
Lucas Saadi Murtinho

Theoretical and experimental results in
information-theoretic clustering

Dissertação de Mestrado

Dissertation presented to the Programa de Pós–graduação em
Informática da PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática.

Advisor: Prof. Eduardo Sany Laber

Rio de Janeiro
April 2020

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Lucas Saadi Murtinho

Theoretical and experimental results in
information-theoretic clustering

Dissertation presented to the Programa de Pós–graduação em
Informática da PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática. Approved by the
Examination Committee.

Prof. Eduardo Sany Laber
Advisor

Departamento de Informática – PUC-Rio

Prof. Marco Serpa Molinaro
Departamento de Informática – PUC-Rio

Prof. Thibaut Victor Gaston Vidal
Departamento de Informática – PUC-Rio

Rio de Janeiro, April 7th, 2020

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

All rights reserved.

Lucas Saadi Murtinho

An Economics graduate from PUC-Rio (2004), Lucas also
holds a master’s degree on Management de la culture et
des médias from the Institut d’études politiques de Paris –
Sciences Po (2008). Before taking his master’s on Computer
Science at PUC-Rio, he worked for over ten years as a financial
analyst at a fuel distribution company. He has also translated
books and articles from English and French to Portuguese.

Bibliographic data
Murtinho, Lucas

Theoretical and experimental results in information-
theoretic clustering / Lucas Saadi Murtinho; advisor: Eduardo
Sany Laber. – Rio de janeiro: PUC-Rio, Departamento de In-
formática, 2020.

v., 84 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Informática.

Inclui bibliografia

1. Informática – Teses. 2. Otimização e raciocínio auto-
mático – Teses. 3. Teoria da informação;. 4. Clusterização;.
5. Medidas de impureza;. 6. Entropia;. 7. Gini.. I. Laber,
Eduardo Sany. II. Pontifícia Universidade Católica do Rio de
Janeiro. Departamento de Informática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

To Martin and Laila, for sharing their dad
with study and research.

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Acknowledgments

I started my graduate studies with a keen interest in computer science in
general and machine learning in particular, but without a clear plan of how to
approach these subjects in a structured manner. I wish to thank my advisor,
Eduardo Laber, not only for guiding me in this work, but also for starting to
show me how I can build this structure myself. It should go without saying
that any mistakes in this thesis are my full responsibility.

All the other professors under which I had the chance of studying during these
two years were kind and generous, and I also had the great luck of finding
many bright and fun minds among my fellow students. You are too many to
mention here, but I hope you know who you are. Thanks.

This study was financed in part by the Coordenação de Aperfeiçoamento
Pessoal de Nível Superior(CAPES)–Finance Code 001.

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Abstract

Murtinho, Lucas; Laber, Eduardo Sany (Advisor). Theoretical
and experimental results in information-theoretic cluste-
ring. Rio de Janeiro, 2020. 84p. Dissertação de mestrado – Depar-
tamento de Informática, Pontifícia Universidade Católica do Rio de
Janeiro.

We present theoretical and experimental results related to the problem
of clustering a set of vectors (which can be interpreted as probability
distributions) with the goal of minimizing a weighted impurity measure
of the resulting partition. The problem of clustering while minimizing the
weighted Gini impurity of the partition is shown to be NP-complete and
APX-hard, via a connection with the geometrical k-means problem. We
also analyze a family of algorithms for information-theoretic clustering that
rely on the dominant (largest) component of the vectors to be clustered.
These algorithms are shown to be very fast compared to the state of the art,
while able to achieve comparable results in terms of the resulting partition’s
weighted entropy.

Keywords
Information Theory; Clustering; Impurity measures; Entropy;

Gini.

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Resumo

Murtinho, Lucas; Laber, Eduardo Sany. Resultados teóricos e
experimentais em clusterização com métricas de teoria da
informação. Rio de Janeiro, 2020. 84p. Dissertação de Mestrado –
Departamento de Informática, Pontifícia Universidade Católica do
Rio de Janeiro.

Esta dissertação apresenta resultados teóricos e experimentais relativos
ao problema de clusterização de um conjunto de vetores (que possam
ser interpretados como distribuições de probabilidade) com o objetivo de
minimizar uma medida de impureza da partição resultante. Por meio de
uma conexão entre o problema geométrico de k-médias e o problema de
clusterização para minimizar a impureza ponderada de Gini da partição,
prova-se que este último é NP-completo e APX-difícil. Também analisamos
uma família de algoritmos para clusterização com base nas componentes
dominantes (as maiores componentes) dos vetores a serem particionados.
Mostra-se que, em alguns casos, dois desses algoritmos conseguem obter
bons resultados em termos da entropia ponderada da partição resultante,
em um tempo bem menor do que os algoritmos considerados como o estado
da arte.

Palavras-chave
Teoria da informação; Clusterização; Medidas de impureza; En-

tropia; Gini.

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Table of contents

1 Introduction 14
1.1 Problem definition 15
1.2 Our contribution 16
1.3 Related work 16
1.3.1 Theoretical results 16
1.3.2 Experimental results 17
1.4 Organization 18

2 Background 19
2.1 Hard clustering 19
2.2 Information-theoretic clustering 20
2.2.1 Frequency-weighted impurity measures 20
2.2.1.1 Entropy 21
2.2.1.2 Gini 22
2.2.2 PMWEP and clustering for minimizing the Kullback-Leibler divergence 22
2.3 Applications 23
2.3.1 Word clustering 23
2.3.2 Node splitting for decision-tree construction 24
2.3.3 Channel quantization 25

3 Theoretical results for the PMWGP 27
3.1 Problem definition 27
3.2 The geometric k-means problem 27
3.3 Connection between the PMWGP and geometrical k-means 28
3.4 Hardness of PWMGP 29
3.5 Approximating the optimal Gini partition 30

4 Dominance-based algorithms 35
4.1 The Dominance algorithm 35
4.1.1 Running time 36
4.1.2 Approximation guarantees 36
4.2 The Poly algorithm 37
4.3 The Ratio-Greedy algorithm 38
4.3.1 Implementation analysis 39
4.3.2 Running time 40
4.3.3 Approximation guarantees 41
4.4 The Star algorithm 41
4.4.1 Running time 44
4.4.2 Implementation analysis 44
4.4.3 Approximation guarantees 47

5 Iteration-based algorithms 48
5.1 Lloyd’s algorithm with ++ initialization and Kullback-Leibler as dis-

similarity measure 49

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

5.1.1 Implementation analysis 51
5.1.2 Running time 51
5.2 Divisive information-theoretic clustering 52
5.2.1 Implementation analysis 52
5.2.2 Running time 53
5.3 Clustering via lightweight coresets 54
5.3.1 Implementation analysis 55
5.3.2 Running time 56

6 Experimental results 58
6.1 Data sets 58
6.1.1 The 20 Newsgroups data set 58
6.1.2 The Reuters (RCV1) data set 59
6.1.3 The Poisson data set 60
6.2 Results 61
6.2.1 20 Newsgroups 61
6.2.1.1 Comparison between “full” iteration-based methods and

dominance-based methods 61
6.2.1.2 Comparison between “initial” iteration-based methods and

dominance-based methods 63
6.2.2 RCV1 65
6.2.2.1 Comparison between “full” iteration-based methods and

dominance-based methods 66
6.2.2.2 Comparison between “initial” iteration-based methods and

dominance-based methods 67
6.2.3 Poisson 68
6.2.3.1 Comparison between “full” iteration-based methods and

dominance-based methods 69
6.2.3.2 Comparison between “initial” iteration-based methods and

dominance-based methods 71

7 Conclusions 73

Bibliography 76

A Tables 82

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

List of figures

Figure 2.1 An example of decision tree. 25

Figure 4.1 A representation of the neighborhoods defined by
Ratio-Greedy (above) and Star (below). 43

Figure 4.2 Change of number of neighbors after agglomeration in
Star. 45

Figure 6.1 Average entropy for the partition of 20 Newsgroups
(5 runs per model). Iterative models run for up to 100 itera-
tions. The coreset has 5000 elements (approximately 10% of the
elements in the original data set). 62

Figure 6.2 Average running time for partitioning 20 Newsgroups
(5 runs per model). Iterative models run for up to 100 itera-
tions. The coreset has 5000 elements (approximately 10% of the
elements in the original data set). 62

Figure 6.3 Average entropy for the partition of 20 Newsgroups
(5 runs per model). Considers the initial partition of iteration-
based models, as well as the partition of the DivisiveCluster-
ing model after a single iteration. The coreset has 5000 elements
(approximately 10% of the elements in the original data set). 64

Figure 6.4 Average running time for partitioning 20 Newsgroups
(5 runs per model). Considers the initial partition of iteration-
based models, as well as the partition of the DivisiveCluster-
ing model after a single iteration. The coreset has 5000 elements
(approximately 10% of the elements in the original data set). 65

Figure 6.5 Entropy for the partition of RCV1 (1 run per model).
Iterative models run for up to 100 iterations. The coreset has
5000 elements (approximately 3% of the elements in the original
data set). 66

Figure 6.6 Running time for partitioning RCV1 (1 run per model).
Iterative models run for up to 100 iterations. The coreset has
5000 elements (approximately 3% of the elements in the original
data set). 67

Figure 6.7 Entropy for the partition of RCV1 (1 run per model).
Considers the initial partition of iteration-based models, as well
as the partition of the DivisiveClustering model after a
single iteration. The coreset has 5000 elements (approximately
3% of the elements in the original data set). 68

Figure 6.8 Running time for partitioning RCV1 (1 run per model).
Considers the initial partition of iteration-based models, , as
well as the partition of the DivisiveClustering model after a
single iteration. The coreset has 5000 elements (approximately
3% of the elements in the original data set). 69

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Figure 6.9 Average entropy for the partition of Poisson (5 runs
per model). Iterative models run for up to 100 iterations. The
coreset has 5000 elements (50% of the elements in the original
data set). 70

Figure 6.10 Average running time for partitioning Poisson (5 runs
per model). Iterative models run for up to 100 iterations. The
coreset has 5000 elements (50% of the elements in the original
data set). 70

Figure 6.11 Average entropy for the partition of Poisson (5 runs
per model). Considers the initial partition of iteration-based
models, as well as the partition of the DivisiveClustering
model after a single iteration. The coreset has 5000 elements
(50% of the elements in the original data set). 71

Figure 6.12 Average running time for partitioning Poisson (5 runs
per model). Considers the initial partition of iteration-based
models, as well as the partition of the DivisiveClustering
model after a single iteration. The coreset has 5000 elements
(50% of the elements in the original data set). 72

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

List of tables

Table A.1 Average entropy results for 20 Newsgroups 83
Table A.2 Average running time results (in seconds) for 20 News-

groups 83
Table A.3 Average entropy results for Reuters 83
Table A.4 Average running time results (in seconds) for Reuters 83
Table A.5 Average entropy results for Poisson (dominance-based

models and full iteration-based models) 84
Table A.6 Average entropy results for Poisson (initial iteration-

based models and DivisiveClustering with a single iteration) 84
Table A.7 Average running time results (in seconds) for Poisson 84

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

List of Abreviations

KL Kullback-Leibler divergence
PMWEP Partition with Minimum Weighted Entropy Problem
PMWGP Partition with Minimum Weighted Gini Problem
PMWIP Partition with Minimum Weighted Impurity Problem
PTAS Polynomial-time approximation scheme

Information is entropy. This was the strangest
and most powerful notion of all.

James Gleick, The Information: a History, a Theory, a Flood

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

1
Introduction

Clustering is one of the fundamental problems in computer science in
general and in machine learning in particular. Generally speaking, it consists in
partitioning data into groups so that similar items are together and dissimilar
items are apart. It can be used, for instance, to reduce the dimensionality
of a problem, by clustering similar variables together, thus serving as a
preprocessing step in the application of machine learning algorithms; or, as an
end in itself, to find previously unknown structure in a data set (for instance,
to identify similar customers from a store’s database).

From this general description of clustering a great number of particular
problems emerge, depending on the specific goal in mind when partitioning
the data. Clustering can be hard (each element in the data set may belong
to a single cluster) or soft (each element may belong to different clusters with
some probability); the end goal may be to maximize the intercluster distance
(to make each cluster as dissimilar from the others as possible) or to minimize
the intracluster distance (to make all elements in the same cluster as similar
to each other as possible); and several dissimilarity measures may be used.

Concerning the latter, clustering a data set while minimizing a weighted
impurity measure of the resulting partition has been studied for at least over
thirty years (Breiman et al. (1984)). In this subset of clustering problems, the
goal is to find the partition of the original data set with clusters that are as
pure (in an information-theoretic sense) as possible, so that the information
retrieved from the clusters is as close as possible to the information retrieved
from the full data set. Finding a good partition of the data in the information-
theoretic sense is important in fields such as word clustering, node splitting for
decision-tree construction, and channel quantization for polar-code construc-
tion.

The state of the art when it comes to clustering for minimizing a wide va-
riety of dissimilarity measures — Bregman divergences (Banerjee et al. (2005))
such as the squared Euclidean distance or the Kullback-Leibler divergence —
is arguably Lloyd’s algorithm (Lloyd (1982)) with the ++ initialization pro-
posed by (Arthur & Vassilvitskii (2007)). Lloyd’s algorithm is an expectation-
maximization procedure that iteratively improves on the latest partition found,

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 1. Introduction 15

and the ++ implementation guarantees an O(log k) approximation to the best
partition, where k is the number of clusters.

One drawback from this method is its computational cost, as exponen-
tially many iterations may be needed for the algorithm to converge, even in the
simplest of cases (Vattanni (2005)). In practice, a frequently used heuristic is
to stop the algorithm once an iteration provides only a small improvement in
the results; however, even a single iteration can be quite costly. This, coupled
with the importance of information-theoretic clustering, leads to our interest
in finding faster methods that can approximate Lloyd’s algorithm’s results for
hard partitioning using information-theoretic dissimilarity measures.

1.1
Problem definition

We are interested in the problem of partitioning a set S of non-negative,
real vectors so as to minimize the partition’s weighted impurity (for a given
impurity measure i, and its corresponding weighted impurity I). For a partition
P of S,

I(P) =
∑
C∈P

I(C);

that is, the partition’s weighted impurity is the sum of weighted impurities of
the clusters that comprise it. This, in turn, is defined as

I(C) = I

(∑
v∈C

v
)

;

that is, a cluster’s weighted impurity is the weighted impurity of the sum vector
of all the elements belonging to the cluster.

Problem definition 1 (k-PMWIP) For a set S, an integer k, and a
weighted impurity measure I, the k-Partition with Minimum Weighted
Impurity Problem (k-PMWIP) consists in finding a partition P of S into
k clusters so that I(P) is minimized.

This general version of the problem can be further specified according to the
weighted impurity measure being used. Thus the k-Partition with Minimum
Weighted Entropy Problem (k-PMWEP) is the problem of finding the partition
P of a set S into k clusters such that the partition’s weighted entropy is
minimized. Substituting the weighted Gini impurity for the weighted entropy
in the above definition gives us the k-Partition with Minimum Weighted Gini
Problem (k-PMWGP). We define these measures, as well as the general notion
of weighted impurity measures, in Chapter 2.

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 1. Introduction 16

1.2
Our contribution

We present contributions both for the theoretical understanding of
information-theoretic clustering and for the development of practical algo-
rithms to tackle the problem.

In the theoretical side, we prove, via a connection with the geometric k-
means problem, that the PMWGP is both NP-complete and APX-hard. This
same connection allows us to find a polynomial-time approximation scheme
for this problem (when the number of clusters is fixed). This result has been
previously published in (Laber & Murtinho (2019)).

In the practical side, we present an adaptation of the polynomial-time
algorithm from (Cicalese et al. (2019)) for the PMWEP. Our experiments on
three different data sets show that this practical algorithm, while orders of
magnitude faster than Lloyd’s algorithm or adaptations thereof, can approxi-
mate its performance under some circumstances.

1.3
Related work

1.3.1
Theoretical results

There have been theoretical investigations on methods to compute the
best split efficiently for impurity measures such as the weighted Gini impurity.
For d = k = 2, where d is the number of dimensions in the vectors,
(Breiman et al. (1984)) presents a simple algorithm that finds the best binary
partition in O(n log n) time for impurity measures in a certain class that
includes Gini. The correctness of this algorithm relies on a theorem, also
proved in (Breiman et al. (1984)), which is generalized for arbitrary d and k

in (Chou (1991)), (Burshtein et al. (1992)), and (Coppersmith et al. (1999)).
Basically, these theorems provide necessary conditions for partitions with
minimum impurity and can be used to restrict the set of partitions that need
to be considered. A connection between Gini and the squared `2 distance
employed by k-means, that we explore here, is mentioned in the appendix
of (Chou (1991)).

For the Euclidean k-means problem a vast literature is available and
the problem is well understood from the perspective of approximation al-
gorithms, in the sense that the gap between the best available approxima-
tion factors and the thresholds given by the hardness results is small —
see (Awasthi et al. (2015)) and the references therein. The algorithm that we

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 1. Introduction 17

adapt for minimizing the weighted Gini impurity, and that can be used for
many other dissimilarity measures, was presented in (Kumar et al. (2004)) and
further studied in (Ackermann et al. (2010)).

1.3.2
Experimental results

The PMWEP is a generalization of the problem presented in
(Chaudhuri & McGregor (2008)) of clustering elements so as to minimize
the Kullback-Leibler divergence between each element and the closest cluster
centroid.

As mentioned above, the state of the art in terms of clustering tech-
niques for Bregman divergences is arguably the algorithm from (Lloyd (1982))
with the initialization technique from (Arthur & Vassilvitskii (2007)). This
method was initially devised for the geometric k-means problem, where the
dissimilarity measure to be minimized is the squared Euclidean distance;
(Banerjee et al. (2005)) shows that the same algorithm works for any Bregman
divergence. We use it as a benchmark against our algorithms in this thesis.

One of the applications for clustering while minimizing the partition’s
entropy is word clustering, in particular as a preprocessing step for tasks such
as text classification. (Baker & McCallum (1998)) presents an algorithm that
aims to minimize the “Kullback-Leibler divergence to the mean” (which is sym-
metrical and bounded, unlike the Kullback-Leibler divergence) between the ele-
ments of the data set and the centroids of their clusters. (Dhillon et al. (2003))
uses Lloyd’s algorithm for the same preprocessing step, with an initialization
that is similar to the algorithms we present here; it is another algorithm whose
results we compare against our own.

When the data set to be partitioned is so large as to render Lloyd’s
algorithm (or variations thereof) impractical due to time constraints, one
alternative is to apply the algorithm to coresets of the original data set.
(Lucic et al. (2016)) presents a construction method for coresets that, when
used to generate cluster centroids, will approximate (with some probability)
the results of using the full data set for the same task. (Bachem et al. (2018)),
by the same authors, presents a faster, and embarrassingly parallel, method
for building such coresets. This second method is the last benchmark we use
in our experiments.

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 1. Introduction 18

1.4
Organization

In Chapter 2 we present some definitions deemed important for the
understanding of the thesis, including a description of the main weighted
impurity measures used in the problems of interest. We also briefly discuss
some applications for our algorithms in the previously mentioned areas of
word clustering, node splitting for decision-tree construction, and channel
quantization for polar-code construction.

Chapter 3 presents our theoretical results related to the PMWGP,
which is proven to be NP-complete and APX-hard via a connection with
the geometric k-means problem. The same connection allows us to adapt an
approximation scheme for the PMWGP that runs in polynomial time (while
running in linear time for the geometric k-means problem).

Chapter 4 presents the dominance-based algorithms that are our main
contribution to the study of the PMWIP. Two of the algorithms pre-
sented in this chapter, Dominance and Poly (both previously described
in (Cicalese et al. (2019))), have approximation guarantees concerning the
PMWEP and the PMWGP, but are computationally impractical. The other
two algorithms presented in the chapter, Ratio-Greedy and Star, borrow
ideas from the previous two and are the ones we test in our experiments.

Chapter 5 presents the iteration-based algorithms whose performance we
will compare to that of our algorithms: (i) the classical Lloyd’s algorithm, with
a ++ initialization and the Kullback-Leibler divergence used as a dissimilarity
measure; (ii) the algorithm from (Dhillon et al. (2003)), which is Lloyd’s algo-
rithm with an initialization that is a simplified version of one of our dominance-
based algorithms; and (iii) the algorithm from (Bachem et al. (2018)), which
relies on coresets to partition the original data set.

Chapter 6 presents and discusses the results of our experiments on three
different data sets: two text collections (20 Newsgroups and RCV1) and a
synthetic data set similar to one of the data sets from (Lucic et al. (2016)).
Chapter 7 concludes the thesis.

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

2
Background

In this chapter we present some definitions pertaining to information-
theoretic clustering, and also briefly discuss some applications of it as a means
of motivating the work ahead.

2.1
Hard clustering

Let S be a set of items. A k-partition of S is a collection of k subsets
S1, . . . , Sk such that

1. S1 ∪ S2 ∪ · · · ∪ Sk = S

2. Si ∩ Sj = ∅ ∀ i, j ∈ {1, . . . , k}, i 6= j.

Hard clustering is the task of finding such a partition of S that has
some desired properties, typically involving a dissimilarity measure D — a
function that maps two items in S to a non-negative real value, such that
D(x, y) = 0 ⇐⇒ x = y. A canonical goal of hard clustering is to find a
partition such that dissimilar elements are in separate subsets, while similar
elements are grouped together.

The idea of hard clustering stands in contrast to soft clustering, in
which an element of S may belong to more than one subset, or to different
subsets with different probabilities. In this thesis, we focus on hard versions
of the clustering problem, while noting that it is possible to adapt some of
the algorithms discussed here — for instance, the coreset algorithm from
(Bachem et al. (2018)) — for soft-clustering problems.

The complexity of a clustering problem depends on the specific goal
— i.e., on what one intends to achieve by partitioning the original set. For
instance, define the dissimilarity between any two clusters as the smallest
dissimilarity between two elements that belong one to each of the clusters:

D(Si, Sj) = min
x∈Si,y∈Sj

{D(x, y)}, i 6= j.

In this case, the goal of maximizing the dissimilarity between clusters
can be achieved in polynomial time using, for instance, Kruskal’s algorithm for

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 2. Background 20

generating minimum spanning trees (Kruskal (1956)). Minimizing the sum of
dissimilarities between elements in the same cluster, however, is NP-complete
(Vattanni (2005)).

2.2
Information-theoretic clustering

We broadly define information-theoretic clustering as a clustering task
that relies on dissimilarity measures supported by, and of interest in, infor-
mation theory. In particular, we are interested in frequency-weighted impurity
measures as presented in (Laber et al. (2018)). In this instance of information-
theoretic clustering, our goal is to find the partition with minimum impurity,
where a partition’s impurity is defined as the sum of impurities of the clusters
that comprise it.

2.2.1
Frequency-weighted impurity measures

Given a vector v = (v1, . . . , vd), an impurity measure i(v) is a function
of the form

i(v) =
d∑
i=1

f

(
vi
||v||1

)
, (2-1)

where f : R 7→ R satisfies the following conditions:

1. f(0) = f(1) = 0.

2. f is strictly concave in the interval [0, 1].

3. For all 0 < p ≤ q ≤ 1,

f(p) ≤ p

q
· f(q) + q · f

(
p

q

)
.

There are two main circumstances in which impurity measures may be
of interest:

1. v is a probability distribution. A fully homogeneous vector in this
scenario would be equivalent to a uniform distribution, with all possible
events having the same probability of happening, and i(v) would be
maximized in this case. Conversely, a probability distribution in which
the whole probability mass is concentrated on a single event would have
i(v) = 0.

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 2. Background 21

2. v is a counting vector. If v ∈ Rd
+, then there are d possible classes, and

vi is the number of elements in S that belong to class i. If all elements
belong to class j, vj = |S| and vi = 0 ∀ i 6= j, and i(v) = 0. If each class is
represented by the same number of elements in S, vi = |S|

d
∀ i = 1, . . . , d,

and the impurity of v is maximized.

The second case above helps explain the importance, in some settings,
of scaling (or weighting) an impurity measure according to the vector’s
magnitude. Let S1 and S2 be two sets whose elements are uniformly distributed
among d classes, and such that |S1| >> |S2|. For a non-weighted impurity
measure, both sets would have the same (maximum) impurity assigned to
them. However, “purifying” S1 (by partitioning it into d subsets with zero
impurity, for instance) would mean classifying more elements into pure sets
than doing the same for S2. It is to capture this information that we weight
the impurity of a vector v by its `1 norm, ||v||1, so that vectors with the
same distribution of mass but different values will have different weighted
impurities. Given an impurity measure i(v), a weighted version of it will be
given by I(v) = ||v||1 · i(v).

Below we present two of the most used impurity measures in computer
science and information theory: entropy and Gini.

2.2.1.1
Entropy

In the information-theoretic context, entropy is defined as the rate of
information produced by a stochastic process (Shannon (1948)). Given a vector
v which is a probability distribution, the entropy of v is the amount of
information acquired upon the realization of an event under the probabilities
given by v; if v counts the number of elements from each of d different classes in
a set S, the entropy of v is how much information is obtained by selecting one of
these elements. Another interpretation is that the entropy of v corresponds to
the uncertainty that a given event will happen under the probabilities defined
by v.

The formula for the entropy of v is

ientropy(v) = −
d∑
i=1

vi
||v||1

log vi
||v||1

,

and the weighted entropy is defined as Entropy(v) = ||v||1 · ientropy(v). We can
see that the weighted entropy is one of the frequency-weighted impurities of the
class defined by Equation 2-1 by setting f(x) = x log 1

x
(Laber et al. (2018)).

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 2. Background 22

Problem definition 2 (k-PMWEP) For a set S of n vectors in Rd and an
integer k, the k-Partition with Minimum Weighted Entropy Problem
(k-PMWEP) consists in finding a partition P of S into k clusters so that

∑
C∈P
−||vC ||1

d∑
i=1

vCi
||vC ||1

log vCi
||vC ||1

is minimized, where vC = ∑
v∈C v.

2.2.1.2
Gini

Given a non-negative vector v = (v1, . . . , vd), the Gini impurity iGini

measures the probability that an object will be misclassified when it is assigned
to class i with probability vi

||v||1 :

iGini(v) =
d∑
i=1

vi
||v||1

(
1− vi
||v||1

)
.

The weighted Gini impurity is defined as Gini(v) = ‖v‖1 · iGini(v). To
see that it belongs to the class defined by Equation 2-1, set f(x) = x(1 − x)
(Laber et al. (2018)).

Problem definition 3 (k-PMWGP) For a set S of n vectors in Rd and
an integer k, the k-Partition with Minimum Weighted Gini Problem
(k-PMWGP) consists in finding a partition P of S into k clusters so that

∑
C∈P
||vC ||1

d∑
i=1

vCi
||vC ||1

(
1− vCi
||vC ||1

)

is minimized, where vC = ∑
v∈C v.

2.2.2
PMWEP and clustering for minimizing the Kullback-Leibler divergence

As stated in (Cicalese et al. (2019)), the k-PMWEP is a generalization
of MTCKL (Chaudhuri & McGregor (2008)), the problem of clustering a set
of n probability distributions into k groups minimizing the total Kullback-
Leibler divergence (KL) from the distributions to the centroids of their assigned
groups. MTCKL corresponds to the particular case of PMWEP where each
vector has the same `1 norm.

KL measures how dissimilar two probability distributions are. Given two
discrete probability distributions u,v ∈ Rd

+, the KL of u with respect to v is

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 2. Background 23

given by

KL(v,u) =
d∑
i=1

vi log
(
vi
ui

)
.

KL is neither symmetric nor bounded (for a case where vi 6= 0 and ui = 0, it
is undefined). In our experiments, we will always consider the centroid of the
cluster as the distribution that is trying to approximate the vector (the centroid
is u in the formula above), and KL will indicate how well this approximation
is performed.

2.3
Applications

Three main applications motivate our work on information-theoretic
clustering: i) clustering words for text classification and other tasks related to
natural language processing; ii) choosing the best split of a node when building
a decision tree; and iii) quantizing channels as a step for the construction of
polar codes.

2.3.1
Word clustering

The problem of text classification can be generally described as follows:
let T be a set of texts, each of them classified in one of d possible classes,
C1, . . . , Cd. Our goal is to correctly assign a text t ∈ T to its class Ci, given
the contents of the text.

One usual approach for this task is to use a Naive Bayes classifier
(Baker & McCallum (1998), Dhillon et al. (2003)), treating the text t as a bag
of words and analyzing the relative frequency of words in each class to figure
out to which of them t is more likely to belong. Other algorithms used for
this task include support vector machines (Dhillon et al. (2003)) and, more
recently, deep learning models (Miyato et al. (2017)).

One drawback of this approach is that using words as variables leads to a
model of high dimensionality. In a reasonably small data set for current stan-
dards, such as the 20 Newsgroups data set (Rennie (2014)), there may be
as many as 50,000 words; larger data sets such as RCV1 (Lewis et al. (2004))
have almost 200,000 words; and larger data sets still may have millions or
tens of millions of words. The computational cost of running text classification
algorithms using words as variables may therefore be quite high.

One solution to this problem starts from recognizing that the information
provided by two given words, w1 and w2, may be similar if they appear with
the same relative frequency in texts of all classes. In fact, considering a bag-of-

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 2. Background 24

words approach, if w1 and w2 have the same relative frequency for all classes
(in the extreme case, if they appear the same amount of time in all texts),
they would impart exactly the same information to the model, and using them
both would be unnecessary. In many cases, similar words could provide similar
information concerning the class of a given text, particularly depending on the
context of the classification task.

Therefore, it seems reasonable to perform word clustering as a prepro-
cesssing step to reduce the number of variables fed to a classification algorithm.
This clustering task would bring the number of variables to a manageable size
while keeping each cluster as pure as possible, so that the clusters impart,
as much as possible, the same amount of information to the model as the
unclustered words would.

Let k be the desired number of variables to be used in a text classification
task, and let n be the number of distinct words found in all texts in the data
set. Clustering these n words into k clusters with minimum weighted entropy
would amount to an instance of the k-PMWEP.

k may still be a large absolute number, as partitioning words into too
small a number of clusters may lead to very different words being clustered
together, with significant increase of the partition’s weighted impurity, result-
ing in a significant decrease in performance from text classification algorithms.
However, given the large number of distinct words a text data set may have,
it may still be the case that k << n, even if k >> 0. Some experiments
(Baker & McCallum (1998), Dhillon et al. (2003)) have shown that word clus-
tering may be used to significantly reduce the dimensionality of a text classifi-
cation problem without significantly reducing (and eventually even increasing)
the accuracy of text classification models.

2.3.2
Node splitting for decision-tree construction

Decision trees, and decision-tree based algorithms such as random forests
or gradient boosted trees, are among the most popular models for classification
in machine learning. Decision trees are famously easy to interpret, while models
based on an ensemble of trees may lead to state-of-the-art results in several
tasks.

The main idea behind classification trees is to recursively split the data
according to its attributes, so that the leafs of the tree present subsets of the
original data that belong to a single class. This way, one can classify a new
datum by analyzing to which leaf it belongs, and by assigning it to the same
class as the data in that leaf. Figure 2.1 shows an example of a classification

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 2. Background 25

Figure 2.1: An example of decision tree.

tree in a toy data set.
Generally speaking, we want to split the data in a given node so that

similar elements will be in the same subnode, while different elements will
be apart. In other words, we want to increase the partition’s purity when
performing the split.

Decision tree implementations have traditionally used weighted impurity
measures for determining the best split of a node. For instance, in the
CART package (Breiman et al. (1984)), the goal when splitting a node is to
minimize the weighted Gini impurity of the subsets generated by the split. In
a classification problem, this impurity may be calculated for a counting vector
v ∈ Rd representing a node, where d is the number of possible classes and vi
indicates how many elements of class i are in the node.

In contrast with the word clustering application presented above, in node
splitting the partition will usually consist of a small number of clusters —
k will be small. Many decision trees are binary, with nodes being split into
two subnodes only. Boosted trees usually rely on the mixture of short trees
(sometimes called decision stumps), while random forests can deal in practice
with very long trees by making them “vote” to decide on the class of a given
datum.

2.3.3
Channel quantization

Polar codes, introduced in (Arıkan (2009)), are the first family of error-
correcting codes to achieve the capacity of discrete memoryless channels,
and have since been adapted to achieve the capacity of other channels

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 2. Background 26

(Fayyaz & Barry (2013), Goela et al. (2014)), as well as used in the imple-
mentation of 5G wireless standards (Sandberg et al. (2018)). The technique of
channel polarization consists of splitting the original channel into subchannels
that become polarized in the sense that the error rate of a subchannel either
grows (turning it into a purely noisy channel) or reduces (turning it into a
noiseless channel). Using the noiseless polarized channels, one can transmit
information with virtually no error.

One difficulty that arises from the original method for constructing
polar codes is that the resulting (noisy and noiseless) channels present an
output alphabet exponentially large in relation to the code length. To allow
for the efficient construction of polar codes, channels with this intractably
large alphabet need to be approximated by channels whose alphabets are of
manageable size (Tal & Vardy (2013)).

Quantizing (or clustering) the output of the polarized channels, while
preserving as much of the information from the output as possible, prevents
the problem from becoming intractable. (Kurkoski & Yagi (2014)) explicitly
approaches this problem while noting its similarity with the problem of node
splitting presented above; in both cases, the desired partition must be as pure
as possible (in the information-theoretic sense).

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

3
Theoretical results for the PMWGP

This chapter presents theoretical results pertaining to the PMWGP. A
connection between this problem and the geometrical k-means problem is
formalized and allows us to prove that the PMWGP is both NP-complete
and APX-hard. Also based on this connection, we present a polynomial-time
approximation scheme for the k-PMWGP.

3.1
Problem definition

As mentioned in Section 1.1 above, the k-PMWGP is the problem of
finding a partition P of a set V of vectors into k clusters so as to minimize the
sum of the weighted Gini impurities

Gini(P) =
k∑
i=1

Gini
(∑

v∈Vi
v
)
. (3-1)

A problem that is equivalent to the above one from the perspective of
optimality (but different from the perspective of approximation) is finding
the partition P of V into k groups that minimizes

Gini(P)−
∑
v∈V

Gini(v). (3-2)

Using concavity properties of Gini, one can prove that the above expres-
sion is always non-negative. An α-approximation with respect to goal (3-2)
implies an α-approximation with respect to goal (3-1), but the converse is
not necessarily true, so that approximations with respect to goal (3-2) are
stronger (Coppersmith et al. (1999)).

3.2
The geometric k-means problem

In the geometric k-means problem, we are given a set of vectors V ⊂ Rd,
and the goal is to find a partition P of V into k groups V1, . . . , Vk and a set of
k centers c1, . . . , ck in Rd such that

CostKM (P) =
k∑
i=1

∑
v∈Vi
‖v− ci‖2

2

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 3. Theoretical results for the PMWGP 28

is minimized.
It is well known that if U is a set of vectors then the vector c for which∑

v∈U ‖(v− c)‖2
2 is minimum is the centroid of U , that is, c = (∑v∈U v)/|U |.

3.3
Connection between the PMWGP and geometrical k-means

In this section we show that the following connections between k-
PMWGP and the k-means problem hold:

Proposition 1 Let V be an instance of k-means in which all vectors have the
same `1 norm. If P is an optimal partition for instance V of k-means, then P
is also an optimal partition for instance V of k-PMWGP.

Proposition 2 There exists a pseudo-polynomial time reduction from k-
PMWGP to the geometric k-means problem.

The key observation for establishing both propositions is the following lemma,
which expands on the remark from the appendix of (Chou (1991)) that the
weighted Gini impurity and the weighted squared error (dissimilarities used for
classification and regression problems, respectively) are built upon the same
loss function.

Lemma 1 Let X be a set of n vectors, all of them with `1 norm equal to L.
Then,

Gini
(∑

v∈X
v
)
−
∑
v∈X

Gini(v) = 1
L
×
(∑

v∈X
‖v− c‖2

2

)
,

where c is the centroid of the set of vectors in X.

Proof. Let u = ∑
v∈X v and d be the dimension of the vectors in X. We have

that
Gini(u)−

∑
v∈X

Gini(v) =

‖u‖1

d∑
i=1

(
ui
‖u‖1

)(
1− ui
‖u‖1

)
−
∑
v∈X
‖v‖1

d∑
i=1

(
vi
‖v‖1

)(
1− vi
‖v‖1

)

=
d∑
i=1

(
ui −

(ui)2

L× n

)
−

d∑
i=1

∑
v∈X

(
vi −

(vi)2

L

)
.

On the other hand,

∑
v∈X
‖v− c‖2

2 =
d∑
i=1

∑
v∈X

(vi − ci)2.

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 3. Theoretical results for the PMWGP 29

Thus, it suffices to show that, for any i,

ui −
(ui)2

L× n
−
∑
v∈X

(
vi −

(vi)2

L

)
= 1
L

(∑
v∈X

(vi − ci)2
)
. (3-3)

The left side of (3-3) is equal to

ui −
(ui)2

L× n
− ui +

∑
v∈X(vi)2

L
= 1
L
×
(∑

v∈X
(vi)2 − (ui)2

n

)
.

Moreover, the right side of (3-3) is equal to

1
L
×
(∑

v∈X
(vi)2 − 2ci

∑
v∈X

vi +
∑
v∈X

(ci)2
)

= 1
L
×
(∑

v∈X
(vi)2 − 2(ui)2

n
+ n

(ui)2

n2

)
= 1
L
×
(∑

v∈X
(vi)2 − (ui)2

n

)
,

which establishes the lemma. �

Proposition 1 is a direct consequence of Lemma 1, since it implies that,
for all k-partitions P of V ,

Gini(P) = 1
L
· CostKM (P) +

∑
v∈V

Gini(v).

With regard to Proposition 2, let V be an instance of k-PMWGP and let
V ′ be the instance of k-means obtained from V as follows: for each vector
v ∈ V , we add to the instance set V ′ exactly ‖v‖1 copies of the vector
v′ = v/‖v‖1. Using Lemma 1 and also the fact that in any optimal solution
for k-means identical vectors are in the same partition, we conclude that the
optimal value of V and V ′ differ by exactly ∑v∈V Gini(v). Note that instance
V ′ is obtained from V in pseudo-polynomial time.

3.4
Hardness of PWMGP

From Proposition 1 and the hardness of geometric k-means established
in (Awasthi et al. (2015)) we obtain:

Theorem 3.1 The Partition with Minimum Weighted Gini Problem
(PMWGP) is NP-complete with respect to goal (3-1) and APX-hard with
respect to goal (3-2).

Proof. Theorem 1.1 of (Awasthi et al. (2015)) states that there is a con-
stant ε such that it is NP-hard to approximate the k-means problem to
a factor better than (1 + ε). In the instance used to prove the theorem
in (Awasthi et al. (2015)), all vectors have `1 norm of 2; from our Lemma 1,

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 3. Theoretical results for the PMWGP 30

it follows that the goal (3-2) and the objective function for k-means differ by
a factor of exactly 2. The NP-completeness of goal (3-1) follows because goals
(3-1) and (3-2) differ by an additive constant. �

3.5
Approximating the optimal Gini partition

The reduction given by Proposition 2 allows us to obtain new algorithms
for k-PMWGP with provable approximation factors. As an example, we discuss
how to obtain a randomized PTAS for k-PMWGP with respect to the objective
function (3-2) when k is fixed. To do so, we run over instance V ′ the randomized
polynomial-time approximation scheme for the k-means problem proposed by
(Kumar et al. (2004)). Algorithm 1 (Cluster) is a slightly modified version
of the algorithm as presented in Figure 1 of (Ackermann et al. (2010)).

In what follows we explain how Algorithm 1 works and how we adapt
it to our purposes. However, we do not detail the analysis of its approxi-
mation, since it is not necessary to establish our result. We refer the reader
to (Ackermann et al. (2010)) for a complete presentation of the PTAS pro-
posed in (Kumar et al. (2004)). This presentation includes a simplified proof
of its approximation factor as well as a discussion of how it generalizes to other
objective functions.

Algorithm 1 Cluster(R, l, C̃)
Input:
R: set of remaining input points
l: number of medians to be found
C̃: set of medians already found
Procedure:
1: if l = 0 then return C̃
2: else
3: if l ≥ |R| then return C̃ ∪R
4: else
5: C(c̃) = {}
6: /* sampling phase */
7: sample a multiset S of size 2

αγδ
from R

8: C ←
{∑

v∈S′ v
|S′| ∀ S ′ ⊂ S, |S ′| = 1

γδ

}
//set of median candidates

9: for all c̃ ∈ C do
10: C(c̃) ← C(c̃) ∪Cluster(R, l − 1, C̃ ∪ {c̃})
11: /* pruning phase */
12: let N be the set with the 1

2 |R| minimal points p ∈ R w.r.t.
minc̃∈C̃ ||p− c̃||22

13: C(c̃) ← C(c̃) ∪Cluster(R \N, l, C̃)
14: return C ∈ C(c̃) with minimum cost

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 3. Theoretical results for the PMWGP 31

The main result of this section is Theorem 3.2, presented below.

Theorem 3.2 For any ε, δ > 0 and for a fixed k, Cluster provides, in
polynomial time (in n) and with probability ≥ 1 − δ, a (1 + ε)-approximation
to k−PMWGP.

Cluster takes as input the set R of remaining objects to be clustered; the
number l of medians yet to be found; and the set C̃ of medians already found.
(Initially, R = V , l = k, and C̃ = ∅.) In addition, it employs 3 parameters: γ,
which is used to control the approximation factor; δ, which is used to control
the probability of returning a good cluster in terms of approximation; and α, a
positive constant that impacts both the running time and the approximation
factor. Cluster returns the set C̃, containing k medians. The points of V can
then be clustered according to their closest points in the set C̃.

If there are no medians to be found (l = 0), then the algorithm returns
the set C̃. In another base case, when l ≥ |R|, each of the points in R becomes
a new median. Otherwise, the algorithm considers two strategies, presented
below, to cluster the points in R, and returns the best clustering among those
built by these strategies.

1. The algorithm builds a set C containing the centroids of all subsets of S
with size 1/γδ, where S is a random multiset of R with size 2/αγδ. Each
centroid c̃ ∈ C is added separately to C̃, and the algorithm performs |C|
recursive calls with parameters (R, l−1, C̃∪c̃). This strategy corresponds
to lines 7-10 of Algorithm 1.

2. The algorithm builds a set N containing the |R|/2 points in R that are
closest to the medians in C̃. Then, the procedure is recursively called
with parameters (R \ N, l, C̃). This strategy corresponds to lines 12-13
of Algorithm 1.

Therefore, we can define the number of calls made by Cluster as:

T (|R|, l) =

 1 if l = 0 or |R| ≤ l

c× T (|R|, l − 1) + T (|R|/2, l) + 1 otherwise
(3-4)

where c is the cardinality of the set C. An important fact is that c is constant
with respect to |V | and k, since it only depends on γ, δ, and α. In fact,
c ≤ 2|S| = 2

2
αγδ .

Theorem 2.8 of (Ackermann et al. (2010)) shows that Cluster executes
at most n2O(k/γδ·log(1/γδα)) arithmetic operations. In addition, Theorem 2.5 of
(Ackermann et al. (2010)) shows that, for α < 1

4k ,

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 3. Theoretical results for the PMWGP 32

Pr
[
Cost

(
C̃
)
≤
(
1 + 8αk2

)
(1 + γ)OPT

]
≥
(

1− δ
5

)k
, (3-5)

where Cost(C̃) is the cost of a clustering induced by the points in C̃ and OPT
is the cost of the optimal solution.

Algorithm 1 for the minimization of Gini. By applying Cluster to
the instance V ′, obtained via Proposition 2, we find with probability at least
((1 − δ)/5)k a partition whose Gini is not larger than (1 + ε) times the
Gini of an optimal partition, where ε = 8αk2(1 + γ). Since the size of V ′

is pseudopolynomial on the size of V , Cluster(V ′, k, {}) would have an
exponential running time with respect to n = |V | in the worst case.

In order to prove Theorem 3.2, we must do the following:

1. Develop a method of constructing instance V ′ from V in strictly polyno-
mial time, even if |V ′| is exponential in |V |. We do this by keeping each
distinct vector v′ = v/‖v‖1 and its multiplicity ||v||1 rather than all the∑

v∈V ‖v‖1 vectors of instance V ′.

2. Verify that the running time of a single call to Cluster is strictly
polynomial in |V |. We show in Lemma 2 that this can be achieved by
modifying a single step in Cluster.

3. Verify that the number of recursive calls performed by
Cluster(V ′, k, {}) is polynomial in n = |V |. We prove this in Lemma
3 by induction on recurrence (3-4).

Lemma 2 Given a fixed k, a single call to Cluster(V ′, l, C̃) performs
O(n lg n) operations, where n = |V |.

Proof. Let W = |V ′| = ∑
v∈V ||v||1. In the base case when l = 0, the algorithm

returns the set of medians found, at constant cost. In the base case when
W ≤ l, the algorithm assigns the W remaining points as medians; this would
take O(W) operations, but we are keeping track of the n different vectors in
V ′ and their multiplicities, so assigning them as medians is O(n).

It remains to evaluate the complexity of calls when no base case has been
reached. The only steps in Cluster that depend on the size of the input are
steps 7 and 12, and we analyze them for input V ′ as follows:

1. Step 7 samples a constant number of vectors from V ′. Since theW vectors
in V ′ are being represented as n vectors along with their multiplicities,
we can sample these n vectors in proportion to their quantities, and no
additional cost is incurred.

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 3. Theoretical results for the PMWGP 33

2. Step 12 computes the W/2 closest vectors to a given set of medians
C̃. This is achieved in (Ackermann et al. (2010)) by finding the median
element of V ′ according to their distances to the medians, taking O(W)
operations. Instead, we can order the n unique vectors in V ′ according to
their minimal distance to C̃, and then select the W/2 closest vectors by
checking the multiplicities of the vectors in V ′. This will take O(n lg n)
operations.

Therefore, the number of operations of any call of Cluster with V ′ as
input is O(n lg n). �

Lemma 3 For the recurrence presented in (3-4),

T (W,k) ≤ ck+1(lg ((k + 1)W))k − ck,

where c is a constant smaller than 2
2
αγδ .

Proof. For the base cases mentioned above:

– k = 0: T (W, 0) = 1 ≤ c(lgW)0 − c0 which holds as long as c ≥ 2;

– k ≥ W ≥ 1: T (W,k) = 1 ≤ ck+1(lg ((k + 1)W))k − ck which holds
because 1

ck
+ 1 ≤ 2 ≤ c ≤ c(lg ((k + 1)W))k.

Let W > k ≥ 1 and assume that the lemma holds for all W ′, k′ with W ′ < W

or k′ < k. By induction, we can use recurrence (3-4) to show that:

T (W,k) ≤ c(ck(lg (kW))k−1 − ck−1) + ck+1

 lg (k + 1)W
2

k − ck + 1

= ck+1

(lg (kW)
)k−1

+
(

lg (k + 1)W
2

)k− 2ck + 1. (3-6)

We must therefore show that (3-6) ≤ ck+1(lg ((k + 1)W))k − ck. Since
1 ≤ ck if c ≥ 1, it suffices to prove

(
lg (kW)

)k−1
+
(

lg (k + 1)W
2

)k
≤(

lg ((k + 1)W)
)k−1

+
(

lg (k + 1)W
2

)k
≤

(lg ((k + 1)W))k

which we can do by showing that

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 3. Theoretical results for the PMWGP 34

1 +

(
lg (k+1)W

2

)k
(lg ((k + 1)W))k−1 ≤ lg ((k + 1)W)(

lg (k+1)W
2

)k
(lg ((k + 1)W))k−1 ≤ lg (k + 1)W

2(
lg (k+1)W

2

)k−1

(lg ((k + 1)W))k−1 ≤ 1. (3-7)

Since (3-7) is always true, the lemma holds. �

c is exponential in 1/αγ, and ε = 8αk2(1 + γ); therefore, Algorithm 1
is exponential in the approximation factor, but polynomial in n. The proof of
Theorem 3.2 follows directly from both lemmas:

Proof of Theorem 3.2. Since, for a fixed k, there are at most O(nk) calls
to Algorithm 1 (Lemma 3), each performing at most O(n lg n) operations
(Lemma 2), the overall running time of Cluster(V ′, k, {}) is O(nk+1 lg n).
�

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

4
Dominance-based algorithms

The remaining chapters of this thesis will analyze algorithms for
information-theoretic clustering, with emphasis on the PMWEP. While some
algorithms of purely theoretical interest will be presented, our focus will be on
experimental results of practical algorithms, considering both their results in
terms of the partition’s weighted entropy and their running time.

In this chapter, four different clustering algorithms based on partitioning
vectors according to their dominant components will be presented and an-
alyzed. The first two, Dominance and Poly, have already been presented
in Sections 4 and 5.2, respectively, of (Cicalese et al. (2019)). The third one,
Ratio-Greedy, is a slightly modified version of the algorithm of the same
name presented in Section 7 of (Cicalese et al. (2019)). Both Ratio-Greedy
and Star, the fourth algorithm presented in this chapter, are practical algo-
rithms whose experimental results will be the subject of analysis in Chapter 6.
This thesis is mainly concerned with the results of the experiments for prac-
tical dominance-based algorithms, as that was the contribution of the author
to the work presented in (Cicalese et al. (2019)).

4.1
The Dominance algorithm

Let V be a collection of n vectors in Rd
>0. The Dominance algorithm

consists in partitioning the vectors in V into (at most) d clusters according to
the dominant components of each vector.

Let k be the desired number of clusters. If k > d, Dominance will leave
at least k−d clusters empty. Fixing this inefficient use of the available clusters
is one motivation behind the Ratio-Greedy and Star algorithms presented
below.

If k < d, on the other hand, Dominance must be applied on a
transformed version of V in Rk

>0. Let u = ∑
v∈V v and assume, without

loss of generality, that ui ≥ ui+1 ∀ i = 1, . . . , d − 1. Then, each vector
v = (v1, . . . , vd) ∈ V will be transformed into v′ = (v1, . . . , vk−1,

∑d
i=k vi).

That is, v′ shares the same first k − 1 components with v, while its k-th and

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 4. Dominance-based algorithms 36

last component is a sum of the d − k remaining components from v. The
pseudocode for Dominance is presented below.

Algorithm 2 Dominance(V, k)
Input:
V : a set of n vectors in Rd

>0
k: an integer
Procedure:
1: P ← {C1, . . . , Ck}, where Ci = {} ∀ i = 1, . . . , k
2: if k ≥ d then
3: for v ∈ V do
4: c← arg maxi vi (break ties arbitrarily)
5: Cc ← Cc ∪ {v}
6: else
7: c← ∑

v∈V v
8: s← sorted list of indices 1, . . . , d according to the size of elements in c

(in descending order)
9: for v ∈ V do

10: v′ ← {vs1 , . . . ,vsk−1 ,
∑d
j=k vsj}

11: c← arg maxi v′i (break ties arbitrarily)
12: Cc ← Cc ∪ {v}
13: return P

4.1.1
Running time

If k ≥ d, Dominance will simply allocate each vector to a cluster
corresponding to its dominant component, so it suffices to find the dominant
component for each vector, at O(nd) running time. When k < d, there are the
additional steps of sorting the indices of the sum vector u, which is O(d log d),
and creating a vector v′ for each v ∈ V , which is O(nd) once all vectors
are taken into account. Therefore, the algorithm presents a running time of
O(d(n+ log d)).

4.1.2
Approximation guarantees

Although very simple, Dominance has some approximation guarantees
for relevant impurity measures:

– Theorem 4.2 of (Cicalese et al. (2019)) (Theorems 1 and 2 in the paper’s
supplementary material) states that Dominance is a 2-approximation
algorithm for the PMWGP when d ≤ k, and a 3-approximation for the
same problem in general.

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 4. Dominance-based algorithms 37

– Theorems 3 and 5 in the supplementary material for
(Cicalese et al. (2019)) state that Dominance is a 2p-approximation
for the PMWEP , where p = log d + log (∑v∈V ||v||1) if d ≤ k and
p = min{log k, log d}+ log (∑v∈V ||v||1) in the general case.

– Theorem 6 in the supplementary material for (Cicalese et al. (2019))
states that, for the special case where all vectors in V have the same
`1 norm, Dominance is an O (log n+ log d)-approximation for the
PMWEP .

4.2
The Poly algorithm

Theorem 7 of (Cicalese et al. (2019)) states the existence of a partition
P of V with the following characteristics:

– It has at most one mixed cluster — i.e., at most one cluster with vectors
with different dominant components.

– Let C ∈ P be a mixed cluster (which implies all other clusters in P
are pure, or not mixed). If v ∈ C and v′ ∈ V \ C are i-dominant
vectors (i.e., vectors for which the i-th component is dominant), then
ratio(v) ≤ ratio(v′), where ratio(v) = ||v||∞/||v||1 — that is, the ratio
of a vector u is its largest element divided by the sum of all of its elements,
so that the larger the ratio is, the more representative the largest element
of the vector is.

– It is an O
(
log2 d

)
-approximation to the optimal solution to the

PMWEP .

Poly is an algorithm that searches for P using dynamic program-
ming and pruning to make sure a polynomial number of alternatives are
considered. As such, it is a polynomial-time algorithm with a guaranteed
O
(
log2 min{d, k}

)
-approximation to the PMWEP .

The full discussion of Poly is outside the scope of this thesis, and the
interested reader is invited to consult Section 5 of (Cicalese et al. (2019)).
For our purposes, it suffices to note that the running time of the algorithm,
although polynomial, would be impractical in real-world conditions. The two
algorithms presented below are adaptations that combine Dominance and
Poly to devise a fast, dominance-based algorithm that yields competitive
results when compared to the state of the art in terms of information-theoretic
clustering.

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 4. Dominance-based algorithms 38

4.3
The Ratio-Greedy algorithm

Ratio-Greedy is a fast algorithm that behaves exactly like Domi-
nance when k ≤ d and otherwise aims to approximate the procedure of Poly
in an agglomerative, bottom-up fashion. Any partition returned by Ratio-
Greedy will have the following characteristics:

1. All clusters will be pure.

2. If there is more than one pure cluster whose dominant components are
the same, then the clusters can be sorted according to the importance
of the dominant component, in the following sense: Suppose vectors
v,u, c have the same dominant component, j, and that ratio(v) >

ratio(u) > ratio(c). Then v, c ∈ C =⇒ u ∈ C. In other words,
for any two clusters C and C ′ of vectors with the same dominant
component, there is a real number r such that, without loss of generality,
ratio(v) ≥ r ≥ ratio(u) ∀ v ∈ C,u ∈ C ′.

The first characteristic is reminiscent of Dominance, which does not
allow for mixed clusters, while the second one comes from the observations
regarding the partition found when running Poly, in which vectors in the
mixed cluster will have smaller ratios than vectors in the pure clusters.

Summarized in words, Ratio-Greedy works as follows: given a data set
V , with n vectors in Rd, and an integer k:

1. Sort all vectors in V in descending order according to their ratios.

2. Subdivide the sorted array of vectors into d subarrays, so that all vectors
in a given subarray have the same dominant component.

3. Treat each vector as a cluster, so that there are n initial clusters in the
partition. The partition’s weighted entropy in this case is the sum of
weighted entropies for all vectors in the data set.

4. While the number of clusters is larger than k, cluster together the two
clusters that are adjacent in the same subarray and whose agglomeration
would yield the smallest addition to the partition’s weighted entropy.

The pseudocode for the algorithm is presented below.

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 4. Dominance-based algorithms 39

Algorithm 3 Ratio-Greedy(V, k)
Input:
V : an array of n vectors in Rd

>0
k: an integer
Procedure:
1: if k ≤ d then
2: return Dominance(V, k)
3: else
4: Start with n clusters, one for each v ∈ V
5: Sort all vectors v ∈ V according to their ratios, ratio(v) = ||v||∞

||v||1
6: // 7-10: split vectors into subarrays according to dominant components
7: Ci ← [] ∀ i = 1, . . . , d
8: for v ∈ V do
9: c← arg maxi vi (break ties arbitrarily)

10: Append v to Cc
11: // 12-18: cluster vectors in agglomerative fashion
12: k′ ← n
13: while k′ > k do
14: Find the pair of adjacent vectors {v,u} in any Ci ∀ i = 1, . . . , d

that minimizes entropy(v + u)− entropy(v)− entropy(u)
15: v← v + u
16: Add u to the cluster of v
17: Remove u from its subarray
18: k′ ← k′ − 1
19: return the set of clusters found

4.3.1
Implementation analysis

The main concern in the implementation of Ratio-Greedy is how to
efficiently find, among all agglomeration candidates between existing clusters,
the one that yields the smallest addition to the partition’s weighted entropy.

When two clusters are agglomerated, the additional weighted entropy
incurred by agglomerating the new cluster with its neighbors must be recalcu-
lated. For example, suppose a list of vectors v = [0.9, 0.1], u = [0.9, 0.1], and
c = [0.6, 0.4]. Agglomerating v and u will yield a new cluster whose sum vector
is [1.8, 0.2], and the additional weighted entropy incurred by this agglomeration
is 0. However, while agglomerating c with any of the original clusters would
yield an additional weighted entropy of 0.18, agglomerating it with the new
cluster would yield an additional weighted entropy of 0.26.

Due to this updating, it is not possible to sort the agglomerations from
the outset: the sorted list would have to be modified after each agglomeration is
performed. Therefore, to efficiently find the best pair of clusters to agglomerate
at each point in the algorithm, these cluster candidates are organized in a heap

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 4. Dominance-based algorithms 40

according to the additional entropy yielded by their agglomeration.
The algorithm must keep track of where each neighbor to an agglom-

eration candidate is in the heap. When the heap’s root is removed (that is,
when the least costly agglomeration is selected), its neighbors must have their
additional entropy updated, and the heap must be restored.

Item 4 in the textual description of Ratio-Greedy above implies that
each cluster has at most two neighbors: the previous cluster in the subarray
of clusters with the same dominant component, and the next one. (The
first and last vectors in a subarray have a single neighbor.) Therefore, each
agglomeration candidate has at most two neighbors in the heap.

For example, suppose the first agglomeration to be performed is between
C3,2 and C3,3 — that is, the second and third vectors for which the third
component is dominant, sorted in descending order by the ratio ||v||∞/||v||1.
Then, the cost of agglomerating vectors C3,1 and C3,2 must be updated, as well
as the cost of agglomerating vectors C3,3 and C3,4.

4.3.2
Running time

Item 1 in the description of Ratio-Greedy above includes:

1. calculating ratio(v), which takes O(d) time for each vector, or O(nd)
time overall.

2. sorting the vectors according to their ratios, which takes O(n log n) time.

Items 2 and 3 are achieved in a single pass through the sorted vectors,
at O(n) time.

Since each cluster can be agglomerated with at most two other clusters,
and at the outset each vector is in a different cluster, there are O(n) agglom-
eration candidates. For each candidate, the cost of the agglomeration must be
calculated — which includes calculating the weighted entropy of each vector, at
O(d) time. Therefore, it takes O(nd) time to add all agglomeration candidates
to the heap, and initializing the heap takes O(n log n) time.

When clustering two vectors together, the following operations must be
performed:

1. Retrieve the pair of clusters whose agglomeration will increase the
partition’s weighted entropy by the smallest amount. This amounts to
removing the heap’s root, at O(log n) time.

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 4. Dominance-based algorithms 41

2. Recalculate the additional entropy of clustering the new vector (the sum
of both vectors being clustered) with each of its neighbors (at most two).
This involves calculating the entropy of the new vector, at O(d) time.

3. Restore the heap after recalculating the additional entropy of the ag-
glomeration candidates that include the newly formed cluster. Again,
there are at most two such candidates, and restoring the heap for each
of them takes O(log n) time.

These operations will be performed O(n) times, until there are no more
than k clusters.

Therefore, both items 1 and 4 of Ratio-Greedy take O(n(log n + d))
time — the time complexity of the algorithm, since items 2 and 3 take only
O(n) time.

4.3.3
Approximation guarantees

Ratio-Greedy does not allow for mixed clusters, since it will only
cluster together vectors that are in the same subarray, and all vectors in
a given subarray have the same dominant component. It can be seen as an
extension of Dominance that avoids leaving empty clusters — and it does
revert to Dominance when k ≤ d. Splitting a cluster into a number of
non-empty subclusters will never increase the partition’s weighted entropy,
due to the superadditivity properties of weighted impurity measures (see
Lemma 1 of (Cicalese et al. (2019))); therefore, Ratio-Greedy enjoys the
same approximation guarantees of Dominance for the PMWEP.

4.4
The Star algorithm

While Ratio-Greedy does not allow for mixed clusters, Theorem 5.1
from (Cicalese et al. (2019)) states that a partition with at most one mixed
cluster will approximate the optimal partition for the PMWIP. Therefore, we
would like to expand the search space of our algorithm so that mixed clusters
are a possibility.

To do so, we consider an additional characteristic of the partition that
Poly returns, namely that vectors in the mixed cluster (if there is one) have
lower ratios than those in pure clusters. That is, given two vectors v,u with
the same dominant component i, ratio(v) > ratio(u), and a mixed cluster C,
then v ∈ C =⇒ u ∈ C, and u 6∈ C =⇒ v 6∈ C.

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 4. Dominance-based algorithms 42

The Star algorithm is an expansion of Ratio-Greedy that allows for
mixed clusters comprising vectors with the lowest ratios in V . We do this by
augmenting the neighborhood of the algorithm: all vectors with the lowest
ratio among vectors with a given dominant component will be connected to
each other. Figure 4.1 compares the neighborhoods defined by Ratio-Greedy
and Star, and the pseudocode for the latter is presented below.

Algorithm 4 Star(V, k)
Input:
V : an array of n vectors in Rd

>0

k: an integer
Procedure:
1: Start with n clusters, one for each v ∈ V
2: Sort all vectors v ∈ V according to their ratios, ratio(v) = ||v||∞

||v||1
3: // 4-7: split vectors into subarrays according to dominant components
4: Ci ← [] ∀ i = 1, . . . , d
5: for v ∈ V do
6: c← arg maxi vi (break ties arbitrarily)
7: Append v to Cc
8: // 9-14: find agglomeration candidates
9: N = {}

10: for i ∈ {1, . . . , d} do
11: for j ∈ {1, . . . , |Ci| − 1} do
12: N ← N∪{Ci,j, Ci,j+1} // clustering vectors with the same dominant

component
13: for j ∈ {i+ 1, . . . , d} do
14: N ← N ∪ {Ci,|Ci|, Cj,|Cj |} // clustering vectors with lowest ratios

15: // 16-23: cluster vectors in agglomerative fashion
16: k′ ← n

17: while k′ > k do
18: Find {v,u} ∈ N that minimizes entropy(v + u) − entropy(v) −

entropy(u)
19: v← v + u
20: u← u + v
21: Join the clusters of u and v to each other
22: N ← N \ {v,u}
23: k′ ← k′ − 1
24: return the set of clusters found

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 4. Dominance-based algorithms 43

v1,1 v1,2 v1,3 v1,4

v2,1 v2,2 v2,3 v2,4

v3,1 v3,2 v3,3 v3,4

v4,1 v4,2 v4,3 v4,4

vi,j is the vector with dominant component i with the j-th largest ratio
||v||∞/||v||1. An edge connecting nodes indicates the corresponding vectors
are neighbors for the purposes of the algorithm.

v1,1

v1,2

v1,3

v1,4

v2,1

v2,2

v2,3

v2,4

v3,1

v3,2

v3,3

v3,4

v4,1

v4,2

v4,3

v4,4

Figure 4.1: A representation of the neighborhoods defined by Ratio-Greedy
(above) and Star (below).

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 4. Dominance-based algorithms 44

4.4.1
Running time

Other than the definition of neighborhoods, Star is identical to Ratio-
Greedy: once the agglomeration candidates are defined, the agglomeration
that yields the smallest increase in the partition’s weighted entropy is applied
at each step, until k clusters remain. However, while in Ratio-Greedy each
vector has at most two neighbors (the previous and next vectors in the subarray
of vectors with the same dominant component), in Star there may be as many
as d vectors (the ones with the smallest ratio for each dominant component)
with as many as d neighbors (the previous vector in the subarray for vectors
with the same dominant component, plus the d − 1 last vectors in the other
subarrays). This means the number of initial agglomeration candidates grows
— and, more importantly, this number becomes dependent not only on n but
also on d2 (since each of the d last vectors will be connected to the other d− 1
last vectors).1

Since it takes O(d) time to calculate the additional weighted entropy for
each agglomeration candidate, the construction of the heap for Star takes
O((n+ d2)d) time. There are O(n) iterations to go from the n initial clusters
(one for each vector) to the k clusters in the final partition; in each of these
iterations, at most d elements in the heap will be updated, at the cost of
O(d + log(n + d2)) time (as it takes O(d) time to update an agglomeration
candidate and O(log(n + d2)) time to restore the heap once a candidate is
updated). Therefore, the number of operations necessary to perform Star is
O(d(nd+ n log(n+ d2) + d2)).

4.4.2
Implementation analysis

The variable number of neighbors in the Star heap makes its implemen-
tation more complicated than that of Ratio-Greedy. There needs to be an
array of the neighbors for each agglomeration candidate: each candidate may
have from 1 to d neighbors. Figure 4.4.2 shows a simplified example of how
the number of neighbors changes when two elements with the smallest ratio in
their respective subarrays are clustered together.

1To be more precise, assuming that there are no empty subarrays — i.e., that each
component is the dominant one for at least one vector in the data set — then there will
be n + d2−3d

2 agglomeration candidates at the outset of the clustering process, when each
vector is in a cluster of its own: n − d candidates corresponding to connections of vectors
with the same dominant component, plus d(d−1)

2 connections between the vectors with the
smallest ratio for each dominant component.

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 4. Dominance-based algorithms 45

v1,1

v1,2

v1,3

v1,4

v2,1

v2,2

v2,3

v2,4

v4,1

v4,2

v4,3

v4,4

v3,1

v3,2

v3,3

v3,4

v1,1

v1,2

v1,3

{v1,4,v2,4}

v2,1

v2,2

v2,3

v4,1

v4,2

v4,3

v4,4

v3,1

v3,2

v3,3

v3,4

vi,j is the vector with dominant component i with the j-th largest ratio
||v||∞/||v||1. An edge connecting nodes indicates the corresponding vectors
are neighbors for the purposes of the algorithm.

Figure 4.2: Change of number of neighbors after agglomeration in Star.

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 4. Dominance-based algorithms 46

Auxiliary arrays are implemented to keep track of the neighbors of each
element: for each vector, one array indicates in how many agglomeration
candidates the vector is in, another indicates to which other vectors it can
be clustered, and a third array indicates in which elements of the heap the
vector is represented. The first of these auxiliary arrays has n elements, one
for each vector in V ; the other two have nd elements, since each of the n vectors
may have at most d neighbors and therefore may be in at most d candidates
in the heap.

When updating the heap after two clusters are agglomerated, we found
it more straightforward to identify all elements in the heap to which one
of the agglomerated clusters belong, remove them from the heap, and then
add new elements considering the neighbors of the new, agglomerated cluster.
This procedure still takes O(d log(n+ d2)) time, as it removes and adds O(d)
elements to the heap, but it is probably less efficient than directly updating
the (at most) d elements in the heap that will be affected by agglomerating two
clusters. The running time analyses of Ratio-Greedy and Star, presented
above, make us suppose that the latter would be slower than the former even if
implemented in the fastest possible way; however, this possible inefficiency in
its implementation must be taken into account when comparing the running
times of both algorithms in Chapter 6.

On the other hand, the running time of Star is very dependent on
which agglomeration candidates are selected. If only candidates with one or
two neighbors are selected, for instance (that is, if the elements with smallest
ratios are never clustered to other elements), then there is an O(1) number of
updated elements per iteration, and each updating takes O(log(n+d2)). There
would still be, however, a dependence on d2 instead of d when compared to
Ratio-Greedy, due to the size of the heap that needs to be constructed and,
at each iteration, updated.

One can see the additional running time of Star when compared to
Ratio-Greedy as the “price to pay” for allowing mixed clusters instead of
only pure ones. It is because vectors with the lowest elements in each subarray
are connected to each other that the heap from Star has more elements than
the one from Ratio-Greedy, and the additional agglomeration candidates
that may need to be updated are those that connect vectors (or clusters) with
different dominant components.

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 4. Dominance-based algorithms 47

4.4.3
Approximation guarantees

While Ratio-Greedy may be considered an expanded version of Dom-
inance that takes care of the issue of empty clusters, Star is better thought
of as a simplified version of Poly, that allows us to find, in a short amount of
time, a good partition with the same characteristics as the best partition from
the more complex algorithm.

This simplification, however, means that Star does not enjoy the same
approximation guarantees as Poly. And, as the guarantees for Dominance
and Ratio-Greedy rely on the fact that only pure clusters are returned
by these algorithms, and this is not true for Star, it does not enjoy the
approximation guarantees for those algorithms either. We’ll see in Chapter
6, however, that in practice the results from Star are typically very close to
those of Ratio-Greedy.

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

5
Iteration-based algorithms

For clustering problems such as the ones of interest in this thesis, the best
results in the literature come from algorithms based on an iterative procedure:

1. Initialization: Define a set of initial cluster centers.

2. Expectation: Assign each element to the cluster whose center is closest
to it, according to a pre-defined dissimilarity measure.

3. Maximization: Recalculate the cluster centers as an average of the
elements in the cluster.

4. Repeat steps 2 and 3 until convergence, or up to a pre-specified number
of iterations.

The algorithm was first described in (Lloyd (1982)) with the squared
Euclidean distance as dissimilarity measure, but it can be used with any
Bregman divergence (Banerjee et al. (2005)). As mentioned in Section 2.2.2,
one can minimize the weighted entropy of the partition using the Kullback-
Leibler divergence as a metric. Therefore, it is natural, in the context of the
PMWEP, to compare the results of the dominance-based algorithms presented
in the previous chapter with those of iteration-based algorithms using the
Kullback-Leibler divergence.

We present below three such iteration-based algorithms:

– LloydKL++ is the original algorithm from (Lloyd (1982)) with the ++
initialization from (Arthur & Vassilvitskii (2007)), which guarantees an
O(log k) approximation to the optimal partition, and using the Kullback-
Leibler divergence instead of the squared Euclidian distance to measure
the dissimilarity between vectors.

– DivisiveClustering (Dhillon et al. (2003)) uses as initialization a pro-
cedure that closely resembles the Dominance algorithm.

– CoresetClustering (Bachem et al. (2018)) applies LloydKL++ to
a coreset of the original set of vectors — that is, to a subset of the vectors
chosen in such a way that results of the algorithm applied to the subset

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 5. Iteration-based algorithms 49

approximate (with some probability) the results of the algorithm applied
to the whole set.

Of these three algorithms, the first two are predominantly concerned
with returning the best possible partition, and as such their running time can
be quite high. The third one can be seen as a compromise between quality
(in terms of the partition’s weighted entropy) and efficiency (in terms of the
algorithm’s running time). By comparison, the dominance-based algorithms
used in experiments in this thesis, Ratio-Greedy and Star, lean much more
heavily on the side of efficiency, trying to return very quickly a partition that
is not too far from the optimal one.

5.1
Lloyd’s algorithm with ++ initialization and Kullback-Leibler as dissimi-
larity measure

Algorithm 5, presented below, corresponds to the original algorithm
from (Lloyd (1982)), with the Kullback-Leibler divergence used instead of the
squared Euclidean distance. This algorithm takes as inputs, other than the
set of vectors to be clustered, a set of k initial cluster centers; in the original
formulation of the algorithm, these centers are chosen at random among the
vectors to be partitioned.

Algorithm 5 LloydKL(V,C,m)
Input:
V : a set of n vectors in Rd

>0
C: a set of k initial cluster centers, represented as vectors in Rd

>0
m: an integer
Procedure:
1: i← 0
2: repeat
3: // Expectation step
4: P ← [{} ∀ j = 1, . . . , k]
5: for v ∈ V do
6: j ← arg minp{KL(v, Cp) ∀ p = 1, . . . , k}
7: Pj ← Pj ∪ {v}
8: // Maximization step
9: for j = 1, . . . , k do

10: Cj ← 1
|Pj |

∑
v∈Pj v

11: i← i+ 1
12: until convergence or i = m
13: return P

The initialization step described in (Arthur & Vassilvitskii (2007)) and
presented in Algorithm 6 below leads to an approximation guarantee of

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 5. Iteration-based algorithms 50

O(log k) to the optimal partition. This algorithm takes as input the original
set of vectors V and an integer k, and returns a set of k vectors from V such
that a partition defined by this set of vectors as cluster centers already enjoys
this approximation guarantee. Since Algorithm 5 can only iteratively improve
on the sum of dissimilarities from the original partition, the approximation
guarantee is achieved.

Algorithm 6 Init++(V, k)
Input:
V : an array of n vectors in Rd

>0
k: an integer
Procedure:
1: P =

[
1
n
∀ i = 1, . . . , n

]
2: v← a vector sampled from V with probability Pi ∀ i = 1, . . . , n
3: C = {v}
4: while |C| < k do
5: for i = 1, . . . , n do
6: Pi ← minc∈C{KL(Vi, c)}
7: v← a vector sampled from V with probability Pi∑

P
∀ i = 1, . . . , n

8: C ← C ∪ {v}
9: return C

The main idea of Algorithm 6 is to sample new cluster centers proportion-
ally to their dissimilarity with the cluster centers already defined. Therefore,
vectors that are “farther away” (in the sense of the dissimilarity being used)
from the current cluster centers will be sampled with higher probability, and
the sum of dissimilarities between vectors and the cluster centers to which they
are closest will decrease.

The algorithm we propose to compare with our dominance-based algo-
rithms is simply Algorithm 5 with the cluster centers initialized by Algorithm 6,
as presented in Algorithm 7.

Algorithm 7 LloydKL++(V, k,m)
Input:
V : an array of n vectors in Rd

>0
k,m: integers
Procedure:
1: C ← Init++(V, k)
2: return LloydKL(V,C,m)

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 5. Iteration-based algorithms 51

5.1.1
Implementation analysis

One possible issue with Lloyd’s algorithm is the occurrence of empty
clusters. Over the iterations performed by the algorithm, it is possible that one
or more cluster centers will have no vectors attached to it; once this happens,
no vector will ever be assigned to that cluster center again, as the dissimilarity
between the cluster center of an empty cluster and a vector is not defined.

To deal with this issue, we added to the implementation of the algorithm
a verification step that checks whether a cluster center is empty. If this is the
case, one vector at random will be removed from another cluster and defined
as a stand-alone cluster (and therefore the cluster center will be the vector
itself).

When clustering with the goal of minimizing the sums of the Kullback-
Leibler divergences (or of any Bregman divergences) between the elements and
the cluster centers, having empty clusters will never mean having a smaller
sum of divergences. A similar statement is valid when clustering to minimize
impurity instead of the sum of dissimilarities: having empty clusters will never
be beneficial. Therefore, this additional step aims to improve the final results
of the clustering method implemented.

5.1.2
Running time

Init++ takes O(nkd) time: after each new cluster center is found,
which occurs O(k) times, the Kullback-Leibler divergence between all O(n)
vectors not assigned as centers and the new cluster center must be updated,
at O(d) time. Each iteration of LloydKL++ also takes O(nkd) time, as
the expectation step involves recalculating the Kullback-Leibler divergence
between all vectors in V and the k cluster centers, to find the new assignment
of each vector.

The number of iterations required for convergence is exponential in the
worst case (Vattanni (2005)). However, the smoothed running time for the
algorithm is polynomial (Arthur et al. (2009)), and in practice the number of
iterations is usually limited by a hard number or by a rule that stops the
algorithm once the gain from performing additional iterations falls below a
pre-established threshold. In our experiments in Chapter 6, we present the
results of LloydKL++ running for up to 100 iterations.

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 5. Iteration-based algorithms 52

5.2
Divisive information-theoretic clustering

DivisiveClustering, presented in (Dhillon et al. (2003)) as Divi-
sive_Information_Theoretic_Clustering, uses the same expectation-
maximization procedure as LloydKL++, the only difference between the two
algorithms being their initialization steps. While LloydKL++ relies on an
adapted version of the ++ initialization using the Kullback-Leibler divergence,
DivisiveClustering initializes the clusters with a procedure that is a sim-
plified version of the Dominance algorithm presented in Chapter 4 above:

– Assign every vector v ∈ V to Pi such that vi = maxi=1,...,d{vi}.

– If k ≥ d, split each cluster arbitrarily into at least bk/dc clusters.

– If k < d, merge the d clusters to obtain k initial clusters.

This initialization method is presented in Algorithm 8 below.

Algorithm 8 InitDivisive(V, k)
Input:
V : an array of n vectors in Rd

>0
k: an integer
Procedure:
1: if k ≤ d then
2: P ← Dominance(V, k)
3: else
4: P ← {{} ∀ i = 1, . . . , k}
5: Assign bk/dc clusters from P to each dominant component
6: Assign one additional cluster from P to a different dominant component

until all clusters from P are assigned to a dominant component
7: for v ∈ V do
8: i = arg maxi vi (break ties arbitrarily)
9: S ← the set of clusters from P assigned to i

10: C ← C ∈ S | |C| = min{|C| ∀ C ∈ S} (break ties arbitrarily)
11: C ← C ∪ {v}
12: c←

{
1
|C|
∑

v∈C v ∀ C ∈ P
}

13: return c

5.2.1
Implementation analysis

In our implementation, k ≤ d is treated exactly as in Dominance, by
reducing the dimensionality of the original vectors from V . If k > d, roughly
the same number of clusters is reserved to partition vectors with any given
dominant component, and the initialization procedure assigns each vector
sequentially to one of the clusters for its dominant component.

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 5. Iteration-based algorithms 53

Once the initial cluster centers are found, DivisiveClustering passes
them to LloydKL alongside V to find a suitable partition. Therefore, other
than the initialization step, DivisiveClustering behaves the same as Lloy-
dKL++. The algorithm for DivisiveClustering is presented below as Al-
gorithm 9.

Algorithm 9 DivisiveClustering(V, k,m)
Input:
V : an array of n vectors in Rd

>0
k,m: integers
Procedure:
1: C ← InitDivisive(V, k)
2: return LloydKL(V,C,m)

(Dhillon et al. (2003)) suggests iterating until the gain from one iteration
to the next is small. In line with our implementation of LloydKL++, we set
a maximum number of iterations instead (interrupting the algorithm before
the maximum number of iterations if convergence is reached).

5.2.2
Running time

The expectation-maximization phase of DivisiveClustering is the
same as that of LloydKL++, and therefore the same running-time analysis
applies.

In the initialization phase, InitDivisive will run Dominance if k ≤ d,
and in this situation Dominance runs in O(d(n + log d)) time (see Section
4.1.1). If k > d, InitDivisive will find the dominant component of each vector
v ∈ V and assign it to the least populated cluster of vectors with that dominant
component. By adding each vector to a cluster in sequence and keeping track
of which cluster, for each dominant component, should receive the next vector,
this operation can be performed in O(nd) time.

Since the running time of Init++ is O(nkd), the initialization phase
of DivisiveClustering will be faster, as long as log d < nk (which will
likely be the case in any practical application of the algorithm). However,
the expectation-maximization phase dominates the running time of both
algorithms, and in our experiments we don’t see much difference between their
running times (see Chapter 6).

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 5. Iteration-based algorithms 54

5.3
Clustering via lightweight coresets

One main concern involving algorithms based on iteratively finding better
cluster centers and assigning points to them is their running time. Even
when limiting the number of iterations performed, such algorithms rely on
reevaluating the divergence between each vector and each cluster center, so
that even a single iteration runs in O(nkd) time, which can be quite expensive.

One way to reduce running time is to run the algorithm using as input
not the whole set V of size n, but a subset S ⊂ V of size m. In doing so, each
iteration takes O(mkd) time to run, which can be more manageable as long
as m << n. There is, however, the matter that the answer found for S should
also apply for V .

Given a task to be performed on V , a coreset of V is a weighted subset
S ⊂ V such that, when performing the same task on S, we find an answer
whose quality is a good approximation of the quality of the answer that would
be retrieved by performing the task on V . In our case, a coreset of V is a
weighted subset S ⊂ V such that the partition P ′ of V found by applying a
clustering algorithm on S has a weighted entropy that approximates that of
the partition P of V found by applying the same algorithm on V .

Using the Kullback-Leibler divergence as a dissimilarity measure, the
formal definition of a lightweight coreset from (Bachem et al. (2018)) is as
follows: let V be a set of n vectors and Q any set of at most k vectors (cluster
centers) in Rd

>0. Furthermore, let

KLV (Q) =
∑
v∈V

min {KL(v, c) ∀ c ∈ Q} .

Then, a weighted subset S ⊂ V is an (ε, k)-lightweight coreset of V if

|KLV (Q)−KLS(Q)| ≤ ε

2KLV (Q) + ε

2KLV ({µ(V)}), (5-1)

where µ(V) = 1
|V |
∑

v∈V v.
The first term in the right-hand side of 5-1 (the multiplicative error)

“allows the approximation error to scale with the quantization error”, while
the second term (the additive error) “scales with the variance of the data”
(Bachem et al. (2018)). In other words, the approximation error may be larger
the more variance the full data set presents (additive error) or the larger the
quantization error on the full data set is (multiplicative error).

(Lucic et al. (2016)) presents a method for building coresets when clus-
tering for the minimization of Bregman divergences such as the Kullback-
Leibler divergence. However, the coreset construction method still involves k

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 5. Iteration-based algorithms 55

passes through the full data set, making finding the coreset itself slow for
many practical purposes. In (Bachem et al. (2018)), the same authors present
a much faster, and embarrassingly parallel, method for building lightweight
coresets for the task of Bregman clustering.

The algorithm CoresetClustering consists of three steps:

1. Construct a weighted coreset S of V , |S| << |V |.

2. Find k cluster centers by applying a weighted version of LloydKL++
to S.

3. Partition V according to the cluster centers found in the previous step.

The coreset construction algorithm, LightCoreset, is presented below
as Algorithm 10. It consists of calculating µ, the mean of V , and sampling
m weighted vectors according to probabilities that depend on the Kullback-
Leibler divergence between each vector v ∈ V and µ.

Algorithm 10 LightCoreset(V,m)
Input:
V : an array of n vectors in Rd

>0
m: an integer
Procedure:
1: µ← 1

|V |
∑

v∈V v

2: q ←
{

1
2|V | +

KL(v,µ)2

2
∑

v∈V KL(v,µ)2 ∀ v ∈ V
}

3: S ← m vectors from V sampled with probability q(v)∑
v′∈V q(v

′) ∀ v ∈ V
4: W ← 1

mq(v) ∀ v ∈ S
5: return S,W

Theorem 2 of (Bachem et al. (2018)) states that the size of the subset
needed to guarantee (with a certain probability) that LightCoreset returns
a coreset is O(dk log k). Importantly, it does not depend on n.

5.3.1
Implementation analysis

Since each vector in the coreset is weighted, we need a version of Lloyd’s
algorithm that handles weighted vectors. WeightedLloydKL, presented
below as Algorithm 11, is a variation of LloydKL in which the maximization
step takes into account the weights of each vector when updating the cluster
centers.

As shown in the pseudocode for CoresetClustering, presented below
as Algorithm 12, clustering via coresets amounts to finding a coreset of the

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 5. Iteration-based algorithms 56

Algorithm 11 WeightedLloydKL(V,W,C,m)
Input:
V : an array of n vectors in Rd

>0
W : an array of weights for each vector in V
C: a set of k initial cluster centers, represented as vectors in Rd

>0
m: an integer
Procedure:
1: i← 0
2: repeat
3: P ← [{} ∀ j = 1, . . . , k]
4: // Expectation step
5: for v ∈ V do
6: j ← arg minp {KL(v, Cp) ∀ p = 1, . . . , k}
7: Pj ← Pj ∪ {v}
8: // Weighted maximization step
9: for j = 1, . . . , k do

10: Cj ← 1
|Pj |

∑
p | V [p]∈Pj V [p]×W [p]

11: i← i+ 1
12: until convergence or i = m
13: return P

original data set and passing it to the original algorithms — in this case,
Init++ to find the initial cluster centers and WeightedLloydKL to find
the partition of the coreset. Then, using the cluster centers thus found, the
maximization step is performed once to partition the whole data set.

Our implementation treats the size of the coreset as an input to the
algorithm. An alternative implementation would be to derive the necessary
size from the data, passing as parameters a desired error ε and the probability
γ that the error from using the coreset will be ≤ ε. We follow the presentation
of the algorithm in (Bachem et al. (2018)), in which the authors experiment
with different sizes of coresets for the same data set, without calculating the
size required to achieve the approximation guarantees.

5.3.2
Running time

As mentioned above, the main purpose of applying an algorithm on a
coreset instead of the full data set is efficiency: since the coreset is smaller
than the original data set, the algorithm will run faster.

The analysis of the running time of CoresetClustering is very similar
to that of LloydKL++, with the important difference that, when initializing
the cluster centers and finding the optimal partition, we are dealing with a
coreset of size m instead of a data set of size n. Therefore, the initialization

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 5. Iteration-based algorithms 57

Algorithm 12 CoresetClustering(V, k,m, p)
Input:
V : an array of n vectors in Rd

>0
k,m, p: integers
Procedure:
1: S,W ← LightCoreset(V,m)
2: C ← Init++(S, k)
3: P ′ ←WeightedLloydKL(S,W,C, p)
4: C ←

[
1
n

∑
v∈P ′i v ∀ i = 1, . . . , k

]
5: // single maximization step
6: P ← [{} ∀ i = 1, . . . , k]
7: for v ∈ V do
8: i← arg mini {KL(v, Ci) ∀ i = 1, . . . , k}
9: Pi ← Pi ∪ {v}

10: return P

step, as well as each iteration of the algorithm, will take O(mkd) time.
We must also take into account the time needed to construct the coreset.

LightCoreset involves calculating the mean vector of V and then calculating
the probability that each vector will be sampled, and both these operations
take O(nd) time. Then, m vectors are sampled from V and the weights of
these vectors are calculated, at O(m) time. Since m ≤ n (and in fact, for
any efficiency gain to be significant, m << n), the overall running time of
LightCoreset is O(nd). We note that (Bachem et al. (2018)) mention that
LightCoreset is embarrasingly parallel, but analyzing the performance gain
of parallelizing the coreset construction step is outside the scope of this thesis.

The final step of CoresetClustering is assigning each vector in V

to a cluster center. This involves calculating the Kullback-Leibler divergence
between each v ∈ V and each cluster center, at O(nkd) time.

Therefore, the upper bound for the running time of CoresetCluster-
ing ends up being the same as that of LloydKL++. However, there is a
single iteration in CoresetClustering that takes O(nkd) time, and several
such iterations in LloydKL++. As the experiments presented in Chapter 6
demonstrate, this makes a great difference in the actual running time of both
algorithms.

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

6
Experimental results

In this chapter we present the results of experiments performed with the
dominance-based algorithms Ratio-Greedy (Algorithm 3) and Star (Algo-
rithm 4), both presented and analyzed in Chapter 4. As basis of comparison,
we use the iteration-based algorithms LloydKL++ (Algorithm 7), Divi-
siveClustering (Algorithm 9), and CoresetClustering (Algorithm 12),
presented and analyzed in Chapter 5.

There are notable shortcomings in the dominance-based methods when
compared to iteration-based ones. The dominance-based methods analyzed
here partition the data set based only on the dominant component and its
overall importance (measured by the ratio |v|∞/|v|1), and ignore all other
information regarding the vectors to be clustered. The upside of such methods
is that they can be much faster than the methods that iteratively improve
on the partition until a local minimum is found. Therefore, the main goal
of these experiments is to analyze the trade-off between quality (in terms of
the partition’s weighted entropy) and efficiency (in terms of the algorithm’s
running time).

6.1
Data sets

We use three data sets in our experiments. The first two, 20 News-
groups and RCV1, are text data sets traditionally used to evaluate clas-
sification models that aim to classify a text given the words it contains.
The third data set, Poisson, is a synthetic data set similar to one used
in (Lucic et al. (2016)) to evaluate a coreset clustering method using the
Kullback-Leibler divergence as dissimilarity measure.

6.1.1
The 20 Newsgroups data set

20 Newsgroups was collected in the 1990’s by Ken Lang and has been
widely used ever since in experiments involving text classification and feature
selection — see, for example, (Joachims (1997)), (Baker & McCallum (1998)),
(Slonim & Tishby (1999)), (Dhillon et al. (2003)), (Dasgupta et al. (2007)),

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 6. Experimental results 59

(Dai & Le (2015)), and (Ribeiro et al. (2016)). It includes approximately
18,000 texts (messages to newsgroups), evenly divided among 20 categories (the
newsgroups to which the messages were originally sent). The subjects of many
newsgroups are similar or overlap (for instance, comp.os.ms-windows.misc
and comp.windows.x, or rec.autos and rec.motorcycles), which makes
correctly classifying the texts a challenging task.

Several versions of the data set have been presented and used
over the years. We use the data set as retrieved by the scikit-learn
package for Python (Pedregosa et al. (2011)) from Jason Rennie’s web-
page (Rennie (2014)). We exclude from the data set the English stop-words
as defined in scikit-learn, as well as words that appear in no more than 2
documents or in more than 95% of the documents.

We then find how many times each word is found in documents from a
given class, smoothing the results by 1 (i.e., each word is considered to appear
in each class at least once). The probability of sampling a word w from a
document of class c is calculated by dividing the number of times w is found in
documents of class c by the total number of words in all documents of class c.
This probability is then multiplied by the probability that a given document
is from class c (the number of documents from class c divided by the total
number of documents). The end result is a data set with the probabilities that
a document belongs to class c given that word w is in it.

After cleaning the documents as mentioned above, there remain 51840
unique words. The final data set, therefore, has 51840 rows and 20 columns.
The smoothing step guarantees that all vectors (each representing a word) are
in R20

>0.

6.1.2
The Reuters (RCV1) data set

The Reuters Corpus Volume 1 (RCV1) data set, first presented
in (Lewis et al. (2004)), comprises over 800,000 news-wire stories from
the Reuters news agency, divided in 103 non-exclusive categories. As
is the case with 20 Newsgroups, RCV1 has been extensively used
to benchmark classification and information retrieval models — see,
for instance, (Genkin et al. (2007)), (Fan et al. (2008)), (Bottou (2010)),
(Duchi et al. (2011)), (Hinton et al. (2012)), (Miyato et al. (2017)),
and (Bottou et al. (2018)).

Unlike in 20 Newsgroups, texts in RCV1 can belong to more than
a single class (in fact, the classification of texts in RCV1 follows a tree-like
hierarchy, with different levels of classification; there are 103 classes in the final

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 6. Experimental results 60

level). For our purposes, we randomly assigned each document to one of the
classes to which it originally belongs. As is the case for 20 Newsgroups, our
goal is not to ultimately classify the texts in their correct classes, but to find
a good partition of the words according to the probability of finding them in
a given class.

The original text files were directly downloaded from David D. Lewis’s
webpage (Lewis (2004)), and vectorized using Python’s scikit-learn. Following
the same procedure used for 20 Newsgroups, we removed the words appear-
ing in no more than 2 documents or in more than 95% of the documents, as well
as the English stop-words as defined in scikit-learn. The end result is a matrix
with 170,946 rows (words) and 103 columns (classes), where the element in the
j-th column of the i-th row indicates the probability that a document belongs
to class j given that we find word i in it. Smoothing guarantees that all vectors
in the final data set are in R103

>0 .

6.1.3
The Poisson data set

The final data set used in our experiments is a synthetic data set like the
one used in (Lucic et al. (2016)) to evaluate the results of an initial algorithm
based on coresets by the same authors of (Bachem et al. (2018)). The original
paper presents a coreset construction method that is much slower than the one
found in (Bachem et al. (2018)), leading to smaller gains when comparing the
running time of the algorithm with those of state-of-the-art clustering methods
such as LloydKL++ (Algorithm 7).

Among the seven data sets mentioned between (Lucic et al. (2016)) and
(Bachem et al. (2018)), we chose the Poisson data set due to the fact that,
in the original paper, the sum of the Kullback-Leibler divergences between
each vector and the closest cluster center is used to gauge the quality of the
partition returned by the algorithm under analysis. The comparison with an
algorithm that aims to minimize the weighted entropy of the partition, such
as Ratio-Greedy and Star (Algorithms 3 and 4), is therefore more natural
than it would be for data sets evaluated using other measures of dissimilarity,
such as the squared Euclidean distance.

Following the description in (Lucic et al. (2016)), we built a data set of
10,000 points from a mixture of 50 multivariate Poisson distributions in 10
dimensions. Each dimension is independently sampled, with the parameter of
the Poisson distribution being sampled from a Gamma distribution with a
shape parameter (α) of 10 and a scale parameter (β) of 10−3. The data set was
built using the Numpy package for Python (Virtanen et al. (2019)).

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 6. Experimental results 61

6.2
Results

In this section we present and discuss the results of the experiments
performed with the three data sets described above. All experiments were
performed in a 2018 MacBook Air with a 1,6 GHz Intel Core i5 and 8
GB of RAM, running the Mojave OS (version 10.14.6). The tables with
the full results of the experiments can be found in Appendix A. The code
for preparing the data sets and running the experiments can be found in
https://github.com/lmurtinho/thesis_info_clustering.

6.2.1
20 Newsgroups

6.2.1.1
Comparison between “full” iteration-based methods and dominance-
based methods

Figure 6.1 shows the average entropy (over five runs) found when par-
titioning 20 Newsgroups using five different models: the two practical,
dominance-based models introduced in Chapter 4 (Ratio-Greedy and Star)
and the full versions of the three iteration-based models presented in Chapter
5 (LloydKL++, DivisiveClustering, and CoresetClustering). These
are the “full” versions of these models in the sense that, unless the results con-
verge before that, they are running the maximum number of iterations allowed
in our experiments (100), and that, in the case of CoresetClustering, the
largest coreset (with 5000 members) is being used.

For this data set, iteration-based methods consistently beat dominance-
based methods, but by small margins, which tend to decrease as the number
of clusters increases. The results from both dominance-based methods are very
similar, and the same can be said for the results from the three iteration-based
methods. As expected, CoresetClustering, which relies on a weighted
sample of the full data set for building the partition, performs slightly worse
than both DivisiveClustering and LloydKL++.

Figure 6.2 shows the average running time of the same five algorithms for
partitioning 20 Newsgroups. DivisiveClustering and LloydKL++ are
by far the most expensive methods, with a running time of up to 100 seconds for
larger values of k. The fact that the initialization step of DivisiveClustering
is much faster than that of LloydKL++ does not seem to make much
difference in the running times of the full versions of the algorithms.

The dominance-based methods are much faster, with a small but clear

https://github.com/lmurtinho/thesis_info_clustering
DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 6. Experimental results 62

Figure 6.1: Average entropy for the partition of 20 Newsgroups (5 runs per
model). Iterative models run for up to 100 iterations. The coreset has 5000
elements (approximately 10% of the elements in the original data set).

Figure 6.2: Average running time for partitioning 20 Newsgroups (5 runs
per model). Iterative models run for up to 100 iterations. The coreset has 5000
elements (approximately 10% of the elements in the original data set).

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 6. Experimental results 63

advantage to Ratio-Greedy over Star — which is to be expected, since,
as mentioned in Chapter 4, the latter allows for mixed partitions while the
former doesn’t. Finally, CoresetClustering is not as fast as the dominance-
based methods, but it is much faster than the other iteration-based methods;
reducing the size of the set used to find the cluster centers does lead to marked
improvements on running times, even if the worst-case analyses for the three
methods present the same bound.

6.2.1.2
Comparison between “initial” iteration-based methods and dominance-
based methods

Since iteration-based methods return partitions with smaller weighted
entropies on average, comparing the full versions of these methods with
dominance-based methods may overstate the penalty (in terms of running
time) for achieving better results. It may be the case that the initial partition
of an iteration-based method is already better than the partitions obtained
by dominance-based methods, and that this initial partition is achieved faster.
Therefore, we also present below charts comparing the results of dominance-
based methods with the “initial” version of the iteration-based methods —
that is, the version that simply returns the initial partition obtained, without
any iteration to improve on the results.

Figure 6.3 shows the average weighted entropy (over 5 runs) of partitions
of 20 Newsgroups obtained by the initial versions of iteration-based models,
as well as the results for dominance-based models already presented in Figure
6.1 above.

The weighted entropies for the partitions from LloydKL++ and Core-
setClustering are already smaller than those for partitions from dominance-
based models, but the difference is smaller than the one found when performing
the same comparison with the full version of iteration-based methods, indicat-
ing that iterations are important to improve the partitioning of the data.

For DivisiveClustering, however, the initial partitions present larger
weighted entropies than the partitions obtained from dominance-based meth-
ods. This is notable because the initialization method of DivisiveClustering
is itself a dominance-based method, in which the elements of each cluster have
the same dominant component. In fact, the initialization of DivisiveClus-
tering can be seen, like Ratio-Greedy, as an adaptation of Dominance to
prevent empty clusters; the main difference between both adaptations being
that, in Ratio-Greedy, elements are grouped not only according to dom-
inant components but also to the ratio between dominant components and

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 6. Experimental results 64

Figure 6.3: Average entropy for the partition of 20 Newsgroups (5 runs per
model). Considers the initial partition of iteration-based models, as well as
the partition of the DivisiveClustering model after a single iteration. The
coreset has 5000 elements (approximately 10% of the elements in the original
data set).

the elements’ `1 norm, while in the initialization of DivisiveClustering the
only concern is that each cluster with the same dominant component will have
roughly the same number of elements.

These results suggest that a simpler dominance-based method would
not fare as well as the ones presented in Chapter 4. Incorporating informa-
tion about the ratio between a vector’s dominant component and its `1 norm
achieves significantly better results than relying solely on the dominant com-
ponents to partition a set.

Because the initialization of DivisiveClustering returns partitions
with larger entropies, for most values of k, than those returned by our
dominance-based algorithms, we also present the results of running a single
iteration of the expectation-maximization step for this algorithm. As seen in
Figure 6.3, this is enough (in this case) for the results of DivisiveClustering
to be slightly better than those of the dominance-based algorithms.

Figure 6.4 shows the average running times of the models being com-
pared. The difference between the running times of LloydKL++ and Core-
setClustering and the dominance-based models is still significant. This,
along with the fact that the difference between partitions’ weighted entropies
is smaller when there is no iterative step in the iteration-based methods, in-
dicates dominance-based methods can be valid alternatives for information

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 6. Experimental results 65

Figure 6.4: Average running time for partitioning 20 Newsgroups (5 runs
per model). Considers the initial partition of iteration-based models, as well as
the partition of the DivisiveClustering model after a single iteration. The
coreset has 5000 elements (approximately 10% of the elements in the original
data set).

theoretic clustering when a small running time is of importance.
On the other hand, the initialization step of DivisiveClustering

is significantly faster than both dominance-based models under analysis.
Coupled with the results for the full DivisiveClustering model, which
are comparable to those of LloydKL++, this suggests that using either
Ratio-Greedy or Star as the initialization step for an iteration-based
model would be unnecessary; a simpler initialization based on dominant
components leads to results which are comparable (in the full version of the
methods) to those retrieved by using the theoretically sound ++ initialization.
However, running a single iteration of DivisiveClustering is enough for
this algorithm to become orders of magnitude slower than the dominance-
based ones as the number of clusters grows, with running times comparable to
CoresetClustering’s.

6.2.2
RCV1

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 6. Experimental results 66

Figure 6.5: Entropy for the partition of RCV1 (1 run per model). Iterative
models run for up to 100 iterations. The coreset has 5000 elements (approxi-
mately 3% of the elements in the original data set).

6.2.2.1
Comparison between “full” iteration-based methods and dominance-
based methods

Figure 6.5 shows the weighted entropy found when partitioning RCV1
using the same five models whose results for 20 Newsgroups were analyzed
above, considering the full versions of iteration-based models. Due to time
constraints, a single run was performed for each instance of each model.

For this data set, and with a large number of clusters (k ≥ 1000),
the two dominance-based models generate partitions with smaller weighted
entropies than those generated by CoresetClustering. One of the reasons
may be that, as this data set is larger, a coreset of 5000 elements becomes less
representative of it. The margin by which the other two iteration-based models
beat the dominance-based models tends to decrease as the number of clusters
increases.

Figure 6.6 shows the running time of the same five algorithms for parti-
tioning RCV1. As for 20 Newsgroups, the running times of DivisiveClus-
tering and LloydKL++ are the largest, followed by CoresetClustering
and then the dominance-based methods, with a small but clear advantage for
Ratio-Greedy over Star. For this particular data set, and as long as the
number of clusters is large enough, the dominance-based methods would be a
better choice than CoresetClustering, since they perform better in terms
of the partition’s weighted entropy while taking less time to find the partition.

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 6. Experimental results 67

Figure 6.6: Running time for partitioning RCV1 (1 run per model). Iterative
models run for up to 100 iterations. The coreset has 5000 elements (approxi-
mately 3% of the elements in the original data set).

6.2.2.2
Comparison between “initial” iteration-based methods and dominance-
based methods

For the reasons mentioned in Section 6.2.1.2 above, we also present a
comparison between partitioning RCV1 with “initial” versions of the iteration-
based methods and with dominance-based methods.

Figure 6.7 shows the resulting weighted entropies for each model’s
partition. As for 20 Newsgroups, the weighted entropies of partitions
obtained from the initialization step of DivisiveClustering are significantly
larger than those of partitions obtained from all other models. When compared
to the “initial” versions of the two other iteration-based models, and even
to DivisiveClustering with a single iteration, dominance-based models
present smaller weighted entropies for partitions with a large enough number
of clusters. Combined, these two informations seem to further confirm the
benefits of using the ratio between dominant components and the `1 norm
when implementing dominance-based methods.

Figure 6.8 shows the running time for partitioning RCV1 using the two
dominance-based methods and the “initial” versions of the three iteration-
based methods. Although the running times of the initial versions of iteration-
based methods decrease by one or two orders of magnitude when compared to
the running times for their full versions, the running time of dominance-based
methods is still much smaller. Therefore, when compared to the initial versions

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 6. Experimental results 68

Figure 6.7: Entropy for the partition of RCV1 (1 run per model). Considers
the initial partition of iteration-based models, as well as the partition of the
DivisiveClustering model after a single iteration. The coreset has 5000
elements (approximately 3% of the elements in the original data set).

of iteration-based methods, dominance-based methods are the best option for
this data set, since they are faster and yield partitions with smaller weighted
entropies.

The exception, as in the case of 20 Newsgroups, is the running time
of the initial version of DivisiveClustering, which is the smallest among
all models analyzed. As above, this result is expected due to the fact that the
initialization of DivisiveClustering is a simpler dominance-based method
of partitioning the data set. Once again we see that, while this simpler method
by itself leads to larger weighted entropies than Ratio-Greedy or Star,
its use as the initialization step for an iteration-based method is justified, as
it leads to results comparable to those of LloydKL++ (while being faster
than the more complex dominance-based methods presented here). And again,
running a single iteration of DivisiveClustering leads to running times
comparables to those of CoresetClustering, and therefore much longer
than those of the dominance-based algorithms.

6.2.3
Poisson

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 6. Experimental results 69

Figure 6.8: Running time for partitioning RCV1 (1 run per model). Considers
the initial partition of iteration-based models, , as well as the partition of the
DivisiveClustering model after a single iteration. The coreset has 5000
elements (approximately 3% of the elements in the original data set).

6.2.3.1
Comparison between “full” iteration-based methods and dominance-
based methods

Figure 6.9 shows the average entropy (over five runs) found when par-
titioning Poisson using the same five models whose results for 20 News-
groups and RCV1 were analyzed above, considering the “full” version of
iteration-based methods.

For this data set, dominance-based methods yield partitions whose
weighted entropies are significantly larger than those of partitions derived
from the full versions of iteration-based methods. One additional observation
is that, for partitions with a large number of clusters, CoresetClustering
tends to produce better partitions (in terms of their weighted entropies) than
DivisiveClustering. This data set is smaller than the others, with 10,000
elements, and therefore a coreset with 5,000 members means 50% of the
elements in the original set are represented in the coreset, which may explain
the good performance of CoresetClustering.

Figure 6.10 shows the average running time of each model. As before,
dominance-based methods are orders of magnitude faster than iteration-
based methods; among the former, Ratio-Greedy is faster than Star; and,
among the latter, CoresetClustering is faster than LloydKL++ and
DivisiveClustering.

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 6. Experimental results 70

Figure 6.9: Average entropy for the partition of Poisson (5 runs per model).
Iterative models run for up to 100 iterations. The coreset has 5000 elements
(50% of the elements in the original data set).

Figure 6.10: Average running time for partitioning Poisson (5 runs per model).
Iterative models run for up to 100 iterations. The coreset has 5000 elements
(50% of the elements in the original data set).

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 6. Experimental results 71

Figure 6.11: Average entropy for the partition of Poisson (5 runs per model).
Considers the initial partition of iteration-based models, as well as the partition
of the DivisiveClustering model after a single iteration. The coreset has
5000 elements (50% of the elements in the original data set).

6.2.3.2
Comparison between “initial” iteration-based methods and dominance-
based methods

As above, we perform below a comparison between the partitions
of dominance-based methods and those obtained after the initialization of
iteration-based methods. Figure 6.11 shows the weighted entropies of these
partitions, according to the number of clusters being used.

Once again, the initialization of DivisiveClustering presents the par-
titions with higher weighted entropies, followed by the dominance-based mod-
els, while the initialization of both CoresetClustering and LloydKL++
yield the partitions with smallest weighted entropies. The same conclusions
presented above apply, especially concerning the importance of considering the
ratio between dominant components and the `1 norm of the vectors when using
dominance-based models for clustering. The only change of note regarding Di-
visiveClustering is that, for this data set, a single iteration is enough for it
to return partitions with smaller entropies than those found by the dominance-
based algorithms.

Figure 6.12 shows the running time of both dominance-based models,
as well as of the initialization steps for the iteration-based models, and for
DivisiveClustering with a single iteration. The conclusions are similar to
those previously drawn from analyzing results for the other data sets used in

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 6. Experimental results 72

Figure 6.12: Average running time for partitioning Poisson (5 runs per model).
Considers the initial partition of iteration-based models, as well as the partition
of the DivisiveClustering model after a single iteration. The coreset has
5000 elements (50% of the elements in the original data set).

our experiments.
One issue to keep in mind is that, for this data set in particular, the

full version of DivisiveClustering yields partitions with weighted entropies
that are significantly higher than those of partitions generated by the full
version of LloydKL++. It is possible, therefore, that for this particular
data set initializing the cluster centers with a more complex dominance-based
model, such as Ratio-Greedy or Star, could be beneficial for an iteration-
based model when compared to the simpler dominance-based initialization of
DivisiveClustering. However, the results of dominance-based models are
relatively worse for Poisson than they are for 20 Newsgroups and RCV1,
suggesting any strategy based on dominant components may not be as useful
for this particular data set.

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

7
Conclusions

This thesis has presented both theoretical and experimental results
related to information-theoretic clustering. In the theoretical field, we show
that the Partition with Minimum Weighted Gini Problem (PMWGP) is closely
connected to the geometric k-means problem, which leads to a proof that the
PMWGP is NP-complete and APX-hard. Furthermore, this connection can be
used to derive algorithms for the PMWGP. As an example, we show how one
linear-time approximation scheme for the geometric k-means problem can be
adapted into a PTAS for the PMWGP.

One natural question is whether other algorithms can be adapted to the
PMWGP via the connection presented here. Since the size of a k-means in-
stance built from a PMWGP instance can be pseudopolynomial on the size of
the PMWGP instance, it may be the case that some algorithms do not remain
polynomial when used through this connection, or that some known results
for the k-means problem do not hold for the PMWGP. As an example, the
algorithm of (Kanungo et al. (2004)), a constant-approximation algorithm for
the k-means problem, relies on the existence of a set of ε-centroids of cardi-
nality O(n). It is not yet clear whether the pseudopolynomial transformation
presented above would allow the PMWGP to be (approximately) solved in
polynomial time by this algorithm.

In the experimental field, we have presented the results of applying two
dominance-based algorithms to the Partition with MinimumWeighted Entropy
Problem (PMWEP) for three different data sets, comparing their results with
those of iteration-based algorithms. As expected, our algorithms were much
faster than the benchmarks, which include state-of-the art Lloyd’s algorithm
with ++ initialization as well as a version of the same algorithm applied to
a coreset of the data. In terms of outcome, our algorithms are able to closely
approximate the results of the more involved iteration-based algorithms for
two of the three data sets analyzed here, especially as the number of clusters
grows.

We have identified three possible applications for information-theoretic
clustering: word clustering, node splitting for decision-tree construction, and
channel quantization for polar-code construction. Both data sets where our

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 7. Conclusions 74

algorithms have a good performance (for large values of k) when compared to
the benchmark algorithms are text sets, leading us to cautiously claim that
our algorithms may be good candidates for the task of word clustering (where
the number of clusters is usually large) when running time is an important
concern.

However, there are shortcomings in our analysis that can be addressed
by further research. Only two text data sets were used in our experiments,
and it would be important to evaluate the results of our algorithms on other
data sets from the same domain.1 Furthermore, it must be remembered that,
in most settings, the ultimate goal is not to cluster words, but to properly
classify texts; for this reason, additional research may look into whether the
word clusters retrieved by dominance-based algorithms yield good results when
used by a text classifier.

Generally speaking, and as mentioned at the start of Chapter 6,
dominance-based algorithms present several limitations. These can be seen
as intentional from a practical point of view, since it is the focus on dominant
components and their relative importance that allows such algorithms to be
as fast as they are. However, as exemplified by their poor results (compared to
iteration-based algorithms) when clustering the third (non-textual) data set
analyzed in this thesis, these limitations can also impact their effectiveness.

Therefore, another potential research idea would be to design tests to
quickly verify the probability of retrieving a good partition with dominance-
based algorithms. It is likely that this would be the case the more representative
the dominant components tend to be in vectors from a data set, but further
research is needed to clarify this point.

It could be also fruitful to explore whether the good (albeit limited)
results presented here when it comes to word clustering can be found in other
domains, in particular channel quantization for polar-code construction. On
the other hand, the usefulness of dominance-based algorithms as a method
for node splitting when building decision trees seems to be limited, since their
results for small values of k are significantly worse than those of iteration-based
algorithms.

Lastly, there is also the possibility of expanding on the dominance-based
1A recent development in textual analysis has been the use of word embeddings to

represent words in a vector space, such that similar words are close to each other according
to some metric (Mikolov et al. (2013)). Google’s word2vec data set (https://code.google.
com/archive/p/word2vec/), for instance, includes approximately 3 million words, each
represented as a vector in R300. The presence of negative values in the embeddings forbids
us from applying our algorithms to this data set, but an adaptation that guarantees all
embeddings are in R300

+ may allow us to further investigate the performance of dominance-
based algorithms for word clustering tasks.

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Chapter 7. Conclusions 75

algorithms themselves. As mentioned above, both algorithms presented in this
thesis were shown to be much faster than their iteration-based counterparts;
adding some complexity to them (such as more complex neighborhoods for
determining agglomerations of clusters, or the application of randomization
techniques) may, at the cost of increasing running time, improve the quality
of the partitions they return.

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Bibliography

[Ackermann et al. (2010)] ACKERMANN, M.; BLÖMER, J.; SOHLER, C. Clus-
tering for metric and nonmetric distances. In: ACM TRANSAC-
TIONS ON ALGORITHMS (TALG), 2010.

[Arıkan (2009)] ARIKAN, E. Channel polarization: A method for con-
structing capacity-achieving codes for symmetric binary-input
memoryless channels. IEEE Transactions on Information Theory,
55(7):3051–3073, 2009.

[Arthur & Vassilvitskii (2007)] ARTHUR, D.; VASSILVITSKII, S. k-means++:
The advantages of careful seeding. In: PROCEEDINGS OF THE
EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGO-
RITHMS, p. 1027–1035, 2007.

[Arthur et al. (2009)] ARTHUR, D.; MANTHEY, B.; RÖGLIN, H. k-means
has polynomial smoothed complexity. In: 50TH ANNUAL IEEE
SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, p. 405–414,
2009.

[Awasthi et al. (2015)] AWASTHI, P.; CHARIKAR, M.; KRISHNASWAMY, R.;
SINOP, A. K. The hardness of approximation of euclidean k-
means. In: 31ST INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL
GEOMETRY (SOCG 2015), 2015.

[Bachem et al. (2018)] BACHEM, O.; LUCIC, M; KRAUSE, A. Scalable k-
means clustering via lightweight coresets. In: PROCEEDINGS OF
THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWL-
EDGE DISCOVERY & DATA MINING, p. 1119–1127, 2018.

[Baker & McCallum (1998)] BAKER, L. D.; MCCALLUM, A. K. Distributional
clustering of words for text classification. In: PROCEEDINGS OF
THE 21ST ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON
RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, p. 96–
103. ACM, 1998.

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Bibliography 77

[Banerjee et al. (2005)] BANERJEE, A. S.; MERUGU, S.; DHILLON, I. S.;
GHOSH, J. Clustering with Bregman divergences. Journal of Machine
Learning Research (JMLR), 6:1705–1749, 2005.

[Bottou (2010)] BOTTOU, L. Large-scale machine learning with stochas-
tic gradient descent. In: PROCEEDINGS OF COMPSTAT’2010, p. 177–
186. Springer, 2010.

[Bottou et al. (2018)] BOTTOU, L.; CURTIS, F. E.; NOCEDAL, J. Opti-
mization methods for large-scale machine learning. Siam Review,
60(2):223–311, 2018.

[Breiman et al. (1984)] BREIMAN, L; FRIEDMAN, J. H.; OLSHEN, R.; STONE,
C. J. Classification and Regression Trees. 1984.

[Burshtein et al. (1992)] BURSHTEIN, D.; DELLA PIETRA, V.; KANEVSKY, D.;
NADAS, A. Minimum impurity partitions. The Annals of Statistics,
20(3):1637–1646, 1992.

[Chaudhuri & McGregor (2008)] CHUDHURI, K.; MCGREGOR, A. Finding
metric structure in information theoretic clustering. In: CON-
FERENCE ON LEARNING THEORY, 2008.

[Chou (1991)] CHOU, P. A. Optimal partitioning for classification and
regression trees. IEEE Transactions on Pattern Analysis & Machine
Intelligence, 4:340–354, 1991.

[Cicalese et al. (2019)] CICALESE, F.; LABER, E.; MURTINHO, L. New re-
sults on information theoretic clustering. In: INTERNATIONAL
CONFERENCE ON MACHINE LEARNING – ICML, p. 1242–1251, 2019.

[Coppersmith et al. (1999)] COPPERSMITH, D.; HONG, S. J.; HOSKING, J. R.
Partitioning nominal attributes in decision trees. Data Mining and
Knowledge Discovery, 3(2):197–217, 1999.

[Dai & Le (2015)] DAI, A. M.; LE, Q. V. Semi-supervised sequence learn-
ing. In: PROCEEDINGS OF THE 28TH INTERNATIONAL CONFERENCE
ON NEURAL INFORMATION PROCESSING SYSTEMS-VOLUME 2, p.
3079–3087. MIT Press, 2015.

[Dasgupta et al. (2007)] DASGUPTA, A.; DRINEAS, P.; HARB, B.; JOSI-
FOVSKI, V.; MAHONEY, M. W. Feature selection methods for text
classification. In: PROCEEDINGS OF THE 13TH ACM SIGKDD INTER-
NATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA
MINING, p. 230–239. ACM, 2007.

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Bibliography 78

[Dhillon et al. (2003)] DHILLON, I.S.; MALLELA, S.; KUMAR, R. A divisive
information-theoretic feature clustering algorithm for text clas-
sification. Journal of machine learning research, 3 (Mar):1265–1287, 2003.

[Duchi et al. (2011)] DUCHI, J.; HAZAN, E.; SINGER, Y. Adaptive subgra-
dient methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

[Fan et al. (2008)] FAN, R.; CHANG, K.; HSIEH, C.; WANG, X.; LIN, C. LI-
BLINEAR: A library for large linear classification. Journal of
machine learning research, 9:1871–1874, 2008.

[Fayyaz & Barry (2013)] FAYYAZ, U. U.; BARRY, J. R. Polar codes for
partial response channels. In: IEEE INTERNATIONAL CONFERENCE
ON COMMUNICATIONS, p. 4337–4341, 2013.

[Genkin et al. (2007)] GENKIN, A.; LEWIS, D. D.; MADIGAN, D. Large-scale
bayesian logistic regression for text categorization. Technometrics,
49(3):291–304, 2007.

[Goela et al. (2014)] GOELA, N.; ABBE, E.; GASTPAR, M. Polar codes
for broadcast channels. IEEE Transactions on Information Theory, 61
(2):758–782, 2014.

[Hinton et al. (2012)] HINTON, G. E.; SRIVASTAVA, N.; KRIZHEVSKY, A.;
SUTSKEVER, I.; SALAKHUTDINOV, R. R. Improving neural networks
by preventing co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580, 2012.

[Joachims (1997)] JOACHIMS, T. A probabilistic analysis of the Rocchio
algorithm with TFIDF for text categorization. In: PROCEEDINGS
OF THE 14TH INTERNATIONAL CONFERENCE ON MACHINE LEARN-
ING – ICML, p. 143–151, 1997.

[Kanungo et al. (2004)] KANUNGO, T.; MOUNT, D. M.; NETANYAHU, N. S.;
PIATKO, C. D.; SILVERMAN, R. ; WU, A. Y.. A local search approxi-
mation algorithm for k-means clustering. Computational Geometry,
28(2-3):89–112, 2004.

[Kruskal (1956)] KRUSKAL, J. B. On the shortest spanning subtree of
a graph and the traveling salesman problem. Proceedings of the
American Mathematical society, 7(1):48–50, 1956.

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Bibliography 79

[Kumar et al. (2004)] KUMAR, A.; SABHARWAL, Y.; SEN, S. A simple linear
time (1+ epsilon)-approximation algorithm for k-means cluster-
ing in any dimensions. In: ANNUAL SYMPOSIUM ON FOUNDATIONS
OF COMPUTER SCIENCE, 2004.

[Kurkoski & Yagi (2014)] KURKOSKI, B. M.; YAGI, H. Quantization of
binary-input discrete memoryless channels. IEEE Transactions on
Information Theory, 60 (8):4544–4552, 2014.

[Laber & Murtinho (2019)] LABER, E.; MURTINHO, L. Minimization of
gini impurity: NP-completeness and approximation algorithm
via connections with the k-means problem. Electronic Notes in
Theoretical Computer Science, 346:567–576, 2019.

[Laber et al. (2018)] LABER, A.; MOLINARO, M.; PEREIRA, F. M. Binary
partitions with approximate minimum impurity. In: INTERNA-
TIONAL CONFERENCE ON MACHINE LEARNING, 2018.

[Lewis (2004)] LEWIS, D. D. RCV1-v2/LYRL2004: The
LYRL2004 distribution of the RCV1-v2 text cat-
egorization test collection (12-apr-2004 version).
http://www.jmlr.org/papers/volume5/lewis04a/lyrl2004_rcv1v2_README.htm,
2004 (last access: 10/31/2019).

[Lewis et al. (2004)] LEWIS, D. D.; YANG, Y.; ROSE, T.; LI, F. RCV1: A new
benchmark collection for text categorization research. Journal of
Machine Learning Research, 5:361–397, 2004.

[Lloyd (1982)] LLOYD, S. P. Least squares quantization in PCM. IEEE
Transactions on Information Theory, 28 (2):129–137, 1982.

[Lucic et al. (2016)] LUCIC, M.; BACHEM, O.; KRAUSE, A.. Strong coresets
for hard and soft Bregman clustering with applications to ex-
ponential family mixtures. In: PROCEEDINGS OF THE 19TH INTER-
NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATIS-
TICS, p. 1–9, volume 51 of Proceedings of Machine Learning Research, 2016.

[Mikolov et al. (2013)] MIKOLOV, T.; SUTSKEVER, I.; CHEN, K.; CORRADO,
G. S. ; DEAN, J.. Distributed representations of words and phrases
and their compositionality. In: ADVANCES IN NEURAL INFORMA-
TION PROCESSING SYSTEMS, p. 3111–3119, 2013.

[Miyato et al. (2017)] MIYATO, T.; DAI, A. M.; GOODFELLOW, I. J. Adver-
sarial training methods for semi-supervised text classification.

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Bibliography 80

In: 5TH INTERNATIONAL CONFERENCE ON LEARNING REPRESENTA-
TIONS, ICLR, 2017.

[Pedregosa et al. (2011)] PEDREGOSA, F.; VAROQUAUX, G.; GRAMFORT, A.;
MICHEL, V.; THIRION, B.; GRISEL, O.; BLONDEL, M.; PRETTENHOFER,
P.; WEISS, R.; DUBOURG, V.; VANDERPLAS, J.; PASSOS, A.; COURNA-
PEAU, D.; BRUCHER, M.; PERROT, M.; DUCHESNAY, E. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[Rennie (2014)] RENNIE, J. 20 Newsgroups.
http://qwone.com/∼jason/20Newsgroups/, 2014 (last access: 10/31/2019).

[Ribeiro et al. (2016)] RIBEIRO, M. T.; SINGH, S.; GUESTRIN, C.Why should
I trust you?: Explaining the predictions of any classifier. In:
PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFER-
ENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, p. 1135–1144.
ACM, 2016.

[Sandberg et al. (2018)] HUI, D.; SANDBERG, S.; BLANKENSHIP, Y.; ANDER-
SSON, M.; GROSJEAN, L. Channel coding in 5g new radio: A tu-
torial overview and performance comparison with 4g lte. IEEE
Vehicular Technology Magazine, 13 (4):60–69, 2018.

[Shannon (1948)] SHANNON, C. E. A mathematical theory of communi-
cation. Bell system technical journal, 27(3):379–423, 1948.

[Slonim & Tishby (1999)] SLONIM, N.; TISHBY, N.. Agglomerative infor-
mation bottleneck. In: PROCEEDINGS OF THE 12TH INTERNA-
TIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING SYS-
TEMS, p. 617–623. MIT Press, 1999.

[Tal & Vardy (2013)] TAL, I.; VARDY, A. How to construct polar codes.
IEEE Transactions on Information Theory, 59(10):6562–6582, 2013.

[Vattanni (2005)] VATTANI, A. k-means requires exponentially many
iterations even in the plane. Discrete & Computational Geometry, 45
(4):596–616, 2005.

[Virtanen et al. (2019)] VIRTANEN, P.; GOMMERS, R.; OLIPHANT, T. E.;
HABERLAND, M.; REDDY, T.; COURNAPEAU, D.; BUROVSKI, E.; PE-
TERSON, P.; WECKESSER, W.; BRIGHT, J.; VAN DER WALT, S. J.;
BRETT, M.; WILSON, J.; JARROD MILLMAN, K.; MAYOROV, N.; NEL-
SON, A. R. J.; JONES, E.; KERN, R.; LARSON, E.; CAREY, C.; POLAT, İ.;

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Bibliography 81

FENG, Y.; MOORE, E. W.; VAND ERPLAS, J.; LAXALDE, D.; PERKTOLD,
J.; CIMRMAN, R.; HENRIKSEN, I.; QUINTERO, E. A.; HARRIS, C. R.;
ARCHIBALD, A. M.; RIBEIRO, A. H.; PEDREGOSA, F. ; VAN MULBREGT,
P.. SciPy 1.0–Fundamental Algorithms for Scientific Computing
in Python. arXiv e-prints, 2019.

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

A
Tables

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Appendix A. Tables 83

k ratio greedy star lloyd (full) divisive (full) coreset (full) lloyd (initial) divisive (initial) coreset (initial) divisive (1 iteration)
2 4.293432 4.275437 4.219599 4.260723 4.225287 4.289268 4.293432 4.251928 4.275954
5 4.204171 4.208214 4.077699 4.102027 4.092606 4.181965 4.257562 4.170591 4.224650
10 4.169997 4.150054 3.989964 3.998027 4.009254 4.081381 4.182388 4.077401 4.132395
25 3.917957 3.911994 3.886013 3.885630 3.904378 3.955967 3.965535 3.948950 3.928808
50 3.861007 3.858353 3.838683 3.840378 3.852128 3.885519 3.960809 3.893700 3.882149
75 3.844733 3.843040 3.819141 3.819205 3.828496 3.861447 3.957870 3.868111 3.858348
100 3.836762 3.835763 3.807509 3.807591 3.816524 3.845289 3.956388 3.853085 3.848018
250 3.817300 3.817011 3.778452 3.778251 3.788812 3.803782 3.945220 3.813429 3.820643
500 3.800762 3.800524 3.760166 3.759344 3.771318 3.781114 3.934656 3.787048 3.797431
750 3.789368 3.789202 3.749751 3.749329 3.761857 3.768601 3.925004 3.773288 3.784651
1000 3.780444 3.780276 3.742896 3.742497 3.755105 3.759012 3.917938 3.764189 3.774740
1250 3.772976 3.772751 3.737468 3.738040 3.749855 3.752442 3.911065 3.756809 3.768240
1500 3.766577 3.766336 3.733184 3.733193 3.745451 3.747087 3.904769 3.751009 3.761351
1750 3.760994 3.760855 3.729401 3.728988 3.741847 3.742387 3.898670 3.746041 3.756389
2000 3.755996 3.755863 3.726173 3.726515 3.738544 3.738344 3.894607 3.741716 3.752262

Table A.1: Average entropy results for 20 Newsgroups

k ratio greedy star lloyd (full) divisive (full) coreset (full) lloyd (initial) divisive (initial) coreset (initial) divisive (1 iteration)
2 0.089270 0.500183 0.583147 0.265434 1.762526 0.083043 0.034218 1.737987 0.064091
5 0.113707 0.528462 1.144575 0.762250 1.903266 0.275538 0.035883 1.840957 0.088464
10 0.141082 0.528866 1.854220 1.765205 1.931072 0.599352 0.038493 1.860257 0.107388
25 0.184904 0.519034 7.723546 5.448819 2.198037 1.484309 0.040957 1.906503 0.163712
50 0.183287 0.511797 14.413080 12.510153 2.494366 2.974803 0.040863 2.002048 0.287502
75 0.178988 0.509649 22.377388 13.379707 2.972268 4.440341 0.039556 2.097930 0.408989
100 0.178002 0.506903 20.700294 23.664588 3.285300 5.921286 0.039845 2.219427 0.528466
250 0.177566 0.507161 63.523320 44.180532 5.545954 14.978410 0.038535 2.980419 1.255622
500 0.175891 0.499894 119.569385 88.411377 9.998801 29.855319 0.039088 4.249595 2.425079
750 0.178235 0.499234 152.173178 141.512505 13.351993 44.848930 0.039045 5.476371 3.695966
1000 0.176228 0.497160 188.366974 176.487439 16.515814 59.763221 0.038815 6.740068 4.882431
1250 0.176496 0.497809 231.659353 209.507502 19.561351 74.868846 0.038382 7.996400 6.113360
1500 0.176668 0.488512 287.966453 267.870829 22.861389 90.081415 0.037885 9.243964 7.309602
1750 0.179830 0.490912 287.732299 263.449267 24.074901 104.860897 0.037844 10.498560 8.605804
2000 0.177908 0.492027 361.577766 353.064525 26.181137 119.677433 0.038955 11.750335 9.718906

Table A.2: Average running time results (in seconds) for 20 Newsgroups

k ratio greedy star lloyd (full) divisive (full) coreset (full) lloyd (initial) divisive (initial) coreset (initial) divisive (1 iteration)
2 4.988122 4.984583 4.924933 4.924933 4.934793 4.933324 5.057129 4.985904 5.053361
5 4.937212 4.923494 4.777805 4.768933 4.776362 4.801898 5.051237 4.841608 4.897173
10 4.859612 4.744035 4.684260 4.689716 4.716866 4.809369 4.980996 4.799576 4.808251
25 4.695792 4.692511 4.620766 4.617084 4.645058 4.701911 4.781484 4.696867 4.687030
50 4.664759 4.667937 4.580996 4.582244 4.606087 4.688920 4.740935 4.650629 4.660805
75 4.657290 4.654225 4.564263 4.563625 4.588504 4.649285 4.760473 4.623981 4.682322
100 4.651063 4.644092 4.554052 4.556294 4.579158 4.636144 4.793506 4.608345 4.693167
250 4.606472 4.605026 4.520945 4.528798 4.562408 4.592505 4.789517 4.588212 4.639259
500 4.571615 4.570989 4.503039 4.504820 4.545267 4.564554 4.785697 4.553299 4.623322
750 4.549617 4.549229 4.493682 4.498790 4.538645 4.550672 4.782943 4.544805 4.595886
1000 4.534191 4.533896 4.490114 4.495489 4.536682 4.542177 4.778984 4.539831 4.589146
1250 4.522348 4.522145 4.483655 4.489465 4.533012 4.534037 4.775023 4.535391 4.579001
1500 4.512843 4.512648 4.481085 4.488185 4.527667 4.530565 4.772407 4.528954 4.572260
1750 4.504851 4.504622 4.480290 4.486530 4.526521 4.526442 4.771216 4.526816 4.567651
2000 4.498036 4.497856 4.476803 4.483781 4.525842 4.522161 4.767508 4.525887 4.564712

Table A.3: Average entropy results for Reuters

k ratio greedy star lloyd (full) divisive (full) coreset (full) lloyd (initial) divisive (initial) coreset (initial) divisive (1 iteration)
2 0.687496 4.750072 3.062775 5.374690 6.623090 1.120811 0.772890 6.392863 1.071491
5 0.747023 4.852910 7.585375 21.927801 7.162562 3.274089 0.775982 6.952784 1.306023
10 0.853291 4.744305 46.147143 32.276245 7.618352 6.704050 0.776410 7.194540 1.707210
25 1.126180 4.748391 147.931616 75.014111 9.130253 16.896152 0.780436 8.165270 2.885525
50 1.584945 4.709388 256.239682 178.433209 13.936328 33.773199 0.787496 9.931513 4.850950
75 2.057063 4.729634 535.673108 505.931080 15.823710 50.843226 0.816143 11.686668 6.862048
100 2.514964 4.744296 747.911316 678.946728 19.022464 70.396615 0.828753 13.481888 8.781648
250 2.056307 4.915030 1859.953555 1695.899428 33.099919 173.732464 0.834977 24.292476 20.211499
500 2.055205 4.782807 3714.137374 3381.468338 56.857849 345.947968 0.830837 42.096571 38.740886
750 2.069842 4.753813 5571.168237 5055.220161 84.858647 511.415335 0.832131 59.757162 59.283889
1000 2.055573 4.740188 7325.872212 6760.536644 108.935517 679.866750 0.842635 77.489931 77.254765
1250 2.063251 4.798266 9200.137220 8390.788803 114.862795 848.238285 0.829937 95.055134 95.816122
1500 2.018976 4.761795 11136.846356 10059.742257 141.812546 1023.996069 0.834826 112.849625 114.992715
1750 2.051474 4.757773 13064.705580 11788.731241 158.292310 1207.790818 0.832128 131.059607 133.099780
2000 2.071375 4.746367 13869.995693 13516.243217 185.187180 1366.155830 0.832740 149.572981 151.044055

Table A.4: Average running time results (in seconds) for Reuters

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

Appendix A. Tables 84

k ratio greedy star lloyd (full) divisive (full) coreset (full)
2 29119829693.401482 29119830397.911232 29119828845.371777 29119828852.263649 29119829093.008369
5 29119827288.443542 29119826220.500111 29119820086.507175 29119821068.915714 29119820619.066845
10 29119826794.779438 29119825066.033375 29119811920.029652 29119814312.318764 29119812883.256794
25 29119825906.549324 29119823984.723381 29119799200.823807 29119801936.536282 29119800904.446255
50 29119822648.437248 29119822587.012482 29119788711.031487 29119792556.176655 29119790940.394451
75 29119821393.597008 29119821347.639568 29119781706.828308 29119786798.797436 29119784905.467094
100 29119820194.168568 29119820155.003777 29119776888.406258 29119782003.303452 29119780432.155682
250 29119813250.976227 29119813227.192162 29119758778.434326 29119766045.035027 29119764199.685219
500 29119802048.116505 29119802023.946526 29119741504.356808 29119750935.945408 29119747812.814293
750 29119791154.169895 29119791116.945995 29119728563.577705 29119740270.605389 29119735050.742474
1000 29119780455.956036 29119780425.543526 29119717274.769855 29119730540.325325 29119724144.387264
1250 29119769847.897606 29119769808.466480 29119707071.964062 29119720921.451519 29119714296.717850
1500 29119759530.007401 29119759467.673637 29119697484.822086 29119712995.427292 29119704900.284531
1750 29119749299.591496 29119749234.745605 29119688568.674271 29119705017.458752 29119696266.545338
2000 29119739264.851070 29119739145.362511 29119679698.255993 29119697107.035686 29119687570.261848

Table A.5: Average entropy results for Poisson (dominance-based models and
full iteration-based models)

k lloyd (initial) divisive (initial) coreset (initial) divisive (1 iteration)
2 29119829841.823570 29119834118.582336 29119830339.725380 29119834083.729424
5 29119824460.485817 29119834118.582336 29119823182.610420 29119833981.821205
10 29119818755.771263 29119834118.582336 29119817706.371761 29119833794.261883
25 29119809880.295830 29119834118.582336 29119808716.826767 29119833272.061081
50 29119801746.639599 29119831134.924324 29119801195.335762 29119826999.676563
75 29119796621.898232 29119831026.037468 29119797102.872581 29119821134.404926
100 29119792476.469379 29119831026.037468 29119792505.151337 29119820287.086292
250 29119776163.638206 29119830692.222801 29119776747.970688 29119806875.761356
500 29119758278.573223 29119830147.308483 29119758135.027264 29119791864.316280
750 29119744179.503807 29119829631.516975 29119743452.907707 29119780448.654339
1000 29119731565.728317 29119829153.366417 29119730926.447243 29119769887.850761
1250 29119720023.775257 29119828574.153561 29119719169.674782 29119760677.726326
1500 29119709137.791508 29119828076.959927 29119708235.133408 29119752364.448837
1750 29119698724.562111 29119827571.016731 29119697669.351452 29119744271.348927
2000 29119688818.625908 29119827027.752338 29119687819.115295 29119736441.474251

Table A.6: Average entropy results for Poisson (initial iteration-based models
and DivisiveClustering with a single iteration)

k ratio greedy star lloyd (full) divisive (full) coreset (full) lloyd (initial) divisive (initial) coreset (initial) divisive (1 iteration)
2 0.018000 0.135116 0.495420 0.495039 0.511791 0.031417 0.013560 0.344416 0.022249
5 0.021190 0.136633 1.172796 1.025198 0.820930 0.093801 0.012818 0.355642 0.030559
10 0.027839 0.144701 2.179667 2.177951 1.230562 0.214628 0.014171 0.397860 0.049974
25 0.041363 0.138769 5.232155 4.538169 1.801705 0.552225 0.014547 0.456867 0.086270
50 0.060990 0.141193 6.528851 6.826835 2.407553 1.109491 0.014525 0.558623 0.121002
75 0.060260 0.137981 9.724374 9.494791 2.925528 1.630370 0.014630 0.651176 0.168263
100 0.060939 0.139276 10.888260 10.143591 3.522485 2.146698 0.014989 0.740014 0.207255
250 0.059992 0.134116 18.989656 17.654201 5.494470 5.412886 0.014750 1.321167 0.543587
500 0.062596 0.131529 31.079115 29.880638 7.456691 10.876284 0.014964 2.296382 1.000713
750 0.057396 0.127812 40.678406 45.429981 10.937243 17.243368 0.015012 3.268727 1.492379
1000 0.056794 0.128239 50.310647 51.976858 14.322862 21.723420 0.015779 4.266434 2.033195
1250 0.057677 0.130346 62.213431 64.797581 14.107402 27.048870 0.016158 5.228098 2.605786
1500 0.058932 0.125964 69.047410 83.430343 17.136119 32.716511 0.015149 6.203094 3.186513
1750 0.057100 0.123272 73.152869 91.824522 16.818815 37.607582 0.015025 7.116022 3.873707
2000 0.056771 0.120528 85.461097 115.924309 20.810354 43.749034 0.016156 8.156780 4.412736

Table A.7: Average running time results (in seconds) for Poisson

DBD
PUC-Rio - Certificação Digital Nº 1812782/CA

	Theoretical and experimental results in information-theoretic clustering
	Resumo
	Table of contents
	Introduction
	Problem definition
	Our contribution
	Related work
	Theoretical results
	Experimental results

	Organization

	Background
	Hard clustering
	Information-theoretic clustering
	Frequency-weighted impurity measures
	Entropy
	Gini

	PMWEP and clustering for minimizing the Kullback-Leibler divergence

	Applications
	Word clustering
	Node splitting for decision-tree construction
	Channel quantization

	Theoretical results for the PMWGP
	Problem definition
	The geometric k-means problem
	Connection between the PMWGP and geometrical k-means
	Hardness of PWMGP
	Approximating the optimal Gini partition

	Dominance-based algorithms
	The Dominance algorithm
	Running time
	Approximation guarantees

	The Poly algorithm
	The Ratio-Greedy algorithm
	Implementation analysis
	Running time
	Approximation guarantees

	The Star algorithm
	Running time
	Implementation analysis
	Approximation guarantees

	Iteration-based algorithms
	Lloyd's algorithm with ++ initialization and Kullback-Leibler as dissimilarity measure
	Implementation analysis
	Running time

	Divisive information-theoretic clustering
	Implementation analysis
	Running time

	Clustering via lightweight coresets
	Implementation analysis
	Running time

	Experimental results
	Data sets
	The 20 Newsgroups data set
	The Reuters (RCV1) data set
	The Poisson data set

	Results
	20 Newsgroups
	Comparison between ``full'' iteration-based methods and dominance-based methods
	Comparison between ``initial'' iteration-based methods and dominance-based methods

	RCV1
	Comparison between ``full'' iteration-based methods and dominance-based methods
	Comparison between ``initial'' iteration-based methods and dominance-based methods

	Poisson
	Comparison between ``full'' iteration-based methods and dominance-based methods
	Comparison between ``initial'' iteration-based methods and dominance-based methods

	Conclusions
	Bibliography
	Tables

