
2

Sea Surface Elevation

Pérez [29] states that ocean waves are random in terms of both time and space

It is assumed that the variations of the stochastic characteristics of the sea

are much slower than the variations of the sea surface itself. Therefore the

elevation of the sea at a position x, y, given by ζ(x, y, t), can be considered

a realization of a stationary process. The following simplifying assumptions

about the underlying model are usually made:

– The observed sea surface, at a certain location and for short periods of

time, is considered a realization of a stationary and homogeneous, zero

mean Gaussian stochastic process;

– Under a Gaussian assumption, the process, in a statistical sense, is

completely characterized by the power spectral density function S.

The validity of these assumptions have been investigated via analysis of

time series recorded from wave riding buoys in the North Atlantic Ocean and

it has been reported that

– For low and moderate sea states, significant wave height (h1/3) lower than

4 m, the sea can be considered stationary for periods over 20 min. For

more severe sea states, stationarity can be questioned even for periods of

20 min.

– For low to medium states, h1/3 < 8 m, Gaussian models are still accurate

but deviations from Gaussianity slightly increase with the increasing

severity of the sea state.

Langley, [21], states that the statistical distribution of the parameters of

the sea surface elevation at a particular location is normally determined by

measuring values at three hourly intervals over an extended period. In this

work it was considered that the parameters of sea surface elevation remain

unchanged for three hours.

In this chapter the steps for obtaining the sea surface elevation will be

explained.
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Figure 2.1: Obtaining the sea surface elevation

2.1

Regular Waves

A conceptual model to describe the sea surface elevation is given by the sum of a

large number of essentially independent regular (sinusoidal) contributions with

random phases. In this representation, the sea surface elevation at a location

x, y with respect to a X, Y , and Z global coordinate system is given by [29]

ζ(x, y, t) =
N
∑

i=1

ζi(x, y, t) =
N
∑

i=1

ζ̄icos (kixcosχ+ kiysinχ+ ωit+ θi) (2.1)

where ζi(x, y, t) is the contribution of the regular or harmonic traveling wave

components i progressing at an angle χ with respect to the X direction and

with a random phase θi. The parameters ki (wave number), ωi (wave frequency

seen from a fixed position) and ζ̄i (constant wave amplitude) characterize each

component. For each realization, the phase angle θi of each component is chosen

to be a random variable with uniform distribution on the interval [−π, π]. This
choice ensures the stationarity of ζi(x, y, t) [29].

For each regular wave component i, the velocity with which the wave

crest moves relative to the ground, the phase velocity, is given by [29]

ci =

√

gλi
2π

, i = 1, 2, . . . , N (2.2)
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where g is the gravity acceleration and λi is the wavelength of the component

i. The wave number is given by [29]

ki =
2π

λi
, i = 1, 2, . . . , N (2.3)

and the wave frequency is given by [29]

ωi =
√

gki =
g

ci
, i = 1, 2, . . . , N (2.4)

The Eq. (2.4) is known as the dispersion of gravity waves and establishes that

the phase velocity is inversely proportional to its frequency. This means that

long waves propagate faster than short ones. Considering that the observations

are made at the origin of the reference frame and that the waves come from

an angle of incidence χ = 0 with respect to the reference frame. In this case,

the Eq. (2.1) becomes [29]

ζ(t) =
N
∑

i=1

ζi(t) =
N
∑

i=1

ζ̄icos (ωit+ θi) (2.5)

2.2

Irregular Waves

Since observed waves are not regular, the wave height and frequency are not

easily defined. Therefore, the wave height spectral density is utilized for a

statistical description of the sea surface elevation. The sea surface elevation

can be related to its Fourier transform by [4]

ζ(t) =
1

2π

∫

∞

−∞

X(ω)exp(−iωt)dω (2.6)

Considering the sea surface elevation an ergodic process, its mean-square

value can be approximated by the time average over a long period of time [4]

E
{

ζ2(t)
}

= lim
Ts→∞

1

Ts

1

2π

∫

∞

−∞

|X(ω)|2dω (2.7)

The power spectral density (spectrum) is defined as [4]

Sζζ(ω) =
1

2πTs
|X(ω)|2 (2.8)

and the mean-square of sea surface elevation is given by [4]

E
{

ζ2(t)
}

=

∫

∞

−∞

Sζζ(ω)dω (2.9)

The spectrum is related to the autocorrelation function by the Wiener-

Khinchine relations [4]
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Sζζ(ω) =
1

2π

∫

∞

−∞

Rζζ(τ)exp(−iωτ)dτ (2.10)

Rζζ(τ) =

∫

∞

−∞

Sζζ(ω)exp(iωτ)dω (2.11)

For a zero-mean process, the mean-square value equals the variance. At

any particular wave frequency ωi the variance of that component within a band

∆ω centered at ωi is approximated by [29]

var [ζi(t)] =
1

2
ζ̄2i ≈

∫ ωi+
∆ω

2

ωi−
∆ω

2

Sζζ(ω)dω (2.12)

and the amplitudes of the wave components can be approximated by [29]

ζ̄i ≈

√

√

√

√2

∫ ωi+
∆ω

2

ωi−
∆ω

2

Sζζ(ω)dω (2.13)

For ocean applications, a one-sided spectrum given in Hertz (Hz) is often

used. For this one-sided spectrum, a superscript o is given and it can be

obtained from the two-sided spectrum by the relation [4]

So
ζζ(ω) = 2Sζζ(ω), ω ≥ 0 (2.14)

The two-sided spectrum given in radians can be transformed to the

spectrum given in Hertz by the relation

Sζζ(f) = 2πSζζ(ω) (2.15)

and the two-sided spectrum given in radians can be transformed to the one-

sided spectrum given in Hertz by the relation

So
ζζ(f) = 4πSζζ(ω), f, ω > 0 (2.16)

2.3

Short-term Statistics

An irregular sea state is described by one of its statistics named significant

wave height. This statistic is the average height of the highest one-third of all

waves and it is found that the observed wave height is consistently very close

to the significant wave height [4].

When describing short-term statistics two assumptions are made, namely,

stationarity and ergodicity. These assumptions are valid only for short time

intervals. The wave elevation is assumed to be weakly stationary so that its

autocorrelation is a function of time lag only. As a result, the mean and the

variance are constant and the spectral density is invariant with time and the
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significant wave height and the significant wave period are constant when

considering short term statistics. In this case the individual wave height and

wave period are the random variables.

The rate at which the random process ζ crosses an elevation represented

by the random variable Z with a positive slope is given by [4]

νz+ =

∫

∞

0

vfζζ̇(z, v)dv (2.17)

where fζζ̇ is a joint probability density function. The expected time of the first

up-crossing is given by [4]
E{T} = 1/νz+ (2.18)

The probability density function of the maxima is given by [4]

fA(a) =

∫ 0

−∞
−wfζζ̇ζ̈(a, 0, w)dw

∫ 0

−∞
wfζ̇ζ̈(0, w)dw

(2.19)

where fζζ̇ζ̈ is a joint probability density function. If ζ is a Gaussian process the

joint probability density functions are [4]

fζζ̇(x, ẋ) =
1

2πσζσζ̇
exp



−1
2

(

x

σζ

)2

− 1

2

(

ẋ

σζ̇

)2


 ,

−∞ < x <∞,−∞ < ẋ <∞ (2.20)

and [4]

f
ζ

˙
ζζ̈
(x, ẋ, ẍ) =

1

(2π)3/2|M |1/2 exp
[

−1
2
({x} − {µζ})T [M ]−1 ({x} − {µζ})

]

(2.21)
where

[M ] =









σ2
ζ 0 σ2

ζ̇

0 σ2
ζ̇

0

σ2
ζ̇

0 σ2
ζ̈









(2.22)

and

x− µζ =







x− µζ

ẋ− µζ̇

ẍ− µζ̈






(2.23)

Then, for a stationary Gaussian process, the up-crossing rate is given by

[4]
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ν+z =

∫

∞

0

fζζ̇(Z, ẋ)ẋdẋ

=
1

2πσζσζ̇
exp

[

−1
2

(

Z

σζ

)2
]

∫

∞

0

exp



−1
2

(

ẋ

σζ̇

)2


 ẋdẋ

=
σζ̇
2πσζ

exp

[

−1
2

(

Z

σζ

)2
]

(2.24)

and the probability density function of maxima is given by the Rice density

function

fA(a) =

√
1− α2

√
2πσζ

exp

(

−a2
2σ2

ζ (1− α2)

)

+a
α

σ2
ζ

Φ

(

aα

σζ
√

(α2 − 1)

)

exp

(

−a2
2σ2

ζ

)

(2.25)

where Φ is the cumulative distribution function of the standard normal random

variable given by

Φ(x) =
1√
2π

∫

∞

−∞

x exp
(

−z2/2
)

dz (2.26)

and α is the irregularity factor, equivalent to the ratio of the number of zero

up-crossings to the number of peaks. This factor ranges from 0 to 1 and it is

also equal to

α =
σ2
ζ̇

σζσζ̈
(2.27)

If ζ is a broad-band process, then α = 0 and the Rice distribution is

reduced to the Gaussian probability density function given by

fG(a) =
1√
2πσζ

exp

(

−a2
2σ2

ζ

)

for −∞ < a <∞ (2.28)

If ζ is a narrow-band process, it is guaranteed that it will have a peak

whenever it crosses its mean. In this case the irregularity factor is close to

unity and the Rice distribution is reduced to the Rayleigh probability density

function given by

fR(a) =
a

σ2
ζ

exp

(

−a2
2σ2

ζ

)

for 0 < a <∞ (2.29)

That means that the amplitudes of a narrow-band stationary Gaussian process

are distributed according to the Rayleigh distribution.

The maxima of ζ, A, are the amplitudes of the sea surface elevation. The
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wave height, H = 2A, is then distributed according to [4]

fH(h) = fR(H/2)
dA

dH

=
h

4σ2
ζ

exp

(

−1
2

h2

4σ2
ζ

)

for 0 < h <∞

(2.30)

For any given wave the probability that the height is less than h (the cumulative

distribution) is

FH(h) = 1− exp

(

−1
2

h2

4σ2
ζ

)

for 0 < h <∞ (2.31)

If ζ is a stationary narrow-band process so that the peaks are distributed

according to the Rayleigh distribution the root mean square of wave height is

given by
√

E{H2} =
∫

∞

0

h2fH(h)dh = 2
√
2σζ (2.32)

In addition, it can be shown that the average wave height is given by

HO ≡ E{H} =
√
2πσζ (2.33)

and the significant wave heights is given by

HS ≡ E{H1/3} = 4σζ (2.34)

where E{H1/3} is the expectation of the highest one-third of the waves.

2.4

Wave Spectrum

In any particular sea state, the sea surface elevation presents irregular char-

acteristics. After the wind has blown constantly for a certain period of time

the sea surface elevation becomes stationary. In this case the sea is referred

to as fully-developed. If the irregularity of the observed waves is only in the

dominant wind direction so that there are mainly uni-dimensional wave crests

with carrying separation and remaining parallel to each other, the sea is re-

ferred to as a long-crested irregular sea, [29]. For a fully-developed sea the

Pierson-Moskowits (PM) spectrum for the wave amplitudes in terms of the

wind velocity is given by [4]

So
ζζ(ω) =

8.1× 10−3g2

ω5
exp

(

−0.74
(

g

Vw

)4

ω−4

)

(2.35)
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where g is the gravitational constant and Vw is the wind speed at a height of

19.5m above the still water. The PM spectrum can be written in terms of the

modal frequency, ωm, the one at which the spectrum is maximum. In this case

it is given by

So
ζζ(ω) =

8.1× 10−3g2

ω5
exp

(

−1.25ω4
mω

−4
)

(2.36)

In some cases it may be necessary to express the spectrum in terms of

the significant wave height. For a narrow band Gaussian process the significant

wave height is related to the standard deviation of the sea surface elevation by

Eq. (2.34), then the spectrum is given by [4]

So
ζζ(ω) =

8.1× 10−3g2

ω5
exp

(

−0.0324
(

g

HS

)2

ω−4

)

(2.37)

The PM spectrum is applicable for deep water, unidirectional seas, fully

developed and local-wind generated with unlimited fetch and was developed

for the North Atlantic. The effect of swell is not accounted for in this spectrum

and it is found that even though it was derived for the North Atlantic the

spectrum is valid for other locations [4].

2.5

Long-term Statistics

In order to predict the possible sea surface elevations that the offshore platform

can be subjected to it is necessary to know the values of significant wave

heights and its probability of occurrence for the location where it will be

installed. For long-term statistics the significant wave height follows the

Weibull distribution closely. The probability density function for a three

parameter Weibull distribution is given by [4]

fW (HS) =
m

β

(

Hs − γ

β

)m−1

exp

(

−
(

HS − γ

β

)m)

γ < HS (2.38)

and the probability distribution function is given by

FW (HS) = 1− exp

(

−
(

HS − γ

β

)m)

γ < HS (2.39)

where γ, β and m are the Weibull parameters that can be determined by least-

squares methods, provided that significant wave height data over a long period

of time are available.

The National Data Buoy Center (NBDC) provides historical data about

significant wave height collected from several stations all over the world. It

maintains a network of data collecting buoys and coastal stations. The buoys
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measure wave height and period, and sea surface temperature as well.

Most of the commonly used probability density functions can be obtained

fromWeibull’s equation by the proper choice of the parameters in that equation

[27]. The Rayleigh probability density function for the significant wave height

is given by [27]

fR(HS) =
2HS

H2
rms

exp

(

−
(

HS

Hrms

)2
)

(2.40)

and by comparing the expressions in Eqs. (2.38) and (2.40) it can be noted

that the Rayleigh probability density function corresponds to the parametric

values of m = 2, γ = 0 and β = Hrms. The mean wave height is given by

Havg =

∫

∞

0

HSf(HS)dHS (2.41)

where f is a probability density function and considering the Weibull distri-

bution for the significant wave height the mean value is given by

Havg = βΓ

(

m+ 1

m

)

+ γ (2.42)

where Γ is the Gamma function given by

Γ(
m+ 1

m
) =

∫

∞

0

H
m+1

m
−1

S e−HSdHS =

∫

∞

0

H
1/m
S e−HSdHS (2.43)

The mean square significant wave height is given by

H̄2 =

∫

∞

0

H2
Sf(HS)dHS (2.44)

and considering the Weibull distribution for the significant wave height the

mean square and the root-mean-square are given by

H̄2 = H2
rms = β2Γ

(

m+ 2

m

)

+ 2γβΓ

(

m+ 1

m

)

+ γ2 (2.45)

Etube [9] states that for locations at North Sea the probability distribu-

tion function of significant wave height can be given by the Gumbel distribution

FG(Hs) = ηexp

(

−exp
(

α−Hs

λ

))

(2.46)

and the probability density function is given by

fG(Hs) =
η

λ
exp

(

α−Hs

λ

)

exp

(

−exp
(

α−Hs

λ

))

(2.47)

where α, λ and η are site-dependent parameters.
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2.6

Reduced-order Model

The use of a sea state representation with a large number of uncorrelated

sources of uncertainty in nonlinear wave body interactions leads to a compu-

tational task which may become prohibitively expensive when the statistics

of extreme loads and responses are necessary [37]. Given the power spectral

density of the signal an optimal set of orthogonal functions, a basis, exists

that fits the signal with the minimum number of uncorrelated sources of un-

certainty [37]. This basis follows from the spectral decomposition theorems of

Loève (1945) and Karhunen (1947) [2]. The Karhunen-Loève (KL) is an opti-

mal basis to construct a reduced order model of the sea surface elevation in the

sense that the projection on to the subspace generated by this basis contains

the maximal amount of energy for a given number of trial functions [23]. An

application for reduced-order models can be found on [30].

The use of KL basis to represent a stochastic process is based on two

assumptions: the process is stationary in time and ergodic. For long periods

of time the sea surface elevation is not a stationary process, as the statistical

distribution ofHs is normally determined by measuring the value ofHS at three

hourly interval over an extended period, [21], the process can be considered

stationary only for a three hour period.

Considering the sea surface elevation at the coordinates X = Y = 0, the

autocorrelation function of the signal is given by [37]

R(τ) = E[ζ(t)ζ(t+ τ)] = R(−τ) (2.48)

Since the two-sided power spectral density of the signal ζ(t) is the Fourier

transform of the autocorrelation function, Eqs. (2.10) and (2.11), the following

standard relation holds [37]
σ2
ζ = R(0) (2.49)

Considering a signal over a finite time interval (−T, T ) the Karhunen-
Loève theorem states that [37]

ζ(t) =
∞
∑

n=0

αnfn(t) for − T < t < T (2.50)

Since ζ is a stochastic process, the coefficients αn are independent random

variables such that [37]
E
(

α2
n

)

= κn (2.51)

and
E (αmαn) = 0 for m 6= n (2.52)

The deterministic functions fn are solutions of an eigenvalue problem cast

in the form of an integral equation of the first kind with the autocorrelation
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function as its kernel [37]

∫ T

−T

R(t− τ)fn(τ)dτ = κnfn(t) for n = 0, 1, . . . (2.53)

∫ T

−T

fm(τ)fn(τ)dτ =

{

1, m = n

0, m 6= n
(2.54)

R(t− τ) =
∞
∑

n=0

κnfn(t)fn(τ) (2.55)

R(t) =
∞
∑

n=0

κnfn(0)fn(t) (2.56)

σ2
ζ = R(0) =

∞
∑

n=0

κnfn(0)fn(0)
2 (2.57)

αn =

∫ T

−T

ζ(t)fn(t)dt (2.58)

It can be observed that [37] [2]

– The independent random variables αn are Gaussian if the signal ζ is

Gaussian, which is often the case with ocean waves

– The eigenfunctions fn are even and odd functions for positive and

negative values of their argument in the range (−T, T )
– The rate of decay of the eigenvalues κn with increasing n suggests the

number of the terms that are sufficient to keep in the stochastic series

expansion, Eq. (2.50). If this number is small, the signal is governed by

a small number of independent sources of uncertainty with statistical

properties given by Eqs. (2.51) to (2.58)

– The basis fn is optimal in the sense that it allows the representation of

the autocorrelation function with the minimum number of therms in the

series in Eq. (2.55)

– The KL representation maximizes the Shannon entropy measure which

reveals the minimum number of terms that are sufficient for the repre-

sentation of the variability of the signal.

Ritto et al [31] proposed two methods of executing the proper orthogonal

decomposition (POD) of the dynamics of the system. In the following sections

these two methods will be explained.
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2.7

Direct Method

Let the sea surface elevation ζ(·, t) be a vector field in Ω ⊂ R
2 and t ∈ R, i.e.,

ζ(x, y, t). If ζ is decomposed in two parts being one invariant in time, E[ζ(·, t)],
and the second part given by

ν(·, t) = ζ(·, t)− E[ζ(·, t)] (2.59)

then ν is a stochastic process with zero mean and, as a consequence, its

correlation tensor equals its autocorrelation tensor [31]. If ν is real then the

spatial autocorrelation function of two of its points is defined by the tensorial

product
R (x,x′) = E [ν(x, t)⊗ ν(x′, t)] (2.60)

Using the ergodicity hypothesis, one can write

R (x,x′) =
1

τ

∫ τ

0

ν(x, t)ν(x′, t)dt (2.61)

where τ is the duration of the analysis. The eigenvalues (or proper orthogonal

values, POVs) and the eigenfunctions (or proper orthogonal modes, POMs)

are computed solving the following eigenvalue problem
∫

Ω

R (x,x′)ψk(x)dx = λkψk(x) (2.62)

Considering the discretized field

ζ(xi, yj, t) (2.63)

where i, j assume values from 1 to Nx, Ny respectively. For each instant of time

there are N sample values, N = 2 × Nx × Ny. The number 2 multiplying the

expression is due to the two dimensional fields, ζx and ζy.The sample can be

ordered: ζ(x1, ·), ζ(x2, ·), . . . , ζ(xN , ·). The dynamic system displacement are

numerically calculated in N points in M instants of time

[Z] = [ζ (x1, ·) , . . . , ζ (xN , ·)] =

















ζ (x1, t1) . . . ζ (xN , t1)

. . .

. . .

. . .

ζ (x1, tM) . . . ζ (xN , tN)

















(2.64)

Using the stationarity and ergodicity assumption, the variation of the

field with respect to the mean value is given by
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[V ] = [Z]− 1

M

















∑M
i=1 ζ (x1, ti)) . . .

∑M
i=1 ζ (xN , ti))

. . .

. . .

. . .
∑M

i=1 ζ (x1, ti)) . . .
∑M

i=1 ζ (xN , ti))

















(2.65)

and the spatial autocorrelation matrix is given by

[R] =
1

M
[V ]T [V ] (2.66)

where the matrix [R] is symmetric by construction. The discretized eigenvalue

problem is given by
[R]ψk = λkψk (2.67)

which is the discretized version of Eq. (2.62). The eigenvectors ψk (POMs) are

used to construct the basis for projection of the dynamics of the system, they

are also called Empirical Modes. The POVs are given by the eigenvalues λk

of the matrix [R]. It can be noted that the dimension of matrix [R] depends

only on the spatial discretization. Therefore, the use of the direct method is

recommended when the spatial mesh is coarse and there are many instants of

time.

2.8

Snapshots Method

A snapshot is a configuration of the system at an instant of time. In this

method the POMS are computed without using the matrix [R], Eq. (2.66).

Substituting the Eq. (2.61) into (2.62) it is obtained
∫

Ω

1

τ

∫ τ

0

ν(x, t)ν(x′, t)dtψk(x
′)dx = λkψk(x) (2.68)

which can be rewritten as

1

τ

∫ τ

0

ν(x, t)

∫

Ω

ν(x′, t)ψk(x
′)dxdt = λkψk(x) (2.69)

and ψk can be obtained as

ψk(x) =

∫ τ

0

ν(x, t)Ak(t)dt (2.70)

where
Ak(t) =

1

τλk

∫

Ω

ν(x′, t)ψk(x
′)dx (2.71)

which means that ψk(x) is a linear combination of ν(x, t). For a finite number

of instants tm(m = 1, 2, . . . ,M), a snapshot is defined as where

ν(m) = ν (·, tm) (2.72)
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Substituting the Eq. (2.71) in to 2.69 it is obtained

1

τ

∫ τ

0

ν(x, t)

∫

Ω

ν(x′, t)

∫ τ

0

ν(x, t)Ak(t)dtdxdt = λk

∫ τ

0

ν(x, t)Ak(t)dt (2.73)

which can be rewritten as
∫ τ

0

∫ τ

0

Ak (t
′)D (t, t′) dtdt (2.74)

where
D (t, t′) =

1

τ

∫

Ω

ν (x′, t) ν (x′, t′) dx (2.75)

Discretizing the Eq. (2.74) it is obtained

[D]Ak = λkAk (2.76)

The matrix [D] is computed using Eq. (2.65) and 2.75

[D] =
1

M
(2.77)

and it has dimensions M ×M . The eigenvalues of [D] are the POVs and the

POMs are calculated as
ψk = [V ]TAk (2.78)

which is the discretized version of Eq. (2.71) and Ak are the eigenvectors of

matrix [D]. Therefore, the POMs, ψk, are linear combinations of the snapshots,

which in turn are the lines of matrix [V ].

It can be noted that the dimensions of matrix [D] depend only on the

number of snapshots. Therefore, the use of this method is recommended when

the spatial mesh is very refined and there are not many instants of time, as in

rapidly decaying processes.
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