
3
Robust Control Strategies

In this chapter, a new approach to modeling systems called chained
form system is presented, this technique will help to design the control
strategy. Additionally a new theorem is presented, this theorem is a robust
technique stabilize the TMR to the origin overcoming the problems in the
polar coordinates controller.

3.1
Chained Form System

This section presents, a well known transformation, called Chained form
system in which formulation is carried out using Lie’s Algebra. This form will
us some advantages in the control design.

3.1.1
Preliminary Definitions
Definition 3.1 (Chained Form System.) A general two-input system can
be defined in its chained form as follows [71]:

ẋ1 = v1

ẋ2 = v2

ẋ3 = x2v1

ẋ4 = x3v1

...

ẋn = xn1v1 .

(3-1)

In order to formulate the Chained Form System, a few definitions of Lie’s
Algebra [71, 72] are presented:

Definition 3.2 (Lie Brackets.) Given two functions f and g, that depend
of a vector q, there is an operator Lie bracket as follows:

[ f, g ] = ∂g

∂q
f(q)− ∂f

∂q
g(q) . (3-2)
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Example: In order to demonstrate the definitions of Lie’s Algebra, some parts
of the Chained Form formulation for the Unicycle model will be presented,
whose generalized coordinates are defined by q = [ x y θ ]T:

q̇ = g1 v + g2 ω ,

q̇ =


ẋ

ẏ

θ̇

 =


cos θ
sin θ

0

 v +


0
0
1

ω .

Now, we can implement the Lie Brackets for g1 and g2 as :

[ g1, g2 ] = ∂g2

∂q
g1(q)− ∂g1

∂q
g2(q) ,

[ g1, g2 ] =


0 0 − sin θ
0 0 cos θ
0 0 0




0
0
1

 −


0 0 0
0 0 0
0 0 0




cos θ
sin θ

0

 =


− sin θ
cos θ

0

 ,

which shows the process to find the Lie derivatives of two vectors.
Definition 3.3 (Lie derivatives) Lie derivatives define the time derivative
of a given V function along the flow of the function “f” and it is denoted as
LfV :

LfV = ∂V

∂q
f(q) , (3-3)

which results always will be a scalar function.

Example: Using the last example, applying the same kinematic model and
an arbitrary function h2 = x sin θ − y cos θ and the g1 vector, it is possible to
calculate the Lie derivatives:

Lg1h2 = ∂h2

∂q
g1 ,

Lg1h2 =
[
sin θ − cos θ (x cos θ + y sin θ)

] 
0
0
1

 ,

Lg1h2 = x cos θ + y sin θ .

Definition 3.4 (Nested Lie Derivatives) Some operations requires a
nested Lie Derivative, and it is defined as:

L
(n)
f V = Lf

(
L

(n−1)
f V

)
. (3-4)
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Definition 3.5 (Iterated Lie Products) In some cases is necessary to use
the Lie Brackets iteratively and is defined as follows:

adg1g2 = [ g1, g2 ] ,

ad(k)
g1 g2 = [ g1, ad

(k−1)
g1 g2 ] ,

adkg1g2 = [g1, · · · , [g1, · · · , [ g1, g2 ] · · · ]] .

(3-5)

Definition 3.6 (Differential of smooth Function) If we have a smooth
function β defined in Rn → R its differential is defined by:

dβ =
[
∂β

∂q1

∂β

∂q2
· · · ∂β

∂qn

]
. (3-6)

Example: Given the same smooth function h2 = x sin θ− y cos θ in the space
of q = [ x y θ ]T its differential is defined by:

dh2 =
[
∂h2

∂x

∂h2

∂y

∂h2

∂θ

]
,

dh2 =
[
sin θ cos θ (x cos θ + y sin θ)

]
.

Definition 3.7 (Linear Span distribution) The linear span of a set of
vectors in a vector space, is the intersection of all linear sub-spaces whose
contain vector in that set.

span(S) =
{

k∑
i=1

λivi | k ∈ N, vi ∈ S, λi ∈ K
}
. (3-7)

Example: Having the next span distribution:

∆ = span {v1 , v2 , v3} ,

= span




1
0
0

 ,


0
1
0

 ,


0
0
1


 .

The span set ∆ is the one that generates the R3 sub space, having the three
components v1, v2, v3 the canonical basis, capable to generate any vector in
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R3 by a linear combination of them. For example, the aleatory vector in R3

u = [15 10 27]T can be generated as follows using the span set.

u = λ1v1 + λ2v2 + λ3v3 ,

= 15


1
0
0

 + 10


0
1
0

 + 27


0
0
1

 .

Definition 3.8 (Involutive Distribution) A distribution is involutive if it
is closed under the Lie bracket, i.e.,

∆ involutive ⇐⇒ ∀ f, g ∈ ∆, [ f g ] ∈ ∆ . (3-8)

3.1.2
Conversion to Chained Form

In this section, the whole process of conversion of any controllable system
to the chained form is described, for this process all of the definitions on the
previous section are required.

Given a controllable system:

ẋ = u1g1(x) + u2g2(x) , (3-9)

where g1 and g2 are linearly independent and smooth. Then, exist a matrix
β(x) ∈ Rn×n and a diffeomorphism φ : Rn → Rn such that :

v = β(x)u z = φ(x) . (3-10)

Step I: Define the constant full rank and involutive distributions:

∆0 = span
{
g1 , g2 , adg1g2 , · · · , adn−2

g1 g2
}
,

∆1 = span
{
g2 , adg1g2 , · · · , adn−2

g1 g2
}
,

∆2 = span
{
g2 , adg1g2 , · · · , adn−3

g1 g2
}
.

(3-11)

Step II: Exist the function h1(x) and h2(x) such that

• h1 follows the next conditions:

dh1 ·∆1 = 0 ,

dh1 · g1 = 1 .
(3-12)
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• h2 follows the condition:

dh2 ·∆2 = 0 . (3-13)

Step III: Once the functions h1 and h2 are found, then it is required to map
φ : x→ z by a transformation given by:

z1 = h1 , v1 := u1 ,

z2 = Ln−2
g1 h2 , v2 :=

(
Ln−1
g1 h2

)
u1 +

(
Lg2L

n−2
g1 h2

)
u2 ,

...

zn−1 = Lg1h2 ,

zn = h2 .

(3-14)

This yields to the known chained form system:

ż1 = v1 ,

ż2 = v2 ,

ż3 = z2v1 ,

...

żn = zn1v1 .

(3-15)

A complete example for the conversion from a system to the chained form
system using kinematic model of the Unicycle Mobile Robot is in Appendix
B,in which all the steps are explained.

3.1.3
Chained Form for Tracked Mobile Robot

In this section, a new formulation of the chained form system for the
Tracked Mobile robot is presented, as it was explained in the above section
the kinematic model is required in equation (2-3), but it is necessary to see
another representation shown in equation (3-9):

q̇ = u1g1 + u2 g2 , (3-16)

= u1


d sin θ
−d cos θ

1

 + u2


cos θ
sin θ

0

 . (3-17)

Remark 1 Notice that the assignment of g1 and g2 plays an important rule

DBD
PUC-Rio - Certificação Digital Nº 1713256/CA



Chapter 3. Robust Control Strategies 73

in the chained form system, because they have effects in the conversion to the
chained form system, making it non-viable or viable.

In the case of chained system for TMR there are two possible choices:

1. g1 = [cos θ sin θ 0]T and g2 = [d sin θ − d cos θ 1]T ,

2. g1 = [d sin θ − d cos θ 1]T and g2 = [cos θ sin θ 0]T .

For the first choice, it can be verified that the chained system formulation is
non-viable, because in the formulation of the Step I, we can realize that
all the distributions are not involutive. Now, it is clear according to the
equation (3-17) that we choose the second choice, next process of formulation
is continued.

Step I: Defining the distributions:

∆0 = span {g1 , g2 , adg1g2} ,

∆1 = span {g2 , adg1g2} ,

∆2 = span {g2} .

Finding adg1g2:

adg1g2 = [ g1, g2 ] = ∂g2

∂q
g1(q)− ∂g1

∂q
g2(q) ,

[ g1, g2 ] =


0 0 − sin θ
0 0 cos θ
0 0 0



d sin θ
−d cos θ

1

 −


0 0 d cos θ
0 0 d sin θ
0 0 0




cos θ
sin θ

0

 =


− sin θ
cos θ

0

 .

Replacing the above calculations in the span distribution definition :

∆1 = span



d sin θ
−d cos θ

1

 ,


cos θ
sin θ

0

 ,

− sin θ
cos θ

0


 ,

∆2 = span




cos θ
sin θ

0

 ,

− sin θ
cos θ

0


 ,

∆3 = span




cos θ
sin θ

0


 .

It is important to verify whether that the distribution is involutive, it is clear
that the ∆1 and ∆3 are involutive, next the verification with ∆2 is done. For
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this objective, we need to check if [adg1 , g2] ∈ ∆2, finding [adg1 , g2]:

[ g2, [adg1 , g2] ] =


0 0 − cos θ
0 0 − sin θ
0 0 0




cos θ
sin θ

0

 −


0 0 − sin θ
0 0 cos θ
0 0 0



− sin θ
cos θ

0

 =


0
0
0

 ,

the result vector is in ∆2.
Step II: The functions h1 and h2 are required:

• The function h1 is chosen as h1 = θ , then dh1 is computed:

dh1 = ∂h1

∂q
=
[
0 0 1

]
.

Verifying each condition :

– Condition dh1 ·∆1 = 0 for ∆1 = {g2} :

[
0 0 1

] 
cos θ
sin θ

0

 = 0 .

– Condition dh1 ·∆1 = 0 for ∆1 = {adg1g2} :

[
0 0 1

] 
− sin θ
cos θ

0

 = 0 .

– Condition dh1 · g1 = 1 is verified:

[
0 0 1

] 
d sin θ
−d cos θ

1

 = 1 .

• The function h2 is chosen as: h2 = x sin θ − y cos θ, now finding dh2:

dh2 = ∂h2

∂q
=
[
sin θ − cos θ (x cos θ + y sin θ)

]
.

We verify that the condition dh2 ·∆2 = 0 :

[
sin θ − cos θ (x cos θ + y sin θ)

] 
cos θ
sin θ

0

 = 0 .
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Step III: Mapping φ : x→ z by a transformation given by:

z1 = h1 , v1 := u1 ,

z2 = Lg1h2 , v2 :=
(
L2
g1h2

)
u1 + (Lg2Lg1h2) u2 ,

z3 = h2 .

Having the function h1 , it can be observed that z1 = h1 = θ, next we will
calculate z2 = Lg1h2 as follows:

z2 = Lg1h2 = ∂h2

∂q
· g1 ,

=
[
sin θ − cos θ (x cos θ + y sin θ)

] 
d sin θ
−d cos θ

1

 ,

= x cos θ + y sin θ + d .

Having the expression for h2 , having z3 = h2 = x cos θ − y cos θ, the
computation of the expression v2 =

(
L2
g1h2

)
is done:

(Lg1 (Lg1h2)) = (Lg1 (x cos θ + y sin θ + d)) ,

=
[
cos θ sin θ (−x sin θ + y cos θ)

] 
d sin θ
−d cos θ

1

 ,

= −x sin θ + y cos θ .

And we find the other part for the expression of v2:

(Lg2 (Lg1h2)) = (Lg2 (x cos θ + y sin θ + d)) ,

=
[
cos θ sin θ (−x sin θ + y cos θ)

] 
cos θ
sin θ

0

 ,

= 1 .

The final expression for the mapping is :

z1 = θ , v1 = ω ,

z2 = x cos θ + y cos θ + d , v2 = (−x sin θ + y sin θ)ω + v ,

z3 = x sin θ − y cos θ .

(3-18)

In order to find the chained form, we derive the states z1, z2, z3 in function of
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the time, taking account the kinematic model in equation (2-3):

ż1 = ω ,

ż2 = (−x sin θ + y sin θ)ω + v ,

ż3 = ω(x cos θ + y cos θ) + ωd .

(3-19)

This yields to the chained form system:

ż1 = v1 ,

ż2 = v2 ,

ż3 = z2v1 + dv1 ,

(3-20)

as can be seen the chained form system has a drift into the model f = ωd.
It is also clear to see that there is a relationship among the input signal

control in the chained system u = [ v1 v2 ]T and the input control in the
Kinematic model (2-3),

v1 = ω ,

v2 = (−z3)ω + v .
(3-21)

Then, going to the matrix form:

V = Tu =
0 1

1 −z3

v
ω

 . (3-22)

As can be seen, we can express the input controls for the TMR u as a function
of T and V as follows:

u = T−1V ,v
ω

 =
0 1

1 −z3

−1 v1

v2

 .
(3-23)

3.2
Sliding Mode based Controller

In this section, the robust control technique called Sliding Mode is
presented as well as the development of a new theorem to control the TMR.
This new theorem stabilizes the TMR to the origin in despite of some
disturbances.

Sliding Mode is being widely used in practical control problems since
always exists discrepancies among the actual physical system and the mathe-
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matical representation, these discrepancies come from unknown disturbances,
uncertain plant parameters, or parasitic/unmodeled dynamics. The Sliding
Model Controller provides different advantages such as [73]:

• Robustness.

• Finite-time convergence.

• Reduced order compensated Dynamics.

In order to formulate the controller, the chained form system defined in
equation (3-20) is considered. Then we use Corollary 3.9 based on sliding mode
controller [72], that aim the control law stabilizes the chained system defined
on (3-20).

Corollary 3.9 If the initial conditions of the system on (3-20) will be defined
on the region Υ defined by:

Υ =
{
z ∈ Υ | α2

(
z2

1 + z2
2

)
> σ

}
, (3-24)

where:
σ(z) = 2z3 − z1z2, (3-25)

is a sliding surface.

Having the corollary, next step is formulate a theorem that is in charge to
control the TMR using the Chained Form System as a new representation of
the entire system.

Theorem 3.10 (Sliding Mode Control for Tracked Mobile Robot)
Consider the kinematic model of the Tracked Mobile Robot in (2-3), and the
coordinate transformations defined in (3-19) the chained form (3-20) holds.
Then the following stabilizing control laws:

v1 = −z1 − αz2sign(σ) ,

v2 = −z2 + αz1sign(σ) .
(3-26)

where α > 0, ensure the stabilization of the posture error eq to zero, where the
control inputs v1∈R and v2∈R, has a transformation for the control inputs in
the kinematic model for Tracked Mobile Robot (3-23).

Proof. For proof, please see the Appendix A.3. �
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3.2.1
Verification

In this section,it will present the numerical simulations for the SMC
controller, these tests were performed using the following parameters :

α = 0.5 ,

h = 0.01 ,

k = 0.1 ,

(3-27)

where α is a control gain, h is the sampling time and k is the constant of the
soil.

Having initial configurations for the robot as are shown in table 3.1.

Table 3.1: Initial configurations for TMR

Initial
Configuration

x(m) y (m) θ (rad)

C1 1.5 1.5 π
2

C2 -1.5 -1.5 π
2

C3 1.5 -1.5 π
2

Then the desired configuration will be as the other controllers qd =
[ 0 0 0 ]T

First Test Theorem 2.1 shows the control law for regulation of the
Tracked Mobile Robot using Cartesian approach, this controller drives the
TMR to any configuration in the inertial frame, the kinematic model (2-3)
has a factor to indicate the slippage d (2-8), in this test it will be studied the
variation of the value of k.

Table 3.2: Different parameters on slippage gain of TMR in SMC

Configuration k

C1 0.01
C2 0.1
C3 0.5
C4 1.0

In the first test, the parameter k in equation (2-8) will vary according
to the Table 3.2 and the robot will go from the same initial configuration
q0 =

[
1.5 1.5 π

2

]T
.
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Figure 3.1: Simulation results: (a) robot position in the x-axis over time; (b)
robot position in the y-axis over time. Legend: C1 (−), C2 (−.), C3 (−−), C4
(. .).

As a result of the simulation, in Figure 3.1 can be observed the position
and error of the different coordinates of the TMR q = [ x y θ ]T. It can be
observed as greater is the parameter k the results in the simulation become
unstable.
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Figure 3.2: Simulation results: (a) robot trajectories in the xy plane; (b) robot
orientation θ over time; (c) linear velocity v over time; (d) angular velocity ω
over time. Legend: C1 (−), C2 (−.), C3 (−−), C4 (. .).

In Figure 3.2, it is observed that there are different results in the variation
of the parameters: in the 3.2 (a) can be seen the trajectories generated for the
robot, can be seen as the parameter k is bigger the trajectory becomes irregular.
The Figure 3.2 (b) shows the behavior of the slip parameter it can be seen the
variation of the parameter k having the chattering and in the highest value
can be observed the value becoming unstable, in Figure 3.2 (c), (d) it is shown
the control inputs having the chattering and the unstable values of them.

As a conclusion can be observed that the variation of the parameter k
has influence in the trajectory, velocities and slip parameter d.

Second Test In the second test, three different initial configurations of
the Tracked Mobile Robot are considered, according the to the Table 3.1.
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Figure 3.3: Simulation results: (a) robot position in the x-axis over time; (b)
robot position in the y-axis over time. Legend: C1 (−), C2 (−.), C3 (−−).

Figure 3.3 shows the behavior of the position and error of the different
coordinates of the TMR q = [ x y θ ]T, it can be observed that the coordi-
nates reach the desired configuration and the error is close to zero, and the
convergence time is higher than the other controllers.
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Figure 3.4: Simulation results: (a) robot trajectories in the xy plane; (b) robot
orientation θ over time; (c) linear velocity v over time; (d) angular velocity ω
over time. Legend: C1 (−), C2 (−.), C3 (−−).

In Figure 3.4 (a) the robot trajectories can be observed: the robot
reaches the desired configuration, although having different trajectories based
on the initial configuration. Figure 3.4 (b) shows the slip parameter having a
chattering phenomena. In Figure 3.4(c) (d) is shown the control inputs, the
linear velocity converges to zero as was mentioned in Theorem 2.1.

It can be observed that the control inputs has the chattering, this is a
inherent problem in the SMC controller it can be solved using a second order
controller.

Third Test In the third test, three different initial configurations of
the Tracked Mobile Robot are considered, and we use the same uncertainty of
polar coordinates, as is shown in the equation (2-21).
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Figure 3.5: Simulation results: (a) robot position in the x-axis over time; (b)
robot position in the y-axis over time. Legend: C1 (−), C2 (−.), C3 (−−).

Figure 3.5 shows the behavior of the position and error of the different
coordinates of the TMR q = [ x y θ ]T, it can be observed that the coordinates
reach the desired configuration and the error is close to zero, in despite of the
uncertainty the controller is capable to have a good performance.
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Figure 3.6: Simulation results: (a) robot trajectories in the xy plane; (b) robot
orientation θ over time; (c) linear velocity v over time; (d) angular velocity ω
over time. Legend: C1 (−), C2 (−.), C3 (−−).

In Figure 3.6 (a) the robot trajectories can be observed: the robot reaches
the desired configuration. Figure 3.6 (b) shows the slip parameter as the robot
describes the chattering phenomena which is a problem in the SMC controller.
In Figure 3.6(c) (d) is shown the control inputs, the linear velocity converges
to zero as was mentioned in Theorem 2.1, but it has the problem of chattering.

As a conclusion, can be observed that the robot reaches the desired
configuration in all the initial cases. It is worth to remark that the problem of
chattering is still present, this problem could be solved using a second order
sliding mode.
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