
represented as j. Moreover, the index ξ′ approximate the makespan of the
solution (AT ′jk).

ξ′jk =
(n− k − 2)

a
IT ′jk + AT ′jk (4-1)

where AT ′jk and IT ′jk are defined as follows:

IT ′jk =
m∑
i=2

m ∗max{c(i−1)j − ci[k], 0}
i− b+ k(m− i+ b)/(n− 2) (4-2)

AT ′jk = cmj (4-3)
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The parameters a and b weight the idle time and makespan in the ξ′

function, n represents the total number of jobs and k is the total of jobs in
the partial solution. After ξ′ is computed, the jobs are sorted according to
the ascending order of its ξ′ value. Then, the job with the smallest ξ′ value
is scheduled in the partial solution. In case of ties, the job with the smallest
value of IT ′jk is selected.

Pessoa and Andrade [2] proposed a slight modification of the idle time
(IT ′jk) for the first machine, to consider the job’s release dates (rj). In the new
expression, max{c(i−1)j − ci[k], 0} was replaced by max{rj − ci[k], 0}.

Regarding the PFSPDP, the authors have shown the superior perfor-
mance of the FF heuristic when compared to other constructive heuristics, such
as the release dates (R) heuristic (Potts [62]) in which a left-shifted schedul-
ing is provided by sorting the jobs in non-decreasing release date; The earliest
completion time (ECT) heuristic (Ladhari and Rakrouki [63]) in which jobs
are sorted in increasing order by the earlier possible completion time aiming
at providing a left-shifted scheduling; The classical NEH heuristic (Nawaz et
al. [23]), and the iterated earliest completion time (IECT) heuristic (Pessoa
and Andrade [2]) which follows the principles of the NEH and ECT methods.

4.1.2
Extending the FF Heuristic to a Biased-Randomized Algorithm

In this research, a biased-randomized extension of the FF heuristic,
called BR-FF is proposed. As explained in detail by Grasas et al. [3], biased-
randomization techniques can be used to incorporate an oriented (non-uniform)
random behavior into a base heuristic. This random behavior, typically
achieved with the use of a skewed probability distribution, allows to encap-
sulate the modified constructive heuristic into a multi-start framework, thus
exploring alternative paths during the solution-building process. Still, due to
the oriented nature of the randomization process, each of these paths fol-
lows the logic behind the heuristic – i.e., the most ‘promising’ movements
receive a higher probability of being selected during the constructive process.
As a result, each time the biased-randomized heuristic is executed, chances
are that the emerging solution outperforms the one provided by the original
heuristic (Faulin et al. [64]). There is an additional benefit of applying biased-
randomization techniques to a constructive heuristic: the resulting procedure
is able to quickly generate different alternative solutions of reasonably good
quality (Juan et al. [65]).

In this work, the biased-randomization effect has been applied to the
job selection process. Thus, while in the original FF heuristic the job with
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the smallest ξ′ value is always selected, in the proposed BR-FF a diminishing
probability of being selected is assigned to each possible job in the list of
jobs sorted from lower to higher ξ′ value. This is achieved by employing a
geometric probability distribution with a single parameter β (0 < β < 1).
Hence, the random behavior of the selection process depends on the value of
β. As this value converges to 1, the selection behavior becomes more greedy
(i.e., as in the original heuristic). On the contrary, as this value converges to 0,
the selection behavior imitates a uniform-random one. Of course, intermediate
values of β allow to consider randomization policies between both extremes,
which makes the construction process more effective (De Armas et al. [66]).

Algorithm 1 illustrates this procedure. It starts by obtaining the job
information from the instance (line 1). The main loop at lines 2 to 10 builds a
solution by adding one job at a time at the last position of a partial solution
until all jobs have been incorporated into the permutation.

Inside this loop, the index ξ′jk is calculated for each job (lines 3 to 5).
Then, the jobs are sorted in ascending order by this index value (line 6). The
biased-randomized selection procedure is employed to select the next job to be
added to the partial solution (line 7). Finally, the job selected is allocated at
the last position of the partial solution (line 8) and it is removed from the list
of unscheduled jobs (line 9).

Algorithm 1: BR-FF Algorithm
1 L← {1, . . . , n};
2 while L 6= ∅ do
3 foreach j ∈ L do
4 Compute ξ′j,k ;
5 Sort the jobs in the ascending order by ξ′j,k
6 Choose, at biased randomization a job index j ∈ L
7 S ← S‖Jj∗ ;
8 L← L \ {j∗};
9 return S ;

4.1.3
Extending the BR-FF Algorithm to a Metaheuristic

Aiming at exploring the solution space of the BR-FF detailed in Sec-
tion 4.1.2, the metaheuristic variable neighborhood descent (VND) proposed
by Hansen and Mladenovic [67], was incorporated into their framework. Due
to their easy implementation, the aforesaid method was chosen (Hansen et
al. [68]).
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The VND method is composed of an initial solution generated by a
constructive heuristic and local search operators. On this metaheuristic, the
neighborhood of the initial solution is explored by the local search methods,
i.e, small modifications on the initial solutions are made until a local optimum
is reached. When it occurs, the modified solution replaces the original one and
the method continues until a search strategy is reached. For more details about
VND, readers are referred to Hansen and Mladenovic [67].

In this work, the proposed metaheuristic method is denoted as BR-FF-
VND, and it is composed of the proposed BR-FF defined in Section 4.1.2 as a
constructive heuristic and two classical local searches operators based on the
work carried out by Den Besten and Stützle [69], insertion and interchange. The
local search interchange aims to swap two jobs from the original positions, while
the insertion method attempts to move a job to a new position that improves
the solution benefit, maintaining the new order in case of the new solution
found has a higher benefit than the original ones. The methods is perform until
the search strategy first improvement is reached, i.e., the method is executed
until a better solution than the solution provided by the constructive heuristic
(BR-FF) is found.

4.2
Extending the BR-FF-VND Algorithm to a Simheuristic

Since the main goals of this research is to solve the stochastic version
of the PFSPDP, this Section explains how Monte Carlo simulation (MCS)
has been integrated into the BR-FF-VND algorithm in order to build a
simheuristic. Considered as a special case of simulation-optimization (Juan
et al. [7]), the simheuristic approach is not only able to deal with a stochastic
version of most combinatorial optimization problems but also to provide risk /
reliability analyses on the stochastic solutions it generates. Thus, simheuristic
approaches have been gaining notoriety during the last years, being presented
in different fields such as: flow-shop problems (Hatami et al. [9]; Gonzalez-Neira
et al. [70]), finance (Panadero et al. [71]), vehicle routing problems (Guimarans
et al. [72]; Calvet et al. [73]; Onggo et al. [74]; Reyes-Rubiano et al. [75]), arc
routing problems (Gonzalez-Martin et al. [76]), inventory routing problems
(Gruler et al. [77]; Onggo et al. [78]; Gruler et al. [79]; Raba et al. [80]), or
facility–location problems (Pagès-Bernaus et al. [81]; De Armas et al. [66]). As
a novelty with respect to these previous references on simheuristic algorithms,
in this work risk analyses were performed based on two well-known metrics:
the value at risk (VaRα) and the conditional value at risk (CVaRα). These
metrics contribute to provide more complete information to decision makers.
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In this stochastic variant of the PFSPDP, the processing times of job j
in machine l are modeled as a random variable, Pjl, which follows a given
probability distribution. Despite this methodology can use any probability
distribution that fits the historical data, in the computational experiments
performed in this work, it has been assumed that Pjl follows a log-Normal
probability distribution with location parameter µjl and scale parameter σjl
– actually, due to their flexibility, the log-Normal and Weibull probability
distributions are frequently employed in reliability analysis to model positive
failure times (Wolstenholme [82]). Other authors have also used the log-
Normal distribution to model processing times (Baker and Altheimer [42];
Juan et al. [10]; Framinan and Perez-Gonzalez [57]). In order to extend the
deterministic instances in a natural way, it has been assumed that E[Pjl] = pjl.
Likewise, in order to analyze different uncertainty levels, it has been assumed
that V ar[Pjl] = h · pjl, where h ∈ {0.1, 0.5, 1.0, 2.0} is a design parameter.
Equations 4-4 and 4-5 display, for the log-Normal distribution, the relationship
between the location / scale parameters and its expected / variance values.

µjl = lnE[Pjl]−
1
2

1 +
V ar[Pjl]
E[Pjl]2

 (4-4)

σjl =

∣∣∣∣∣∣
√√√√ln

(
1 + V ar[Pjl]

E[Pjl]2

)∣∣∣∣∣∣ (4-5)

Aiming at complement this PFSPDPST environment a PFSPSTRD
was proposed by taken into account uncertainties associated with the job j

availability. This has occurred by the assumption of the release date rj of each
job j ∈ J in the first machine l = 1 is not known in advance and follows
log-normal probability distribution with location and scale parameters defined
as it illustrated in Equations 4-6 and 4-7.

The log normal probability distribution was chosen to model the stochas-
tic release dates since this probability distribution do not require complex pa-
rameters to model stochastic variables and it is a more natural choice to model
non-negative random variables than the normal distribution (Juan et al. [83]).

Aiming to study different scenarios of uncertainty, it has been assumed
that V ar[rj] = h · rj, where h ∈ {0.1, 0.5, 1.0, 2.0} is a design parameter.

µj = lnE[rj]−
1
2

1 +
V ar[rj]
E[rj]2

 (4-6)

σj =

∣∣∣∣∣∣
√√√√ln

(
1 + V ar[rj]

E[rj]2

)∣∣∣∣∣∣ (4-7)
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Algorithm 2 portrays the simulation process.
Algorithm 2: Simulation Algorithm
1 vsolSim ← Solution from the deterministic environment
2 foreach Simulation ∈nRuns do
3 foreach j ∈ J do
4 foreach l ∈M do
5 γ ← Deterministic variable
6 γ’ ← Calculate µjl and σjl of γ following a log-normal

probability distribution

7 SimSolution ← vsolSim(γ’)
8 vReward ← SimSolution.Reward

9 Average reward ← vReward.Average
10 return Average reward

The algorithm starts getting the solution provided by the deterministic
environment as it was previously discussed in Section 2.2 (line 1). For each run
of the simulation, it is calculated for each job in each machine the average and
standard deviations of the variable that will be considered as following a log-
normal probability distribution (lines 3 to 6), as it was previously discussed in
Section 4.2. Then the scheduling is calculated using the simulated parameters
(lines 7)(it is important to highlight that the permutation of jobs still the same
as informed in line 1). Finally, the reward is computed (line 8).

In the deterministic PFSPDP, the reward associated with a given permu-
tation of jobs is calculated by the step-wise function provided in Equation 2-1.
However, in the stochastic PFSPDP the reward associated with a given per-
mutation is a random variable that will take a different value each time the
solution is tested in a real-life or simulated environment. Hence, an estimate
of the expected demand associated with a given permutation will be given by
the average reward obtained after executing a sufficient number of simulation
runs (nRuns) (line 9 and 10).
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Algorithm 3 depicts the proposed Sim BR-FF-VND procedure.
Algorithm 3: Sim BR-FF-VND
1 initSol ← BR-FF
2 bestSol ← initSol
3 fastSimulation(bestSol)
4 insert(poolBestSol, bestSol)
5 baseSol ← bestSol
6 while Stopping criterion is not reached do
7 initNewSol ← BR-FF
8 newSol ← initNewSol
9 while initNewSol.getReward > newSol.getReward do

10 newSol ← localSearch.Interchange(initNewSol)
11 newSol ← localSearch.Insertion(newSol)

12 ∆← newSol.getReward - baseSol.getReward
13 if ∆ > 0 then
14 fastSimulation(newSol)
15 ∆′ ← newSol.getStochReward − baseSol.getStochReward
16 if ∆′ > 0 then
17 baseSol ← newSol
18 if newSol.getStochReward > bestSol.getStochReward then
19 bestSol ← newSol
20 insert(poolBestSol, bestSol)

21 for solution ∈ poolBestSol do
22 longSimulation(solution)
23 if solution.getStochReward > bestSol.getStochReward then
24 bestSol ← solution

25 return bestSol
The main ideas behind this algorithm are explained next. First, an initial

solution for the deterministic PFSPDP is generated by employing the BR-FF
(line 1). This is considered as the best solution so far (line 2). A fast simulation
is performed to measure, in the stochastic environment, the reward provided
by the best solution so far (line 3). Then, the resulting solution is inserted in
the pool of best solutions (line 4). While the stopping criterion is not satisfied,
a while loop is performed (line 6 to 25). This loop starts with the generation
of a new solution in the deterministic environment (line 7). This solution is
then enhanced by using the VND component (local search operators) (line 9 to
12). The ∆ value checks the quality of this new solution in the deterministic
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environment (line 13). If this new solution offers a higher reward than the
current base solution (line 13), the new solution is considered as a good
candidate for solving the deterministic version of the problem and a promising
solution for the stochastic version. Notice that a correlation between the best
deterministic and the best stochastic solutions is assumed in this approach. In
order to estimate the quality of the new solution in the stochastic environment,
a fast simulation is run (line 15). If this new solution offers a higher expected
reward than the current base solution (i.e., ∆′ > 0) (line 17), the new solution
is considered as a good candidate for solving the stochastic version and the
base solution is updated (line 18). Moreover, if this new solution shows a higher
expected reward than the current best solution (line 19), the latter is updated
by the former (line 20), which is also inserted in the pool of best solutions
(line 21). Finally, the pool of best solutions found are analyzed in more detail
using an intensive simulation (i.e., employing a larger number of simulation
runs) (line 26). This allows to increase the accuracy of the estimated expected
rewards associated with each solution and generate a final sort of the best
solutions based on this criterion (line 29).

In addition to providing accurate estimates of expected rewards, the
output provided by the intensive simulation process can also be used to
compute two well-known risk metrics: the value-at-risk (VaRα) and the con-
ditional value-at-risk (CVaRα), which are going to be computed for α ∈
{95%, 97.5%, 99%}.

To compare the goodness of simheuristic results, the Algorithm 4 was
proposed, in which the best solution provided by BR-FF-VND for the deter-
ministic PFSPDP is analyzed in the stochastic environment by considering
the processing times as random variables following a log-normal probability
distribution with µjl and σjl.

Algorithm 4: Deterministic BR-FF-VND simulated
1 bestSol ← BR-FF
2 while Stopping criterion is not reached do
3 initNewSol ← BR-FF
4 newSol ← initNewSol
5 while initNewSol.getReward > newSol.getReward do
6 newSol ← localSearch.Interchange(initNewSol)
7 newSol ← localSearch.Insertion(newSol)
8 if newSol > BestSol then
9 bestSol ← newSol

10 longSimulation(bestSol)
11 return bestSol
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The Algorithm 4 starts executing the proposed BR-FF heuristic, which
is considered as the best solution so far (line 1). Then while the stop criterion
is not satisfied the loop between lines 2 to 9 is performed. The loop starts with
the execution of the BR-FF-VND (lines 3 to 7), and in case the new solution
has a higher reward than the current best solution, the latter one is updated
(lines 8 and 9). Finally, after the stop criterion is reached, a long simulation
is executed to analyze the behavior of the best deterministic solution in the
stochastic environment (line 10).

4.3
Risk Metrics

Generally associated with a loss distribution, the risk metrics, VaRα and
CVaRα, were approached in this study in a revenue context. To this end,
the definition provided by Street [84] has been followed: CVaRα represents
the conditional expected value of the revenue left-side worst distribution
scenario, below a given 1− α quantile, which is known as VaRα. The latter is
conventionally defined as a maximum loss in a given 1−α quantile (Pflug [85]).
In other words, in a revenue distribution for α = 95%, VaR95% is the quantile
of the 5% worst benefits. Meanwhile, CVaR95% is the average of the 5% worst
benefits. Despite both metrics aims at measuring the risk associated with a
probability distribution, the CVaRα developed by Rockafellar and Uryasev [86]
is considered a better risk metric than the VaRα, since the former is considered
a coherent measure with the four axioms defined by Artzner et al. [87]:
monotonicity, translation invariance, positive homogeneity, and subadditivity.
Thus, CVaRα is able to quantify events beyond VaRα by representing the
risks reflected at extreme tails of the probability distribution (Rockafellar and
Uryasev [88]; Sarykalin et al. [89]).

For an overview of the applications of the Conditional Value at Risk
(CVaRα), readers are referred to Filippi et al. [90].
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5
Results and Discussion

5.1
Experimental Settings

This Section describes the instances, the computational resources, and
the design parameters employed in the computational experiments.

Aiming to solve this PFSPDP in a deterministic and stochastic context,
the goodness of the solutions provided by the proposed methods defined in
Section 4 were analyzed. To do it so, first, the PFSPDP was analyzed into the
deterministic context, since the assumption of a strong correlation between the
best deterministic and stochastic solutions was considered, as mentioned before
in Section 2.2 and then PFSPDP was analyzed into a stochastic environment.

5.1.1
Benchmark Instances

In the computational experiments, the 150 instances introduced by Pes-
soa and Andrade [2] have been used. These instances, which are available
at https://data.mendeley.com/datasets/m2wcd42pvy/1, were randomly gen-
erated and are composed of a set of n = 100 jobs that need to be processed by
m = 2 machines. The deterministic processing times were randomly generated
using an integer uniform distribution in the interval [1, 100]. The delivery dates
were generated using the number k of delivery dates, with k ∈ {1, 2, 3, 5, 7, 10}.
The makespan Cmax was obtained as usual (Johnson [12]). The first delivery
date is set to d1 = γ · Cmax/k. The remaining delivery dates are set as dk =
k · d1, with 1 < k ≤ K and γ ∈ {0.1, 0.3, 0.5, 0.7, 1.0}.

Following Seddik et al. [1], release dates were randomly chosen in the
interval rk = [dk−1, dk−1 + r · dk−1], with d0 = 0, k ∈ {1, 2, . . . , K}, and
r ∈ {0.1, 0.3, 0.5, 0.7, 1.0}. Instance names can be read as k < k > a < γ >

r < r >. For example, instance k10a1.0r0.1 has 10 delivery dates, γ equals to
1.0 and r equals to 0.1

https://data.mendeley.com/datasets/m2wcd42pvy/1
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5.1.2
Computational Environment & Parameter Settings

The proposed algorithms have been implemented in the C++ program-
ming language and executed in an Intel Core i7− 3960 CPU at 3.30 GHz and
24.0 GB RAM running on a Windows operating system. A simple experiment
was carried out in order to identify the best values for the β parameter em-
ployed during the biased-randomization process of the BR-FF algorithm. A
total of 18 values of β were 10 times tested, with a time limit of 60 seconds for
each test. Also, as suggested in Pessoa and Andrade [2], the following values
were assigned to the FF heuristic parameters: a = 4.0 and b = 0.0. For each
value of β, the percentage deviation between the proposed BR-FF heuristic
and the FF heuristic was computed. The BR-FFreward has been considered as
the average of the best solutions provided by a β, and FFsol as the average of
the solutions provided by the FF heuristic. Hence, the relative percentage devi-
ation is computed as: (BR-FFreward− FFsol)/ FFsol. Note that a positive value
of this percentage means that BR-FFreward is, on average, a better solution
than FFsol.

Figure 5.1 illustrates the deviation between the FF heuristic and the
proposed BR-FF algorithm for different values of β. For a β value of 0.45 and
higher the BR-FF is able to outperform the FF heuristic. The best solutions
are obtained for β = 0.95. In other words, small changes in the job selection
process, i.e., a small change in the logic of the original FF heuristic, allows
better solutions to be found. For β values close to zero, the proposed heuristic
assumes a random behavior, finding worst solutions than the original FF
heuristic, being this behavior explained by the non-maintained of the logic
of the original heuristic allowing jobs with higher values of ξ′j,k to be allocated
in the first positions of the scheduling impacting the reward, since fewer jobs
will finish sooner in the second machine.
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Figure 5.1: Deviation of best solutions between the BR-FF and FF heuristics
versus the β parameter.

5.2
Testing the Biased-Randomized Algorithm in the Deterministic Scenario

According to the experiments carried out by Pessoa and Andrade [2], the
BRKGA and their FF-based iterated local search (ILS) are among the best
approaches for solving the deterministic PFSPDP. As explained in Grasas et
al. [91], the ILS framework proposed by Lourenço [92] can be easily extended
into a full simheuristic algorithm. For that reason, this Section compare the
performance of the proposed BR-FF-VND algorithm against the performance
of the FF heuristic (base solving method) and that of the FF-ILS metaheuristic.

All instances were 10 times run using each of the solving approaches,
allowing up to one minute per instance and approach. As could be noticed in
Table 5.1, the FF-ILS method proposed by Pessoa and Andrade [2] shown the
worst average of best-solution values (166.17). The proposed methods, BR-
FF and BR-FF-VND, report an average of 166.35 and 167.25, respectively
(i.e., they improve the FF-ILS by 0.11% and 0.65%, respectively). In addition,
a GRASP-based algorithm (Resende and Ribeiro [93]) has also been imple-
mented from the FF constructive method. This FF-GRASP provides results
that improve the ones obtained with the FF heuristic. However, these results
are somewhat below the ones given by the FF-ILS algorithm.
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Algorithm Deviation (%)

Time FF FF-GRASP FF-ILS BR-FF BR-FF-VND (2)-(1) (3)-(1) (4)-(1) (5)-(1)
(min) (1) (2) (3) (4) (5)

1 163.71 165.24 166.17 166.35 167.25 0.93 1.50 1.61 2.16

Table 5.1: A comparison of algorithms for 1 minute computational
time.

An additional experiment was carried out to compare the solutions
generated by each algorithm with the ones provided by the FF heuristic. For
each instance, two indicators were computed: (i) the best percentage deviation,
BestDev(%); and (ii) the average percentage deviation, AvgDev(%). For each
instance, the former measures the percentage gap between the best-found
solution using a new algorithm – out of the 10 runs executed per instance
– and the solution provided by the FF heuristic. Similarly, the latter measures
the percentage gap between the average solution value – computed from the
10 runs – and the solution value provided by the FF heuristic.

Figure 5.2 depicts a box-plot of both percentage deviations, AvgDev(%)
and BestDev(%) across all the instances for 1 minute computational time.
The AvgDev(%) box-plot shows that the FF-ILS has a similar expected value
(2.24) than the BR-FF (2.09). The same can be observed for the BestDev(%).
The proposed BR-FF-VND shows the higher deviations of AvgDev (%) and
BestDev (%), with an average of 2.94 and 3.53, respectively. Moreover, this
algorithm also shows the highest average of the best solutions (167.25) among
the methods analyzed. When compared to the FF-ILS, the proposed BR-FF-
VND provides higher rewards for 59.33% of the instances.
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Figure 5.2: Box-plot of the Percentage deviation AvgDev (%) and BestDev
(%).

In summary, according to the experiment results, the BR-FF-VND seems
to be the best-performing approach among the ones tested for the deterministic
PFSPDP. Hence, it seems to be a good candidate to be extended into a
simheuristic.

With the purpose of analyzing the performance of the proposed methods
when more computational time is available, new tests were run using 10 seeds.
These tests used 5, 10, and 30 minutes, respectively. Table 5.2 shows the results.
The first column indicates the run time, while the next five columns depict the
average of best-found solutions for each method. The last four columns provide
the percentage deviations between the average of the best solutions for each
algorithm and the average of the solutions obtained with the FF heuristic.

Algorithm Deviation (%)

Time FF FF-GRASP FF-ILS BR-FF BR-FF-VND (2)-(1) (3)-(1) (4)-(1) (5)-(1)
(min) (1) (2) (3) (4) (5)

5 163.71 165.66 166.46 166.61 167.63 1.19 1.68 1.77 2.39
10 163.71 165.93 166.60 166.73 167.73 1.36 1.77 1.84 2.46
30 163.71 166.25 166.77 166.93 167.83 1.55 1.87 1.97 2.52

Table 5.2: A comparison of algorithms for different computing
times.
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Notice that, regardless the computational time employed, the BR-FF-
VND algorithm shows a better average performance than the FF-ILS one.
All the detailed results from this Section are available at https://doi.org/10.
17771/PUCRio.ResearchData.48322.

5.3
Testing a Simheuristic in the Stochastic Scenario

As explained in Section 4.2, the aforementioned instances were gener-
alized by using the log-Normal probability distribution to model processing
times. Then, this stochastic version of the problem is solved by employing the
Sim BR-FF-VND algorithm introduced in the same Section with 100 runs for
fast simulation and 1.000 runs in a long simulation, considering different levels
of uncertainty, i.e., h ∈ {0.1, 0.5, 1.0, 2.0}.

For each uncertainty level, Figure 5.3 displays the percentage devia-
tion between the best solutions, BestDev (%), found by the Sim BR-FF-
VND (stochastic version) and the best solutions found by the BR-FF-VND
(deterministic version). For all experiments performed in the Section, the
150 instances were run using 10 seeds and 1-minute computational time as
simheuristic’s stop criterion. All the detailed results are available at https:
//doi.org/10.17771/PUCRio.ResearchData.48322.

Figure 5.3: Percentage deviation of BestDev(%) and AvgDev(%) to BR-FF-
VND in the deterministic environment.

Notice that the uncertainty level directly impacts on the average of
the expected rewards. For a low level of uncertainty (h = 0.1), the average
of BestDev (%) shows a value close to 0 (0.044 ± 0.30). On the contrary,
as the uncertainty level increases the stochastic solutions diverge from the

https://doi.org/10.17771/PUCRio.ResearchData.48322
https://doi.org/10.17771/PUCRio.ResearchData.48322
https://doi.org/10.17771/PUCRio.ResearchData.48322
https://doi.org/10.17771/PUCRio.ResearchData.48322
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deterministic ones. It is important to highlight that despite most of the
instances analyzed increases in the processing times have occurred more often
than decreases, the latter one was also considered in the simulation process.
As could be noticed in Figure 5.3 for a lower level of uncertainty ( h = 0.1) the
simheuristic has found higher solutions than the BR-FF-VND (deterministic
version) for a set of instances, this has occurred since more jobs have been
processed faster, having finished earlier in the second machine. The relative
percentage between the average of all the best stochastic solutions and the
best deterministic solution, AvgDev (%), was also analyzed, showing a similar
behavior as the one already described for the BestDev (%).

Another experiment was carried out to illustrate the goodness of the
simheuristic results. To do it so, for each instance the best deterministic
solution provided by the proposed deterministic BR-FF-VND was 1.000 times
simulated using MCS as it was portrayed in Algorithm 4.

Then, as illustrated in Figure 5.4 the relative percentage deviation
between the best solutions, BestDev (%), found by the Sim BR-FF-VND and
the simulated deterministic solution was calculated across all the instances for
different levels of uncertainty.

As it was stated in Juan et al. [10], the simheuristic approach can find
solutions between a lower and upper bound delimited by the deterministic
solutions. This behavior was noticed for the average of a simheuristic results
since it has found on average better solutions than the simulated deterministic
solutions as it illustrated in Figure 5.4, which are considered as lower bound,
and worst solutions on average than the best deterministic solutions as it
illustrated in Figure 5.3, which are considered as upper bound.
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Figure 5.4: Percentage deviation of the best solutions - BestDev(%) between
the Sim BR-FF-VND and the deterministic BR-FF-VND 1.000 times simu-
lated.

Since risk analysis have an important role on the quantification of
the worst possible scenarios, the proposed simheuristic approach has been
expanded to consider a full risk analysis via the quantification of the value at
risk VaRα and CVaRα. For instance k10a0.3r0.1 and uncertainty level h = 1.0,
Figure 5.5 portrays the V aRα and CV aRα values for three differences levels
of α (95%, 97.5%, and 99%). This instance has an expected reward of 250.44.
The VaRα could be interpreted as the worst scenario of a reward for a level
of confidence α. In this case, the associated rewards would be 241, 239, and
235, respectively. Likewise, the CVaRα can be interpreted as the average of
the worst rewards for a level of confidence α. In this instance, the associated
values are 238.10, 235.76, and 233.30, respectively.

Figure 5.6 depicts the behavior that has been observed across all the
instances for the different values of α. Notice that as the level of uncertainty is
increased, it has an impact on the processing times variability. This, in turn,
influences on the expected rewards generated, since more jobs will finish latter
on the last machine. Hence, the values of both risk metrics are reduced as the
level of uncertainty increases.
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Figure 5.5: Conditional VaR for instance k10a0.3r0.1 using different levels of
α and h = 1.0.

Figure 5.6: Behavior of the VaR95% and CVaR95% on different levels of
uncertainty for instance k10a0.1r0.3.
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As aforesaid in Section 2.2, an extension of the PSFPST into a more
realistic environment, which considers the uncertainty in the availability of
the job, is also proposed.

In this stochastic environment named PSFPSTRD, four different levels
of uncertainty h ∈ {0.1, 0.5, 1.0, 2.0} have been considered to investigate the
impact of those in the expected rewards calculated by the step-wise function
defined in Section 2.1.

Figure 5.7 portrays the percentage deviation between the best solutions,
BestDev (%), and the average of all the best solutions AvgDev (%), found by
the Sim BR-FF-VND (stochastic version) and the best solutions found by the
BR-FF-VND (deterministic version) on this PSFPSTRD environment for each
uncertainty scenario. The same behavior observed in the PFSPDPST analysis
was noticed for both deviations, i.e., as the level of uncertainty increase, the
average of the expected rewards decreases. Moreover, as it was expected and
as it was previously discussed in the PSFPST analyses, the risk metrics the
VaRα and CVaRα are directly impacted by the level of uncertainty, as it could
be noticed in Figure 5.8, as the level of uncertainty, increases lower are the
worst scenarios of expected rewards.

Figure 5.7: Percentage deviation of BestDev (%) and AvgDev (%) to BR-FF-
VND in the deterministic environment.
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Figure 5.8: Behavior of the VaR95% and CVaR95% on different levels of
uncertainty for instance k10a0.1r0.3 in a PSFPSTRD

Regarding the simheuristic best solutions in a PFSPSTRD and in the
PFSPDPST environment, a experiment was carried out to computed their
deviations.

As illustrated in Figure 5.9, the simheuristic in the PFSPSTRD has found
on average worst solutions than the simheuristic best solutions in a PFSPDPST
environment in all the levels of uncertainty analysed. This behavior portraits
that not only variations in the processing times impact the expected rewards
but also the variation the release dates, since the job is more often available to
be process in the first machine latter and consequently less job finished earlier
in the last machines.
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Figure 5.9: Percentage deviation of BestDev(%) and AvgDev(%) to SimBR-
FF-VND in PFSPSTRD

By all of the analyses performed, it is possible to conclude that regardless
of the uncertainty level, scenarios lower rewards are expected when compared
to the deterministic version of the problem. Hence the decision-maker when
considering the uncertainty in this PFSP should be cautious with the expected
revenue associated with the process and depending on his risk-profile should
do preventive measures in the company more softly or aggressively aiming at
having a profit.
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6
Conclusions

This work analyzes a stochastic version of the Permutation Flow-
shop Scheduling Problem with Delivery Dates and Cumulative Payoffs (PF-
SPDP).This problem is motivated by a real-life case regarding the books dig-
itization in a library. In order to do so, an efficient biased-randomized al-
gorithm was develop for the deterministic version, and then this algorithm
was extended into a simheuristic by integrating Monte Carlo simulation into
the metaheuristic framework. Hence, the FF heuristic proposed by Fernandez-
Viagas and Framinan[4] is first extended into a biased-randomized algorithm
(BR-FF). Next, a variable neighborhood descent (VND) metaheuristic frame-
work is incorporated to the BR-FF. Finally, the BR-FF-VND is extended into
a simheuristic algorithm that can solve the PFSPDP with stochastic processing
times and PFSPDP with stochastic processing times and release dates.

An extensive set of experiments was carried out to test the quality of the
proposed algorithms. The proposed solutions for the deterministic version of
the problem shown to be a promising method when compared with the recently
published work by Pessoa and Andrade [2] since it have found better solutions
than the FF-ILS proposed by Pessoa and Andrade [2] in all the computational
times analyzed in this work. Moreover, the propose simheuristic approach is the
first one in the literature dealing with the stochastic versions of the PFSPDP.
From the experiments, it was observed that different levels of uncertainty have
a direct impact on the stochastic reward. Also, the worst-case scenarios were
analyzed by using two well-known risk metrics: the value-at-risk (VaRα) and
the conditional-value-at-risk (CVaRα). As expected, an increase in the level of
uncertainty has an impact on the tails of the probability distribution used to
model stochastic processing times. This pattern affects the rewards computed
by the VaRα and CVaRα, since both risk metrics consider the behavior of the
rewards in the tails of the distribution.

By the experiment and analysis carried out in this work, the combination
of stochastic optimization and risk measures analyses has shown to be a
promising combination to help decision-makers.

Since the analysis of different stochastic scenarios of rewards allows
preventive measures to be taken, such as the analyses of cost and expenses, cash
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flow, marketing position, short and long term strategic plan, etc, to diminish
the impact of lower revenue in the company.

Several research lines can be considered for future work, among them:
(i) to consider a bi-objective formulation of the problem, where both expected
reward and solution risk are simultaneously optimized ;(ii) to incorporate other
sources of randomness in the PFSPDP, such as machine breakdowns; (iii) to
analyze the performance of the proposed biased-randomized algorithm when
more complex functions are employed to model rewards by meeting deadlines;
(iv) to analyze this problem in others flow-shop environment considering,
for instance, more than two machines or considering as a parallel machine
problem and (v) use other metaheuristics as ILS or GRASP, to explore the
neighborhood of the solution provided by the BR-FF heuristic.
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