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Abstract

De Melo Machado, Aline; Klein, Silvius (Advisor). Limit
Theorems for Uniquely Ergodic Systems. Rio de Janeiro,
2018. 79p. Dissertação de Mestrado – Departamento de Matemá-
tica, Pontifícia Universidade Católica do Rio de Janeiro.

The fundamental results in ergodic theory – the Birkhoff theorem and the
Kingman theorem – refer to the almost everywhere convergence of additive
and respectively subadditive ergodic processes. It is well known that given
a uniquely ergodic system and a continuous observable, the corresponding
Birkhoff averages converge everywhere and uniformly. It is therefore natural
to ask what happens with Kingman’s theorem when the system is uniquely
ergodic. The first objective of this dissertation is to answer this question
following the work of A. Furman. Moreover, we present some extensions
and applications of this result for linear cocycles, which were obtained by
S. Jitomirskaya and R. Mavi. Our second objective is to prove a new result
regarding the rate of convergence of the Birkhoff averages for a certain type
of uniquely ergodic process: a Diophantine torus translation with Hölder
continuous observable.

Keywords
Uniquely Ergodic Dynamical Systems; The ergodic theorems; Linear

cocycle; Lyapunov exponents; Rate of convergence of Birkhoff averages.
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Resumo

De Melo Machado, Aline; Klein, Silvius. Teoremas Limite para
Sistemas Unicamente Ergódicos. Rio de Janeiro, 2018. 79p.
Dissertação de Mestrado – Departamento de Matemática, Pontifícia
Universidade Católica do Rio de Janeiro.

Os resultados fundamentais da teoria ergódica – o teorema de Birkhoff
e o teorema de Kingman – se referem a convergência em quase todo
ponto de um processo ergódico aditivo e subaditivo, respectivamente. É
bem conhecido que dado um sistema unicamente ergódico e um observável
contínuo, as médias de Birkhoff correspondentes convergem em todo ponto e
uniformemente. Desta forma, é natural também se perguntar o que acontece
com o teorema de Kingman quando o sistema é unicamente ergódico. O
primeiro objetivo desta dissertação é responder a essa pergunta utilizando
o trabalho de A. Furman. Mais ainda, apresentamos algumas extensões e
aplicações desse resultado para cociclos lineares, que foram obtidas por S.
Jitomirskaya e R. Mavi. Nosso segundo objetivo é provar um novo resultado
sobre taxas de convergências de médias de Birkhoff, para um certo tipo de
processo unicamente ergódico: uma translação diofantina no toro com um
observável Hölder contínuo.

Palavras-chave
Sistemas Dinâmicos Unicamente Ergódicos; Teoremas Ergódicos;

Cociclo linear; Expoente de Lyapunov; Taxa de convergência de médias
de Birkhoff.
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1
Introduction

A dynamical system consists of a space X and a rule that determines
how points in X evolve in time. Time can be either continuous (e.g. indexed
by R) or discrete (e.g. indexed by Z).

In this work, we only consider the case of discrete time. Thus, the law
of our system is a single map T : X → X and, given x ∈ X we can think of
T n(x) as representing where x has moved to after time n ∈ N.

We call the sequence

x, T (x), T 2(x), . . . , T n(x), . . .

the orbit of x. If T is an invertible map, then the sequence above is called the
forward orbit of x.

One of the objectives of the area of dynamical systems is to study the
behavior of these orbits. In general it is difficult or impossible to understand
the behavior of every orbit. Instead, we could consider almost every orbit,
with respect to an appropriate measure µ on the system. Such a measure is a
T -invariant probability measure, that is, µ(X) = 1 and

µ(E) = µ(T−1(E)), for every measurable subsetE ⊂ X.

A measurable subset E of X is said to be T -invariant if E = T−1(E).
Heuristically, we say that (X,µ, T ) is an ergodic system if the system is
irreducible, in the sense that any T -invariant subset of X has zero measure
or total measure. We call the triple (X,µ, T ) a uniquely ergodic system if µ is
the only T -invariant probability measure on X.

Since understanding the behavior of orbits may be a very complex
problem, we can use an observable1 function to still derive some characteristics
of the system.

Ergodic theory has many applications in other areas of Mathematics

1a measurable function which is absolutely integrable.
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Chapter 1. Introduction 11

and Physics. For example, in Physics, we can use methods of ergodic theory
in statistical mechanics to study the long-term average behavior of complex
systems, such as the interactions of vibrating atoms in a crystal or the
behavior of molecules in a gas. Moreover, we can apply the results of ergodic
theory in many other areas of Mathematics. In geometry, it is very useful for
studying geodesic flows on Riemannian manifolds. There are also applications
in probability theory (for example, the theory of Markov chains). Furthermore,
ergodic theory has connections with other fields such as harmonic analysis and
number theory.

One of the first results in ergodic theory is the Poincaré recurrence
theorem, which states that almost all points in any subset of the total space
eventually revisit the set. Henri Poincaré discussed this theorem in 1890 [1]
and Constantin Carathéodory proved it using measure theory in 1919 [2].

Figure 1.1: Poincaré Recurrence

In 1931, Birkhoff proved one of the most important theorems in ergodic
theory [3]. Namely, given an ergodic system, the time average of a function
along the trajectories converges almost everywhere to the space average. This
result is known as the pointwise ergodic theorem. Moreover, for a uniquely er-
godic system and a continuous observable, the corresponding Birkhoff averages
converges everywhere and uniformly (see [4]).

A subadditive process on (X,µ, T ) is a sequence {fn}n∈N of a measurable
functions such that

fn+m ≤ fn + fm ◦ T n for all n,m ∈ N.
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Chapter 1. Introduction 12

In 1968, Kingman established his subadditive ergodic theorem [5], that
asserts the almost everywhere convergence of subadditive ergodic processes.
That is, given any subadditive sequence {fn}n∈N in L1(X) (relative to the
map T : X → X) the sequence

{
fn
n

(x)
}
n∈N

converges to a constant L(f), for
almost every x ∈ X. The constant L(f) is called the Lyapunov exponent of the
subadditive process {fn}n∈N.

It is natural to ask what happens with Kingman’s theorem when the
system is uniquely ergodic. More precisely, it would be interesting to know
if we have uniform convergence in Kingman’s Theorem when we consider a
uniquely ergodic system, as in the case of Birkhoff’s Theorem.

The first objective of this dissertation is to describe the work of Furman
[6], where this question was answered.2

Theorem 1.0.1 (Furman, 1997). Let (X,µ, T ) be a compact, uniquely ergodic
system and let {fn}n∈N be a subadditive sequence of continuous functions on
X. Then, for every x ∈ X

lim sup
n→∞

1
n
fn(x) ≤ L(f) .

However, for any Fσ set E (that is, E is a countable union of closed subsets)
with µ(E) = 0, there exists a continuous subadditive sequence {fn}, such that

lim sup 1
n
fn(x) < L(f) .

We also present some extensions and applications of this result to linear
cocycles. They were obtained by S. Jitomirskaya and R. Mavi [7].

Given an ergodic system (X,µ, T ) and an observable ϕ : X → R, we
denote by

Snϕ(x) :=
n−1∑
j=0

ϕ(T jx)

the corresponding Birkhoff sums. We recall that the Birkhoff average 1
n
Snϕ(x)

converges for almost every x ∈ X to the space average
∫
X ϕdµ.

Our second objective is to obtain an estimate on the convergence rate
of the Birkhoff averages for certain types of uniquely ergodic systems and
observables. More precisely, we consider a Diophantine torus translation with
a Hölder continuous observable.

2This question was posed by Furstenberg.
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Chapter 1. Introduction 13

Let T = R/Z be the one dimensional torus endowed with the Lebesgue
measure and let T : T→ T, Tx = x+ω be the translation on T by an irrational
frequency ω, which satisfies a generic Diophantine condition. That is,

dist(kω,Z) ≥ c

|k|(log |k|)2

for some c > 0 and for all k ∈ Z \ {0}.

We obtain the follow result.

Theorem 1.0.2 (S. Klein and A. Melo). Let ϕ : T→ R be an observable and
let ω ∈ T be an irrational frequency. Assume that ϕ is α-Hölder continuous,
for some α ∈ (0, 1), and that ω satisfies the above Diophantine condition. Then
there exists a universal constant K such that for all R ≥ 1 and x ∈ T,∣∣∣∣∣∣ 1

R

R−1∑
j=0

ϕ(x+ jω)−
∫
T
ϕ(x)dx

∣∣∣∣∣∣ ≤ K

c
· (logR)3

R
α
α+1

‖ϕ‖∞.

In a future work we will consider the same problem for any continuous
observable (instead of Hölder); furthermore, we will also consider other types
of transformations (e.g. the higher dimensional torus translation and the skew-
translation).

The rest of this dissertation is organized in three chapters as follows.

In chapter 2 we review basic notions in ergodic theory, such as the con-
cepts and examples of measure preserving dynamical system, ergodic systems
and uniquely ergodic systems. We also present in this chapter some impor-
tant theorems in ergodic theory: Birkhoff’s Ergodic Theorem and Kingman’s
Ergodic Theorem.

In Chapter 3, we present the proof of Furman’s result. We then describe
several consequences of this theorem.

In Chapter 4 we describe some basic results about continued fractions
and the Diophantine condition. Then we present the proof of Theorem 4.1.1
on the rate of convergence of the Birkhoff averages for a Diophantine torus
translation with Hölder continuous observable.
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PUC-Rio - Certificação Digital Nº 1713260/CA



2
Basic Concepts in Ergodic Theory

In this chapter we introduce the basic concepts in ergodic theory which
will be needed in the next chapters. We define the notions of measure preserving
dynamical system (Section 2.1), ergodic system (Section 2.2) and uniquely
ergodic system (Section 2.4). For each of these concepts, we provide some
examples.

We also present some important theorems in ergodic theory, such as the
Birkhoff’s Ergodic Theorem and the Kingman’s Theorem (Section 2.3).

2.1
Measure Preserving Dynamical System

We define below the concept of measure space.

Definition 2.1.1. A measure space is a triplet (X,B, µ) where

1. X is a set, which we refer to as the phase space.

2. B is a σ-algebra, that is, B is a collection of subsets of X which contains the
empty set, and which is closed under complements and countable unions.
The elements of B are called measurable sets.

3. µ : B → [0,+∞] is a σ-additive function, that is, if E1, E2 . . . ∈ B are

pairwise disjoint then µ
( ∞⋃
i=1

Ei

)
=
∞∑
i=1

µ(Ei). The function µ is called the
measure.

If µ(X) = 1, then we say that µ is a probability measure and (X,B, µ) is a
probability space.

Definition 2.1.2. Let (X,B) and (Y, C) be measurable spaces. The function
T : X → Y is said to be measurable if T−1(C) ∈ B, ∀C ∈ C.

Let (M,B, µ) be a measure space and T : M → M be a measurable
function.
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Chapter 2. Basic Concepts in Ergodic Theory 15

Definition 2.1.3. We say that µ is a T -invariant measure on M , or that T
preserves µ, if µ(T−1E) = µ(E), for all measurable subsets E ⊂M .

Proposition 2.1.1. Let T : M → M be a measurable function and let µ be a
measure on M . Then, T preserves µ if, and only if,

∫
φ dµ =

∫
φ ◦ T dµ

for every µ-integrable function φ : M → R.

Definition 2.1.4. Let T : M → M be a measurable function. We say that
(M,B, µ, T ) is a measure preserving dynamical system if µ is a T -invariant
probability measure.

We present below examples of measure preserving dynamical system.

Example 2.1.1 (Translation on the unidimensional torus). Consider
the unit circle S1 = {(x, y) : x2 + y2 = 1} ⊂ R2. We may also identify the unit
circle in the real plane as a subset of the complex plane. More precisely,

S1 = {z ∈ C : |z| = 1} = {e2πiθ : 0 ≤ θ < 1} ⊂ C.

Let θ be a real number, the transformation

Rα : S1 → S1, e2πiθ 7→ e2πi(θ+α) = e2πiθ · e2πiα

is called the rotation map of S1 by 2πα.

Figure 2.1: The trajectory of z = e2πiω

It is easy to see that R0 is the identity map and Rα ◦Rτ = Rα+τ , for all
α, τ ∈ R. In particular, every rotation map Rα is invertible and (Rα)−1 = R−α.
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Chapter 2. Basic Concepts in Ergodic Theory 16

We define a metric d on the unite circle S1 such as

d(e2πiθ1 , e2πiθ1) =

 |θ1 − θ2|, if |θ1 − θ2| ≤ 1
2

1− |θ1 − θ2|, if 1
2 < |θ1 − θ2| < 1

(2.1)

Hence, the rotation Rα is an isometry , that is, d(Rα(z1), Rα(z2)) = d(z1, z2)
for every z1, z2 ∈ S1.

There is an equivalent system to the rotation on the unit circle S1.

Define the following equivalence relation ∼ on the real line R:

x ∼ y ⇔ x− y ∈ Z.

We use the notation [x] ∈ R/Z to denote the equivalence class of any
x ∈ R. Moreover, the space T = R/Z formed by the equivalence classes is
called the 1-dimensional torus. That is,

R/Z = {x+ Z : x ∈ [0, 1)}

then R/Z = [0, 1]/0∼1.

The map ψ : R/Z→ S1 given by

x 7→ ψ(x) = e2πix

establishes a one-to-one correspondence between R/Z and S1. The distance d
defined in (2.1), gives the following distance on R/Z, that we also denote with
the same symbol d:

d(x, y) = d(x− y,Z) = min{|x− y − k| : k ∈ Z})

for every x, y ∈ R/Z.

Moreover, given α ∈ R, we may also define Tα : T→ R

Tα(x) = x+ α mod 1

which is called the translation map of T by α.

Since ψ is an isometric and bijective map between S1 and R/Z, it follows
that the systems (S1, d) and (T, d) are topologically conjugated. Hence, from
now on, we only consider the translation map Tα on the torus T.

Define π : R → T to be the canonical projection such that π(x) = [x].
We say that a set E ⊂ T is measurable if π−1(E) is a measurable subset of
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Chapter 2. Basic Concepts in Ergodic Theory 17

the real line. Let m be the Lebesgue measure on the real line. We define the
Lebesgue measure µ on the torus to be given by

µ(E) = m(π−1(E) ∩ [k, k + 1)), ∀k ∈ Z.

It is clear that µ is a probability measure.

Proposition 2.1.2. Let µ be the measure defined above. Then, µ is invariant
under every translation.

Proof. Let k be the integer part of θ. First, note that

π−1(E) ∩ [k + 1, θ + 1) = (π−1(E) ∩ [k, θ)) + 1.

Since m is invariant under all the translation maps,

m((π−1(E)− θ) ∩ [0, 1)) = m((π−1(E) ∩ [θ, θ + 1))

= m((π−1(E) ∩ [θ, k + 1)) +m((π−1(E) ∩ [k + 1, θ + 1))

= m((π−1(E) ∩ [θ, k + 1)) +m(π−1(E) ∩ [k, θ))

= m((π−1(E) ∩ [k, k + 1)).

On the other hand, by definition, π−1(T−1
θ (E)) = π−1(E)−θ for all measurable

subset E ⊂ S1. Then, we have that

µ(T−1
θ (E)) = m(π−1(T−1

θ (E) ∩ [0, 1))) = m((π−1(E)− θ) ∩ [0, 1))

= m((π−1(E) ∩ [k, k + 1))

= µ(E)

for every measurable subset E ⊂ S1.

Proposition 2.1.2 shows that (T, µ, Tα) is a measure preserving dynamical
system, for any real number α.

Example 2.1.2 (Translation on the higher dimensional torus). As in
example 2.1.1, we can define a space of equivalence classes in Rd.

For each d ≥ 1, consider the equivalence relation on Rd, given by

(x1, . . . , xd) ∼ (y1, . . . , yd)⇔ (x1 − y1, . . . , xd − yd) ∈ Zd.
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Chapter 2. Basic Concepts in Ergodic Theory 18

We will use the notation [x] or [(x1, . . . , xd)] to denote the equivalence
class of any x = (x1, . . . , xd) ∈ Rd. Moreover, the space

Td = Rd/Zd = (R/Z)d,

formed by the equivalence classes, is called the d-dimensional torus or, simply,
the d-torus.

Given θ = (θ1, . . . , θd) ∈ Rd, the transformation

Tθ : (R/Z)d → (R/Z)d, Tθ([x]) = [x+ θ]

is called the translation of T by θ.

Let m be the Lebesgue measure on Rd. The map

φ : [0, 1]d → Td, φ(x) = [x]

is surjective and allows us to define a Lebesgue probability measure µ on the
d-torus, through the following formula:

µ(B) = m(φ−1(B)), ∀B ⊂ Td

such that φ−1(B) is a measurable subset on Rd.

It is not difficult to see that this measure m is invariant under Tθ.

Moreover, we say that a vector θ = (θ1, . . . , θd) ∈ Rd is rationally
independent if, for any integer numbers n0, n1, . . . , nd, we have that

n0 + n1θ1 + · · ·+ ndθd = 0⇒ n0 = n1 = · · · = nd = 0.

Otherwise, we say that θ is rationally dependent.

Proposition 2.1.3. The Lebesgue measure m is invariant under every trans-
lation map Tθ.

Proof. Since Tθ is a continuous map, it follows that Tθ is a measurable function.
Define

M = {E ∈ B : m(R−1
θ (E)) = m(E)}.

We claim thatM = B. Indeed, let Id = [a, b]d ⊂ Td be a box, then

R−1
θ (Id) = [a− θ, b− θ]d ⇒ m(R−1

θ (Id)) = (b− θ − a+ θ)d = (b− a)d = m(Id)

⇒ Id ∈M.

DBD
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Chapter 2. Basic Concepts in Ergodic Theory 19

Hence, Id ∈M. On the other hand, let A = Id1 ∪ Id2 ∪ · · · ∪ Idn ∈ B be a union
of disjoint boxes. Then, we have that

m(R−1
θ (A)) = m(R−1

θ (Id1 ∪ · · · ∪ Idn))

= m(R−1
θ (Id1 ) ∪ · · · ∪R−1

θ (Idn))

= m(R−1
θ (Id1 )) + · · ·+m(R−1

θ (Idn))

= m(Id1 ) + · · ·+m(Idn)

= m(Id1 ∪ · · · ∪ Idn).

= m(A).

Then, A ∈ M. That is, the set M contains the algebra of finite unions of
disjoint boxes. Additionally,M is a monotone class. Indeed, let {An} ⊂ M be
a sequence such that An ↗ A then

An ↗ A⇒ R−1
θ (An)→ R−1

θ (A)⇒ m(R−1
θ (An))→ m(R−1

θ (A))

⇒ m(An)→ m(R−1
θ (A)).

But, if An ↗ A then m(An)→ m(A). Hence, m(R−1
θ (A)) = m(A).

Analogously, we can show that if An ↘ A, such that An ∈ M,∀n ∈ N,
then A ∈M.

Therefore, M is a monotone class which contains the Boolean algebra
of finite unions of boxes. By the Monotone Class Theorem, M contains the
σ−algebra generated by this Boolean algebra.

Furthermore, let A ⊂ B be a null set. Then, m(A) = 0 and, for each
ε > 0, there exists B ∈M such that A ⊂ B and m(B) < ε. Hence,

R−1
θ (A) ⊂ R−1

θ (B)⇒ m(R−1
θ (A)) ≤ m(R−1

θ (B)) = m(B) < ε⇒ m(R−1
θ (A)) < ε.

Take ε→ 0, then m(R−1
θ (A)) = m(A) = 0. Hence, A ∈M.

Therefore, M = B, that is, m is an invariant measure under every
translation map Tθ.

Proposition 2.1.3 shows that (Td,m, Tθ) is a measure preserving dynam-
ical system, for every θ ∈ Rd.
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Chapter 2. Basic Concepts in Ergodic Theory 20

Example 2.1.3 (The skew-translations on the 2-torus). Let f : T2 → T2

be a map on T2 such that

f(θ1, θ2) = (θ1 + α, θ1 + θ2),

where α is an irrational number. Note that f is an invertible function and
f−1(θ1, θ2) = (θ1 − α, θ2 − θ1 + α).

Lemma 2.1.4. Let M ⊂ Rd be an open subset of Rd and denote by vol the
restriction to M of the Lebesgue measure (volume measure) on Rd. A C1

diffeomorphism f : M → M preserves the volume measure vol if, and only
if, | detDf | = 1 at every point.

Proof. First, suppose that | detDf | = 1 at every point. Let E ⊂ M be a
measurable set and B = f−1(E). Then, applying the change of variables
formula, we have that

vol(E) =
∫
B
| detDf |dx =

∫
B

1dx = vol(B) = vol(f−1(E)).

Hence, f preserves the measure vol.

To prove the second part of the statement, suppose that | detDf(x)| > 1
for some point x ∈ M . Since the Jacobian is continuous, there exist a
neighborhood U of x and some number σ > 1 such that

| detDf(y)| ≥ σ > 1, ∀y ∈ U.

By the change of variables formula, we have that

vol(f(U)) =
∫
U
| detDf |dx ≥

∫
U
σdx ≥ σ vol(U).

Denote E = f(U). Since vol(U) > 0, the previous inequality implies that
vol(E) > vol(f−1(E)). Hence, f does not leave vol invariant. Similarly, one
shows that if | detDf(x)| < 1 for some point x ∈M then f does not leave the
measure vol invariant.

Proposition 2.1.5. The Lebesgue measure m on the torus is f -invariant,
where f is the skew-translation map defined above.

Proof. Note that the derivative of f at each point is the matrix 1 0
1 1
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whose determinant is 1, hence the result follows from Lemma 2.1.4.

Let α be an irrational number and let f : T2 → T2 be the skew-translation
map defined above. By the previous proposition, (T2,m, f) is a measure
preserving dynamical system.

Example 2.1.4 (The Bernoulli shift). Let (X, C, ν) be any probability
space and define the probability space (∑,B, µ) such that

(i) ∑ = XN is the set of all sequences (xn)n∈N with x ∈ X for all n,

(ii) B = CN is the σ-algebra generated by the cylinders

[m;Am, . . . , An] = {(xi)i∈N : xi ∈ Ai for all m ≤ i ≤ n}

where m ≤ n and each Ai is an element of C.

(iii) µ = νN is the product measure, that is,

µ([m;Am, . . . , An]) =
n∏

i=m
ν(Ai).

The map σ : ∑→ ∑, where

σ((xn)n) = (xn+1)n,

is called the Bernoulli shift. That is, the image of (xn)n∈N = (x0, x1, . . . , xn, . . .)
is the sequence (xn+1)n∈N = (x1, . . . , xn, . . .).

Observe that the image inverse of any cylinder is still a cylinder, that is,

σ−1([m;Am, . . . , An]) = [m+ 1;Am, . . . , An].

Hence,

µ
(
σ−1([m;Am, . . . , An])

)
= µ([m+ 1;Am, . . . , An]) = ν(Am) · · · ν(An)

= µ([m;Am, . . . , An]).

Then, µ(E) = µ(σ−1(E)) for every cylinder E in B. Since B is the σ-algebra
generated by the cylinders, it follows that µ(E) = µ(σ−1E) for all E ∈ B.

Thus, µ is a σ-invariant probability measure.
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2.2
Ergodic Systems

Throughout this section, unless otherwise noted, we will suppose that µ is
an invariant probability measure relative to a measurable function T : M →M .

Definition 2.2.1. Let (M,B, µ, T ) be a measure preserving dynamical system
and let ϕ : M → R be a measurable function.

i) A measurable subset E ⊂ X is said to be f -invariant if T−1E = E.

ii) ϕ : M → R is an T -invariant function if ϕ ◦ T = ϕ, for µ-a.e.

Definition 2.2.2. A measure preserving dynamical system (M,B, µ, T ) is said
to be an ergodic system if for all T -invariant subsets E ⊂ X,µ(E) = 0 or
µ(E) = 1.

We say that ϕ : M → R is a µ-a.e. constant function if there exists c ∈ R
such that ϕ(x) = c for µ-a.e. x ∈M .

Proposition 2.2.1. Let µ be an invariant probability measure under a measu-
rable function T : M → M . Then, (T, µ) is an ergodic system if and only if
every invariant integrable function ψ : M → R is constant µ-a.e.

The following proposition provides other characterizations of ergodicity.

Proposition 2.2.2. Let T : M → M be a measurable function and let µ be a
T -invariant probability measure onM . The following conditions are equivalent:

(a) (T, µ) is an ergodic system

(b) For any pair of measurable sets A and B,

lim
n

1
n

n−1∑
j=0

µ(T−j(A) ∩B) = µ(A)µ(B)

(c) For every map φ ∈ Lp(µ) and every map ψ ∈ Lq(µ), with 1
p

+ 1
q

= 1, we
have

lim
n

1
n

n−1∑
j=0

∫
(ϕ ◦ T )jψdµ =

∫
ϕdµ

∫
ψdµ

To prove that the previous examples are also ergodic systems, we begin
with a brief exposition about Fourier series.
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Let (Ω,M, µ) be a measure space and let p ∈ R with 1 < p <∞, we set

Lp(Ω) = {f : Ω→ R : f is measurable and |f |p ∈ L1(Ω)}

with
‖f‖Lp = ‖f‖p =

[∫
Ω
|f(x)|pdµ

]1/p
.

In particular, L2(T) is the space of all square integrable functions on T
and L2(T) is a Hilbert space endowed with the inner product

〈f, g〉 =
∫
T
fḡ.

Let e : T→ C, e(x) := e2πix. It is known that the maps {en}n∈Z, where

en(x) := e(nx) = e2πinx

form an orthonormal basis in L2(T).

Given a function f ∈ L2(T), its n-th Fourier coefficient is

f̂(n) :=
∫
T
f(t)en(t) dt =

∫
T
f(t)e(−nt) dt.

Thus, any f ∈ L2(T ) may be expanded into the Fourier series

f(x) =
∑
n∈Z

f̂(n)en(x),

where the convergence (or equality) above is understood in the L2 sense.

The interested reader may find all the details regarding the Fourier
analysis concepts used in this dissertation in [8] and [9].

Proposition 2.2.3. The one-dimensional torus translation (T,m, Tα) is an
ergodic system if and only if α is an irrational number.

Proof. First, we will prove that if α ∈ Q, then (T,m, Tα) is not ergodic.

Let α = p
q
∈ Q and let I ⊂ T be a segment with length less than 1

q
.

Then, T qα(x) = x,∀x ∈ T and the set

A = I ∪ Tα(I) ∪ · · · ∪ T q−1
α (I)
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is invariant. That is because

Tα(A) = Tα(I ∪ Tα(I) ∪ · · · ∪ T q−1
α (I))

= Tα(I) ∪ T 2
α(I) ∪ · · · ∪ T q−1

α (I) ∪ T qα(I)

= I ∪ Tα(I) ∪ T 2
α(I) ∪ · · · ∪ T q−1

α (I)

= A

and, since Tα is a bijective function, we have that T−1
α (A) = A.

On the other hand,

m(A) = m(I ∪ Tα(I) ∪ · · · ∪ T q−1
α (I))

= m(I) +m(Tα(I)) + · · ·+m(T q−1
α (I))

= m(I) + · · ·+m(I)︸ ︷︷ ︸
q times

= q ·m(I)

< 1.

Moreover, if I ⊂ A then 0 < m(I) ≤ m(A). Thus, 0 < m(A) < 1 and,
since A is an invariant set, we conclude that Tα is not ergodic.

Reversely, suppose that α is an irrational number and let ϕ ∈ L2(T) be
an invariant function. We consider the Fourier expansion of ϕ. That is, if we
denote by ϕ̂(k) the k-Fourier coefficient of ϕ, then

ϕ(x) =
∑
k∈Z

ϕ̂(k)e2πikx inL2(T).

Moreover, if ϕ̂ ◦ Tα(k) denote the k-Fourier coefficient of ϕ ◦ Tα and
applying the change of variables formula, we have that

ϕ̂ ◦ Tα(k) =
∫
T
ϕ(x+ α)e−2πikxdx =

∫
T
ϕ(y)e−2πikye2πikα = ϕ̂(k)eeπikα.

Hence,
(ϕ ◦ Tα)(x) =

∑
k∈Z

ϕ̂ ◦ Tα(k)e2πikx =
∑
k∈Z

ϕ̂(k)eeπikαe2πikx.

Since ϕ is a Tα-invariant function, ϕ = ϕ ◦ Tα. On the other hand, the
coefficients of Fourier series are unique, then

ϕ̂(k) = ϕ̂(k)eeπikα, for all k ∈ Z.
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But e2πikθ 6= 1, for all k 6= 0 since α /∈ Q. Then, ϕ̂(k) = 0,∀k 6= 0. That is,
ϕ(z) = a0 for m-a.e. z ∈ T.

In particular, the indicator function ϕ = 1A of any invariant subset
A ⊂ T is an m-a.e. constant function. Then, m(A) = 0 or m(A) = 1, that is,
(Tα,m) is ergodic.

This proposition can be extended to the translation map on the d-torus,
for every d ≥ 1.

Proposition 2.2.4. If θ = (θ1, . . . , θd) is rationally independent then the
translation map Tθ : Td → Td is ergodic.

Proof. Suppose that θ = (θ1, . . . , θd) is a rationally independent vector and let
ϕ : Td → C ∈ L2(Td) be an invariant map, that is, ϕ ◦ Tθ = ϕ for m-a.e.

We consider the Fourier expansion of ϕ. That is, if we denote by ϕ̂(k)
the k-Fourier coefficient of ϕ, then

ϕ(x) =
∑
k∈Zd

ϕ̂(k)e2πik·x, inL2(Td)

where x = (x1, . . . , xd) ∈ Td, k = (k1, . . . , kd) ∈ Zd and k ·x = k1x1 + · · ·+kdxd.

Analogously by Proposition 2.2.3, we may prove that

ϕ̂ ◦ Tθ(k) = ϕ̂(k)e2πik·θ.

Hence,

(ϕ ◦ Tθ)(x) =
∑
k∈Zd

ϕ̂ ◦ Tθ(k)e2πik·x =
∑
k∈Zd

ϕ̂(k)e2πik·θe2πik·x.

Since ϕ is an invariant map, the above equations are equal. Moreover,
since the coefficients of Fourier series are unique, we have

ϕ̂(k)e2πik·θ = ϕ̂(k), for all k ∈ Zd.

But e2πik·θ 6= 1, for all k 6= 0 since θ = (θ1, . . . , θd) is rationally independent.
Then, ϕ̂(k) = 0,∀k 6= 0. That is, ϕ(z) = a0 for m-a.e. z ∈ Td.

Hence, the indicator function ϕ = 1A of any invariant subset A ⊂ Td is
an m-a.e. constant function. Then, (Tθ,m) is ergodic.

Proposition 2.2.5. Let f be the skew-translation map defined in Example
2.1.3. Then f is ergodic (relative to the Lebesgue measure m).

DBD
PUC-Rio - Certificação Digital Nº 1713260/CA



Chapter 2. Basic Concepts in Ergodic Theory 26

Proof. Let ϕ : T2 → R be a function in L2(T2). If we denote by ϕ̂(k) the
k-Fourier coefficient of ϕ, then the Fourier expansion of ϕ is given by

ϕ(θ) =
∑
n∈Z2

ϕ̂(n)e2πin·θ, inL2(T2)

where θ = (θ1, θ2) ∈ T2, n = (n1, n2) ∈ Z2 and n · θ = n1θ1 + n2θ2.

Moreover, by the Plancherel theorem∑
n∈Z2

|ϕ̂(n)|2 =
∫
|ϕ(θ1, θ2)|2dθ1dθ2 <∞. (2.2)

Furthermore,

ϕ(f(θ1, θ2)) =
∑
n∈Z2

ϕ̂(n)e2πi(n1(θ1+α)+n2(θ2+θ1))

=
∑
n∈Z2

ϕ̂(n)e2πin1αe2πi(n1θ1+n2(θ2+θ1))

=
∑
n∈Z2

ϕ̂(n)e2πin1αe2πi((n1+n2)θ1+n2θ2)

Suppose that ϕ is f -invariant, that is, ϕ ◦ f = ϕ, for m-a.e. Hence, by the
uniqueness of the Fourier coefficients, we have that

ϕ̂(n)e2πin1α = ϕ̂(L(n)), for alln ∈ Z2 (2.3)

where L(n) = (n1 + n2, n2).

Then, |ϕ̂(n)| = |ϕ̂(n)e2πin1α| = |ϕ̂(L(n))|. By (2.2), we conclude that
ϕ̂(n) = 0 for all n ∈ Z2 such that the orbit Lj(n), j ∈ Z is infinite. In particular,
ϕ̂(n) = 0 where n = (n1, n2) with n2 6= 0. On the other hand, if n = (n1, 0)
then L(n) = n. Hence, the relation (2.3) becomes

ϕ̂(n)e2πin1α = ϕ̂(n).

Since α is an irrational number, ϕ̂(n) = 0 when n = (n1, 0) with n1 6= 0.
Hence, ϕ is m-a.e. constant function and we conclude that f is ergodic.

The next lemma is a technical step towards proving the ergodicity of the
Bernoulli shift.

Lemma 2.2.6. If B and C are finite unions of pairwise disjoint cylinders,
then for every j ∈ N large enough,

µ(B ∩ σ−j(C)) = µ(B)µ(σ−j(C)) = µ(B)µ(C).
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Proof. First, suppose that B and C are cylinders, that is,

B = [k;Bk, . . . , Bl] and C = [m;Cm, . . . , Cn].

It is easy to check that

σ−j(C) = [m+ j;Cm, . . . , Cn].

Take j large enough such that m+ j > l for some l ∈ N. Then,

B ∩ σ−j(C) = {(xn)n : xk ∈ Bk, . . . , xl ∈ Bl, xm+j ∈ Cm, . . . , xn+j ∈ Cn}

= [k;Bk, . . . , Bl, X, . . . , X,︸ ︷︷ ︸
m+j−l−1 times

Cm, . . . , Cn].

Hence,

µ(B ∩ σ−j(C)) = µ([k;Bk, . . . , Bl, X, . . . , X,︸ ︷︷ ︸
m+j−l−1 times

Cm, . . . , Cn])

=
l∏

i=k
ν(Bi)

m+j−l−1∏
i=1

ν(X)
n∏

i=m
ν(Ci)

=
l∏

i=k
ν(Bi)

n∏
i=m

ν(Ci)

= µ(B) · µ(C)

since ν(X) = 1.

This completes the proof when A and B are cylinders. The general case
follows from the fact that µ is finitely additive.

Proposition 2.2.7. Let σ be the Bernoulli shift defined in the Example 2.1.4.
Then, σ is ergodic.

Proof. Let B0 be the algebra of all unions of pairwise disjoint cylinders and let
A ∈ B0 be a σ-invariant measurable subset of ∑.

Applying the Lemma 2.2.6 with B = C = A, we obtain

µ(A ∩ σ−j(A)) = µ(A)2

for j large enough.

Since A is invariant, µ(A ∩ σ−j(A)) = µ(A). Hence, µ(A) = µ(A)2, and,
consequently, µ(A) = 0 or µ(A) = 1.
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Now, suppose that A ⊂ ∑ is any σ-invariant measurable subset. For
every ε > 0, there exists B ∈ B0 such that µ(A 4 B) < ε, recalling that
A4B := (A \B) ∪ (B \ A). Fix j such that

µ(B ∩ σ−j(B)) = µ(B)µ(σ−j(B)) = µ(B)2.

Observe that

(A4B) ∪ (σ−j(A)4 σ−j(B)) = (A4B) ∪ σ−j(A4B)

and

(A ∩ σ−j(A))4 (B ∩ σ−j(B) ⊂ (A4B) ∪ (σ−j(A)4 σ−j(B)).

Hence,

|µ(A ∩ σ−j(A)︸ ︷︷ ︸
X

)− µ(B ∩ σ−j(B)︸ ︷︷ ︸
Y

)| = |µ(X \ Y )− µ(Y \X)|

≤ |µ(X \ Y )|+ |µ(Y \X)|

= |µ(A ∩ σ−j(A))4 (B ∩ σ−j(B))|

≤ µ
(
(A4B) ∪ (σ−j(A)4 σ−j(B))

)
≤ 2µ(A4B) < 2ε

since µ is a σ-invariant measure.

Combining all of the above, we conclude that

|µ(A)− µ(A)2| < 4ε.

By the arbitrariness of ε, it follows that µ(A) = µ(A)2, that is, µ(A) = 0
or µ(A) = 1.

2.3
The Pointwise and Subadditive Ergodic Theorems

In this section, we present the proof of one of the most important
results in ergodic theory, Birkhoff’s pointwise ergodic theorem. We follow the
argument of Y. Katznelson and B. Weiss [10] since it is more related to the
spirit of this dissertation. However, other proofs are available, see for instance
the book of M.Viana and K. Oliveira [4].
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We also formulate Kingman’s subadditive ergodic theorem, whose proof
in [10] is similar to that of Birkhoff’s ergodic theorem.

We start with the pointwise ergodic theorem.

Theorem 2.3.1 (Birkhoff for measure preserving transformations). Let
(X,B, µ, T ) be a measure preserving dynamical system and let f : X → R
be an integrable function. Then, the limit

lim
n→∞

f(x) + f(Tx) + · · ·+ f(T n−1x)
n

=: f ∗(x) (2.4)

exists for almost every x ∈ X. Moreover, f ∗ is a T -invariant function and∫
X f

∗dµ =
∫
X fdµ.

Proof. (Following [10]) Suppose that f is a non-negative function and define

σn(x) = f(x) + f(Tx) + · · ·+ f(T n−1x)
n

.

We need to show that the limit lim
n→∞

σn(x) exists for µ-a.e. x ∈ X.

Define

f̄(x) := lim sup
n→∞

σn(x) and f(x) := lim inf
n→∞

σn(x).

Hence, f(x) ≤ f̄(x) for every x ∈ X.

Observe that

σn+1(x) = 1
n+ 1

(
f(x) + f(Tx) + · · ·+ f(T nx)

)
= 1
n+ 1f(x) + n

n+ 1σn(Tx).

Since, lim
n→∞

1
n+ 1f(x) = 0 and lim

n→∞

n

n+ 1 = 1, we have

f̄(x) = lim sup
n→∞

σn+1(x) = lim sup
n→∞

σn(Tx) = f̄(Tx).

Similarly, f(x) = f(Tx), that is, f̄ and f are T -invariant functions.

We want to prove that f̄(x) = f(x) for µ-a.e. x ∈ X. First, we will show
that ∫

X
f̄dµ ≤

∫
X
fdµ ≤

∫
X
fdµ. (2.5)

We only prove first inequality in (2.5), as the proof of the second inequality is
analogous. We claim that ∫

X
f̄dµ ≤

∫
X
fdµ+O(ε) (2.6)
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for every ε > 0. Indeed, for this, we will prove that

1
L

L−1∑
j=0

f̄(T jx) ≤ 1
L

L−1∑
j=0

f(T jx) +O(ε).

We can suppose that there existsM ∈ R such that f̄(x) ≤M for every x ∈ X.
Otherwise, define f̄M(x) = min{f(x),M}. Then, f̄M ↗ f and the function
f̄M is T -invariant since f̄ is T -invariant. Hence, if the function f̄M satisfies
the inequality (2.6) then the same inequality is true for f̄ by the monotone
convergence theorem.

By the definition of f̄ , for every x ∈ X, there exists n ∈ N such that

f̄(x)− ε ≤ 1
n

n−1∑
j=0

f(T jx),

that is, nf̄(x) ≤ f(x) + · · ·+ f(T n−1x) + nε.

Since f̄ is a T -invariant function, we have that

f̄(x) = f̄(Tx) = · · · = f̄(T n−1x)⇒ nf̄(x) = f̄(x) + f̄(Tx) + · · ·+ f̄(T n−1x).

Then, for each x ∈ X, there exists n ∈ N such that
n−1∑
j=0

f̄(T jx) ≤
n−1∑
j=0

f(T jx) + nε. (2.7)

Let n(x) be the first n such that the inequality (2.7) is satisfied. Then,

n(x)−1∑
j=0

f̄(T jx) ≤
n(x)−1∑
j=0

f(T jx) + n(x)ε.

For each N ∈ N, define AN = {x ∈ X : n(x) ≤ N}. Hence, AN ↗ X

since for each x ∈ X, there exists n(x) ∈ N. Consequently, µ(An)→ µ(X) = 1.
Thus, there exists N ∈ N such that µ(X \ AN) < ε/M .

Fix N ∈ N such that µ(X \ AN) < ε/M and put A := AN . Hence, if
x ∈ A then 1 ≤ n(x) ≤ N and

n(x)−1∑
j=0

f̄(T jx) ≤
n(x)−1∑
j=0

f(T jx) + n(x)ε.

Fix x ∈ X. We define a sequence of indices {nj} and points {xj} by the
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following rule:

x1 = x, and n1 =

 n(x1), if x1 ∈ A
1, if x1 /∈ A

And, for j ≥ 1, define

xj+1 = T njxj, and nj+1 =

 n(xj+1), if xj+1 ∈ A
1, if xj+1 /∈ A

that is, xj+1 = T n1+···+njx.

Fix L ∈ N such that L ≥ N · M
ε
> N . Since 1 ≤ nj ≤ N , it follows that

the sequence an = ∑n
j=1 nj is such that an ↗ ∞. Hence, there exists p ∈ N

such that
n1 + · · ·+ np ≤ L ≤ n1 + · · ·+ np+1,

that is, there exists K ∈ {0, . . . , np+1} such that L = n1 +· · ·+np+K. Observe
that

L−1∑
j=0

f̄(T jx) =
n1−1∑
j=0

f̄(T jx) +
n1+n2−1∑
j=n1

f̄(T jx) + · · ·+
n1+···+np−1∑
j=n1+···+np−1

f̄(T jx)+

+
L−1∑

j=n1+···+np
f̄(T jx).

Denote, respectively, by S1(x), S2(x), . . . , Sp(x), Sp+1(x) the p + 1 sums
in the previous equality. From (2.7), we get

S1(x) =
n(x1)−1∑
j=0

f̄(T jx1) ≤
n(x1)−1∑
j=0

f(T jx1) + n(x1)ε, if x1 = x ∈ A

but, if x1 = x /∈ A then n1 = 1 and S1(x) = f̄(x1) ≤M . On the other hand,
n1−1∑

j=0
f(T jx) + n1ε

1A(x) ≤
n1−1∑
j=0

f(T jx) + n1ε

since we assume that f ≥ 0. Hence,

S1(x) ≤
n1−1∑

j=0
f(T jx) + n1ε

+M · 1X\A(x1).

For the second sum, take j = n1 + l with l = 0, . . . , n2 − 1. Then, we can
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rewrite the sum as:

S2(x) =
n1+n2−1∑
j=n1

f̄(T jx) =
n2−1∑
l=0

f̄(T lT n1x) =
n2−1∑
l=0

f̄(T lx2)

and we can use a similar argument as the first sum S1(x).

Hence,

S2(x) ≤
(
n2−1∑
l=0

f(T lx2) + n2ε

)
+M · 1X\A(x2).

Inductively,

Sp(x) ≤
np−1∑

l=0
f(T lxp) + npε

+M · 1X\A(xp)

and, since f̄(x) ≤M for every x ∈ X, we have that

Sp+1(x) =
L−1∑

j=n1+···+np
f̄(T jx) =

n1+···+np+K−1∑
j=n1+···+np

f̄(T jx) ≤M · k ≤M ·N ≤ L · ε.

Observe that

1X\A(x1) + · · ·+ 1X\A(xp) = 1X\A(x1) + · · ·+ 1X\A(T n1+···+npx1)

≤
L−1∑
j=0

1X\A(T jx).

Hence,

L−1∑
j=0

f̄(T jx) = (S1(x) + · · ·+ Sp(x)) + Sp+1(x)

≤
n1+···+np−1∑

j=0
f(T lx) + (n1 + · · ·+ np)ε+M ·

p∑
i=1
1X\A(xi) + Lε

≤
L−1∑
j=0

f(T jx) + L · ε+M · (1X\A(x1) + · · ·+ 1X\A(xp)) + Lε

≤
L−1∑
j=0

f(T jx) + L(2ε) +M ·
L−1∑
j=0

1X\A(T jx).

Then,

1
L

L−1∑
j=0

f̄(T jx) ≤ 1
L

L−1∑
j=0

f(T jx) +M ·

 1
L

L−1∑
j=0

1X\A(T jx)
+ 2ε (2.8)
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for every x ∈ X.

Since the transformation T preserves the measure µ, we have that for
every j ∈ N,

∫
X f̄(T jx)dµ(x) =

∫
X f̄dµ,

∫
X f(T jx)dµ(x) =

∫
X fdµ and∫

X 1X\A(T jx)dµ(x) =
∫
X 1X\Adµ

Integrating the inequality (2.8) and using the fact that L is independent
of x, we have that

∫
X
f̄dµ = 1

L

L−1∑
j=0

∫
X
f̄(T jx)

≤ 1
L

L−1∑
j=0

∫
X
f(T jx) +M ·

 1
L

L−1∑
j=0

∫
X
1X\A(T jx)

+ 2ε

≤
∫
X
fdµ+M

∫
X
1X\Adµ+ 2ε

=
∫
X
fdµ+ 2ε+Mµ(Ac)

≤
∫
X
fdµ+ 3ε.

Letting ε→ 0, we conclude that
∫
X
f̄ dµ ≤

∫
X
f dµ.

Similarly, we can prove that
∫
X fdµ ≤

∫
X fdµ. Hence,∫

X
f̄dµ ≤

∫
X
fdµ ≤

∫
X
fdµ.

Moreover, we know that
∫
X fdµ ≤

∫
X f̄dµ. Hence,

∫
X f̄dµ =

∫
X fdµ and,

consequently, ∫
X

(f̄ − f)dµ = 0⇒ f̄ = f, µ-a.e.,

that is, lim inf
n→∞

σn(x) = lim sup
n→∞

σn(x).

Then, the limit lim
n→∞

σn(x) exists and f ∗ = f̄ . Moreover,

∫
X
f ∗dµ =

∫
X
f̄dµ =

∫
X
fdµ.

If f is not a non-negative function, then we can write f = f+− f−, with
f+, f− ≥ 0 and apply the result above to f+ and f−.

In particular for ergodic system, we obtain the following.
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Corollary 2.3.1 (Birkhoff’s Ergodic Theorem for ergodic transformations).
Let (X,B, µ, T ) be an ergodic system. Then, for every integrable function
f : X → R, we have that

lim
n→∞

f(x) + f(Tx) + · · ·+ f(T n−1x)
n

=
∫
X
f(x) dµ(x)

for µ-a.e. x ∈ X.

Proof. By the Birkhoff Ergodic Theorem for measure preserving transforma-
tions, the limit

lim
n→∞

f(x) + f(Tx) + · · ·+ f(T n−1x)
n

= f ∗(x)

exists for µ-a.e. x ∈ X. Moreover, f ∗ is a T -invariant function and∫
X
f ∗dµ =

∫
X
fdµ. (2.9)

Since T is ergodic, there exists c ∈ R such that f ∗(x) = c for µ-a.e.
x ∈ X. Hence, ∫

X
f ∗ dµ = c · µ(X) = c. (2.10)

Thus, from (2.9) and (2.10) we get
∫
X f dµ = c. Then, for almost every

x ∈ X,

lim
n→∞

1
n

n−1∑
k=0

f(T k(x)) = c =
∫
X
f dµ

which is the conclusion we were looking for.

The quantity in (2.4),

Snf(x) :=
n−1∑
j=0

f(T jx)

is called the Birkhoff sums of the observable 1 f with respect to the map T .

In general, a subset of total measure which satisfies the convergence (2.4)
in the Theorem 2.3.1 depends of the observable f considered.

However, in some cases it is possible to choose this subset independently
of this function. A useful example of this situation is the following:

Theorem 2.3.2. Let M be a compact metric space and T : M → M be a
continuous map. Then, there exists a measurable subset G on M with total

1a measurable function which is absolutely integrable.
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measure µ(G) = 1 such that

lim
n→∞

1
n

n−1∑
k=0

f(T k(x)) = f ∗(x)

for every x ∈ G and every continuous function f : M → R.

Proof. See pp. 73 - 74 in [4].

The Birkhoff ergodic theorem has many applications in different areas of
mathematics. One of them is the quantitative version of Poincaré’s recurrence
theorem. More precisely, we have that

Proposition 2.3.3. Let (X,B, µ, T ) be an ergodic system and let E be a
measurable subset of X with positive measure µ(E) > 0. Then, for almost
every x ∈ X, we have that

lim
n→∞

Card{0 ≤ k ≤ n− 1 : T kx ∈ E}
n

= µ(E).

In other words, if n is large enough then

Card{0 ≤ k ≤ n− 1 : T kx ∈ E} ' n · µ(E).

Proof. Let E be a measurable subset of X. It is enough to apply the Birkhoff’s
ergodic theorem (Theorem 2.3.1) to the integrable function f = 1E. Indeed,
note that

Card{0 ≤ k ≤ n− 1 : T kx ∈ E} =
n−1∑
k=0

1E(T kx).

Thus, by Theorem 2.3.1, we have that

lim
n→∞

1
n

n−1∑
k=0

1E(T kx) =
∫
X
1E dµ = µ(E)

for µ-a.e. x ∈ X.

Thus, for almost every x in E the limit of the frequencies of visits exists
and is equal to µ(E):

lim
n→∞

Card{0 ≤ k ≤ n− 1 : T kx ∈ E}
n

= µ(E).

Before we formulate Kingman’s theorem, we introduce some terminology.
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Definition 2.3.1. We say that a sequence of functions ϕn : X → R is
subadditive with respect to the transformation T : X → X if for all (or a.e.)
x ∈ X,

ϕm+n(x) ≤ ϕm(x) + ϕn(Tmx)

for all n,m ∈ N.

Example 2.3.1. Let A : X → SLd(R) be a continuous function and let
T : X → X be a transformation. Define

A(n)(x) := A(T n−1x) · · ·A(Tx)A(x).

Then, the sequence ϕn(x) = log ‖A(n)(x)‖ is subadditive. Indeed, note that

A(m+n)(x) = A(T n−1(Tmx)) · · ·A(Tmx)A(Tm−1x) · · ·A(Tx)A(x)

= A(n)(Tmx) · A(m)(x).

Hence,

ϕm+n(x) = log ‖A(n)(Tmx) · A(m)(x)‖

≤ log
(
‖A(n)(Tmx)‖ · ‖A(m)(x)‖

)
≤ log ‖A(n)(Tmx)‖+ log ‖A(m)(x)‖ = ϕm(x) + ϕn(Tmx)

for all m,n ∈ N and x ∈ X.

Theorem 2.3.4 (Kingman for measure preserving transformations). Let
(X,µ, T ) be a measurable preserving dynamical system. where µ is a proba-
bility measure, and let {ϕn} be a subadditive sequence of measurable functions
on L1(µ).

Then, the sequence
(
ϕn
n

)
converges to a T -invariant measurable function

ϕ : X → [−∞,+∞) for µ-almost every x ∈ X. This function ϕ is such that
ϕ(x) = infn 1

n
ϕ∗n(x), where ϕ∗n =

∫
X ϕndµ.

Moreover, ϕ+ ∈ L1(µ) and
∫
ϕdµ = lim

n→∞

1
n

∫
ϕn dµ = inf

n

1
n

∫
ϕn dµ.

The proof of Katznelson and Weiss presented in [10] follows the same
approach they used in the proof of Birkhoff’s theorem.

As a consequence of theorem 2.3.4, there is a version of Kingman’s
Theorem for ergodic systems. More precisely,

DBD
PUC-Rio - Certificação Digital Nº 1713260/CA



Chapter 2. Basic Concepts in Ergodic Theory 37

Corollary 2.3.2 (Kingman’s for ergodic transformations). Let (X,µ, T ) be
an ergodic system and let {ϕn}n≥1 be a sequence of subadditive measurable
functions. Then, the sequence

(
ϕn
n

)
converges to a constant L(ϕ) for µ-almost

every x ∈ X. Furthermore, we have

L(ϕ) = lim
n→∞

1
n

∫
ϕndµ = inf

n

1
n

∫
ϕndµ.

Definition 2.3.2. The constant L(ϕ) on the Theorem 2.3.2 is called the
(maximal) Lyapunov exponent of the subadditive process {ϕn}n≥1.

2.4
Uniquely Ergodic Systems

Definition 2.4.1. We say that a measure preserving dynamical system
(X,µ, T ) is uniquely ergodic if T : X → X is a homeomorphism and µ is
the unique T -invariant probability measure on X.

Observation 1. If (X,µ, T ) is a uniquely ergodic system, then necessarily µ
is ergodic. Indeed, suppose that there exists an invariant subset A in M with
0 < µ(A) < 1. Thus,

µA(E) := µ(E ∩ A)
µ(A)

is a different T -invariant probability measure on X, contradicting the hypoth-
esis that µ is the unique T -invariant measure on X.

The following proposition gives several equivalent ways of defining unique
ergodicity.

Proposition 2.4.1. Let f : X → X be a continuous map. The following
conditions are equivalent:

(a) f admits a unique invariant probability measure.

(b) f admits a unique ergodic probability measure.

(c) for every continuous function φ : X → R, the sequence of averages along a

trajectory 1
n

n−1∑
k=0

(φ◦fk)(x) converges to a constant for almost every x ∈ X.

(d) for every continuous function φ : X → R, the sequence of averages along

a trajectory 1
n

n−1∑
k=0

φ ◦ fk converges uniformly to a constant.

Proof. See p. 160 in [4].
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Observe that the item (d) in Proposition 2.4.1 is a version of Birkhoff’s
Theorem for uniquely ergodic system. More precisely,

Theorem 2.4.2 (Birkhoff’s ergodic theorem for uniquely ergodic systems). Let
(X,B, µ, T ) be a uniquely ergodic system and let f : X → R be a continuous
function. Then, the convergence of the Birkhoff averages

lim 1
n

n−1∑
j=0

f(T jx) =
∫
X
fdµ

is uniform on X.

Observation 2. Let (X, C, ν1) and (X, C, ν2) be two probability spaces and
σ the Bernoulli shift defined in the Example 2.1.4. Thus, we may define two
probability measures µ1 = νN1 and µ2 = νN2 which are σ-invariant.

Then, the Bernoulli shift is not a uniquely ergodic system.

Let us prove that other examples described earlier are uniquely ergodic.

Proposition 2.4.3. Fix d ≥ 1 and let θ = (θ1, . . . , θd) ∈ Rd be a rationally
independent vector. Then the translation map Tθ : Td → Td is uniquely ergodic.

Proof. By the Proposition 2.4.1, we just need to show that for every continuous
function ϕ : Td → R, there exist cϕ ∈ R such that the sequence

ϕn = 1
n

n−1∑
j=0

ϕ ◦ T jθ

converges to cϕ for every point x ∈ Td.

Take cϕ =
∫
ϕdµ. By Birkhoff’s Theorem, the limit limn→∞ ϕn = cϕ

exists for almost every x ∈ X. In particular, limn→∞ ϕn(x) = cϕ for a dense
set of values x ∈ Td.

Let d the distance on the torus Td = Rd/Zd, that is, the distance
between any two points on Td is the minimum of the distance between their
representatives on Rd. It is clear that

d(Tθ(x), Tθ(y)) = d(x, y), ∀x, y ∈ Td.

So,
d(T jθ (x), T jθ (y)) = d(x, y), ∀x, y ∈ Td,∀j ≥ 1. (2.11)

Since ϕ is a continuous function, it follows that for any ε > 0, there exists
δ > 0 such that d(x, y) < δ ⇒ d(ϕ(x), ϕ(y)) < ε. Therefore, using (2.11), if
d(x, y) < δ then |ϕ(Tθ(x))− ϕ(Tθ(y))| < ε, for every j ≥ 0.
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It follows that for all x, y such that d(x, y) < δ, we have that

|ϕn(x)− ϕn(y)| =

∣∣∣∣∣∣ 1n
n−1∑
j=0

[ϕ ◦ T jθ (x)− ϕ ◦ T jθ (y)]

∣∣∣∣∣∣
≤ 1
n

n−1∑
j=0
|ϕ ◦ T jθ (x)− ϕ ◦ T jθ (y)|

<
1
n

n−1∑
j=0

ε = ε

for all n ∈ N. Hence, the sequence (ϕn)n∈N is equicontinuous.

Now, suppose that there exists x̄ ∈ Td such that (ϕn(x̄)) does not
converges to cϕ. Then, there exist c 6= cϕ and a subsequence (nk) such that
limk→∞ ϕnk(x̄) = c. We can suppose that the sequence (ϕnk)k is uniformly
convergent. Let ψ such that limk→∞ ϕnk = ψ. Then, ψ is a continuous function
such that ψ(x) = cϕ for a dense subset of Td and ϕ(x̄) = c 6= cϕ. Hence, we
get a contradiction.

Lemma 2.4.4. Let π : T2 → T be the projection map π(θ1, θ2) = θ1. If µ is an
invariant probability measure for f then the projection measure π∗µ = µ ◦ π−1

coincides with the Lebesgue measure m on T.

Proof. Let E be any measurable subset on T,

(π∗µ)(f−1
0 (E)) = µ(π−1f−1

0 (E)).

Since π ◦ f = f0 ◦ π and µ is a f -invariant measure, we have that

µ(π−1f−1
0 (E)) = µ(f−1π−1(E)) = µ(π−1(E)) = (π∗µ)(E).

Hence, (π∗µ)(f−1
0 (E)) = (π∗µ)(E) for every measurable subset E, that is, π∗µ

is an f0-invariant probability measure. Since f0 is uniquely ergodic, it follows
that π∗µ coincides with the Lebesgue measure m on T.

Proposition 2.4.5. If µ and ν are probability measures on a metric space M
such that ∫

ϕdµ =
∫
ϕdν

for every bounded Lipschitz function ϕ : M → R, then µ = ν.

Proof. See pp.449 - 450 in [4].
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Proposition 2.4.6. Let f be the skew-translation defined in the Example 2.1.3.
Then, the Lebesgue measure on T2 is uniquely ergodic for f .

Proof. We can rewrite T2 = T1 × T1 and

f : T1 × T1 → T1 × T1, f(θ1, θ2) = (f0(θ1), θ1 + θ2)

where f0(θ1) = θ1 + α. By Proposition 2.4.3, the transformation

f0 : T1 → T1

is uniquely ergodic.

Now, suppose that there is an f -invariant probability measure µ which
is also an ergodic measure for f . Let G(µ) be a subset of T2 where G(µ) is a
set of values θ ∈ T2 such that

lim 1
n

n−1∑
j=0

ϕ(f jx) =
∫
X
ϕdµ for every continuous functionϕ : T2 → R.

By Theorem 2.3.2 and the ergodicity of skew-translation, G(µ) has total
measure. Define

G0(µ) = {θ ∈ T : G(µ) ∩ ({θ} × S1) 6= ∅}.

In other words, G0(µ) = π(G(µ)). It is clear that π−1(G0(µ)) contains G(µ)
and, then, π−1(G0(µ)) has total measure.

By Lemma 2.4.4,

m(G0(µ)) = (π∗µ)(G0(µ)) = µ(π−1(G0(µ))) = 1.

Similarly,

m(G0(m)) = (π∗m)(G0(m)) = m(π−1(G0(m))) = 1.

A consequence of the above equalities is that the intersection of G0(µ)
and G0(m) has total measure. In particular, theses subsets can not be disjoint.
Let θ0 ∈ G0(µ) ∩G0(m). By definition, G(µ) ∩ ({θ0} × S1) 6= ∅. On the other
hand, we can prove that G(µ) contains {θ0} × S1.

Hence, G(µ) and G(m) intersect at some point of {θ0} × S1. By the
definition of G(µ), this implies that the two measures µ and m have the same
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integral for every continuous function. By Proposition 2.4.5, µ = m, which is
the conclusion we were looking for.
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3
Furman’s Theorem

In section 2.3 of chapter 2, we described a version of Birkhoff’s Theorem
for uniquely ergodic systems. In this chapter, we answer the following question:
is there an analogous result for Kingman’s theorem? This question was posed
by Furstenberg and answered by Furman.

Hence, the goal of this chapter is to formulate and to prove the results
obtained by Furman in [6]. We begin with some preliminaries (see section 3.1)
then present Furman’s Theorem in section 3.2.

At the end of this chapter (see section 3.3), we also present some
extensions and applications of this result to linear cocycles. They were obtained
by S. Jitomirskaya and R. Mavi in [7].

3.1
Preliminaries

Let (X,B, µ, T ) be an ergodic system and let SLd(R) be the linear group
of invertible d× d matrices with real coefficients and determinant 1.

Definition 3.1.1. A linear cocycle of (X,B, µ, T ) is a skew-product map

FA : X × Rd → X × Rd

(x, v) 7→ (Tx,A(x)v)

where A : X → SLd(R) is a measurable map.

Define
A(n)(x) = A(T n−1x) · · ·A(Tx)A(x).

It is easy to verify that the iterates of FA are given by:

F n
A(x, v) = (T nx,A(n)(x)v).

Definition 3.1.2. Let M be a metric space. We say that a subset E on M is
an Fσ set if E =

⋃
k∈N

Fk, where Fk is a closed set in M for all k ∈ N.
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Definition 3.1.3. Let A and B be disjoint closed subsets of a topological
space X.

a) We say that A and B are separated by neighbourhoods if there are neigh-
bourhoods U of A and V of B such that U ∩ V = ∅.

b) We say that A and B are separated by a function if there exists a continuous
function f : X → [0, 1] such that f(a) = 0 for every a ∈ A and f(b) = 1 for
every b ∈ B.

Definition 3.1.4. We say that a topological space X is a normal space if any
two disjoint closed subsets of X can be separeted by neighbourhoods.

Example 3.1.1. A metric space is a normal space.

Lemma 3.1.1 (Urysohn). A topological space X is a normal space if, and
only if, any two disjoint closed subsets of X can be separated by a continuous
function.

Proof. See p. 115 in [11].

Definition 3.1.5. Let (X, d1) and let (X, d2) be metric spaces. We say that
f : X → Y is a uniformly continuous function if

∀ε > 0,∃δ > 0; ∀x, y ∈ X, d1(x, y) < δ ⇒ d2(f(x), f(y)) < ε.

Definition 3.1.6. Let M be a metric space. We say that f : M → R is an
upper semicontinuous function at a point x ∈ M if lim sup

y→x
f(y) ≤ f(x), that

is,
∀ε > 0,∃δ > 0; |y − x| < δ ⇒ f(y) ≤ f(x) + ε.

Observation 3. A function f : M → R is upper semicontinuous if and only
if f−1(−∞, c) is an open subset of M , for every c ∈ R.

Proposition 3.1.2. Let (M,d) be a metric space and let {fn} be a sequence
of upper semicontinuous functions on M . Define the function f : M → R such
that f(a) := inf

n≥1
fn(a) is the pointwise infimum of these functions. Then, f is

also an upper semicontinuous function.

Proof. We need to show that the set f−1(−∞, c) is a open subset of M , for
every c ∈ R. Note that

f(x) < c⇔ inf
n≥1

fn(x) < c⇔ ∃n ∈ N; fn(x) < c⇔ ∃n ∈ N;x ∈ f−1
n (−∞, c).
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Hence, f−1(−∞, c) =
⋃
n∈N

f−1
n (−∞, c).

By hypothesis, fn is an upper semicontinuous function for every n ∈ N,
so f−1

n (−∞, c) is an open subset of M .

Hence, f−1
n (−∞, c) is also an open subset of M .

3.2
On the subadditive ergodic theorem for uniquely ergodic systems

In this section, we formulate and prove Furman’s theorem regarding
the convergence in Kingman’s subadditive ergodic theorem for a continuous
subadditive process on a compact, uniquely ergodic system.

Let us recall that a subadditive process on (X,µ, T ) is a sequence {fn} of
measurable functions such that

fn+m ≤ fn + fm ◦ T n, ∀n,m ∈ N.

Throughout this section, unless otherwise noted, we will assume that X
is a compact metric space.

Theorem 3.2.1 (Furman). Let (X,µ, T ) be an uniquely ergodic system, where
X is a compact metric space. Let {fn} be a subadditive process on X, where
each function fn is continuous. Then, for every x ∈ X,

lim sup
n→∞

1
n
fn(x) ≤ L(f)

uniformly on X. That is, for every ε > 0, there exists N ∈ N such that

1
n
fn ≤ L(f) + ε, ∀n ≥ N, ∀x ∈ X.

However, for any Fσ set E with µ(E) = 0, there exists a continuous subadditive
sequence {fn} on X, such that

lim sup 1
n
fn(x) < L(f), ∀x ∈ E.

Proof. Fix ε > 0. By Theorem 2.3.2, for µ-a.e. x ∈ X, there exists n ∈ N such
that 1

n
fn(x)− ε < L(f). (3.1)

Let n(x) be the first n such that the inequality (3.1) is satisfied. That is,
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for µ-a.e. x ∈ X, define

n(x) = inf{n ∈ N; fn(x) < n(L(f) + ε)}.

On the remaining set of measure 0, we may put n(x) = 1.

For each N ∈ N, define the set

AN = {x ∈ X;n(x) ≤ N} =
N⋃
n=1
{x ∈ X; fn(x) < n · (L(f) + ε)} .

Hence, AN ↗ X since for each x ∈ X, n(x) ∈ N and µ(AN)→ µ(X) = 1.

Fix N ∈ N such that µ(X \ AN) < ε.

For every x ∈ X we define a sequence of indices {nj} and points {xj} by
the following rule:

x1 = x, and n1 =

 n(x1), if x1 ∈ AN
1, if x1 /∈ AN

For j ≥ 1, define

xj+1 = T njxj = T n1+···+njx, and nj+1 =

 n(xj+1), if xj+1 ∈ AN
1, if xj+1 /∈ AN

Let M > N · ‖f1‖∞/ε. Since 1 ≤ nj ≤ N , it follows that the sequence
an = ∑n

j=1 nj is such that an ↗∞. Hence, there exists p ∈ N such that

n1 + · · ·+ np−1 ≤M ≤ n1 + · · ·+ np,

that is, there exists K ∈ {0, . . . , np} such that M = n1 + · · ·+ np−1 +K.

Observe that

fK(xp) = f1 + · · ·+ 1︸ ︷︷ ︸
K times

(xp) ≤ fK−1(xp) + f1(TK−1xp)

≤ f1(xp) + f1 ◦ T (xp) + · · ·+ f1 ◦ TK−1(xp)

≤ ‖f1‖∞ + · · ·+ ‖f1‖∞︸ ︷︷ ︸
K times

≤ N‖f1‖∞

since K ≤ np ≤ N . By subadditivity,

fM(x) = f[(n1+···+np−1)+K](x)

≤ fn1+···+np−1(x) + fK(T n1+···+np−1x) = fn1+···+np−1(x) + fK(xp).
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On the other hand,

f(n1+···+np−1)(x) ≤ fn1+···+np−2(x) + fnp−1(T n1+···+np−2x)

≤ f(n1+···+np−2)(x) + fnp−1(xp−1).

Inductively, we have

fM(x) ≤
p−1∑
j=1

fnj(xj) + fK(xp) ≤
p−1∑
j=1

fnj(xj) +N · ‖f1‖∞.

Observe that

fnj(xj) ≤ nj(L(f) + ε), if xj ∈ AN

but, if xj /∈ AN , then nj = 1 and fnj(xj) = f1(xj) ≤ ‖f1‖∞. Hence,

fnj(xj) ≤ nj(L(f) + ε) · 1AN (xj) + ‖f1‖∞ · 1X\AN (xj).

Then, we obtain

1
M
fM(x) ≤ 1

M

p−1∑
j=1

fnj(x)(xj) + N

M
· ‖f1‖∞

≤ 1
M

p−1∑
j=1

[nj(L(f)) + ε) · 1AN (xj) + ‖f1‖∞ · 1X\AN (xj)] + N

M
‖f1‖∞

≤ 1
M

p−1∑
j=1

(nj(L(f)) + ε) + ‖f1‖∞ ·
1
M

p−1∑
j=1

1X\AN (xj) + N

M
‖f1‖∞

≤ (L(f) + ε) + ‖f1‖∞ ·
1
M

M∑
j=1

1X\AN (T jx) + N

M
‖f1‖∞

≤ (L(f) + ε) + ‖f1‖∞ ·
1
M

M∑
j=1

1X\AN (T jx) + ε.

It remains to estimate

1
M

M∑
j=1

1X\AN (T jx)

We claim that forM sufficiently large, the summand 1
M

∑M
j=1 1X\AN (T jx)
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is uniformly bounded by O(ε). Indeed, note that

X \ AN = {x ∈ X;n(x) > N}

=
N⋂
n=1

{
x ∈ X; 1

n
fn(x) ≥ L(f) + ε

}
.

Since fn is a continuous function for every n ∈ N and since X is a
compact metric space,

{
x ∈ X; 1

n
fn(x) ≥ L(f) + ε

}
is a closed subset ofX and,

consequently, X \ AN is also a closed subset of X. Hence, by the regularity of
the Borel measure, there exists an open subset U of X such that X \AN ⊂ U

and µ(U) < µ(X \ AN) + ε.

Define L = X \ U . Then, by Lemma 3.1.1, there exists a continuous
function g : X → [0, 1] such that g|L = 0 and g|X\AN = 1.

Since µ(X \ AN) < ε, we have that
∫
X
gdµ =

∫
L
gdµ+

∫
U
gdµ ≤ µ(U) ≤ µ(X \ AN) + ε ≤ 2ε.

Then, for M sufficiently large, and by Theorem 2.4.2,

1
M

M∑
j=1

1X\AN (T jx) ≤ 1
M

M∑
j=1

g(T jx) ≤
∫
gdµ+ ε ≤ 3ε.

Combining all of the above, we conclude that forM sufficiently large and
for each x ∈ X, we have that

1
n
fn(x) ≤ L(f) +O(ε),

for all n > M . This proves the first statement of the theorem

For the second statement, let E =
⋃
k≥1

Ek ⊂ X, where Ek is a closed

subset of X and µ(Ek) = 0, for every k ∈ N. By Lemma 3.1.1, there exists a
continuous function gk : X → [0, 1] such that gk�Ek = 1 and

µ(gk) =
∫
X
gkdµ < 2−k−2.

For each n ∈ N, define

fn(x) = −
n−1∑
j=0

n−1∑
k=0

gk(T jx).

We note that fn is a continuous function and {fn} is a subadditive
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sequence. Indeed,

i) fm+n(x) = −∑m+n−1
j=0

∑m+n−1
k=0 gk(T jx)

ii) fm(x) = −∑m−1
j=0

∑m−1
k=0 gk(T jx)

iii) fn(Tmx) = −∑n−1
j=0

∑n−1
k=0 gk(Tm+jx) = −∑m+n−1

l=m
∑n−1
k=0 gk(T lx)

But,

m−1∑
j=0

m−1∑
k=0

gk(T jx) +
m+n−1∑
j=m

n−1∑
k=0

gk(T jx) ≤
m−1∑
j=0

m+n−1∑
k=0

gk(T jx) +
m+n−1∑
j=m

m+n−1∑
k=0

gk(T jx)

=
m+n−1∑
j=0

m+n−1∑
k=0

gk(T jx).

Hence,
fm+n(x) ≤ fm(x) + fn(Tmx).

On the other hand,

lim
n→∞

1
n

∫
fndµ = lim

n→∞

1
n

∫
−

n−1∑
j=0

n−1∑
k=0

gk(T jx)

= − lim
n→∞

1
n

n−1∑
j=0

n−1∑
k=0

∫
gk(T jx)

≥ − lim
n→∞

1
n

n−1∑
j=0

n−1∑
k=0

1
2k+2

= − lim
n→∞

1
n
· n

n−1∑
k=0

1
2k+2

= −
∞∑
n=0

1
2n+2 .

Then, by Theorem 2.3.2,

L(f) = lim
n→∞

1
n

∫
fndµ ≥ −

∞∑
n=0

1
2n+2 = −1

2 .

But, for any x ∈ E, we have

lim sup
n→∞

1
n
fn(x) < −1 < −1

2 ≤ L(f).

Hence, this proves the second statement of the theorem.
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Corollary 3.2.1. Let (X,µ, T ) be a compact, uniquely ergodic system and let
A : X → SLd(R) be a continuous function. Then, for every x ∈ X

lim sup
n→∞

1
n

log ‖A(n)(x)‖ ≤ L(f)

uniformly on X.

Proof. Take fn(x) = log ‖A(n)(x)‖. By Example 2.3.1, {fn} is a subadditive
sequence. Then, applying Theorem 3.2.1, we have the inequality desired.

Observation 4. By Theorem 3.2.1, we conclude that there exists a continuous,
subadditive sequence {fn} such that

(
fn
n

)
does not converge to L(f) uniformly

on X.

3.3
Uniform upper semicontinuity of the Lyapunov exponent

Let (X,µ, T ) be an ergodic Borel probability space and let Γ(X) be
the space of all T -subadditive sequences f = {fn}, where fn is a continuous
function for all n ∈ N.

By Theorem 2.3.2 we have that for almost every x ∈ X,

L(f) = lim
n→∞

1
n

∫
fndµ = inf

n

1
n

∫
fndµ.

L(f) is called the Lyapunov exponent of the process f = {fn}.

Define d : Γ(X)× Γ(X)→ R such that

d(g, f) =
∑
n≥1

1
2n

‖gn − fn‖∞
1 + ‖gn − fn‖∞

where
‖f‖∞ = max

θ∈X
|f(θ)|.

It is easy to verify that (Γ(X), d) is a metric space.

Proposition 3.3.1. Let (X,µ, T ) be an ergodic system, where X is a compact
metric space, and let f = {fn} ∈ Γ(X). Then, the Lyapunov exponent function
L : Γ(X)→ R is upper semicontinuous with respect to the metric d.

Proof. We claim that {f} 7→ 1
n

∫
X fndµ is a continuous map for each n ∈ N.

Indeed, fix n ∈ N.
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Let ε > 0. Then for δ = εn
2n(1+εn) , it is easy to see that

d(g, f) < δ ⇒ ‖gn − fn‖∞ < εn.

Hence,
∣∣∣∣ 1n
∫
X
fndµ−

1
n

∫
X
gndµ

∣∣∣∣ ≤ 1
n

∫
X
‖fn − gn‖∞ dµ <

εn

n
= ε,

which proves our claim.

Then, by the arbitrariness of n, {f} → 1
n

∫
X fndµ is a continuous map

on (Γ(X), d), for every n ∈ N. Consequently, by Proposition 3.1.2,

{f} 7→ inf
n

1
n

∫
X
fnµ(dx) = L(f)

is a upper semicontinuous map in (Γ(x), d).

Combining these properties with Theorem 3.2.1, we obtain the following
result due to S. Jitomirskaya and R. Mavi (see [7]).

Theorem 3.3.2. Let (X,µ, T ) be a compact, uniquely ergodic system and let
f = {fn} ∈ Γ(X). Then, the Lyapunov exponent function L : Γ(X) → R is
uniformly upper semicontinuous with respect to the metric d. That is, given
ε > 0, there exist δε, nε, such that for all g = {gn} ∈ Γ(X) with d(f, g) < δε,
for all n > nε and for all x ∈ X, we have

1
n
gn(x) ≤ L(f) + ε.

Proof. Fix ε. By Corollary 2.3.2, there exists n0 ∈ N such that

1
n0

∫
X
fn0(x) dµ < L(f) + ε.

By Theorem 2.4.2 and Theorem 3.2.1, there exists m ∈ N such that for every
x ∈ X,

1
m

m−1∑
k=0

fn0(T knx) <
∫
X
fn0(x) dµ(dx) + ε < n0(L(f) + 2ε). (3.2)

Take M = n0m. Since {fn}n∈N is a subadditive sequence,

fM(x) = fn0m(x) ≤ fn0(x)+f(m−1)n0(T n0x) ≤ fn0(x)+fn0(T n0x)+f(m−2)n0(T 2n0x).
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Hence, by induction and by the inequality (3.2), we have that

1
M
fM(x) ≤ 1

M

m−1∑
k=0

fn0(T kn0x) < L(f) + 2ε

for every x ∈ X.

As in the proof of Proposition 3.3.1, sinceM is fixed, there is δε > 0 such
that if d(f, g) < δε then ‖gM − fM‖∞ < ε. Then in particular, for all x ∈ X,

1
M
gM(x) < 1

M
fM(x) + ε

M
< L(f) + 2ε+ ε

M
< L(f) + 3ε. (3.3)

Put C := supx∈X |g1(x)| <∞, since g1 is continuous and X is compact.

Let n ≥ M . Then, there are k ∈ N and r ∈ {0, . . . ,M − 1} such that
n = kM + r. By subadditivity, we have

gkM+r(x) ≤ gM(x) + g(k−1)M+r(TMx)

≤ gM(x) + gM(TMx) + g(k−2)M+r(T 2Mx).

Then, by induction and using (3.3),

gkM+r(x) ≤
k∑
l=1

gM(T lMx) + gr(T kMx) ≤ kM(L(f) + 3ε) + Cr.

Divide both sides by n = kM + r to get:

1
n
gn(x) ≤ L(f) + 3ε+ Cr

kM + r
< L(f) + 4ε

since n is large enough.

This completes the proof.

Proposition 3.3.3. Let

C(X) = {A : X → SLd(R) : A continuous}

endowed with any distance dist such that dist(A,B) ≥ ‖A−B‖.

Given A ∈ C(X) and n ∈ N, define fAn = log ‖A(n)‖, and denote by
fA := {fAn }n∈N the corresponding subadditive sequence.

Then the function

(C(X), dist) 3 A→ fA ∈ (Γ(X), d)

is uniformly continuous.
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Proof. Let ε > 0. Since
∞∑
n=1

1
2n <∞, there exists N ∈ N such that

∞∑
n=N+1

1
2n <

ε

2 .

Take δ = ε
N

and take A,B ∈ C(X) such that dist(A,B) < δ. Then,
‖A − B‖∞ < δ. By the mean value theorem, there exists c ∈ R such that
min{‖A(n)‖, ‖B(n)‖} ≤ c ≤ max{‖A(n)‖, ‖B(n)‖} and

|fAn − fBn | =
∣∣∣log ‖A(n)‖ − log ‖B(n)‖

∣∣∣ = |‖A
(n)‖ − ‖B(n)‖|

c

≤ |‖A(n)‖ − ‖B(n)‖|
min{‖A(n)‖, ‖B(n)‖}

≤ ‖A(n) −B(n)‖.

Here we used the fact that if a matrix g has determinant 1, then its operator
norm ‖g‖ ≥ 1.

On the other hand, note that

‖A(2) −B(2)‖ = ‖A(Tx)A(x)−B(Tx)B(x)‖

≤ ‖A(Tx)‖‖A(x)−B(x)‖+ ‖A(Tx)−B(Tx)‖‖B(x)‖

≤ 2cδ

where c = max{‖A‖, ‖B‖}.

By induction, it is easy to show that for all n ≥ 1, ‖A(n)−B(n)‖ ≤ ncn−1δ.

Therefore,
|fAn − fBn | ≤ ncn−1δ.

Observe that

|fAn − fBn |
1 + |fAn − fBn |

≤ 1⇒
∞∑
n=N

1
2n

|fAn − fBn |
1 + |fAn − fBn |

≤
∞∑
n=N

1
2n <

ε

2 .
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Hence, since δ ≤ ε/n and 1 + |fAn − fBn | ≥ 1,∀1 ≤ n ≤ N , we have that

d(fA, fB) =
∞∑
n=1

1
2n

|fAn − fBn |
1 + |fAn − fBn |

=
N∑
n=1

1
2n

|fAn − fBn |
1 + |fAn − fBn |

+
∞∑

n=N+1

1
2n

|fAn − fBn |
1 + |fAn − fBn |

≤
N∑
n=1

1
2n

ncn−1δ

1 + |fAn − fBn |
+ ε

2

≤ ε

(
N∑
n=1

cn−1

2n

)
+ ε

2

= ε

(
1− 2NcN

2NcN−1(1− 2c)

)
+ ε

2 = O(ε).

Since ε was arbitrary, we conclude that (C(X), dist)→ (Γ(X), d) is a uniformly
continuous map.

Corollary 3.3.1. Let (X,µ, T ) be a compact, uniquely ergodic system. Then,
given A : X → SLd(R) and ε > 0, there exist nε ∈ N and δε > 0 such that for
every B : X → SLd(R) with dist(B,A) < δε, for all n ≥ nε and for all x ∈ X,

1
n

log ‖B(n)(x)‖ < L(A) + ε.
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4
A convergence rate for Birkhoff sums of Diophantine torus
translations

In this chapter we answer the second question formulated in the introduc-
tion: can we estimate the convergence rate of the Birkhoff averages for certain
types of uniquely ergodic systems and observables?

We first introduce the relevant concepts, formulate the main theorem and
describe some related results (Section 4.1). In Section 4.2 we review some basic
facts about continued fractions, then we discuss the concept of Diophantine
condition following [12] (Section 4.3). In Section 4.4 we present an intuitive
idea of the proof of the rate of convergence result for Diophantine translations
on the torus with Hölder observables, then we give a formal proof in Section
4.5. We end the chapter with the description of some related future problems.

Throughout this chapter, we denote by Tn the set of trigonometric
polynomials of degree ≤ n.

Moreover, if x ∈ R, we use the notation e(x) = e2πix ∈ S1, where S1 is
the unit circle regarded as a subset of the complex plane C.

4.1
Introduction and statement

Let us recall that for a uniquely ergodic system, given a continuous
observable, the corresponding Birkhoff averages converge everywhere and
uniformly.

A natural question is then: can we estimate the convergence rate of
the Birkhoff averages for certain types of uniquely ergodic systems and
observables?

We obtain a positive answer to this question in the case of a Diophantine
torus translation with a Hölder continuous observable.

Let T = R/Z be the one dimensional torus endowed with the Lebesgue
measure and let T : T→ T, Tx = x+ω be the translation on T by an irrational
frequency ω, which satisfies the Diophantine condition
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‖kω‖ := dist(kω,Z) ≥ c

|k|(log |k|)2 (4.1)

for some c > 0 and for all k ∈ Z \ {0}.

Moreover, in section 4.3, we prove that almost every ω ∈ [0, 1) satisfies
the above Diophantine condition for some c > 0 (with respect to the Lebesgue
measure) (thus this condition is generic in a measure theoretical sense).

We say that a map u : T→ R is α-Hölder continuous if there exist non-
negative real constants C and α such that

|u(x)− u(y)| ≤ C|x− y|α, ∀x, y ∈ T.

We denote by Cα(T) the set of all α-Hölder continuous functions on T.

Given a continuous observable u : T→ R and n ∈ N, recall that

Snu(x) :=
n−1∑
j=0

u(T jx) =
n−1∑
j=0

(x+ jω)

are the corresponding Birkhoff sums. Moreover, recall that the Birkhoff aver-
ages 1

n
Snu(x) converge uniformly to the space average

∫
T u.

We estimate the convergence rate of the Birkhoff averages for Diophantine
torus translation with a Hölder continuous observable. More precisely, we
obtain the follow result.

Theorem 4.1.1 (S. Klein and A. Melo). Let u : T→ R be an observable and
let ω ∈ T be an irrational frequency. Assume that u is α-Hölder continuous,
for some α ∈ (0, 1), and that ω satisfies the Diophantine condition (4.1).

There exists a universal constant K such that for all R ≥ 1 and x ∈ T,∣∣∣∣∣∣ 1
R

R−1∑
j=0

u(x+ jω)−
∫
T
u(x)dx

∣∣∣∣∣∣ ≤ K

c

(logR)3

R
α
α+1

‖u‖∞ .

Results of this type are well know for observables with more regularity.

For example, given an observable u ∈ C1+α(T) (meaning that u is
differentiable and u′ is α-Hölder), by means of solving the homological equation

g(x+ ω)− g(x) = u(x)−
∫
T
u,

one can establish a rate of convergence of order 1
R

for the Birkhoff sums (see
sections 8.9 and 8.10 in [13]).

Moreover, the classical Denjoy-Koksma inequality provides a similar
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type of decay for observables of bounded variation, when choosing only the
subsequence of Birkhoff sums corresponding to the denominators qn of the
principal convergents of ω (see [14]).

The main ingredient of the proof of Theorem 4.1.1 is to combine the decay
of the Fourier coefficients of the observable and the Diophantine condition
(which helps control small denominators). The idea of the proof and the formal
proof may be found in the section 4.4 and section 4.5, respectively.

4.2
Continued fractions

Let a0, a1, a2, . . . be independent variables. Define inductively pairs of
polynomials

pn = pn(a0, . . . , an) and qn = qn(a0, . . . , an)

starting with p0 = a0 and q0 = 1. We denote the quotient pn/qn by

pn
qn

= [a0, . . . , an].

Suppose that we already defined pk, qk with k < n, and n ≥ 1. We use the
notation

p′k = pk(a1, . . . , an) and q′k = qk(a1, . . . , an).

Moreover, we define inductively

pn = a0p
′
n−1 + q′n−1 and qn = p′n−1.

Then, by definition,

[a0, . . . , an] = pn
qn

= a0p
′
n−1 + q′n−1
p′n−1

= a0+ 1
p′n−1
q′n−1

= a0+ 1
pn(a1,...,an)
qn(a1,...,an)

= a0+ 1
[a1, . . . , an]

which, written in full, is equal to

a0 + 1
a1 + 1

a2+···
.

The sequence of fractions {pn/qn} is called a continued fraction.
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Theorem 4.2.1. For n ≥ 2, we have that

pn = anpn−1 + pn−2,

qn = anqn−1 + qn−2.

Proof. It is easy to see that the assertion is valid for n = 2. Assume that the
expression is valid for n − 1 and, for n > 2, assume inductively the following
equalities

p′n−1 = anp
′
n−2 + p′n−3,

q′n−1 = anq
′
n−2 + q′n−3.

Hence,

pn = a0p
′
n−1 + q′n−1

= a0(anp′n−2 + p′n−3) + anq
′
n−2 + q′n−3

= an(a0p
′
n−2 + q′n−2) + a0p

′
n−3 + q′n−3

= anpn−1 + pn−2.

Similarly, we have that
qn = anqn−1 + qn−2,

which is the conclusion we were looking for.

Theorem 4.2.2. For n ≥ 0, we have that

qnpn−1 − pnqn−1 = (−1)n.

Proof. We use induction in n. It is easy to see that for n = 0 the above equality
is satisfied. Thus, suppose that it is valid for n, that is,

qnpn−1 − pnqn−1 = (−1)n.

By Theorem 4.2.1, we have that

pn+1 = an+1pn + pn−1 ⇒ pn+1qn = an+1pnqn + pn−1qn,

qn+1 = an+1qn + qn−1 ⇒ qn+1pn = an+1qnpn + qn−1pn.

Subtracting the first expression from the second and using the induction by,
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we have that

qn+1pn − pn+1qn = pnqn−1 − qnpn−1 = −(qnpn−1 − pnqn−1) = (−1)n+1,

which is the conclusion we were looking for.

Corollary 4.2.1. For n ≥ 1, we have that

pn−1

qn−1
− pn
qn

= (−1)n
qnqn−1

.

Proof. To obtain the above expression it is sufficient to divide the expression
in Theorem 4.2.2 by qnqn−1.

Corollary 4.2.2. If a1, a2, . . . are positive integers, then pn and qn are relative
primes, and 0 < q1 < q2 < . . . forms a strictly increasing sequence of integers.

Proof. By Theorem 4.2.1,

qn−1 < anqn−1 ≤ anqn−1 + qn−2 = qn ⇒ qn−1 < qn,∀n ∈ N.

On the other hand, by Theorem 4.2.2,

qnpn−1 − pnqn−2 = (−1)n,

so pn and qn are relative prime.

Theorem 4.2.3. For n ≥ 1, we have

qnpn−2 − pnqn−2 = (−1)n−1an.

Proof. By Theorem 4.2.1,

pn = anpn−1 + pn−2 ⇒ pnqn−2 = anpn−1qn−2 + pn−2qn−2,

qn = anqn−1 + qn−2 ⇒ qnpn−2 = anqn−1pn−2 + qn−2pn−2.

Subtracting the first expression from the second and applying Theorem 4.2.2,
we have that

qnpn−2 − pnqn−2 = anqn−1pn−2 − anpn−1qn−2

= an(qn−1pn−2 − pn−1qn−2)

= (−1)n−1an,

which is the conclusion we were looking for.
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Corollary 4.2.3. For n ≥ 2, we have that

pn−2

qn−2
− pn
qn

= (−1)n−1an
qnqn−2

.

Proof. To obtain the above expression it is sufficient to divide the expression
in Theorem 4.2.3 by qnqn−2.

Corollary 4.2.4. If a1, a2, . . . are positive numbers, then, for even n, the
sequence pn/qn is strictly increasing and, for odd n, the sequence pn/qn is
strictly decreasing.

Proof. We claim that, for even n, the sequence is strictly increasing. Indeed,
replace n by 2n, then

q2np2(n−1) − p2nq2(n−1) = (−1)2n−1a2n ⇒
p2(n−1)

q2(k−1)
− p2n

q2n
= − a2n

q2nq2(n−1)

⇒
p2(n−1)

q2(k−1)
= p2n

q2n
− a2n

q2nq2(n−1)
.

Hence, p2(n−1)

q2(n−1)
<
p2n

q2n
, which is the conclusion we were looking for.

Similarly, we can prove that, for odd n, pn/qn is a strictly decreasing
sequence.

Corollary 4.2.5. Let α denote the rational number α = [a0, . . . , an+2]. Then

qnα− pn = (−1)nan+2

an+2qn+1 + qn
.

Proof. By Theorem 4.2.3,

qn+2pn − pn+2qn = (−1)n+1an+2 ⇒ pn −
pn+2

qn+2
qn = (−1)n+1an+2

qn+2
.

On the other hand, by Theorem 4.2.1, qn+2 = an+2qn+1 + qn and, by the
definition, α = pn+2

qn+2
. Thus,

qnα− pn = (−1)n+2an+2

an+2qn+1 + qn
= (−1)nan+2

an+2qn+1 + qn
.

Next we define and study the continued fraction of a real number.
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Let α be a rational number and let a0 be the largest integer ≤ α. If α is
not an integer then

α = a0 + 1
α1
,

where α1 > 1 is a rational number. Inductively, we let

αn = an + 1
αn+1

with an being the largest integer ≤ αn and αn+1 > 1. Observe that if α is
a rational number, then the process will stop after a finite number of steps.
Indeed, if αn = a/b is a rational number such that αn /∈ Z. Then

αn − an = a− ban
b

= c

b
.

Note that
c = a− ban < b− ban = b (1− an)︸ ︷︷ ︸

<1

< b.

Hence, αn+1 = b
c
is a fraction whose its denominator is smaller than the

denominator of α. So, the process stops, and α can be written as

α = [a0, . . . , an]

with a0, . . . , an ∈ Z and ai ≥ 1, for i ≥ 1.

Now, consider α be an irrational number. As before, we can determine a
continued fraction for α, that is, we can write α = a0 + 1/α1, with a0 being
the largest integer ≤ α. Inductively, we let

αn = an + 1
αn+1

,

where an is the largest integer ≤ αn and αn+1 > 1. Since α is irrational, the
sequence (an) does not end and we can represent α by

α = [a0, a1, . . .],

which we call its continued fraction expansion.

Thus, by Corollary 4.2.2, we obtain a sequence of relatively prime integers
pn, qn with qn ≥ 1. Let

pn
qn

= [a0, . . . , an].

Then, the fraction pn/qn is called the n-th principal convergent of α and an is

DBD
PUC-Rio - Certificação Digital Nº 1713260/CA



Chapter 4. A convergence rate for Birkhoff sums of Diophantine torus
translations 61

called the n-th partial quotient of α.

Theorem 4.2.4. For even n, the n-th principal convergents of α form a strictly
increasing sequence converging to α. On the other hand, for odd n, the n-th
principal convergents of α form a strictly decreasing sequence converging to α.
Furthermore, we have

1
2qn+1

<
1

qn+1 + qn
< |qnα− pn| <

1
qn+1

.

Proof. In Corollary 4.2.4, we proved the first part of the theorem. So, it is
sufficient to prove the above inequalities.

a) 1
2qn+1

<
1

qn+1 + qn
.

By Corollary 4.2.2,

qn+1 + qn < qn+1 + qn+1 = 2qn+1 ⇒
1

2qn+1
<

1
qn+1 + qn

.

b) 1
qn+1 + qn

< |qnα− pn|.

First, note that

an+2 ≥ 1⇒ 1
an+2

≤ 1⇒ qn+1+ qn
an+2

≤ qn+1+qn ⇒
1

qn+1 + qn
≤ 1
qn+1 + qn

an+2

.

Therefore, applying Theorem 4.2.1 and Corollary 4.2.3, we have that∣∣∣∣∣α− pn
qn

∣∣∣∣∣ >
∣∣∣∣∣pn+2

qn+2
− pn
qn

∣∣∣∣∣ = an+2

qn+2qn
= an+2

(an+2qn+1 + qn)qn
= 1

(qn+1 + qn
an+2

)qn
.

Hence,
|qnα− pn| >

1
qn+1 + qn

an+2

≤ 1
qn+1 + qn

.

c) |qnα− pn| <
1

qn+1

Since qn+1 < qn+1 + qn
an+2

, by Corollary 4.2.5, we have that

|qnα− pn| =
an+2

qn+1 + an+2qn
= 1
qn+1 + qn

an+2

<
1

qn+1
.

The following picture illustrate the Theorem 4.2.4
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Figure 4.1: Theorem 4.2.4 illustration

4.3
The Diophantine condition

Let α be a real number. We denote by ‖α‖ the distance between α and
the nearest integer.

Definition 4.3.1. Let α be a real number. We say that a fraction p
q
, (q > 0),

is a best approximation to α if

‖qα‖ = |qα− p| and ‖q′α‖ > ‖qα‖

for every 1 ≤ q′ < q.

Theorem 4.3.1. The best approximations to α are the principal convergents.
In fact, qn+1 is the smallest integer q′ > qn such that ‖q′α‖ < ‖qnα‖.

Proof. Le a/b be a reduced fraction, which is a best approximation to α, where
b > 0. We claim that a/b is a principal convergent, that is, a/b = pn/qn, for
some n ∈ N.

First, suppose that a/b < p0/q0 = a0. Since q0 = 1, we have that

|q0α− p0| =
∣∣∣∣∣α− p0

q0

∣∣∣∣∣ = |α− a0| <
∣∣∣∣α− a

b

∣∣∣∣ =
∣∣∣∣∣bα− ab

∣∣∣∣∣ ≤ |bα− a|.
Thus, ‖q0α‖ = |q0α − p0| < |bα − a| = ‖bα‖, contradicting the hypothesis
because q0 < b. Suppose, now, that a/b > p1/q1. Thus,

a

b
>
p1

q1
⇒ aq1 > bp1 ⇒ aq1 − bp1 > 0⇒ aq1 − bp1 ≥ 1

because a, b, p1, q1 ∈ Z, so aq1 − bp1 ∈ Z. But, by Theorem 4.2.4, α < p1/q1,
then, ∣∣∣∣ab − α

∣∣∣∣ >
∣∣∣∣∣ab − p1

q1

∣∣∣∣∣ ≥ 1
bq1
⇒ |bα− a| > 1

q1
.

Hence, by Theorem 4.2.4,

|α− a0| =
∣∣∣∣∣α− p0

q0

∣∣∣∣∣ =
∣∣∣∣∣q0α− p0

q0

∣∣∣∣∣ < 1
q0q1

= 1
q1

= 1
a1
.
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Then
|bα− a| > 1

q1
= 1
a1
≥ |α− a0|

again contradicting the hypothesis. Now, suppose that a/b is such that
pn−1/qn−1 < a/b < pn+1/qn+1. Then

1
bqn−1

≤
∣∣∣∣∣ab − pn−1

qn−1

∣∣∣∣∣ <
∣∣∣∣∣pnqn − pn−1

qn−1

∣∣∣∣∣ = 1
qnqn−1

by Theorem 4.2.2. Therefore, qn < b. But,

1
bqn+1

≤
∣∣∣∣∣pn+1

qn+1
− a

b

∣∣∣∣∣ ≤
∣∣∣∣α− a

b

∣∣∣∣ .
Again, by Theorem 4.2.4, we have that

‖qnα‖ = |qnα− pn| <
1

qn+1
≤ b

∣∣∣∣α− a

b

∣∣∣∣ = |bα− a| ⇒ ‖qnα‖ < ‖bα‖, qn < b

contradicting the hypothesis. Thus, there exists n ∈ N such that a/b = pn/qn.

The second half of the Theorem, is proven by induction on n. It is obvious
for n = 0, because q0 = 1 and there is no q ∈ N such that 1 ≤ q < q0. Hence,
p0/q0 satisfies the the definition of best approximation by vacuity.

Assume that our assertion is valid for pn/qn, with n ≥ 0. We will show
that pn+1/qn+1 is a best approximation. Let q be the smallest integer > qn

such that ‖qα‖ < ‖qnα‖, and let p be such that ‖qα‖ = |qα − p|. Then, by
the inductive property, we conclude that p/q is a best approximation to α.
By the first part of the Theorem, p/q = pn/qn, for some n ∈ N. Since q is
the smallest integer > q such that ‖qα‖ < ‖qnα‖, we conclude that q = qn+1.
Thus, p = pn+1, thereby proving our theorem.

Corollary 4.3.1. If p
q
is a principal convergent to α and m ∈ Z is such that

1 ≤ m < q, then ‖mα‖ > 1
2q .

Proof. Suppose that q = qn. By Theorem 4.2.4,

1
2qn

< |qnα− pn| = ‖qn−1α‖.

Since m < qn and applying Theorem 4.3.1, we have that ‖qn−1α‖ < ‖mα‖.

Definition 4.3.2. We say that an irrational number α satisfies a Diophantine
condition if for some c ∈ R, c > 0 and for all k ∈ Z \ {0},
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‖kα‖ := dist(kα,Z) ≥ c

|k|(log |k|)2 . (4.2)

Theorem 4.3.2. Almost every number α ∈ [0, 1] satisfies a Diophantine
condition for some c > 0. In other words, for almost every α ∈ [0, 1) there is
only a finite number of solutions k ∈ Z to the inequality ‖kα‖ ≤ 1

|k|(log |k|)2 .

Proof. Define ψ(q) = 1
|q|(log |q|)2 . Let

B = {α ∈ [0, 1] : ‖qα‖ < ψ(q) has infinitely many solution}.

We have to show that λ(B) = 0, where λ denotes the Lebesgue measure.

Given ε > 0, take q0 ∈ N such that the
∞∑
q≥q0

ψ(q) < ε. This is possible

since the series converge.

For every q ≥ q0, consider the intervals

I0 =
(
−ψ(q)

q
,
ψ(q)
q

)

I1 =
(

1
q
− ψ(q)

q
,
1
q

+ ψ(q)
q

)
...

Iq−1 =
(
q − 1
q
− ψ(q)

q
,
q − 1
q

+ ψ(q)
q

)
.

If α ∈ B then α ∈ Ij, for some j ∈ {0, . . . , q − 1} since ‖qα‖ < ψ(q) and
∣∣∣∣∣α− p

q

∣∣∣∣∣ < ψ(q)
q

.

Since B ⊂
q−1⋃
k=0

Ik, we have that

λ(B) ≤ λ

q−1⋃
k=0

Ik

 =
∑
q≤q0

q
2ψ(q)
q

< 2ε

which is the conclusion we were looking for.

Lemma 4.3.3. Assume that ω be an irrational number which satisfies the
Diophantine condition (4.2) Then, for every large enough integer R, there
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exists a best approximation p
q
to ω such that

R < q <
R(logR)2

c
.

Moreover, if 1 ≤ j < q then ‖jω‖ > 1
2q .

Proof. Let ω be a irrational number which satisfies the Diophantine condition
and consider its continued fraction representation ω = [a0, a1, . . . , an, . . .]. For
every n ≥ 1, let

pn
qn

= [a0, a1, . . . , an]

be its n-th principal convergent. By Theorem 4.2.4,
1

2qn+1
< ‖qnω‖ = |qnω − pn| <

1
qn+1

. (4.3)

Then, for any R ∈ N sufficiently large, let n+ 1 be the first integer j such that
qj > R. Then, qn ≤ R < qn+1, and using the inequalities (4.3) and (4.2), we
have that

qn+1 <
1

‖qnω‖
≤ qn(log qn)2

c
<
R(logR)2

c
.

Let the fraction p
q
be a best approximation to ω, that is, ‖qω‖ = |qω − p| and

‖jω‖ > ‖qω‖ for all 1 ≤ j < q.

By Theorem 4.3.1, q = qn+1 for some n ≥ 0, thereby

R < q <
R(logR)2

c
.

Moreover, for every 1 ≤ j < q = qn+1, we have that ‖jω‖ ≥ ‖qnω‖. It follows
from the inequality (4.3) that

‖qnω‖ >
1

2qn+1
= 1

2q .

Hence, if p
q
is a best approximation to ω, we have that

‖jω‖ > 1
2q for all 1 ≤ j < q

which is the conclusion we were looking for.
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4.4
Convergence rate of Birkhoff sums: idea of the proof

In this section we give an intuitive idea of the proof of Theorem 4.1.1.

Recall that a function u : T → R is α-Hölder continuous if there exist
non-negative real constants C and α such that

|u(x)− u(y)| ≤ C|x− y|α, ∀x, y ∈ T.

We denote by Cα(T) the set of all α-Hölder continuous functions on T.

Given a function u ∈ Cα(T), its Fourier series

u(x) =
∑
k∈Z

û(k)e2πikx

converges for every x ∈ T, where

û(k) =
∫
T
u(x)e−2πikxdx

is the k-th Fourier coefficient of u.

Then
û(0) =

∫
T
u(x)dx.

Hence
u(x) =

∫
T
u+

∑
k 6=0

û(k)e2πikx.

Since

(SRu)(x) = u(x) + u(x+ ω) + · · ·+ u(x+ (R− 1)ω),

we have that
1
R

(SRu)(x) =
∫
T
u+

∑
k 6=0

û(k) 1
R
SR(e2πikx). (4.4)

A simple calculation shows that

1
R
SR(e2πikx) = e2πikx 1

R

R−1∑
j=0

e2πijkω.

Denoting

FR(kω) := 1
R

e2πiRkω − 1
e2πikω − 1
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and substituting the above in (4.4), we obtain
1
R

(SRu)(x)−
∫
T
u =

∑
k 6=0

û(k)FR(kω)e2πikx . (4.5)

Thus ∣∣∣∣ 1
R

(SRu)(x)−
∫
T
u

∣∣∣∣ ≤∑
k 6=0
|û(k)||FR(kω)|

uniformly in x ∈ T.

Hence we have to stimate the right-hand side on the previous inequality.
Note that

|FR(kω)| ≤ min
{

1, 1
R

1
‖kω‖

}
.

Since ω satisfies the Diophantine condition (4.1), we have that

1
‖kω‖

≤ |k|(log |k|)2

c
.

Then

|FR(kω)| ≤ min
{

1, 1
R

1
‖kω‖

}
≤ 1
R
· |k|(log |k|)2

c
. (4.6)

On the other hand, since u ∈ Cα(T), its Fourier coefficients have the
decay

|û(k)| ≤ C

|k|α
. (4.7)

These two pieces of information alone, the decay of the kernel FR(kω)
(provided by the Diophantine condition) and the decay of the Fourier coeffi-
cients û(k) (provided by the Hölder regularity of the observable), while helpful,
are not enough to establish the desired uniform estimate. That is because of
the following two issues.

1) The right hand side of (4.5) is an infinite sum, so when k is of order R (or
higher), the upper bound (4.6), as written, will stop being useful.

2) When the order α of the Hölder class is very close to zero, the decay rate
(4.7) becomes too weak.

To overcome these issues, we use approximations of the observable u by
trigonometric polynomials, whose Fourier series expansions are finite.
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By Jackson’s Theorem, there exists a universal constant C <∞ and for
all n ≥ 1, there exists a trigonometric polynomial pn of degree n such that

‖u− pn‖∞ ≤ Cn−α.

Let p be such a trigonometric polynomial of degree n, so

p(x) =
n∑

k=−n
p̂(k)e2πikx .

The calculation done above for u, applied to p yields∣∣∣∣ 1
R

(SRp)(x)−
∫
T
p

∣∣∣∣ ≤ ∑
0<|k|≤n

|p̂(k)||FR(kω)| . (4.8)

where again

|FR(kω)| ≤ min
{

1, 1
R
· 1
‖kω‖

}
.
|k|(log |k|)2

R
.

Moreover, we have the stronger Fourier coefficients bound

|p̂(k)| ≤ C

|k|
,

where the constant C is of order n ‖p‖∞.

The key idea of the proof is to choose, for every R (the length of the
Birkhoff sum) an appropriate n (degree of polynomial approximation) and
to work with the corresponding trigonometric polynomial pn instead of the
original observable u. In other words, for every iterate R, we choose a different
observable pn ∈ Tn (where n is related to R) which approximates u well (so the
resulting error is small) and avoids the issues mentioned above. The relevant
estimate for the approximant pn is formalized in the technical result below.

Lemma 4.4.1. Let p ∈ Tn and let ω ∈ T. Assume that ω satisfies the
Diophantine condition (4.2) and let R ∈ N be such that logR < n ≤ R.
Then ∥∥∥∥ 1

R
SRp−

∫
T
p
∥∥∥∥
∞
≤ 12

c

(logR)3

πR
n ‖p‖∞ .

The idea of the proof of Lemma 4.4.1 is to use approximations of ω by
continued fractions.

DBD
PUC-Rio - Certificação Digital Nº 1713260/CA



Chapter 4. A convergence rate for Birkhoff sums of Diophantine torus
translations 69

In Section 4.3, we prove that for large enough integers R, there exists a
best approximation p

q
to ω such that

q > logR but q ≈ logR .

Hence, we split the right hand side of the sum in the equality (4.8) as:∑
0<|k|≤n

|p̂(k)||FR(kω)| =
∑

0<|k|<logR
+

∑
logR≤|k|<q

+
∑

q≤|k|≤n
(4.9)

Moreover, in Section 4.5, we prove that for any interval I ⊂ Z of size
≤ q, we have that ∑

k∈I
|FR(kω)| . 8q

R
logR. (4.10)

Thus, in order to obtain a sharp upper bound, we divide the last sum in
(4.9) into sums of sizes ≤ q,

∑
q≤|k|≤n

=
∑

1≤s≤n
q

∑
sq≤|k|<(s+1)q

which are estimated individually using (4.10).

The following picture illustrates the division into the three sums in (4.9).

Figure 4.2: Illustration of the proof

4.5
Convergence rate of Birkhoff sums: formal proof

In this section we establish Theorem 4.1.1 on the convergence rate for
the Birkhoff sums of a Hölder observable, over a Diophantine torus translation.
Our approach follows ideas used in the study of quasi-periodic linear cocycles,
see for instance [15]. To the best of our knowledge, this result is new.

We recall that a function u : T→ R is said to be α-Hölder continuous if
there exist non-negative real constants C and α such that

|u(x)− u(y)| ≤ C|x− y|α, ∀x, y ∈ T.

We denote by Cα(T) the set of all α-Hölder continuous functions on T.
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Our approach uses approximations of the observable by trigonometric
polynomials. We recall bellow two important results that will be crucial in our
proof (see p.49 in [13])

Theorem 4.5.1 (Jackson). If u ∈ Cα(T) then, there exists a universal
constant C < ∞ and for all n ≥ 1, there exists pn trigonometric polynomial
of degree n such that

‖u− pn‖∞ ≤ Cn−α.

Theorem 4.5.2 (Bernstein). If pn is a trigonometric polynomial of degree n,
then

‖p′n‖∞ ≤ n‖pn‖∞.

The key ingredient in our proof is combining the decay of the Fourier
coefficients of the observable and the Diophantine condition.

We recall that given a function u ∈ L2(T), its k-th Fourier coefficient is

û(k) =
∫ 1

0
u(x)e(−kx)dx

where e(x) = e2πix.

We recall that Tn is the set of all trigonometric polynomials of degree
≤ n. In other words, if p ∈ Tn, then

p(x) =
n∑

k=−n
ake(kx)

where ak ∈ C with k = −1, . . . , n. It is easy to verify that in fact ak = p̂(k)
for all k, where p̂(k) is the k-th Fourier coefficient of p.

Lemma 4.5.3. Let p ∈ Tn and let p̂(k) be the k-th Fourier coefficient of p.
Then,

|p̂(k)| ≤ n‖p‖∞
2π|k| .

Proof. Let k ∈ Z. Since p ∈ Tn, we can write p as

p(x) =
n∑

k=−n
p̂(k)e(kx).

Then, by the definition of the Fourier coefficients and using integration
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by parts, we have that

p̂(k) =
∫ 1

0
p(x)e(kx)dx =

∫ 1

0
p(x)e(−kx)dx

= − 1
2πikp(x)e(−kx)

]1

0︸ ︷︷ ︸
=0

− 1
2πik

∫ 1

0
p′(x)e(−kx)dx

= − 1
2πik

∫ 1

0
p′(x)e(−kx)dx .

Hence, by Theorem 4.5.2,

|p̂(k)| =
∣∣∣∣− 1

2πik

∫ 1

0
p′(x)e(−kx)dx

∣∣∣∣ ≤ 1
2πik

∫ 1

0
|p′(x)e(−kx)|dx ≤ n‖p‖∞

2π|k| .

Lemma 4.5.4. Let p ∈ Tn and let ω ∈ T. Assume that ω satisfies the
Diophantine condition (4.2) and let R ∈ N be such that logR < n ≤ R.
Consider the translation map Tω, where Tω(x) = x+ ω. Then,

∥∥∥∥ 1
R
SRp−

∫
p
∥∥∥∥
∞
≤ 12

c

(logR)3

πR
n ‖p‖∞ .

where (SRp)(x) = p(x) + p(Tωx) + · · ·+ p(TR−1
ω x).

Proof. Since p is a trigonometric polynomial of degree n, we have that

p(x) =
n∑

k=−n
p̂(k)e(kx) = p̂(0) +

∑
0<|k|≤n

p̂(k)e(kx)

=
∫
p+

∑
0<|k|≤n

p̂(k)e(kx) .

Then, for j ∈ Z,

p(x+ jω)−
∫
p =

∑
0<|k|≤n

p̂(k)e(k(x+ jω)) =
∑

0<|k|≤n
p̂(k)e(jkω)e(kx).
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Therefore,

1
R

(SRp)(x)−
∫
p = 1

R

R−1∑
j=0

p(x+ jω)−
∫
p

= 1
R

R−1∑
j=0

(p(x+ jω)−
∫
p)

= 1
R

R−1∑
j=0

 ∑
0<|k|≤n

p̂(k)e(jkω)e(kx)


=
∑

0<|k|≤n
p̂(k)

 1
R

R−1∑
j=0

e(jkω)
 e(kx).

Consider the Féjer-type kernel of order 1:

FR(t) := 1
R

R−1∑
j=0

e(jt).

It follows that

1
R

R−1∑
j=0

p(x+ jω)−
∫
p =

∑
0<|k|≤n

p̂(k)FR(kω)e(kx). (4.11)

Hence, it is enough to estimate the right hand side of the equality (4.11).
By Lemma 4.5.3,

|p̂(k)| ≤ n‖p‖∞
2π|k| . (4.12)

We also have to estimate FR(kω). Since FR(kω) is the sum of a finite
geometric sequence, it follows that

|FR(t)| = 1
R

∣∣∣∣∣e(t)R − 1
e(t)− 1

∣∣∣∣∣ = 1
R

∣∣∣∣∣1− e(Rt)1− e(t)

∣∣∣∣∣ ≤ 1
R‖t‖

.

On the other hand, |FR(t)| ≤ 1, then the kernel FR(t) satisfies the bound

|FR(t)| ≤ min
{

1, 1
R‖t‖

}
.

Hence, we have two cases:

• min
{

1, 1
R‖t‖

}
= 1⇒ 1 ≤ 1

R‖t‖ ⇒ R‖t‖ ≤ 1⇒ |FR(t)| ≤ 1 ≤ 2
1+R‖t‖

• min
{

1, 1
R‖t‖

}
= 1

R‖t‖ ⇒
1

R‖t‖ ≤ 1⇒ 1 +R‖t‖ ≤ 2R‖t‖ ⇒ 1
R‖t‖ ≤

2
1+R‖t‖

Therefore,
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|FR(t)| ≤ min
{

1, 1
R‖t‖

}
≤ 2

1 +R‖t‖
. (4.13)

Since ω satisfies the Diophantine condition, it follows from Lemma 4.3.3
applied to the integer blogRc that there exists a best approximation p

q
to ω

such that
logR < q <

logR[log(logR)]2
c

. (4.14)

Moreover,
‖jω‖ > j

2q , 1 ≤ j < q. (4.15)

Split the right hand side of the sum in the equality (4.11) as:

∑
0<|k|≤n

p̂(k)FR(kω)e(kx) =
∑

0<|k|<logR
+

∑
logR≤|k|<q

+
∑

q≤|k|≤n
(4.16)

Denote by S1(x), S2(x) and S3(x) the three sums on the right side of the
equality (4.16). So, we will each of estimate these three sums separately.

From (4.12) and (4.13), we get

|S1(x)| ≤
∑

0<|k|<logR
|p̂(k)||FR(kω)| ≤ n‖p‖∞

2πR
∑

0<|k|<logR

1
|k|‖kω‖

.

Using the Diophantine condition (4.2), we have that

c

|k|(log |k|)2 ≤ ‖kω‖ ⇒
1

|k|‖kω‖
≤ (log |k|)2

c
.

Then, for every x ∈ T,

|S1(x)| ≤ n‖p‖∞
2πR

∑
0<|k|<logR

1
|K|‖kω‖

≤ n‖p‖∞
2πRc

∑
0<|k|<logR

(log |k|)2

≤ n‖p‖∞
2πRc

∑
0<|k|<logR

[log(logR)]2

≤ n‖p‖∞
2πRc · logR · [log(logR)]2.

To bound S2(x) and S3(x) we need the following estimate.

Let I ⊂ Z be any interval of size |I| < q. Then, for every k, k′ ∈ I with
k 6= k′, we have that |k − k′| ≤ |I| < q. Hence, the inequality (4.15) implies

‖kω − k′ω‖ = ‖(k − k′)ω‖ > 1
2q . (4.17)
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Divide T into the 2q arcs

Cj =
[
j

2q ,
j + 1

2q

)
, 0 ≤ j ≤ 2q − 1

with size |Cj| = 1
2q . By the observation in (4.17), each arc Cj contains at most

one point kω, with k ∈ I.

Moreover, if x ∈ Cj, with 0 ≤ j ≤ q−1, then x ∈
[
0, 1

2

)
and, consequently,

‖x‖ ≥ j
2q . On the other hand, if x ∈ Ck, with q ≤ k ≤ 2q − 1, thus x ∈

[
1
2 , 1

)
.

In this case, ‖x‖ ≥ 1− k+1
2q = 2q−k+1

2q . Take j = 2q− k− 1, then k = 2q− j− 1
and

q ≤ k ≤ 2q − 1⇒ 0 ≤ 2q − k − 1 ≤ q − 1⇒ 0 ≤ j ≤ q − 1.

Hence, if x ∈ Ck with q ≤ k ≤ 2q − 1, it follows that x ∈ C2q−j−1 with
0 ≤ j ≤ q − 1. On the other hand, note that

‖kω‖ ≥ j

2q ⇒ 1 +R‖kω‖ ≥ 1 +R

(
j

2q

)
⇒ 1

1 +R‖kω‖
≤ 1

1 +R
(
j
2q

)
for any kω ∈ Cj and kω ∈ C2q−j−1, with 0 ≤ j ≤ q − 1.

On the other hand,

• R > 2⇔ 1 + R
2 < R⇔ log

(
1 + R

2

)
< logR⇔ 8q

R
log

(
1 + R

2

)
< 8q

R
logR.

Then, by the observations above and the inequality (4.13), we have that

∑
k∈I
|FR(kω)| ≤

∑
k∈I

2
1 +R‖kω‖

≤
q−1∑
j=0

4
1 +R

(
j
2q

)
≤
∫ q

0

4
1 +R

(
x
2q

)dx
= q

R

[
8 log

(
1 +R

(
x

2q

))]q
0

= q

R

[
8 log

(
1 + R

2

)]
.

8q
R

logR.

Hence, for any interval I ⊂ Z of size < q,∑
k∈I
|FR(kω)| . 8q

R
logR . (4.18)
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Using the inequalities (4.18) and (4.14), it follows that for every x ∈ T,

|S2(x)| ≤
∑

logR≤|k|<q
|p̂(k)||FR(kω)|

≤ n‖p‖∞
2π

∑
logR≤|k|<q

1
|k|
|FR(kω)|

≤ n‖p‖∞
2π logR

∑
1≤|k|<q

|FR(kω)|

≤ n‖p‖∞
2π logR ·

8q
R

logR ≤ 4n‖p‖∞
πR

· logR · [log(logR)]2
c

.

Similarly,

|S3(x)| ≤
∑

q≤|k|<n
|p̂(k)||FR(kω)| ≤ n‖p‖∞

2π
∑

q≤|k|<n

1
|k|
|FR(kω)|

≤ n‖p‖∞
2π

∑
1≤s≤n

q

 ∑
sq≤|k|<(s+1)q

1
|k|
|FR(kω)|


≤ n‖p‖∞

2π
∑

1≤s≤n
q

1
sq

8q
R

logR

= 4n‖p‖∞
πR

logR
∑

1≤s≤n
q

1
s

≤ 4n‖p‖∞
πR

· logR · log
(
n

q

)
≤ 4n‖p‖∞

πR
· logR · log n.

Hence, using the estimates obtained for S1(x), S2(x) and S3(x), we have

∥∥∥∥ 1
R

(SRp)−
∫
p
∥∥∥∥
∞
≤

∣∣∣∣∣∣
∑

0<|k|≤n
p̂(k)FR(kω)e(kx)

∣∣∣∣∣∣
≤ |S1(x)|+ |S2(x)|+ |S3(x)|

≤ n‖p‖∞
2πR · [log(logR)]2 · logR + 4n‖p‖∞

πR
· logR · [log(logR)]2

+ 4n‖p‖∞
πR

· logR · log n

≤ n‖p‖∞
πR

·
(

1
2c · logR · [log(logR)]2 + 4 logR · [log(logR)]2

c
+ 4(logR)2

)

≤ n‖p‖∞
πR

·
( 1

2c · (logR)3 + 4
c
· (logR)3 + 4

c
· (logR)3

)
≤ 12

c
‖p‖∞n ·

(logR)3

πR

since [log(logR)] ≤ logR and 0 < c < 1. This completes the proof.
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Theorem 4.5.5. Let u ∈ Cα(T), where 0 < α < 1 and let ω ∈ T. Assume that
ω satisfies the Diophantine condition (4.2). There exists a universal constant
K such that for all R ≥ 1,

∥∥∥∥ 1
R

(SRu)−
∫
T
u
∥∥∥∥
∞
≤ K

c

(logR)3

R
α
α+1

‖u‖∞,

where (SRu)(x) = u(x) + u(x+ ω) + · · ·+ u(x+ (R− 1)ω).

Proof. Take n = R
1

α+1 .

By Theorem 4.5.1, there exists a universal constant C < ∞ and there
exists a trigonometric polynomial p of degree n such that

‖u− p‖∞ < Cn−α.

Hence, applying Lemma 4.5.4, we have that
∥∥∥∥ 1
R

(SRu)−
∫
u
∥∥∥∥
∞
≤
∥∥∥∥ 1
R

(SRu)− 1
R

(SRp) + 1
R

(SRp)−
∫
p+

∫
p−

∫
u
∥∥∥∥
∞

≤
∥∥∥∥ 1
R

[SR(u− p)]
∥∥∥∥
∞

+
∥∥∥∥ 1
R

(SRp)−
∫
p
∥∥∥∥
∞

+
∥∥∥∥∫ (p− u)

∥∥∥∥
∞

≤ 1
R

R−1∑
j=0
‖u(x+ jω)− p(x+ jω)‖∞ + 12

c
· ‖p‖∞n ·

(logR)3

πR
+
∫
‖(p− u)‖∞

≤ 2C
nα

+ 12
c
‖p‖∞n ·

(logR)3

πR

.
2C
nα

+ 12
c
‖u‖∞n ·

(logR)3

πR

= 1
R

α
α+1

(
2C + 12

c
‖u‖∞ ·

(logR)3

π

)

≤ K

c
· (logR)3

R
α
α+1

‖u‖∞

where K = 12C. Hence, we obtain the conclusion that we were looking for.

4.6
Related problems

Let us end with some natural questions related to the main result proved
in this chapter.

1. Is the Diophantine condition strictly necessary? Can one consider weaker
arithmetic conditions (e.g. Brjuno)?

DBD
PUC-Rio - Certificação Digital Nº 1713260/CA



Chapter 4. A convergence rate for Birkhoff sums of Diophantine torus
translations 77

2. What happens when ω is say, the golden ratio (thus satisfying a very
strong Diophantine condition), do the estimates get better?

3. What happens in the opposite context, that of a Liouville number ω,
does the result fail to hold?

4. Is it possible to obtain a better rate of convergence in Theorem 4.1.1?
What is the optimal rate?

5. What if instead of a Hölder observable we consider any continuous
observable u, can we derive a rate of convergence of the Birkhoff sums
that depends explicitly on the modulus of continuity of u?

6. Are results of this type valid for other uniquely ergodic systems, such as
the higher dimensional torus translation or the skew-transltion?

We intend to answer some of the questions above in future works.
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