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Abstract

Schardong, Guilherme Gonçalves; Lopes, Hélio Côrtes Vieira (Advi-
sor); Barbosa, Simone Diniz Junqueira (Co-Advisor).Visual interac-
tive support for selecting scenarios from time-series ensem-
bles. Rio de Janeiro, 2018. 92p. Tese de doutorado – Departamento
de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Stochastic programming and scenario reduction approaches have be-
come invaluable in the analysis and behavior prediction of dynamic systems.
However, such techniques often fail to take advantage of the user’s own ex-
pertise about the problem domain. This work provides visual interactive
support to assist users in solving the scenario reduction problem with time-
series data. We employ a series of time-based visualization techniques linked
together to perform the task. By adapting a multidimensional projection al-
gorithm to handle temporal data, we can graphically present the evolution
of the ensemble. We also propose to use cumulative bump charts to visu-
ally compare the ranks of distances between the ensemble time series and
a baseline series. To evaluate our approach, we developed a prototype ap-
plication and conducted observation studies with volunteer users of varying
backgrounds and levels of expertise. Our results indicate that a graphical
approach to scenario reduction may result in a good subset of scenarios and
provides a valuable tool for data exploration in this context. The users liked
the interaction mechanisms provided and judged the task to be easy to per-
form with the tools we have developed. We tested the proposed approach
against state-of-the-art techniques proposed in the literature and used in
the industry and obtained good results, thus indicating that our approach
is viable in a real-world scenario.

Keywords
Scenario Reduction; User Interaction; Scientific Visualization;

Decision Making; Time Series Ensembles.
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Resumo

Schardong, Guilherme Gonçalves; Lopes, Hélio Côrtes Vieira; Bar-
bosa, Simone Diniz Junqueira. Uma Abordagem Visual e Intera-
tiva para a Seleção de Conjuntos de Cenários Temporais. Rio
de Janeiro, 2018. 92p. Tese de Doutorado – Departamento de Infor-
mática, Pontifícia Universidade Católica do Rio de Janeiro.
O uso de abordagens de programação estocástica e redução de cená-

rios tem se tornado imprescindível na análise e predição de comportamento
de sistemas dinâmicos. Entretanto, tais técnicas não levam em conta o co-
nhecimento prévio sobre domínio que o usuário possui. O presente trabalho
tem por objetivo o desenvolvimento de uma abordagem visual e interativa
para abordar o problema de redução de cenários com dados temporais. Para
tanto, nós propomos a implementação de uma série de visualizações de da-
dos temporais integradas. Também propomos a adaptação de um algoritmo
de projeção multidimensional para lidar com dados temporais. Desta forma,
podemos representar graficamente a evolução de um conjunto de cenários
ao longo do tempo. Outra visualização proposta no presente trabalho é
uma adaptação de Bump chart para lidar com dados temporais acumula-
dos; através dele, um usuário pode comparar a evolução das distâncias entre
os diferentes cenários e um cenário de referência. Para validar a nossa pro-
posta, fizemos uma implementação das técnicas propostas e conduzimos um
estudo com usuários de diferentes áreas do conhecimento e níveis de experi-
ência. Os resultados obtidos até então indicam que uma abordagem visual
para o problema de redução de cenários é viável, e permite a seleção de um
conjunto razoável de cenários. Além disso, constatamos que essa abordagem
pode ser útil em um contexto de exploração de dados visando a redução de
cenários. O usuário também pode explorar visualmente os resultados de ou-
tras técnicas de redução de cenários usando nossa abordagem. Os usuários
entrevistados reportaram facilidade em cumprir as tarefas propostas e co-
mentaram positivamente sobre os mecanismos de interação fornecidos pelo
nosso protótipo. Também testamos os cenários escolhidos usando nossa pro-
posta contra outras abordagens encontradas tanto na literatura quanto em
uso na indústria. Os resultados obtidos foram bons, indicando que nossa
proposta é viável em casos de uso reais.

Palavras-chave
Redução de Cenários; Interatividade; Visualização Científica; To-

mada de Decisão; Conjuntos de Dados Temporais.
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ALL THINGS THAT ARE, ARE OURS.
BUT WE MUST CARE. FOR IF WE DO
NOT CARE, WE DO NOT EXIST. IF
WE DO NOT EXIST, THEN THERE IS
NOTHING BUT BLIND OBLIVION. AND
EVEN OBLIVION MUST END SOMEDAY.
LORD, WILL YOU GRANT ME JUST A
LITTLE TIME? FOR THE PROPER BAL-
ANCE OF THINGS. TO RETURN WHAT
WAS GIVEN. FOR THE SAKE OF PRIS-
ONERS AND THE FLIGHT OF BIRDS.
LORD, WHAT CAN THE HARVEST HOPE
FOR, IF NOT FOR THE CARE OF THE
REAPER MAN?

Terry Pratchett, Reaper Man.
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1
Introduction

Recent developments in simulation techniques have helped researchers to
better understand and predict several naturally occurring phenomena, rang-
ing from weather forecast (Sanyal2010) to circuit calibration (Lee2010) and
fluid dynamics (Hummel2013). These simulations produce a huge amount of
data, due to the availability of computing power and simulation model re-
finements. To extract meaningful information from all those data, researchers
have been developing an array of approaches in diverse areas: data min-
ing (Wang2014), machine learning (Yang2007), visualization (Phadke2012),
and optimization (Alrefaei2007). Such approaches typically use statistical mea-
sures to summarize the results or to reduce the dimensionality of data and
select the most probable outcomes of the simulation.

In simulation analysis, scenario reduction is particularly useful, since its
goal is to reduce the number of simulation outcomes (i.e., scenarios) to a
more manageable size, with minimal loss of variability. Existing approaches
are usually modeled as stochastic programming problems (Dupacova2003,
Armstrong2013), in which a probability is associated to each possible scenario,
and the goal is to select a subset of scenarios whose probability is closest to
that of the original set (henceforth called ensemble).

However, none of those approaches actively engages the users and their
knowledge about the problem domain. Visualization-based approaches, con-
versely, allows for interactive exploration of the data through visual tools
and interaction mechanisms. Visual analytics supports decision making by
integrating the best of computational processing power and human cogni-
tive prowess (Aigner2007, Andrienko2011, Keim2008, Kohlhammer2011). For
time-based ensembles, (Cheng2016) provide a comprehensive survey on time-
series and time-based visualization techniques and interaction mechanisms,
from which we draw in our proposal.

The main goal of our work is to provide visual interactive support for
solving the scenario reduction problem with time-series data. We employ a
series of time-based visualization techniques linked together, allowing the user
to draw from the strengths of each technique. To the best of our knowledge,
no one has proposed a similar way of approaching this problem.
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Chapter 1. Introduction 14

We also propose adaptations to two known visualization algo-
rithms: (i) the Local Affine Multidimensional Projection (LAMP) algo-
rithm (Joia2011), in order to produce a time-based representation of the data;
and (ii) Bump charts, also known as Slope graphs (Tufte1990), in order to view
a transformed version of our time-series ensemble. Multidimensional projec-
tions are evolving, especially in the works of (Alencar2012) and (Wong2013).
By using a different base technique, with a strong mathematical founda-
tion (Joia2011), we aim to provide a more robust representation of the
similarity between the series over time. We have also made some adaptations
to Bump charts (Tufte1990). As our data is not ordinal, we transform them
by ranking the distance between each series and a baseline. Moreover, we do
not treat each time step as isolated from the others, but as an accumulated
rank from all previous time steps.

As proof of concept, we built a prototype software using the brushing
and linking framework, proposed by (Becker1987, Buja1991), as basis for the
user interaction with the different visualizations. We chose four visualization
mechanisms: (i) a Fanchart, proposed by (Britton1998); (ii) the Distance scat-
terplot; (iii) a cumulative Bump chart; and (iv) a scatterplot with the results
of our proposed multidimensional projection (MP) approach. To evaluate our
approach, we conducted an empirical study involving experts and non-experts
in the scenario reduction area.

In summary, our contributions are:

– A visual interactive approach to assist the user in selecting a subset of
meaningful scenarios from a time-series ensemble dataset, thus solving
an instance of the scenario reduction problem;

– An adaption of a multidimensional projection algorithm to generate a
visual representation of time-varying data, taking into account the time
component of the data;

– A transformation of a time-series ensemble dataset into a cumulative,
ranked version, in order to support a visual assessment of its evolution.

The main motivation for our work came from a project proposed by
PETROBRAS/CENPES in partnership with PUC-Rio. The project is enti-
tled: “Visualização e quantificação de incertezas de um conjunto de simulações
de reservatório”, with a registry number 18008-3 on the National Petroleum
Agency (ANP in portuguese). During the course of this project, researchers
from CENPES raised the percentile selection problem as one of the main issues
faced during the decision making process for oil reservoir management. During
our research, we found that this problem is an instance of the scenario reduction
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Chapter 1. Introduction 15

problem mentioned above, thus techniques used in this area could, and were ap-
plied to the percentile selection problem (Shirangi2016, Meira2016, Sarma2013,
Scheidt2009a, Scheidt2009b, Armstrong2013, Armstrong2014). However, none
of these approaches took the evolution of the reservoir into consideration, leav-
ing a gap in the literature which we aimed to fill.

1.1
Thesis Structure

The remainder of this thesis is organized as follows: Chapter 2 presents
related works grouped by topic: Scenario Reduction and Multidimensional
Projection. Next, in Chapter 3 we describe our approach and explain the vi-
sualization techniques employed, and interaction mechanisms provided. Chap-
ter 4 presents details about the experiments and the associated results. Finally,
Chapter 5 presents some concluding remarks and directions for future work.

DBD
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2
Related Work

This chapter describes two groups of related works, on: (i) scenario
reduction (i.e., the problem we address); and (ii) multidimensional projections,
which are the type of algorithm we have adapted to help us with scenario
reduction. Table 2.1 presents some of the main works and their contributions
compared to ours. Details about these works are presented below.

Table 2.1: Overview of the literature in scenario reduction and multidimen-
sional projections

Work
Scenario

Reduction
Multidimensional

Projections
Brushing &

Linking
(Armstrong2014) X
(Growe-Kuska2003) X
(Meira2016) X
(Lee2010) X
(Heitsch2003) X
(DiDomenica2007) X
(Kawas2014) X
(Park2016) X
(Demir2014) X
(Scheidt2009b) X X
(Sahaf2016) X X
(Waser2014) X X
Our approach X X X

2.1
Scenario Reduction

As the number of objects in an ensemble grows, it becomes increasingly
difficult to analyze or visualize it adequately, even when using dimensionality
reduction techniques. In many cases, it becomes necessary to select a repre-
sentative subset of the ensemble for further processing, in a process known as
scenario reduction, which has increasingly attracted researchers’ interest, es-
pecially in areas such as power production (Dupacova2003, Growe-Kuska2003)
and geostatistics (Scheidt2009a, Scheidt2009b, Heitsch2009, Lee2010,
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Chapter 2. Related Work 17

Sarma2013, Armstrong2013, Armstrong2014). A number of researchers have
proposed to use stochastic programming as an approach to tackle this prob-
lem. (Dupacova2003) stated that the Fortet-Mourier family of probability
metrics may be used as canonical metrics to find a subset of scenarios with
probability distributions closest to the original set. They reduced the number
of possible scenarios by 50% while keeping 90% relative accuracy in the re-
maining scenarios. More recently, (Armstrong2013) proposed a metric for the
distance between conditional simulated realizations of ore deposits, along with
a random search procedure to find an approximation of the ideal subset of
scenarios. They followed the approach proposed by (Heitsch2009) to calculate
the distance between a subset of scenarios and the full ensemble. In their
experiments, the best subset found was 1% off the expected value for their
objective function, which indicates that the number of possible scenarios can
be strongly reduced without significant loss in variability.

In the petroleum field, (Scheidt2009b) have used dimensionality reduc-
tion and kernel methods to quantify the uncertainty in an ensemble of geolog-
ical facies realizations. Their approach involved mapping the realizations onto
a lower dimensional space using a multidimensional scaling (MDS) algorithm
(Kruskal1978) and flow-related distance metrics, such as the Hausdorff dis-
tance (Suzuki2006) or time-of-flight-based metrics (Park2007). They have also
used kernel methods to transform the projected points from a non-linear space
onto a linear one, thus facilitating the application of grouping approaches, such
as clustering algorithms and Principal Component Analysis. After defining the
realization groups, a few elements of each group are chosen for the actual flow
simulation. The flow simulation statistics they obtained with a reduced number
of realizations were very similar to those with the full ensemble.

Different from most of the scenario reduction approaches presented so far,
our main goal is to allow users to input their own knowledge of the problem
domain into the process through graphical tools, therefore leading to a more
flexible process overall. To the best of our knowledge, there is little work
on visual analytics and scenario reduction. (Sahaf2016) proposed a scenario
reduction approach based on randomly sampling scenarios after clustering
them using a mutual information similarity metric. They implemented this
approach in a visual analytics framework, where it is possible to visualize the
spatial contribution of each model to the similarity of scenarios and run a
clustering algorithm in an area specified by the user. (Kawas2014) proposed
an uncertainty-aware framework for decision optimization, in which they
employed classic stochastic programming to perform the scenario reduction
and used visual analytics only to evaluate the resulting models.
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On a decision support systems context we found no works that involve
both scenario reduction and visual analytics. (Waser2014) comes close, by
proposing a scenario generation and interactive visualization approach applied
to flooding management. Their approach can simulate flooding scenarios in
real time, but their visualization tool is not scalable and the plans gener-
ated are suboptimal. (DiDomenica2007) incorporate stochastic programming
and scenario generation techniques into established decision support and in-
formation systems. They successfully argue that decision and simulation mod-
els can be combined in order to create business analytics, therefore creating
uncertainty-aware decision and information systems. (Park2016) proposed a
visual analytics approach for managing supply chain networks. They mod-
eled these networks as directed graphs and implemented a series of interac-
tive visualizations for them, including: force-directed layout, treemap layout,
substrate-based visualization, chord diagrams and matrix layout. However,
their views are not connected to each other, therefore lacking an important
pattern-discovery mechanism.

2.2
Multidimensional Projections

Multidimensional Projection (MP) techniques help us explore complex
datasets. Using adequate distance metrics and dimensionality, patterns in the
data may stand out, allowing users to quickly identify them. Their usefulness
motivated the development of new MP techniques and the adaptation of
existing techniques to specific kinds of data and application domains.

(Wong2013) used MP techniques to explore time-varying volume data.
They adapted two algorithms: Fastmap (Faloutsos1995) and Part-Linear Pro-
jection (Paulovich2010PLP), in order to preserve temporal coherence between
data volumes at different time steps. The new algorithms, named Time-
Coherent Fastmap (TC-Fastmap) and Time-Coherent Part-Linear Projection
(TC-PLP), achieved an equivalent or lower configuration stress when compared
to other time-varying projection techniques. They also proposed a scatter pro-
jection for attribute-space data exploration and for correlating selections to
the object-space model.

(Alencar2012) adapted the Least Squares Projection (LSP) algorithm
proposed by (Paulovich2008) to show the temporal evolution of groups of data.
They applied their Time-based LSP algorithm to visualize the evolution of
articles written by a researcher between the years 1995 and 2010. They plotted
the results as a graph, with edges representing references between two articles,
vertex color showing the publication age, and vertex size indicating the count
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of citations to each paper by 2010. They also employed a DBSCAN clustering
algorithm (Ester1996) to identify groups of similar papers and extracted the
topics of each group using the approach presented by (Eler2009). In scientific
paper collections, this is especially useful to assess the evolution of research
topics of a knowledge area, and may help to identify and predict research
trends.

The first part of our work draws on (Alencar2012): we propose an
adaptation of the Local Affine Multidimensional Projection (LAMP) algo-
rithm (Joia2011) to generate a sequence of mappings of our time series en-
semble. Each time step results in a new projection of the data until then. By
merging the results of those projections in a single view, we provide a graphical
approach to assess the evolution and behavior of the ensemble.
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3
Background

We discuss in this chapter some fundamental concepts required to
understand our work. We start by defining the concept of a baseline series
in Section 3.1, then, we define the Fanchart, Distance and Bump charts in
sections 3.2, 3.3 and 3.4 respectively. In Section 3.5 we provide a definition
for the Local Affine Multidimensional Projection (LAMP) algorithm, that
serves as a basis for the Time-lapsed Local Affine Multidimensional Projection
adaption we propose, further detailed in Section 3.6. Finally, in Section 3.7
presents the interaction mechanisms implemented as well as further details
about our prototype.

3.1
Definition of a baseline percentile series

Given a set numbers, a percentile is a value that divides those numbers
in two subsets, those with numerical value larger than it, and those with
numerical value smaller than or equal to it. For example, in the set of numbers
X = {1, 2, 2, 2, 3, 4, 5, 8, 8, 8, 9}, the percentile 0, or P0 is min(X) = 1, while
the percentile 100 is P100 = max(X) = 9. The percentile 50, or P50 is a value
larger than, or equal to half of values of X, in the example, P50 = 4.

Calculating the percentile values for single-variate distributions is a well-
defined problem. While there are several different ways for calculating these
values, this is a well-defined and well-resolved problem. Such statement is not
true for multivariate distributions, where the percentile is not well-defined. In
this work, we use time-series as baselines for selecting a subset of scenarios, we
call these baselines “percentile series”. However, they do not fit the definition of
a percentile, since we cannot guarantee that each of them will be larger than,
or equal to a certain percentage of series in the ensemble. Figure 3.1 shows a
set of three time-series, where the percentile series is marked in blue circles.
This series, which is a member of the ensemble, is a P50 series, since it divides
the ensemble in two subsets, those larger than it (Series 3), and those smaller,
or equal to it (Series 1 and 2).

DBD
PUC-Rio - Certificação Digital Nº 1412728/CA



Chapter 3. Background 21

0 2 4 6 8
Time

0

100

200

300

400

500

600

700
Va

lu
e

Three synthetic time-series
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Figure 3.1: Synthetic time-series ensemble with three series, numbered 1 to 3
and the P50 series marked in blue circles.

We build these percentile series by calculating the percentile values at
each individual time, the series is then defined by connecting these individual
percentile values. Figure 3.2 shows the process of building a P50 baseline
series for a synthetic time-series ensemble with three elements. Notice that
the resulting P50 series is a mix of the series in the original ensemble. At each
individual time, the P50 series is larger than, or equal to at least half the values,
however, the resulting P50 series is not a percentile according to the definition,
since it does not fit the definition. For the purposes of this work, the connected
percentile points will be called a percentile series and these series will be used
as baselines for the selection process to be explained in this chapter.
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(a) Original ensemble with three synthetic time-series.
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(b) P50 values calculated for times [0, 3]. For these times,
they coincide with Series 2.
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(c) P50 values calculated for times [0, 5]. For times 4 and 5,
they coincide with Series 1.
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(d) P50 values calculated for times [0, 8]. For times [6, 8],
the P50 values coincide with Series 3.
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(e) P50 values calculated for the whole time range. In the
last time, the P50 value coincides with Series 2.
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(f) P50 series, built by connecting all P50 values.

Figure 3.2: Building the P50 percentile series.
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3.2
Fanchart

The first graphical view used in our approach is the Fan-
chart (Britton1998), used to visualize a distribution of time-based data.
The Fanchart is commonly used to graph observed past data together with
forecasts of future data. The observed data is represented as a line chart, since
their values are known, while the forecasts are represented as an increasingly
wide cloud of possibilities. Since the values around the mean are, usually, more
likely to happen, they are represented in stronger colors. As the values stray
further to the extremities, their color gets fainter, a reflection of the smaller
likelihood of their occurrence.

Fancharts are useful in uncertainty analysis, since a wide fan of forecasts
represents more uncertainty about the future, while a narrower fan represents
less uncertainty. Compared to line charts, a Fanchart is less cluttered visually,
and thus a good choice for assessing a large ensemble of time-series. In our
approach, Fancharts are the closest view a user has of the raw data. When
analyzing scenarios, analysts can use the Fanchart to check whether the
behavior shown in the other views is consistent. Figure 3.3a shows an example
of a Fanchart of a synthetic time-series ensemble, compared to a line chart of
the same ensemble (3.3b).
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(a) Fanchart
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(b) Line chart

Figure 3.3: Visual comparison between a fanchart (3.3a) and line chart (3.3b)
of a synthetic time-series ensemble. The P10 and P90 series are calculated and
shown only for the simulated times.
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The time-series ensemble used in the examples of this chapter contains
forty elements, in addition to the P10 and P90 series. Each series contains twenty
days of historic data and forty days of simulated data. Both the historic and
simulated data are artificial, created using a random walks. A random walk
x(t), where t is the current time, is defined as: x(t) = x(t) + w(t), where w(t)
is white noise series at time t. The white noise series w(t) was generated using
a normal distribution with µ = 0, θ = 1. For the purposes of our examples in
this chapter, we will treat the historic data as observed values from a naturally
occurring process, and the simulated data as simulations performed to predict
the behavior of this process.

3.3
Distance chart

The second graphical view is the Distance chart. As its name implies, the
Distance chart graphs the distances, or similarities, between a set of objects
and a baseline. Selecting the scenarios closest to a reference may provide a
reasonable starting set of solutions to scenario reduction. Figure 3.4 shows an
example of a Distance chart of a synthetic time-series ensemble.
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Distance chart of synthetic data (simulated)
P10

P90

Figure 3.4: Distance chart of our example time-series ensemble. Only the
simulated values were used to compute the distances. The baseline used is
the P90 series. The P10 series is show as a red upside-down triangle.
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In a Distance chart, the X axis is the series’ identifier, and the Y axis
is the distance between each series and a baseline. Each series is treated as a
multidimensional point when calculating the distance. We use the Euclidean
distance, instead of a correlation measure or a dynamic time-warping tech-
nique, to maintain coherence with the Bump chart and Time-lapsed LAMP
chart. Also, it is computationally light to calculate, even though it becomes
increasingly unstable as the data dimensionality increases.

3.4
Bump chart

The third visualization technique, the Bump chart, was proposed
by (Tufte1990) in order to visualize rankings of objects in time, e.g, cyclists’
positions at the end of each day of a Tour de France edition. Our proposal dif-
fers from the original approach in two main aspects: first, we graph a distance-
based ranking built from an ensemble of time-series and a reference time-series;
second, the ranking on time step T is calculated by taking into consideration
information from time steps [0, T − 1], thus, making it a cumulative measure.

A ranking measure is built by comparing a set of elements as they achieve
a goal, e.g. athletes finishing a race. However, when dealing with time-series
data, the goal may not be clearly defined. Here we defined the goal as the
proximity of the ensemble’s series to a baseline time-series, using the Euclidean
distance. A rank by time measure may be used to assess the adherence of
a scenario to the baseline. Depending on the analysis being made, a more
adherent scenario may be desirable. However, it may not necessarily be the
closest one, in a raw distance sense.

Figure 3.5 shows an example of Bump chart built from the synthetic
time-series ensemble. It presents a scale-independent view of the ensemble
compared to the baseline, which is presented in red at the X axis. It can also
be modified to simply present an ordering of the time-series values at each time
step, dismissing the need for a baseline series and presenting the data more
closely to the original values.
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Figure 3.5: Bump chart of our example time-series ensemble. Only the simu-
lated values were used to compute the rankings. The baseline series is indicated
in the X axis of the plot, in our case, the baseline is the P90 series. The P10
series is show in red upside-down triangles.

3.5
Local Affine Multidimensional Projection

The Local Affine Multidimensional Projection (LAMP) is a guided
multidimensional projection technique that focuses on interactive applications
by leveraging the user’s knowledge of the dataset’s correlations (Joia2011).
LAMP draws its basis from orthogonal mapping theory in order to produce
accurate mappings given a small subset of samples positioned in the projection
space. The main point of LAMP is its interactivity. It allows the user to change
the mapping by manually repositioning the samples and then projecting the
remaining points again. Figure 3.6 shows the workflow of visual exploration
using LAMP.
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Figure 3.6: LAMP exploration workflow. Figure originally appeared
in (Joia2011).

Differently from Multidimensional Scaling (MDS), LAMP is also classi-
fied as a local method. Such methods require neighborhood information for
each data instance in order to perform the projection. It also gives LAMP is
main advantage: it needs few samples positioned in the projection space to
project the remaining points. The locality of LAMP can be leveraged to ex-
plore naturally occurring groups in the data (Joia2011). In Subsection 3.5.1
we provide the mathematical definition of LAMP, as stated by (Joia2011), as
well as a its algorithm in pseudocode.

3.5.1
LAMP definition

Let X ∈ Rm be a dataset in its original space, x ∈ X is a single data
instance. The control points set Xs = {x1, x2, x3, . . . , xk} is a subset of X
chosen as an anchor for the mapping process and their correspondence in the
projection plane is the set of points Ys = {y1, y2, y3, . . . , yk} ∈ R2.

The process of building the mapping x : Rm → R2 involves finding an
affine transformation that minimizes the sum of weighted differences between
the mapping of x and the control points’ mappings in Ys. Equation 3-1 presents
the mathematical definition of this problem.

minimize ∑
i αi||fx(xi)− yi||2

subject to MTM = I
(3-1)

where the matrix M is an unknown, fx(p) = pM + t is the unknown affine
transformation and αi are scalar weights defined as the inverse of the squared
euclidean distance between x and the points xi ∈ Xs. Equation 3-2 shows the
mathematical definition of these weights.

αi = 1
||x− xi||2

(3-2)
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The restriction MTM = I imposed in the minimization problem pre-
sented in 3-1 ensures that the transformation behaves like a rigid transforma-
tion, meaning it avoids scaling and shearing effects and preserves the original
distances as well as possible, even if the control points mapping, which is de-
fined by the user, introduces unavoidable errors in the process.

If we take the partial derivatives of fx, with t = 0, we write t in terms of
M , as in Equation 3-3.

t = ỹ − x̃M
x̃ =

∑
i
αixi∑
i
αi

ỹ =
∑

i
αiyi∑
i
αi

(3-3)

Given the results in Equation 3-3, the minimization problem in Equa-
tion 3-1 can be rewritten as follows:

minimize ∑
i αi||x̂iM − ŷi||2

subject to MTM = I
(3-4)

where x̂i = xi − x̃, and ŷi = yi − ỹ. The minimization problem stated in
Equation 3-4 can be rewritten in matrix notation, as shown in Equation 3-5.

minimize ||AM −B||F
subject to MTM = I

(3-5)

where ||.||F is the Frobenius norm, and matrices A and B are defined as in
Equation 3-6.

A =



√
α1x̂1
√
α2x̂2
...

√
αkx̂k

 , B =



√
α1ŷ1
√
α2ŷ2
...

√
αkŷk

 (3-6)

The minimization problem rewritten in Equation 3-5 is an instance of
the Orthogonal Procrustes Problem (Gower2004), which has a known solution
presented in Equation 3-7.

M = UV,ATB = UDV (3-7)
where UDV is the Singular Value Decomposition of ATB. With the known
value of M , the value of function y = fx(x) = (x− x̃)M + ỹ can be calculated,
thus, resulting in the projection y ∈ R2 of data instance x. Algorithm 3.5.1
shows a pseudocode of LAMP.

One of the advantages of LAMP over other MP techniques is its axis
stability. Unlike MDS techniques, LAMP does not suffer from axis rotations,
so it does not require post-processing the maps to conform to the same
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Algorithm 3.5.1: LAMP algorithm
Data: set X ∈ Rm, set Xs ∈ X of control points and set Ys ∈ R2 of

mappings of the control points.
Result: set Y ∈ R2 of mappings of X.
for x ∈ X do

α← 0
for xi ∈ Xs do

αi ← 1
||xi−x||2

end
x̃←

∑
i
αixi∑
i
αi

ỹ ←
∑

i
αiyi∑
i
αi

x̂, ŷ ← 0
for x̂i ∈ x̂, ŷi ∈ ŷ and yi ∈ Ys do

x̂i ← x̃− x
ŷi ← ỹ − yi

end
A,B ← 0
for αi ∈ α, x̂i ∈ x̂ and ŷi ∈ ŷ do

Ai ←
√
αix̂i

Bi ←
√
αiŷi

end
U,D, V ← SVD(ATB)
M ← UV
y ← (x− x̃)M + ỹ

end

orientation. This feature is the main reason behind the choice of LAMP as
the basis of our proposal.

3.6
Time-lapsed Local Affine Multidimensional Projection

Building on the concepts presented in Section 3.5, our final view is a
modified version of LAMP, where each time-series in our ensemble is projected
as a series of points at each time, thus presenting its evolution compared to all
other series in the ensemble.

Given an ensemble S of time series with T time steps each, we build T−1
mappings. Each mapping t ∈ [2, T ] is composed by the projected data from
times [1, t], and is independent from the others. However, when merged in a
single view, the result is a series of |S| paths, as shown in Figure 3.7b. Each
path traces the evolution of a single time series, allowing its comparison to the
|S| − 1 others.

This approach can be used to find features which are not easily verifiable
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using ordinary MP approaches. Figure 3.7 shows an example of four synthetic
curves projected using MDS (3.7a) and our Time-lapsed LAMP (3.7b).
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(a) MDS projection of our ensemble using only simulated data.

Time-lapsed LAMP chart of synthetic data (simulated)
P90
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(b) Time-lapsed LAMP chart of our ensemble using only simulated data.

Figure 3.7: Comparison between the MDS projection and Time-lapsed LAMP
projections of our example ensemble.

The original LAMP algorithm requires three parameters: X ∈ RT as the
data to be mapped, Xs ∈ X as the control points, and Ys ∈ R2 as the mapping
of Xs onto the projected space. The first step in our approach is to build
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the control points set Xs. We opted to use the whole set S as control points;
therefore, they must be positioned in the projection space before the main
mapping step. For this task, we employed an MDS algorithm (Kruskal1978),
using the |S| series and T time steps as input. We also opted to use an
Euclidean distance between each time series as metric for this step. The
resulting projected points are then used as the Ys parameter for LAMP, while
the original series S is used as the Xs parameter. The X parameter, however,
needs special processing. Since X constitutes the data to be mapped, and we
build one mapping for each time step t, X must be adapted to contain only the
data to be projected up to time step t. This adaptation is done by replacing the
data of S outside the time step range [1, t] with zeros; this effectively removes
that range from consideration for the mapping. An outline of the procedure is
as follows:

1. Build the control points mappings Ys;

– Use an MDS algorithm with the T time steps of all S time series;

2. For each time step t ∈ [2, T ], map the time series using their whole data
as the Xs parameter and their mappings as the Ys parameter;

– To build X, use only the values in the time step range [1, t];
– Replace the remaining values [t+ 1, T ] with zeros.

3. Merge the resulting mappings and plot them.

Contrary to most MP algorithms, this approach results in a sequence of
mappings for each time series. Each mapping presents the behavior of that
single series, allowing to compare it to all others in the set. This feature may
be useful to detect patterns in the behaviors of sets of scenarios, so that the
user may select them for further analysis.

3.7
Interaction Mechanisms and Prototype Details

To evaluate the effectiveness of our approach, we developed a prototype
application1 implementing the views presented in this section as well as the
brushing and linking technique to add interactivity to our prototype. We
implemented the prototype using the Python programming language (version
3)2. We used Matplotlib 2.0 (Hunter2007) as a graphical plot library, Qt
5.73 as the user interface API, NumPy (Numpy2011), Scipy (Scipy2001) and

1The source code is freely available at: https://tinyurl.com/proto-vs
2Available at: https://www.python.org
3Available at: https://www.qt.com

https://tinyurl.com/proto-vs
https://www.python.org
https://www.qt.com
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Scikit Learn (ScikitLearn2012) for the high performance, numerically heavy
computations.

In order to show the interaction process developed, we included several
figures with examples below. Full resolution versions of these figures are also
available online on the source-code repository, as well as a video showing the
interaction process. Figure 3.8 presents the initial window of our prototype
after the ensemble is loaded.

Figure 3.8: Initial window of our prototype after an ensemble is loaded.

Most of the application window is covered by the charts explained in
sections 3.2, 3.3, 3.4 and 3.6. To the right, there is a control panel with
several options regarding the ensemble, selection and graphical options as
well. Figure 3.9 shows the mouse-over highlighting interaction mechanism.
This feature is activated when the user positions the mouse over a scenario
in any of the charts, except the Fanchart. The graphical representation of that
scenario is highlighted in all charts, and its name is shown as a tooltip near
the mouse cursor.
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(a) Mouse-over interaction on the Distance Chart. Note the tooltip over highlighted
on the Distance Chart.

(b) Mouse-over interaction on the Bump Chart. Note the tooltip over highlighted
on the Bump Chart.

Figure 3.9: Example of the mouse-over interaction on the Distance Chart (3.9a)
and the Bump Chart (3.9b).

In order to select a scenario, the user can click in its representation in
any of the charts. By doing so, that scenario is highlighted in all charts by
means of reducing the other scenarios opacity to a minimum value, as shown
in Figure 3.10. Multiple scenarios can be highlighted in this manner. Clicking
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on a highlighted scenario will make it transparent again. When the last scenario
is de-selected, all scenarios will become opaque, as in Figure 3.8.

(a) Selecting a single scenario on the Distance Chart. Note the tooltip over the
selected scenario on the Distance Chart.

(b) Selecting a single scenario on the Bump Chart. Note the tooltip over the selected
scenario on the Bump Chart.

Figure 3.10: Example of the highlight interaction on the Distance Chart (3.10a)
and the Bump Chart (3.10b).

Besides the click-to-highlight mechanism, the Bump and Distance charts
also provide a group selection feature. In the Bump chart, all scenarios with a
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rank better than the threshold (defined by the Y value of the mouse cursor)
at the current time (current X value) will be selected if the user clicks the
left mouse button. A similar logic is implemented for the Distance chart; all
scenarios with a distance lesser than the one pointed by the mouse cursor are
selected if the user clicks with the left mouse button. Figure 3.11 shows an
example of the group selection feature for both charts mentioned before.

DBD
PUC-Rio - Certificação Digital Nº 1412728/CA



Chapter 3. Background 38

(a) Highlighting a group of scenarios on the Distance Chart.

(b) Highlighting a group of scenarios on the Bump Chart.

Figure 3.11: Example of the highlight interaction being used to select a group
of scenarios on the Distance Chart (3.11a) and the Bump Chart (3.11b). For
the Distance Chart, all scenarios with a distance lower than an user-selected
threshold are highlighted, while for the Bump Chart, only the scenarios with
a rank better than an user-selected threshold at a given time are selected.

The middle mouse button performs pan operations on all charts when
clicked. When the mouse-wheel is scrolled a zoom operation is performed.
These features are shown for the Fanchart, in Figure 3.12. However, these
actions can be done on all charts.
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Figure 3.12: Pan and zoom actions performed on the Fanchart.
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4
Evaluation and Results

Our proposal is a visual interactive approach for the scenario reduction
problem. In short, we propose a way to graphically explore the results of a
series of simulations and visually perform a scenario reduction task and assess
its results.

In order to test our proposal, we developed a prototype application
and conducted an empirical evaluation study with potential users. We also
compared the user-selected scenarios to the results of other scenario reduction
approaches found in the literature and industry.

This chapter is organized as follows: Section 4.1 describes the data
we used for the tests; Section 4.2 describes the empirical study; Section 4.3
presents the results of our study and some discussions on their implications;
Section 4.4 presents some improvements we made based on our study; finally,
Section 4.5 compares the scenarios selected using our approach and other
approaches found both in the literature and in industry.

4.1
Test ensemble

The ensemble we used in our tests comes from a synthetic model called
UNISIM-I (Avansi2015), created for testing algorithms and methodologies re-
lated to reservoir management. This model was built using real publicly avail-
able data from the Namorado Field located in the Campos Basin, Brazil. It
comprises high-quality geological and production data to ensure that any de-
rived models honor the original data (Avansi2015). The base model contains
a set of four exploratory wells used to estimate the initial values of the reser-
voir’s production and petrophysical properties. Based on this initial model, a
production strategy was defined by adding a number of wells and preparing an
ensemble of 200 realizations for reservoir simulation using the IMEX simulator.
The resulting simulations have a high degree of uncertainty, which was reduced
by performing a history matching process using an ensemble-based method (en-
semble smoother with multiple data assimilation (Emerick2013)). The history
matching considered oil and water production rates (Qo and Qw, respectively),
gas-oil ratio at producing wells, and bottom-hole pressure at production and
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Figure 4.1: UNISIM-I-H geometry with the producer wells in red and injector
wells in blue. The grid property shown is the field porosity.

water injection wells, for a period of 10 years. The uncertainty parameters
correspond to porosity, net-to-gross ratio, horizontal and vertical permeability
at every reservoir gridblock, end-points of water relative permeability curve,
rock compressibility, and water-oil contact. This resulted in another ensemble
with lower uncertainty, thus more appropriate for production forecasting.

The resulting simulations contain a set of 25 wells, the 4 exploratory
ones, plus 21 added by the engineers who defined the production strategy.
Each well can be classified as either injector or producer. The models used
in our tests are composed of 14 producer and 11 injector wells. The focus of
our analysis lied on the cumulative oil and water production wells (Np and
Wp, respectively). Each simulated model contains 30 years of data: 10 years
of observed data and 20 years of production forecasts; the data is sampled
monthly for the historic data, and every 6 months for the forecasts. Figure 4.1
shows the reservoir geometry and the location of the selected wells.1

For the study, we imported oil and water cumulative production data,
as well as their production rates of the producer wells, saving data from each
well and property in a comma-separated-values (CSV) file. For each scenario,
we summed the productions of all wells, in order to obtain a single time
series for each property of each scenario. The first 10 years of historical data
were removed, since the goal was to perform the analysis using only forecast
production data.

4.2
Evaluation Method

To evaluate our proposal, we performed an observational study according
to the following procedure: Each participant was given an overview of the

1Images produced using Geresim: http://webserver2.tecgraf.puc-rio.br/~celes/
projects.html

http://webserver2.tecgraf.puc-rio.br/~celes/projects.html
http://webserver2.tecgraf.puc-rio.br/~celes/projects.html
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prototype and its features, and three independent tasks related to scenario
reduction. The evaluators observed and recorded the participants interacting
with the prototype to perform the proposed tasks. Throughout the session,
the evaluators asked participants to give feedback on the prototype, aiming to
identify interaction flaws and opportunities for improvement.

The study was divided in three rounds. At each round, the researchers
collected and prioritized the identified problems and suggestions, and made the
corresponding corrections and improvements in a new version of the prototype,
incrementally improving the user-system interaction before a final evaluation
round, which involved experts in scenario reduction.

Before each session, the researchers assessed the participants’ knowledge
by means of a questionnaire, which is available at Annex A2. The questionnaire
asked about the users’ background and professional areas, as well as specific
knowledge about the graphical views, the definition of a percentile series, and
time-series analysis. Answers to these questions were ranked on a five-point
scale, ranging from 1 (no knowledge) to 5 (expert knowledge). Afterwards,
we asked for the participant’s consent of having their voice and interaction
recorded during the interview. The participants opted to give consent or not,
and signed a form acknowledging their decision. Should a participant forbid
the recordings, we terminated the interview, and any data collected, including
their answers to the pre-session questionnaire, were deleted from our records.

4.3
User study Results

A total of 29 people participated in the study: 11 on the first round, 8
on the second, and 10 on the third round.

4.3.1
First round

The first round was considered a preliminary study, and was conducted
in order to assess the feasibility of our approach for scenario reduction and to
help plan a more detailed study. The eleven participants of this study are all
laboratory colleagues of the author, all of them with science and technology
backgrounds, comprising eight graduate and three undergraduate students,
with varying levels of education: one D.Sc., six M.Sc., one B.Sc., and three
undergraduate students in Electronics Engineering. None of them had prior
knowledge of the scenario reduction problem before the evaluation sessions.

2The questionnaire is also available online at https://tinyurl.com/vs-reduction.

https://tinyurl.com/vs-reduction
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We asked participants to find 3 to 5 scenarios closest to the P50 scenario
calculated from the ensemble, using the Cumulative Water Production (Wp)
property. Most users had no problems in finding a set of scenarios. Most of
the issues raised by them were related to the user-system interaction. Some
users commented on the cluttering of the Bump chart, which is a problem
the researchers had somewhat anticipated during the development phase of
the prototype. They also reported some confusion regarding the Time-lapsed
LAMP chart. Most users found it hard to interpret, since it has no direct
connection to the original data, but it is rather a representation of the distances
between the scenarios at each time step.

4.3.2
Second round

The second evaluation round was composed exclusively of undergraduate
students with no prior knowledge of the scenario reduction problem. These
students were recruited from Human-Computer Interaction classes of the
Department of Informatics of PUC-Rio. All participants of this round work on
information technology related areas and have a varying level of experience,
ranging from the first to the last semester in their courses.

For this round, we opted for participants who were unlikely to know the
target domain. This allowed us to assess the difficulty of the task in its worst
case, as well as any user interface issues that could interfere with the study.
Since little or no previous knowledge could be an obstacle to the study, we
prepared a small tutorial in order to explain the concept of percentiles, and to
present the prototype, its graphical views and interaction mechanisms. This
tutorial was given after the pre-session questionnaire. The participants were
also given an opportunity to use the prototype at will for a few minutes, in
order to clarify any doubts about the concepts presented in the tutorial. We
noticed that, since these participants were not used to this area, they paid
more attention to the interaction mechanisms, and made several comments
that helped us refine the prototype even further.

In this round, regarding the graphical views, two participants claimed
to have moderate knowledge about the distance chart and one participant
claimed to have moderated knowledge about the fanchart. As for the other
visualizations all participants claimed to have little or no knowledge about
them. Regarding the concept of time-series analysis, one participant claimed
moderate knowledge, while all others claimed to have little to no knowledge of
it. However, the proportion of users that had seen the concept of percentiles
or time-series analysis is higher compared to the proportion of users claimed
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some knowledge about the proposed graphical views. Figure 4.2 shows their
answers to the questionnaire.
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Figure 4.2: Second round participants’ answers to the knowledge-based ques-
tions of the pre-session questionnaire.

After the first four evaluation sessions for this round, we noticed that
participants were confused by the bump chart’s ranking concept. They seemed
to associate a higher numerical rank with better adherence to the reference
scenario, which was not the case. In order to further evaluate this issue, the
bump chart was changed for the last four sessions, in order to present a better
adherence with a higher numerical rank. Some participants understood this
ranking concept more naturally after the change. However, more studies must
be performed in order to investigate whether previous knowledge is necessary
to properly interpret this chart.

The main issues found during this evaluation round were: (i) confusion
between rank and score with the Bump chart; and (ii) confusion between time
steps and scenario IDs with the Distance chart.

And the main improvements suggested by the participants in the second
round were: (i) “undo” option for the selection; (ii) band-based group selection
for the Bump and/or Distance charts; (iii) filter out the time steps of the Fan
and Bump chart using an X-axis zoom feature; (iv) filter out scenarios using
the Distance chart group selection feature (remove the scenarios above the
threshold line); and (v) adopt similar behavior for the Bump Chart.

Before the experiment started, we expected the users to rely heavily on
the Distance chart, because the task was to find the scenarios closest to a
pre-defined baseline. Such task naturally invites the user to rely upon the
Distance chart, while using the other views as auxiliary aids for the selection.
We also expected some confusion regarding the Bump and Time-lapsed LAMP
charts, since the information presented by them is much denser compared to
the other charts. However, most users of the second round used the Bump and

DBD
PUC-Rio - Certificação Digital Nº 1412728/CA



Chapter 4. Evaluation and Results 45

Distance charts as their main drivers, while the Fanchart was used more as
a reference, which partly conforms to our expectations. Also, some users did
not use the selection mechanism provided, relying only on the tooltips and
highlights between the views. The users who did use the selection mechanism,
used the group selection to find an initial set of answers, and then analyzed
those in order to make their choice, which is the expected behavior (i.e., the
behavior we designed for).

4.3.3
Third round

For the third evaluation round, the participants were 8 professors (with
PhD degrees), 1 Post-doctoral researcher working in different departments of
PUC-Rio, and 1 Software Engineer working outside the University. They all
work with – or have extensive academic experience on – scenario reduction and
its applications (see Figure 4.3). As expected, most of them claimed to have
good knowledge or expertise in the percentile and time-series analysis areas,
i.e., their knowledge of the related subjects was much higher, compared to the
participants of the second round. Therefore, the tutorial made for the second
round participants was not administered to these users.
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Figure 4.3: Second and third round participants’ answers to the knowledge-
based questions of the pre-session questionnaire.

However, their knowledge of the graphical views was poorer compared
to the percentile and time-series analysis concepts. While for the concept of
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percentiles five users claimed to be experts and three users claimed to have
good knowledge, for the graphical views, at least four users claimed to have no
knowledge of each view. For the fanchart, for instance, six users claimed have
no knowledge of it. We gave the participants an overview of the prototype and
its features, but an explanation about percentiles, time-series, and scenario
reduction was not necessary. Of the 10 participants of this round, only 8
solved all tasks proposed; the other 2 provided an extremely rich discussion
but, unfortunately, their available time ran out after more than 2 hours of
discussions and little usage of the prototype.

During the observation sessions, the participants did not pay too much
attention to the user interface, but rather focused on the scenario reduction
task. All participants made extensive use of the mouse hover to highlight
features, while only a few used the click-to-select feature.

During the post-task interviews, all participants commented on the
difficulty of scenario reduction problems, especially considering that a crucial
and potentially costly decision must be made based on the results of this task.
They appreciated the possibility of visually exploring the ensemble, mainly
because any visual patterns can then be easily identified. When asked about
the existence of other visual approaches, the participants claimed to not know
any similar approaches to ours for this particular problem. We also asked
about other areas besides oil & gas that they thought would benefit from
this approach. Four participants mentioned their own research area, energy
resource management, since it involves similar data and problems, but instead
of oil/water production they deal with solar, wind, and water-based electric
energy resources and scenarios where sunlight, wind, and rainfall may not be
enough to sustain the energy generation demand during the whole year, thus
requiring the more expensive thermoelectric plants to be activated. Another
participant mentioned stock management and distribution on big chain-stores
involving varying demands for certain items based on region, seasonality, and
managing uncertain market conditions. Their feedback gives us confidence on
the novelty and general applicability of our work. When asked about the most
helpful graphical views, all participants answered either the Bump or Distance
charts. However, none of them extracted meaningful information from the
Time-lapsed LAMP chart.

4.4
Uncertainty and Time Encoding

During the course of the interviews, we noticed that most users had is-
sues with the level of abstraction presented by the Time-lapsed LAMP chart,
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namely, they had difficulty telling how the time was visually represented. Thus,
we propose the use of explicit encoding (Szafir2018) in order facilitate the per-
ception of time in this particular view. Figure 4.4 shows a comparison between
three ways to represent the concept of time in scatterplots: (i) Juxtaposition;
(ii) Superposition; (iii) Explicit Encoding (Szafir2018).

Figure 4.4: Juxtaposition, Superposition and Explicit Encoding. Image taken
from the work of (Szafir2018).

In our user-study, we employed the superposition in order to present the
projections across time. With the results of the user-study, we propose to use
Explicit Encoding to help the users gauge the passing of time, as shown in
figures 4.5 and 4.6. For both figures, we use fifty scenarios in order to avoid
cluttering the Time-lapsed LAMP chart.
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(a) Superposition of times in the Time-lapsed LAMP chart.

(b) Explicit encoding of time in the Time-lapsed LAMP chart.
Starting times encoded with smaller glyphs.

Figure 4.5: Comparison between different time encodings on the Time-lapsed
LAMP chart of Wp. Superposition (4.5a) and Explicit Encoding (4.5b) from
small to large glyphs.
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(a) Superposition of times in the Time-lapsed LAMP chart.

(b) Explicit encoding of time in the Time-lapsed LAMP chart.
Starting times encoded with larger glyphs.

Figure 4.6: Comparison between different time encodings on the Time-lapsed
LAMP chart of Wp. Superposition (4.6a) and Explicit Encoding (4.6b) from
large to small glyphs.

In figures 4.5 and 4.6 we show two approaches for representing the time:
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(i) glyphs presented in ascending order of size (4.5b); (ii) glyphs presented in
descending order of size (4.6b). The matter of increasing or decreasing glyph
sizes may be a matter of personal preference; however, since the scenarios’
projections are close to each other, the encoding’s benefits may not be so
apparent when using increasing glyph size (4.5b) compared to decreasing size
(4.6b).

The glyph size can also be used to represent the uncertainty of the data.
However, representing two different variables with a single visual encoding
presents visual ambiguity, thus raising the need for a different representation
for one of them. (MacEachren2012) published an extensive study on the graph-
ical representations of uncertainty, such as glyph colors, textures, transparency,
size and filling, these visual variables are presented in Figure 4.7 for complete-
ness. According to their results, users accurately identify uncertainty when
represented by the glyph’s opacity and color saturation. Figures 4.8, 4.9, 4.10
and 4.11 show the results of experiments with the color saturation for prop-
erty Wp, while figures 4.12, 4.13, 4.14 and 4.15 show the results of the same
experiments, but for property Qo. For both of these experiments we used fifty
scenarios to avoid cluttering of the Time-lapsed LAMP chart.

Figure 4.7: Visual variables categorized in the work of (MacEachren2012).
Image taken from their work.
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(a) Fanchart of Wp.

(b) Time-lapsed LAMP chart of Wp. Constant color saturation.

Figure 4.8: Fanchart (4.8a) and Time-lapsed LAMP chart of propertyWp using
constant color saturation (4.8b).
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(a) Time-lapsed LAMP chart of Wp. Constant color saturation.

(b) Time-lapsed LAMP chart of Wp. Linearly decreasing color saturation.

Figure 4.9: Time-lapsed LAMP chart of property Wp. Comparison between
constant color saturation (4.9a) and linearly decreasing color saturation (4.9b).
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(a) Time-lapsed LAMP chart of Wp. Constant color saturation.

(b) Time-lapsed LAMP chart of Wp. Color saturation weighted by normalized data
variance.

Figure 4.10: Time-lapsed LAMP chart of property Wp. Comparison between
constant color saturation (4.10a) and color saturation weighted by normalized
data variance (4.10b).
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(a) Time-lapsed LAMP chart of Wp. Linearly decreasing color saturation.

(b) Time-lapsed LAMP chart of Wp. Color saturation weighted by normalized data
variance.

Figure 4.11: Time-lapsed LAMP chart of property Wp. Comparison between
linearly decreasing color saturation (4.11a) and color saturation weighted by
normalized data variance (4.11b).
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(a) Fanchart of Qo.

(b) Time-lapsed LAMP chart of Qo. Constant color saturation.

Figure 4.12: Fanchart (4.12a) and Time-lapsed LAMP chart of property Qo

using constant color saturation (4.12b).
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(a) Time-lapsed LAMP chart of Qo. Constant color saturation.

(b) Time-lapsed LAMP chart of Qo. Linearly decreasing color saturation.

Figure 4.13: Time-lapsed LAMP chart of property Qo. Comparison be-
tween constant color saturation (4.13a) and linearly decreasing color satu-
ration (4.13b).
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(a) Time-lapsed LAMP chart of Qo. Constant color saturation.

(b) Time-lapsed LAMP chart of Qo. Color saturation weighted by normalized data
variance.

Figure 4.14: Time-lapsed LAMP chart of property Qo. Comparison between
constant color saturation (4.14a) and color saturation weighted by normalized
data variance (4.14b).
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(a) Time-lapsed LAMP chart of Qo. Linearly decreasing color saturation.

(b) Time-lapsed LAMP chart of Qo. Color saturation weighted by normalized data
variance.

Figure 4.15: Time-lapsed LAMP chart of property Qo. Comparison between
linearly decreasing color saturation (4.15a) and color saturation weighted by
normalized data variance (4.15b).
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According to (MacEachren2012) it seemed more sensible for users to
encode the uncertainty as iconography, texture granularity, opacity and color
saturation. However, iconography and texture granularity would add clutter to
our chart, since the number of glyphs is fairly considerable even with a small
number of scenarios. As for opacity, we use it to indicate a scenario highlighted
by an user selection, leaving the color saturation as next best option. In this
encoding, higher uncertainty is represented by less color saturation for the data
at a certain time.

4.5
State-of-the-art Techniques

In Section 4.3 we presented results about our user-study, which indicated
that our approach is a viable alternative for scenario reduction and data
exploration in this context. In this section, we evaluate the performance of our
proposed approach to other state-of-the-art and industry standard approaches.

We start by presenting details about the technique used in the oil
& gas industry in Section 4.5.1, then, we present the approach proposed
by (Shirangi2016) in Section 4.5.2. Finally, in Section 4.5.3 we compare the
results of these two approaches with ours and discuss the results. For all tables
in this section, bold-face rows indicate a scenario with smaller errors. All tests
in this section use our full ensemble of two hundred scenarios as input.

4.5.1
Industry approach

The industry standard approach implemented in commercial software
packages consists of selecting the scenarios with a value closest to the target
percentile at a specified time for a single property. In order to compare Industry
approach to ours, we mimicked it and tested with the cumulative oil and water
production (Np and WP respectively). Table 4.1 presents the four scenarios
selected by this approach for each percentile in question, as well as the sum of
squared errors (SSE) and mean squared error (MSE) metrics. The scenarios
with smallest error are shown in bold-face font. When a tie happens, the
scenario with smallest euclidean distance is chosen. We can visually assess
the proximity of the chosen scenarios using an MDS projection of the property
data with the reference scenarios, as well as the scenarios chosen using each
approach, which is shown in Figure 4.17.

Since this approach is widely used in the industry, we will use it as a
reference for the results obtained by the other approaches described in our
work.
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Table 4.1: Scenarios and errors (×1010) for the industry standard approach.

Property Percentile Scenario SSE MSE

Np

P10

172 1190.0 30.5
88 663.0 17.0
122 1660.0 42.6
36 312.0 7.9

P50

131 162.0 4.1
4 162.0 4.1
26 786.0 20.1
90 236.0 6.0

P90

96 975.0 25.0
100 690.0 17.7
127 925.0 23.7
132 526.0 13.5

Wp

P10

23 7640.0 196.0
115 42000.0 1080.0
10 26900.0 690.0
19 27600.0 707.0

P50

29 14200.0 364.0
153 6260.0 161.0
84 5840.0 150.0
88 11200.0 288.0

P90

37 14300.0 367.0
57 22300.0 571.0
187 14000.0 358.0
28 2210.0 56.7

4.5.2
Clustering Approach

(Shirangi2016) proposes a general scenario reduction method based on
clustering algorithms. Their approach consists clustering a low dimensional
representation of an ensemble of scenarios, where each scenario is described
by a feature vector encompassing both flow responses, such as oil and water
productions, as well as geological parameters, such as field permeability and
porosity.

They start by defining the low-dimensional representation for a scenario,
called r, which is composed by incremental production and injection data of
each well of the scenario and described in Equation 4-1.

ri(x,mi) =
[
q1
iq2

i . . .qNw
i

]T
(4-1)

where x is a well-parameter vector, such as locations and bottom-hole pressure
values. qki is the k-th well production/injection data for the i-th scenario, and
Nw is the number of wells in the model.
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In order to compose the qki vectors, a number of time intervals must be
chosen. How to choose such intervals depends on the data itself. It must be
noted, however, that the number of intervals must be kept a relatively small in
order to generate an actual lower-dimensionality representation of a scenario.
For our tests, we chose three intervals based on the oil production ratio (Qo)
of our scenarios. Figure 4.16a shows the Qo of 200 scenarios of our ensemble.
The gray vertical span between simulation days 4900 and 7000 constitutes an
interesting range, since some scenarios have a spike in oil production between
those times before returning to stable values. Figures 4.16b and 4.16c show
the cumulative oil and water productions for our scenarios with the same time
range highlighted.
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Figure 4.16: Oil production ratio, cumulative oil and water production of 200
scenarios in our ensemble. The highlighted time range was based on the oil
production ratio (4.16a) due to interesting production spikes in that range.
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Based on the features presented in Figure 4.16a, we selected the simula-
tion days 4079 (first forecast day, marked as time step 0), 4962, 7001, which
composes the beginning and end of the highlighted time range, and finally, day
10957, which is the last simulation day.

Having defined the time steps, we can build a matrix Zf = [r1r2 . . . rNR
]T ,

where NR is the total number of scenarios in the ensemble, and then perform
the next steps in (Shirangi2016) approach, detailed below:

1. Specify the number of representative scenarios nr to be selected of NR;

2. Build the feature matrix Zf ;

3. Apply the k-means clustering algorithm with nr clusters;

4. For each cluster found by k-means:

– Search for the scenario closest to the centroid found by k-means;

5. Return these scenarios as the representatives.

Our implementation of (Shirangi2016) differs in two main aspects from
the original approach: (i) we do not use individual well data in our flow feature
matrix Zf ; (ii) we do not change the well parameters x. Regarding the first
point, the well data is aggregated, thus leading to one feature array for each
scenario. As for the second point, our goal is not well-parameter estimation,
thus, we do not alter those parameters. We also do not include the geological
property feature matrix Zp in our tests; this is equivalent of setting the α
weighting parameter to 0 in their approach, thus, assigning full weight to the
flow-based features (Shirangi2016).

For the k-means clustering, we set the percentiles scenarios as initial
centroids. We also set the number of maximum iterations to 10000 and the
tolerance to 1e − 6. The resulting scenarios, plus errors and distance from
the closest percentile, are presented in Table 4.2. Figure 4.17 shows the MDS
projection of the properties and the selected scenarios. For the cumulative
oil production, the resulting scenarios are actually closer to the P10 and P50

scenarios, while for the cumulative water production, the selected scenarios are
more spread across the projection plane, but, with the exception of the P50,
they are not closer to the references than the scenarios chosen by the other
approaches.
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Table 4.2: Scenarios and errors (×1010) for (Shirangi2016) of each property
under consideration.

Property Scenario SSE MSE

Np

39 5540.0 142.0
104 1790.0 46.0
159 96.6 2.4

Wp

39 9320.0 239.0
104 1270.0 32.5
159 52000.0 1330.0

4.5.3
Comparison and Discussions

Table 4.3 presents the error measures for the scenarios obtained by using
our approach for selecting scenarios. For each percentile, we manually selected
the four visually closest scenarios. Figure 4.17 shows an MDS projection of Np

and Wp data with the scenarios selected by each approach marked in different
colors, as well as the reference percentiles. The stress of the projections is low,
in the order of 10−5 and 10−3, which indicates that the distances between the
scenarios are well represented in this low-dimensional representation.
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Table 4.3: Scenarios and errors (×1010) for scenarios selected using our ap-
proach of each property.

Property Percentile Scenario SSE MSE

Np

P10

186 78.2 2.0
73 108.0 2.7
147 130.0 3.3
58 160.0 4.1

P50

194 23.4 0.6
112 25.3 0.6
197 37.1 0.9
45 39.3 1.0

P90

66 25.1 0.6
159 96.6 2.4
54 105.0 2.6
156 113.0 2.9

Wp

P10

129 826.0 21.2
149 1730.0 44.3
117 3750.0 96.2
152 5630.0 144.0

P50

46 680.0 17.4
104 1270.0 32.5
30 1420.0 36.3
61 1510.0 38.7

P90

109 2080.0 53.2
16 1590.0 40.7
28 2210.0 56.7
43 3560.0 91.2
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Stress = 0.0005251577161990183
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(a) MDS projection of property Np for two hundred scenarios in our
ensemble.

Stress = 0.0025144619721088847
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(b) MDS projection of property Wp for two hundred scenarios in our
ensemble.

Figure 4.17: MDS projections of the cumulative oil (4.17a) and water pro-
ductions (4.17b) of our ensemble. The reference percentiles are colored in red
(P10), blue (P50) and green (P90). The scenarios selected by each approach are
colored as follows: (Shirangi2016) in turquoise, Industry standard in orange
and our approach in maroons.
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In order to compare the error measures of all approaches, we present their
summarized results in Table 4.4. The scenarios with smallest error metrics are
presented in bold-face.

Table 4.4: Summary of the error measures for all approaches presented (errors
×1010).

Property Percentile Scenario SSE MSE Approach

Np

P10

36 312.0 7.9 Auto
39 554.0 142.0 Shirangi

186 78.0 2.0 TSV

P50

4 162.0 4.1 Auto
104 1790.0 46.0 Shirangi
194 23.4 0.6 TSV

P90

132 526.0 13.5 Auto
159 98.8 2.4 Shirangi
66 25.1 0.6 TSV

Wp

P10

23 7640.0 196.0 Auto
39 9320.0 239.0 Shirangi

129 826.0 21.2 TSV

P50

84 5840.0 150.0 Auto
104 1270.0 32.3 Shirangi
46 680.0 17.4 TSV

P90

28 2210.0 56.7 Auto
159 52000.0 1330.0 Shirangi
16 1590.0 40.7 TSV

The error metrics in Table 4.4 show that our approach results in sce-
narios with consistently lower error values compared to the industry standard
and (Shirangi2016)’s approach. However, (Shirangi2016)’s approach obtains
representative scenarios across several properties, while our approach currently
handles a single property at a time. Their approach may also use simulation
parameters in order to guide the process, while ours do not provide support
for that.

Figures 4.18, 4.19 and 4.20 show a visual comparison of scenarios selected
by each approach for the cumulative oil production. For this property, our
approach yields visually better scenarios for all three percentiles. For P10, show
in Figure 4.18, the industry approach results in an overall good scenario as
well (UNISIM-I-H_036), as shown in the Fanchart, Bump and Distance charts.
Figure 4.19 shows the results using P50 as a baseline. In this case the industry
approach also yields a good scenario (UNISIM-I-H_004), while the clustering
approach results in a scenario visually far from the baseline. Finally, for the
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baseline P90 in Figure 4.20 the three approachs result in excelent scenarios. The
clustering approach results in a scenario visually closer to the baseline when
compared to the industry approach. Our approach yields a scenario closer in
than both, but by a small margin, as shown in the Distance Chart.
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Figure 4.18: Resulting scenarios for the P10 baseline of the Np property.
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Figure 4.19: Resulting scenarios for the P50 baseline of the Np property.
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Figure 4.20: Resulting scenarios for the P90 baseline of the Np property.
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The same visual comparison done for the cumulative oil production, was
performed for the cumulative water production, shown in figures 4.21, 4.22
and 4.23. For this property, the three approaches resulted in competitive
scenarios, especially for the P10 and P50 baselines. The visual results of the
P50 baseline, in Figure 4.22, if the simulation had stopped at approximately
7500 days, an user of our approach may have selected a scenario visually less
adherent to the reference when compared to the other approaches, however,
as the simulation advances beyond that time, the scenario chosen with our
approach (UNISIM-I-H_046) gets closer to the reference, and maintains this
behavior until the simulation’s end. In this particular case, the difference in
error measures can be explained by the magnitude of the data towards the end
of the simulation. Table 4.5 shows the range of values at some simulation days
for the property Wp.

Table 4.5: Minimum, maximum and range of production values for selected
timesteps of Wp (values ×105.

Simulation days Min. production Max. production Difference
4079 263 264 1
8096 415 471 56
10957 474 553 79

DBD
PUC-Rio - Certificação Digital Nº 1412728/CA



Chapter 4. Evaluation and Results 73

8000 8500 9000 9500 10000 10500

Time (days)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

d
u

ct
io

n
(x

1
0

8
m

3
))

×108 Fanchart of Cumulative water production (Wp)

Clustering

Auto

TSV

4000 5000 6000 7000 8000 9000 10000 11000

Time (days)

0

25

50

75

100

125

150

175

200

R
an

k

Bump chart of Cumulative water production (Wp)

Scenario ID

0

1

2

3

4

5

6

7

8

D
is

ta
n

ce
(x

10
7
)

×107 Distance chart of Cumulative water production (Wp)

P10

Figure 4.21: Resulting scenarios for the P10 baseline of the Wp property.
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Figure 4.22: Resulting scenarios for the P50 baseline of the Wp property.
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Figure 4.23: Resulting scenarios for the P90 baseline of the Wp property.
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In order to perform a proper scenario reduction, the user must consider
the goal of the simulation process itself, i.e., the problem being solved and what
analyses will be done afterwards. (Shirangi2016) introduced their approach
for selecting scenarios considering various well configurations across a range
of geophysical properties (Shirangi2016). In such contexts, their approach
yields good results. Our approach, on the other hand, shows good results
in the context of temporal scenarios, when the objective function is the
proximity between a set of scenarios and a reference. The industry standard
approach chooses scenarios with a value close to a reference goal at the
last simulation time, disregarding the intermediate values, making it a good
approach for selecting scenarios that will reach a certain goal independent on
the scenarios evolution. In addition, the visual adherence results forWp, shown
in figures 4.21, 4.22 and 4.23 and the errors shown in Table 4.4 indicate that
more than one approach should be used for a given problem and the results
compared, in order to yield better subsets of scenarios for further analysis.
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5
Conclusions

This chapter presents the concluding remarks about our work. We list the
publications originated from this work in Section 5.1, discuss our contributions
in Section 5.2, and present directions for future works in Section 5.3.

In this thesis, we presented a novel graphical approach to scenario re-
duction on time series ensembles. We evaluated the feasibility of our proposal
by performing an empirical study with a series of potential users, both expe-
rienced in the area and not. By observing their interactions and interviewing
them afterwards, we obtained valuable insights on the usefulness of our pro-
posal. Following from the results of our previous publication (Schardong2018)
we have expanded our work in two aspects: (i) use glyph sizes to represent
the time in the Time-lapsed LAMP chart; (ii) in the same chart, encode the
uncertainty inherent to the data. The first expansion was done in order to
fix an issue related to the abstraction created by employing multidimensional-
projections using time-varying data. The second expansion aims to help users
to quickly identify time ranges with high variance in the data.

Besides the user study, we also compared our results with other ap-
proaches in the literature and industry. (Shirangi2016) proposes to select a
set of representative scenarios under different well configurations. Their ap-
proach handles several simulation parameters and responses simultaneously,
thus, selecting representative scenarios based on multiple criteria. The In-
ducstry approach selects scenarios with cumulative production closest to the
target references at the end of the simulation. Both approaches are well suited
depending on the post-processing tasks and the data itself. In our tests, our
approach selected scenarios with consistently smaller error when compared to
both the Industry and Clustering approaches. It must be stated, however, that
this does not mean that our approach is better, only that it yields good sce-
narios when the objective function is the proximity to a reference in a context
where the scenarios’ evolution must be taken into consideration.

5.1
Publications

Our work resulted in the following publication:
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SCHARDONG, G. G.; RODRIGUES, A. M.; BARBOSA, S. D. ; LOPES, H..
Visual interactive support for selecting scenarios from time-series ensembles.
Decision Support Systems, 113:99–107, sep 2018.

5.2
Contributions

Our work advanced the state-of-the-art by proposing a graphical ap-
proach to explore and perform scenario reduction tasks in a decision support
context. Our approach handles time series data, which is an important contri-
bution, especially in the context of oil & gas industry, where the most widely
used approaches only handle a single point in time.

We also proposed adaptations on two visualization techniques: (i) the
Local Affine Multidimensional Projection (Joia2011); and (ii) the Bump
chart (Tufte1990). In the former, we proposed a way to trace the evolution
of the ensemble by comparing the distances between all elements at different
simulation times. In the latter, we proposed a transformation of the input tem-
poral data to a cumulative, ordinal form in order to visualize it as a series of
rankings that evolve with time. We did so by calculating the distances between
each time series and a reference series and ordering it, thus, composing the a
series’ rank at each simulation time.

Besides the research contributions, our work aimed to solve a problem
faced by PETROBRAS during the decision making process for oil reservoir
management. Our goals were defined by problems raised during the project en-
titled “Visualização e quantificação de incertezas de um conjunto de simulações
de reservatório”, with National Petroleum Agency (ANP) number 18008-3,
namely, select percentile scenarios given an ensemble of production scenarios.
A prototype of our solution was implemented and delivered as conclusion for
project “Simulação estocástica, modelagem, otimização e análise estatística de
dados de poços aplicados à avaliação de formações”, with ANP number 17987-
9, since the first project had ended in the year 2016, before a final version of
our prototype was fully functional.

5.3
Future Works

An interesting research direction would be to use metrics from the risk
management area, such as Value at Risk (VaR) and Continuous Value at Risk
(CVaR) in order to calculate how representative are the chosen scenarios. These
metrics may also be incorporated into a framework for assessment of scenario
reduction approaches, which in turn may lead to the development of Ensemble
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Scenario Reduction approaches, essentially combining the results of several
algorithms in order to propose the best possible subset of scenarios.

Another interesting work would be to incorporate the evolution of the
scenarios in optimization approaches such as the one proposed by (Sarma2013).
They propose a minimax algorithm to search for scenarios with minimal
distance of the percentiles, while maximizing their spread in the parameter
uncertainty space. This approach may be used in place of the clustering step
in (Shirangi2016), thus creating an approach to find representative scenarios
in various well configurations, while maximizing the spread in the parameter
space.

There is a body of literature in the most diverse areas that investigate
the problem of finding a representative subset of elements in a larger set,
such as: computational geometry (Agarwal2005), stochastic and robust opti-
mization areas (Arpon2018). Drawing from the computational geometry area,
the notion of representative scenarios is closely related to the notion of Core-
sets (Agarwal2005), which is defined as a subset Q ∈ S so that solving the
underlying problem in Q yields an approximate solution for S. In this regard,
a natural extension of our work would be to model the scenario reduction
problem as a coreset problem and adapt the techniques developed by the com-
putational geometry community to the scenario reduction problem.

In the robust optimization area one of the goals is to find effective
scenarios, i.e., scenarios whose removal from the set causes the objective
function value to fall from its optimal value (Rahimian2018). In this context,
the goal is to find such scenarios while removing the ineffective scenarios from
the set. The set of effective scenarios are representative of the larger set, and
can be used to study the underlying uncertainties of the problem being solved.
All these approaches may be used to solve scenario reduction problems in
different contexts, and the decision of which approach to use may not be
straightforward. In this regard, our approach can be adapted into a visual
analytics and decision support framework, where the results of several scenario
reduction approaches can be visually and objectively compared. This in turn
may fill a gap we noticed in the literature during the course of our work, which
is the lack of visual exploration approaches for scenario reduction, thus leaving
room for future works in this direction.

Other areas for further research involve better representation of uncer-
tainty and time in the visualizations employed. (MacEachren2012) compared
several visual representations of uncertainty and concluded that opacity and
saturation convey the uncertainty information more clearly than glyph size
and texture. We did explore some representations, such as opacity and satu-
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ration; however, other aspects may be explored. (Wallner2000) studied error
propagation in affine combinations of complex bodies from a geometric per-
spective. The time and uncertainty representations in the Time-lapsed LAMP
chart may be improved using the concepts introduced in their work, such as
mapping the uncertainty at time step t as convex regions of size proportional
to var(t) and interpolating these regions using B-splines. This way, the uncer-
tainty at each time may be represented not only by the glyph color saturation,
but also by size and deformation of the convex regions and interpolated poly-
gons. Another chart that may benefit from these concepts is the Distance chart.
A simple but effective way to incorporate time in this chart would be to in-
crementally present the distance to the objective function for each scenario.
The closer a time step is to the last time step, the less transparent it is, until
the last time step, which is presented with full opacity. This way, an user may
quickly assess the contribution of each time step to the overall distance to
the objective function. The variance of distances may also be presented as a
boxplot overlaid in the Distance chart.

With a prototype of our work delivered to PETROBRAS as product
of a project, we can measure the quality of decisions made using their
percentile selection methods compared to our proposal, refine our prototype,
and eventually, launch it as a full featured reservoir management decision-
making tool.
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A
User profile questionnaire for prototype evaluation sessions

1. Personal information

(a) Name

(b) E-mail

(c) Education degree

(d) Course semester (just for students)

(e) Occupation

2. Please mark below your knowledge about the following subjects:

(a) Division of a sample by percentiles: P10, P50, P80 ...i I do not knowi I know little (I have learned these concepts at some point, but
may have to learn again if I have to apply them)i I have average knowledge (I may have to revise one concept or
another if I have to apply it)i I know well (I do not apply often, but I would not need to revise
the concepts if I had to apply them)i I am a specialist (I apply these concepts frequently)

(b) Analysis of trends and patterns in time seriesi I do not knowi I know little (I have learned these concepts at some point, but
may have to learn again if I have to apply them)i I have average knowledge (I may have to revise one concept or
another if I have to apply it)i I know well (I do not apply often, but I would not need to revise
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Appendix A. User profile questionnaire for prototype evaluation sessions 89

the concepts if I had to apply them)i I am a specialist (I apply these concepts frequently)

(c) Projection chart (Time-lapsed LAMP chart)

i I do not knowi I know little (I have learned these concepts at some point, but
may have to learn again if I have to apply them)i I have average knowledge (I may have to revise one concept or
another if I have to apply it)i I know well (I do not apply often, but I would not need to revise
the concepts if I had to apply them)i I am a specialist (I apply these concepts frequently)
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(d) Ranking chart (Bump chart)

i I do not knowi I know little (I have learned these concepts at some point, but
may have to learn again if I have to apply them)i I have average knowledge (I may have to revise one concept or
another if I have to apply it)i I know well (I do not apply often, but I would not need to revise
the concepts if I had to apply them)i I am a specialist (I apply these concepts frequently)
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(e) Distance chart

i I do not knowi I know little (I have learned these concepts at some point, but
may have to learn again if I have to apply them)i I have average knowledge (I may have to revise one concept or
another if I have to apply it)i I know well (I do not apply often, but I would not need to revise
the concepts if I had to apply them)i I am a specialist (I apply these concepts frequently)
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(f) Fanchart

i I do not knowi I know little (I have learned these concepts at some point, but
may have to learn again if I have to apply them)i I have average knowledge (I may have to revise one concept or
another if I have to apply it)i I know well (I do not apply often, but I would not need to revise
the concepts if I had to apply them)i I am a specialist (I apply these concepts frequently)
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