
Leonardo da Silva Sousa

Understanding How Developers Identify Design
Problems in Practice

Tese de Doutorado

Thesis presented to the Programa de Pós–Graduação em Infor-
mática of PUC-Rio in partial fulfillment of the requirements for
the degree of Doutor em Ciências – Informática.

Advisor : Prof. Alessandro Fabricio Garcia
Co-advisor: Prof. Carlos José Pereira de Lucena

Rio de Janeiro
August 2018

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Leonardo da Silva Sousa

Understanding How Developers Identify Design
Problems in Practice

Thesis presented to the Programa de Pós–Graduação em Infor-
mática of PUC-Rio in partial fulfillment of the requirements for
the degree of Doutor em Ciências – Informática. Approved by the
undersigned Examination Committee.

Prof. Alessandro Fabricio Garcia
Advisor

Departamento de Informática – PUC-Rio

Prof. Carlos José Pereira de Lucena
Co-advisor

Departamento de Informática – PUC-Rio

Prof. Arndt von Staa
Departamento de Informática – PUC-Rio

Prof.ª Simone Diniz Junqueira Barbosa
Departamento de Informática – PUC-Rio

Prof.ª Claudia Maria Lima Werner
– UFRJ

Prof.ª Tayana Uchôa Conte
– UFAM

Prof. Márcio da Silveira Carvalho
Vice Dean of Graduate Studies

Centro Técnico Científico – PUC-Rio

Rio de Janeiro, August 30th, 2018

Léo

Léo

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

All rights reserved.

 Leonardo da Silva Sousa

The author received his Bachelor degree in Computer Science from the
Instituto de Informática (INF) of Universidade Federal de Mato Grosso
(UFMT) in 2011. He also received his Master degree in Computer Science
from Universidade Federal de Goiás (UFG) in 2014. During his academic
career, he participated in several research projects. His main research
interests are: Code Smells, Design Problems, Refactoring, Software
Architecture, Software Testing and Empirical Software Engineering.

 Bibliographic data

 CDD: 004

Sousa, Leonardo da Silva

 Understanding how developers identify design problems in
practice / Leonardo da Silva Sousa ; advisor: Alessandro Fabricio
Garcia ; co-advisor: Carlos José Pereira de Lucena. – 2018.
 210 f. : il. color. ; 30 cm

 Tese (Doutorado em Informática)–Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Informática, 2018.
 Inclui bibliografia

 1. Informática – Teses. 2. Problemas de projeto. 3. Anomalias de
código. 4. Refatoração. 5. Sintomas. 6. Teoria. I. Garcia, Alessandro
Fabricio. II. Lucena, Carlos José Pereira de. III. Pontifícia
Universidade Católica do Rio de Janeiro. Departamento de
Informática. IV. Título.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

To my parents, for their support
and encouragement.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Acknowledgments

I would like to start by expressing my gratitude to my family, who have
supported me since the beginning of this journey. My father, Francisco Costa
de Sousa, who tough me to always be the best version of myself. My mom,
Elizabete da Silva Sousa, who is forever in my corner. My sister, Francisca
Elaine Kroth, the person that I love the most in this word and I cannot live
without. My brother-in-law, Marcio Kroth, someone with whom I learn to
admire. Last but not least, my nieces, Sabrina and Valentina, my two newest
favorite people in the word.

My sincerest gratitude to my advisor Alessandro Garcia. I have no words
to describe my admiration and gratitude. Without his guidance, I would have
accomplished nothing. I am thankful for his patience and for believing in me.
I know how much trouble I gave him, but he never lost his faith in me. For
that, I am eternally indebted. Thank you so much. A very special thanks to
my co-advisor, Carlos Lucena. His energy and wisdom are incredible. I hope
others have the same fortune to work with you. I would also like to thank
Jaejoon Lee. His was a most essential contribution: always asking the most
pertinent questions to get me thinking in di�erent ways and pushing me to my
highest standard.

My deepest gratitude to Diego Cedrim. His friendship is easily one of the
best things to come from my Ph.D. experience. Indeed, I’ll carry this friendship
with me the rest of my life. There were so many points where his words – often
times harsh ones – made the di�erence between giving up or carrying on. He
truly is my brother now. A special thanks goes out to his fiancé, Juliana Leal,
for both accepting me as a friend and making my friend so happy. Roberto
Oliveira, or Mr. Robert to those closest to him, is another amazing friend that
I’m so happy to have made. He is definitely, the kindest person I’ve ever met.
His lovely wife Givanilde Oliveira and newborn Sophia Oliveira must also be
showered in thanks for making Robert so happy. Last but not least, I would like
to thank Alexandre Navarro, Anderson Oliveira, Isabella Vieira and Willian
Oizumi, who I admire so much, personally and professionally, as well as my
reliable, if sometimes reluctant proofreader, Leonard Wilkes.

I would like to thank all of my colleagues from the OPUS Research Group:
Ana Carla Bibiano, Anderson Uchôa, Alexander Lopez, Anne Benedicte,
Bruno Cafeo, Daniel Tenorio, Eduardo Fernandes, João Neves, Luiz Carvalho,
Marcelo Garnier, and Rafael de Mello. I would also like to thank Tayana Conte,
who I have had the distinct pleasure to work with. Indeed, I want to thank
her, along with Adriana Lopes, Edson Oliveira and Natasha Valentim, who
(patiently) taught me Grounded Theory. I also extend my gratitude to my

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

colleagues from the USES group. Last but not least, I would like to thank
Nenad Medvidovick: what an honor to have the opportunity to work with
you. Many thanks to his Softarch group members as well: Arman Shahbazian,
Daniel Link, Duc Le, Jae Young, YounKyu Lee, and my dearest friend Yixue
Zhao.

I thank all the professors from PUC-Rio for their invaluable contribution
to my education. In particular, I would like to thank Simone Barbosa, for the
incredible brownies. . . I mean for her1 amazing insights and inspiring words
during our work together. Thank you and I’m sorry for the extra trouble. I
also want to thank the members of my thesis defense team: Arndt von Staa,
Claudia Werner, Leonardo Murta, Marcos Kalinowski, Simone Barbosa, and
Tayana Uchôa Conte.

I am so grateful to Capes, CNPq, FAPERJ and PUC-Rio for the financial
support that made my research possible in the first place. Finally, my sincere
thanks to the administrative sta� of the DI at PUC-Rio.

1Pronouns are your friends!

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Abstract

Sousa, Leonardo da Silva; Garcia, Alessandro Fabricio (Advisor);
Lucena, Carlos José Pereira (Co-Advisor). Understanding How
Developers Identify Design Problems in Practice. Rio de
Janeiro, 2018. 210p. Tese de doutorado – Departamento de Infor-
mática, Pontifícia Universidade Católica do Rio de Janeiro.
A design problem is the manifestation of one or more inappropriate

design decisions that negatively impact non-functional requirements. For
example, the Fat Interface, a problem that indicates when an interface
exposes non-cohesive services, hampers the extensibility and maintainability
of a software system. Despite its harmfulness, identifying a design problem
in a system is di�cult, especially when the source code is the only available
artifact. Although researchers have been investigating techniques to help
developers in identifying design problems, there is little or no knowledge
about the process of identifying design problems. For instance, code smells,
microstructures that are a surface indication of design problems, have been
used in several techniques to support developers during the design problem
identification. However, there is no knowledge if code smells su�ce to
help developers to identify design problems. In particular, no study has
tried to understand how developers identify design problems in practice.
Thus, in this thesis, we have conducted a series of studies to understand
design problem identification. In our two first studies, we investigated
the role that code smells play in supporting developers during the design
problem identification. Our results indicate that code smells are relevant for
developers in practice; for instance, they are relevant to indicate elements
that need to be refactored. However, we found that code smells, despite their
relevance, do not su�ce in helping developers to identify design problems.
In this vein, we conducted another study to investigate what indicators
developers use in practice, and how they use them. This study resulted
in a theory about how developers identify design problems in practice. For
instance, the theory reveals the indicators that developers use, how they use
these indicators, and the characteristics of such indicators that are perceived
as helpful by developers. The results found by our studies provided us with a
better understanding of the process of identifying design problems thitherto
nonexistent. Moreover, our findings pave the way for the elaboration of more
e�ective techniques to identify design problems in the source code.

Keywords
Design Problems; Code Smells; Refactoring; Symptoms; Theory.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Resumo

Sousa, Leonardo da Silva; Garcia, Alessandro Fabricio; Lucena,
Carlos José Pereira. Entendendo Como os Desenvolvedores
Identificam Problemas de Projeto na Prática. Rio de Janeiro,
2018. 210p. Tese de Doutorado – Departamento de Informática,
Pontifícia Universidade Católica do Rio de Janeiro.
Um problema de projeto é a manifestação de uma ou mais decisões de

projeto inadequadas que afetam negativamente requisitos não funcionais.
Por exemplo, Fat Interface, um problema que indica quando uma interface
expõe serviços não coesos, no qual dificulta a extensibilidade e a manuteni-
bilidade de um sistema de software. Apesar de problemas de projeto serem
prejudiciais aos sistemas, identificá-los é uma tarefa difícil, especialmente
quando o código-fonte é o único artefato disponível. Embora pesquisadores
venham investigando técnicas para ajudar os desenvolvedores a identificar
problemas de projeto, há pouco conhecimento sobre o processo de identifi-
car problemas de projeto. Por exemplo, anomalias de códigos, um indicador
de problemas de projeto, têm sido usadas para ajudar desenvolvedores a
identificar problemas de projeto. No entanto, ainda não sabemos se elas
são suficientes para ajudá-los ou não. Em particular, nenhum estudo tentou
entender como os desenvolvedores identificam problemas de projeto. Nesse
contexto, nós realizamos alguns estudos para entender a identificação de
problemas de projeto. Em nossos dois primeiros estudos, nós investigamos
o papel que as anomalias de código desempenham durante a identificação
de problemas de design. Nossos resultados indicam que as anomalias de có-
digo são relevantes para os desenvolvedores na prática, por exemplo, eles
são relevantes para indicar elementos a serem refatorados. Apesar da re-
lavância, descobrimos que as anomalias de código não são suficientes para
ajudar os desenvolvedores a identificar problemas de projeto. Nesse sentido,
conduzimos outro estudo para investigar quais outros indicadores os desen-
volvedores usam na prática e como eles são usados. Este estudo resultou em
uma teoria sobre como os desenvolvedores identificam problemas de projeto
na prática. A teoria revela quais são os indicadores que os desenvolvedores
usam, como eles usam esses indicadores e as características de tais indica-
dores que os desenvolvedores consideram úteis. Os resultados encontrados
nos forneceram uma melhor compreensão do processo de identificação de
problemas de projeto, abrindo caminho para a elaboração de técnicas mais
eficazes em ajudar os desenvolvedores a identificar problemas de projeto.
Palavras-chave

Problemas de Projeto; Anomalias de Código; Refatoração; Sinto-
mas; Teoria.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Table of contents

1 Introduction 16
1.1 Design Problem Identification 17
1.2 Problem Statement 21
1.3 Goal and Research Questions 24
1.4 Main Contributions 28
1.5 Thesis Outline 30

2 Background and Related Work 31
2.1 Software Design and Design Problems 31
2.2 Types of Design Problems 33
2.2.1 Design Problems related to Abstractions 34
2.2.2 Design Problems related to Dependencies 35
2.2.3 Design Problems related to Separation of Concerns 36
2.3 Code Smells and Design Problems 38
2.4 Related Work 43
2.4.1 Catalogs of Design Problems 43
2.4.2 Relation between Code Smells and Design Problems 45
2.4.3 Techniques to Identify Design Problems 47
2.5 Summary 48

3 Investigating Code Smells as Key Symptoms in Practice 50
3.1 Background and Terminology 51
3.2 Study Design 54
3.2.1 Research Question 54
3.2.2 Categorization of Refactored Elements 56
3.3 Data Collection and Analysis 60
3.3.1 Phase 1: Selection of Software Projects 60
3.3.2 Phase 2: Refactoring Detection 61
3.3.3 Phase 3: Code Smell Detection 63
3.3.4 Phase 4: Manual Validation 63
3.3.5 Algorithm for Categorization 65
3.4 Analysis of the Results 66
3.4.1 Frequency of Refactoring Operations on Code Elements 66
3.4.2 Investigating the Chance of Elements Containing Design Problems 68
3.4.2.1 Frequency of Refactoring Operations in Smelly Elements 68
3.4.2.2 Frequency of Refactoring Operations Classified as Root-canal Tactic 69
3.4.2.3 Frequency of Refactoring Operations Applied to the Smell Patterns 72
3.4.3 Code Smells are Key Symptoms in Some Scenarios 75
3.5 Related Work 76
3.5.1 Code Smells as Key Symptoms 76
3.5.2 Applying Refactoring Operations 78
3.6 Threats to Validity 79
3.7 Summary 81

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

4 Investigating the Support of Code Smells to Identify Design Problems 83
4.1 Background 85
4.1.1 Code Smell Agglomerations 85
4.1.2 Identifying Design Problems with Agglomerations 86
4.2 Study Design 89
4.2.1 Research Questions 89
4.2.2 Experiment Procedures 91
4.2.3 Software Projects and Participant Selection 95
4.2.4 Quantitative Analysis Procedures 97
4.2.5 Ground Truth Analysis 97
4.2.6 Qualitative Analysis Procedures 98
4.3 Results and Analysis 99
4.3.1 Does the Use of Agglomerations Improve Precision? 99
4.3.2 How to Improve Design Problem Identification? 102
4.3.3 Do Code Smells Su�ce to Support Design Problem Identification? 105
4.4 Related Work 106
4.5 Threats to Validity 107
4.6 Summary 108

5 Investigating How Developers Identify Design Problems 111
5.1 Research Design 113
5.1.1 Research Questions 113
5.1.2 Software Systems and Developers’ Selection 114
5.1.3 Experimental Tasks 117
5.1.4 Provided Data 118
5.1.5 Data Collection and Analysis 119
5.1.5.1 Grounded Theory 120
5.1.5.2 Peer Review Process 122
5.1.5.3 Writing Up the Theory 124
5.2 A Theory on How Developers Identify Design Problems 124
5.2.1 Identification of Design Problems 126
5.2.2 Design Problem Symptoms 127
5.2.3 Design Problem Diagnosis 130
5.2.3.1 Symptom Analysis 130
5.2.3.2 Epidemic Analysis 132
5.2.3.3 Identification Tactics 133
5.3 Propositions Concerning the Developer 137
5.3.1 Confidence in the Presence of a Design Problem 137
5.3.2 Conscientiousness 138
5.3.3 Incapability of Providing an Alternative 139
5.4 Towards Improving Design Problem Diagnosis 139
5.4.1 Supporting Multiple Symptoms 140
5.4.2 Prioritization of Similar Elements 141
5.4.3 Additional Support for the Developer 141
5.5 Related Work 142
5.6 Threats to Validity 143
5.7 Summary 144

6 Conclusion 146

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

6.1 Revisiting the Thesis Contributions 147
6.2 Future Work 150

Bibliography 153

A Glossary 166

B Study about Design Problem Identification with Code Smells 169
B.1 Developers Characterization 169
B.2 Study Questionnaires 176
B.3 Push Pull and Workflow Blueprints 183
B.4 Presentation 190

C Study about Design Problem Identification in Practice 203
C.1 Characterization and Follow-up Questionnaires 203
C.2 Summary of Symptoms 203
C.3 Generated Codes 204
C.4 Characterization of the Theory 204
C.5 Design Problems 204
C.6 Symptoms Combination 207

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

List of figures

Figure 1.1 Fat Interface Example 19
Figure 1.2 Fat Interface Solved 21

Figure 2.1 Design Problem 32
Figure 2.2 Types of Design Problems 34
Figure 2.3 Service Component in the UniM System 42

Figure 3.1 Relation between Design Problems and Refactoring 57

Figure 4.1 Example of Agglomeration in the Workflow System 87
Figure 4.2 Experimental Design 94

Figure 5.1 Research Process to Collect and Analyze Data 120
Figure 5.2 Peer Review Process to Collect and Analyze Data 123
Figure 5.3 Visual Representation of the Theory 126
Figure 5.4 Identification Tactics 134

Figure C.1 Home Page to Access the Summary 203
Figure C.2 Summary of Symptoms A�ecting an Element 204
Figure C.3 Agglomeration of Code Smells in the Element 206
Figure C.4 Non-functional Requirement Information 207
Figure C.5 Codes for the Companies 1 and 2 209
Figure C.6 Codes for the Companies 3 and 4 210
Figure C.7 Codes for the Company 5 210

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

List of tables

Table 2.1 List of Smell Types 40
Table 2.2 Association Between Design Problems and Smell Patterns 41

Table 3.1 List of Refactoring Types 53
Table 3.2 Refactored Elements 54
Table 3.3 Smell Patters Used to Indicate Design Problems 59
Table 3.4 Projects Used in the Study 62
Table 3.5 Frequency of Refactoring Operations 67
Table 3.6 Frequency of Refactoring Operations on Smelly Elements 68
Table 3.7 Frequency of Root-canal Refactoring 69
Table 3.8 Frequency of Floss Refactoring 70
Table 3.9 Frequency of Each Tactic by Refactoring Types 72
Table 3.10 Design Problems Found in Refactored Elements 73

Table 4.1 Agglomeration Categories 86
Table 4.2 Combinations of Groups, Projects and Steps 93
Table 4.3 Knowledge Classification 96
Table 4.4 Characterization of the Participants 96
Table 4.5 Developers’ Precision 100

Table 5.1 Companies Description 115
Table 5.2 Characterization of the Developers 117
Table 5.3 Helpfulness According to Developers 128
Table 5.4 Combining Symptoms 131

Table 6.1 Papers Produced in the Context of this Thesis 150

Table C.1 Constructs and Propositions of the Resulting Theory 205
Table C.2 Symptoms Combination 208

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

List of Abbreviations

AMI – Ambiguous Interface
C – Construct
CCD – Cyclic Dependency
CCO – Concern Overload
CPO – Component Overload
DLA – Delegating Abstraction
DP – Design Problem
FP – False Positive
FTI – Fat Interface
GT – Grounded Theory
ICA – Incomplete Abstraction
IDE – Integrated Development Environment
LOC – Lines of Code
MPC – Misplaced Concern
NA-smells – Non-agglomerated code smells
P – Proposition
RQ – Research Question
SE – Software Engineering
SoC – Separation of concern
SRQ – Specific Research Question
STC – Scattered Concern
TP – True Positive
UA – Unused Abstraction
UWD – Unwanted Dependency

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Never forget what you are, for surely the world
will not. Make it your strength. Then it can
never be your weakness. Armour yourself in
it, and it will never be used to hurt you.

George R.R. Martin, A Song of Ice and Fire.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

1
Introduction

Software design results from a series of decisions made during the soft-
ware development (1, 2). A previous study indicated that 25% of discussions in
commits, issues and pull requests are about design (3). That happens because
software design is a fundamental matter during the software development pro-
cess (4, 5). Thus, several design decisions are made during this process, all
of which will drive how the system will be developed. Consequently, design
decisions are expected to influence the software design positively. Unfortu-
nately, that is not always the case. Some design decisions may not contribute
to properly address non-functional requirements such as maintainability, un-
derstandability, testability, and robustness.

Each non-functional requirement may be impacted, either positively
or negatively, by design decisions (6). When design decisions impact non-
functional requirements negatively, we state that a design problem exists. In
practice, design decisions include (but are not limited to) how the system is
organized into subsystems and components, how and which code elements
encapsulate process and data to address each functionality, and how they
interact with each other and their execution environment (7, 8, 9). Therefore,
a design problem usually a�ects relevant code elements for the system design,
such as interfaces, components, hierarchies and other elements that encapsulate
process and data in the system design (10).

In summary, a design problem is the manifestation of one or more
inappropriate design decisions that a�ect code elements relevant to the system
design. As a consequence, these design decisions negatively impact non-
functional requirements when a�ecting these elements. Although not always
made intentionally, an inappropriate design decision can be an improper
application of a design solution, use of a design abstraction at the wrong
context, violation of a modularity principle, a misprioritization of an objected-
oriented principle over another, misusing a certain design pattern (4), and any
other decision that has an undesirable impact on non-functional requirements.

An example of design problem is Cyclic Dependency (11). This design
problem happens when two or more elements depend on each other directly
or indirectly. When there are cyclic dependencies among elements, the system

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 1. Introduction 17

might end up at a stage where these dependencies compromise the maintain-
ability, understandability, reusability and testability of software systems (11).
Additionally, Cyclic Dependency may eventually cause deadlock (12), which
negatively impacts the system performance and availability. Other well-known
examples of design problems include Scattered Concern (7), Ambiguous Inter-
face (7) and Fat Interface (13).

Design problems are the results of inappropriate design decisions with re-
gard to how the system is organized and how the elements encapsulate process
and data. Thus, due to their adverse e�ect on non-functional requirements,
design problems are often harmful in several software systems (14, 15, 16, 17).
An industrial study with 745 software systems, from 160 di�erent organiza-
tions, showed that technical debts – primarily associated with design problems
– were directly related with a significant increase in software project costs (18).
Another study showed that design problems are one of the most common cat-
egories of technical debt that lead to the rejection of code contributions (19).
Given the harmfulness of certain design problems, developers should identify
and remove them as early as possible (7, 17, 20).

Design problems can be removed through refactoring operations. A
refactoring operation is a program transformation used for improving the
design structure of a system (21). Thus, there is a close relation between
a design problem and refactoring: while the former has a negative e�ect on
non-functional requirements, the latter can have a positive e�ect on them
(22, 23, 24). Indeed, refactoring is commonly applied to repair a program with
deteriorated design (25). A design problem is one of the reasons why the source
code can reach a deteriorated state (15, 16); thus, developers can repair the
deteriorated code using refactoring to remove design problems (25). Therefore,
once design problems are identified, developers can use refactoring to remove
them.

1.1
Design Problem Identification

We call design problem identification the task of finding a design problem
in a software system. Unfortunately, design problem identification is not trivial
(26, 27). To begin with, systems tend to be large in size and complexity,
increasing the search space for design problems. Second, each design problem
may pervade the implementation of several code elements (7, 28). Hence,
developers may need to analyze several elements to identify a single design
problem (27). Third, design documentation is often unavailable or outdated.
Thus, the source code is frequently the only artifact available for supporting

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 1. Introduction 18

developers on the identification of design problems.
For the identification of design problems, developers need to locate

indicators of the presence of a design problem directly on the source code.
In this context, we define a design problem symptom as a partial sign or
indication of the presence of a design problem that developers use in practice.
In other words, a symptom is an indicator of the presence of a design problem
which we observed that developers use in practice. Code smell is an example
of a symptom usually associated with design problem identification (21) and
that is part of the developers’ routine (29). A code smell is a microstructure
in the system that represents a surface, sometimes only partial, indication of
a design problem (21). Feature Envy is an example of a code smell, which
refers to a method that is more interested in other classes than in the one to
which it belongs (21). Other examples include Long Method, Long Parameter

List, God Class, Shotgun Surgery, and Divergent Change (21, 30).
Some design problems can be identified by a single code smell. For

instance, let us consider the design problem Incomplete Abstraction, which
happens when a code element, usually a class, does not support a responsibility
completely in its enclosing component (31, 32, 33). This design problem can
be identified by the Lazy Class smell, which is a class that does not do
enough (21). This smell may happen when a class that used to implement
a functionality gets downsized or when a class is added in anticipation of
a future need that never eventuates, which lead to Incomplete Abstraction.
Other design problems that can be identified by single code smells are Concern
Overload (52) and Unused Abstraction (34, 9). They can be identified by God

Class and Speculative Generality smells (21), respectively.
On the other hand, some design problems may not be identified by only

a single smell. In these cases, design problem identification may itself quickly
turn into a very complex task (26, 27). Thus, developers may need to rely
on multiple smells instead of just one. For instance, Scattered Concern, which
happens when a functionality is implemented by several elements instead of
few ones (7, 8). To identify this design problem, a developer would have to
find the elements that are implementing the scattered functionality. Thus, he
would have to identify at least one smell in each code element to realize that
it is implementing the scattered functionality.

Although some design problems appear to be suitable for being identified
by multiple smells, in practice this may not be true. Whether the developer
will use only one smell or several ones is more likely to depend on the instance
of the problem than on its type itself. Unfortunately, as this knowledge about
single smell and multiple smells is still unknown, we can only speculate when

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 1. Introduction 19

UpdateEmployee

Employee

InsertEmployee

Complaint

InsertComplaint UpdateComplaint UpdateHeathUnit

HealthUnit

InsertHealthUnit

Facade

HealthWatcherFacade

+ insertEmployee(): void

+ updateEmployee(): void

+ insertComplaint(): void

+ updateComplaint(): void

+ insertHealthUnit(): void

+ updateHealthUnit(): void

<<Interface>>

IFacade

+ insertEmployee(): void

+ updateEmployee(): void

+ insertComplaint(): void

+ updateComplaint(): void

+ insertHealthUnit(): void

+ updateHealthUnit(): void

Text
Text

Figure 1.1: Fat Interface Example

developers use only one or various smells to identify a design problem. For
example, let us consider Fat Interface, a design problem that occurs when a
developer decides to aggregate multiple non-cohesive services in a single system
interface (13). A single smell in the interface could be enough to spot the design
problem, such as the Shotgun Surgery smell (21). This smell indicates that
a change in the interface triggers changes in other code elements. The reason
for triggering various changes is that the interface aggregates multiple non-
cohesive services. Even though a single smell seems to be enough to spot this
design problem, developers may need to rely on multiple smells to identify
some instances of Fat Interface, as illustrated by the following example based
on the Health Watcher system (35, 36).

Health Watcher is a web-based system for improving the quality of
services that health vigilance institutions provide. The system allows users to
register several kinds of health vigilance complaints, such as complaints against
restaurants and food shops. Thus, health vigilance institutions can investigate
and resolve complaint reports appropriately. Figure 1.1 relies on a UML-like
notation (37) to show a partial view of some Health Watcher components. In
this example, the IFacade has an instance of Fat Interface, which is represented
in the figure by the puzzle symbol. This interface declares methods to access
three non-cohesive services. Each service is represented in the figure by a shade
of gray.

In this particular example, the IFacade does not contain any code smell;
consequently, a developer would have to analyze smells in elements related to
the interface in order to identify the design problem. For instance, InsertEm-
ployee, UpdateEmployee, InsertComplaint, UpdateComplaint, InsertHealthUnit,

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 1. Introduction 20

and UpdateHealthUnit are clients which contain code smells such as Divergent

Change and Dispersed Coupling. Divergent Change appears in these classes
since they are a�ected whenever a change is made in one of the three services.
Furthermore, the classes are all connected through the interface, which leads
to the Dispersed Coupling. The interface clients are not the only a�ected
elements. Classes that implement IFacade are also a�ected. As the interface
declares more than one responsibility (i.e., one service), it forces other classes
to implement more than one responsability as well. Consequently, classes such
as HealthWatcherFacade likely contain God Class and Feature Envy smells.
God Class emerges because the class implements more than one responsibility.
Furthermore, some of the methods may contain Feature Envy since they are
more interested in other classes that are related to its service.

In summary, a developer would have to reason about these multiple
aforementioned smells to realize that the interface has an instance of Fat
Interface. On the one hand, the analysis of multiple smells can help developers
to identify some design problems, as illustrated by the example. On the other
hand, the analysis of multiple smells may increase the complexity related to the
identification of design problems. As developers may need to analyze multiple
smells, they can be overloaded with information. To make matters worse, some
instances of code smells are not related to any design problem (38), which can
make the analysis of multiple smells even harder since they have to find out
which instances are related to a design problem. Unfortunately, there is no
knowledge whether in practice developers benefit from the analysis of multiple
code smells.

This example also serves to illustrate how developers can introduce a
design problem due to an inappropriate design decision. In this case, the
developer decided to implement the Facade pattern. This pattern intends to
provide a unified interface to a set of interfaces in a subsystem (4). Thus,
all clients that need to use these services could access them through the
interface. However, the developer inappropriately decided to implement only
a single interface (IFacade) to provide all services. As a result, this interface
became highly coupled to all the other modules, which negatively impacted the
maintainability and extensibility of Health Watcher. In this example, there was
a case of a design pattern misuse. The Facade pattern was intended to make
the subsystem easier to use, but its implementation is complicating the logic of
its clients, since each client class has to decide in which services it is interested.
According to the developers of Health Watcher, the most appropriate use of
this pattern would be the creation of an unified interface for each service, as
illustrated by Figure 1.2. Thus, each client would access only the interface that

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 1. Introduction 21

<<Interface>>

IFacadeComplaint

+ insertComplaint(): void

+ updateComplaint(): void

<<Interface>>

IFacadeEmployee

+ insertEmployee(): void

+ updateEmployee(): void
<<Interface>>

IFacade

+ insertEmployee(): void

+ updateEmployee(): void

+ insertComplaint(): void

+ updateComplaint(): void

+ insertHealthUnit(): void

+ updateHealthUnit(): void
<<Interface>>

IFacadeHealthUnit

+ insertHealthUnit(): void

+ updateHealthUnit(): void

Figure 1.2: Fat Interface Solved

provides the service to which it is interested.

1.2
Problem Statement

This section presents our specific and general research problems. More-
over, we discuss why related work does not address such research problems. In
the previous section, we discussed how one or more code smells can be used
to identify a design problem. Additionally, we presented an example that illus-
trates how developers may need to analyze multiple smells to identify a design
problem. In the example, the code smells appeared in the code elements due to
the relation between the elements and the interface that has a design problem.
Hence, those code smells could have been used to indicate the design problem.
Indeed, code smells have been used as indicators of design problems, especially
because they can be identified directly in source code, which is often the only
tangible artifact available for developers.

Several studies have presented techniques based on code smells to help
developers to identify design problems (28, 38, 39, 41, 47, 46). Code smells have
been explored by these studies due to their co-occurence with design problems
(47, 53, 54). Some studies found that elements a�ected by design problems
tend to have code smells, i.e., code smells and design problems co-occur in
these elements (38, 41, 46, 47). Thus, they used such co-occurrence to state
that code smells are consistent indicators of design problems. Unfortunately,
previous studies did not investigate if code smells are key symptoms for
developers to identify design problems in practice. A key symptom is one that
helps developers to identify a design problem that is relevant in the software
system. They also did not investigate if developers are able of identifying design

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 1. Introduction 22

problems in practice through the use of code smells.
In fact, we have little or no knowledge about how developers identify

design problems in practice. We do not know if developers will actually consider
one or multiple code smells to identify design problems, let alone if they
can identify design problems using code smells. Even though some studies
have showed how code smells are consistent indicators of design problems
(38, 41, 46, 47), we still have to investigate if: (i) code smells are key symptoms
to identify design problems in practice, and (ii) developers are able to use them.
These investigations aim to understand whether code smells su�ce in helping
developers to identify design problems.

Let us suppose that code smells do not su�ce in helping developers to
identify design problems, either because code smells are not key symptoms or
because developers cannot use them. Either way, developers may not be willing
to use them despite their potential benefit for identifying design problems
as reported by previous studies (38, 41, 46, 47). In other words, code smells
can, in fact, be consistent indicators of design problems, but in the end, the
consistency has little or no importance if in practice they are not key symptoms
and if developers cannot use them. Therefore, we still need to find out if code
smells su�ce in helping developers. For this purpose, we need to investigate
first whether code smells are key symptoms for developers to identify design
problems (Research Problem 1).

Research Problem 1. Whether code smells are key design problem
symptoms for developers in practice is unknown.

A way to investigate this phenomenon is studying whether and how code
smells indicate design problems that are indeed relevant for the developers. In
the context of our research, a relevant design problem is one that developers
focus their e�ort to remove from the source code. As some design problems can
be so damaging to the point of discontinuing software projects (14, 15, 16, 17),
developers focus their e�ort to identify and remove them through refactoring.
Refactoring is a transformation used for repairing a deteriorated code. Thus,
to address Research Problem 1, we need to find the code elements that were
refactored, i.e., elements that were likely to have at least one design problem,
which led developers to refactor them. Then, we investigate if these code
elements contain at least one code smell closely related to the design problem.
If they do, then smells have the potential to serve as key symptoms for helping
developers to identify relevant design problems in practice.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 1. Introduction 23

Let us assume that code smells have strong potential for assisting
developers on identifying design problems. Then, a follow-up investigation is
confirming if developers are able to explicitly use smells to identify design
problems (Research Problem 2). This follow-up investigation is important
because, while code smells can be key symptoms of relevant design problems,
developers still can struggle to use them to identify a design problem in
practice.

Research Problem 2. Whether developers are able to reason about
code smells to actually identify design problems is unknown.

Code smells have been a well-researched topic over the last decade
(53, 28, 47, 51, 27, 55, 29). However, there is still little knowledge about the role
that code smells play on how developers identify design problems in practice.
We do not know if code smells are key symptoms for developers (Research
Problem 1), and even if they are, we do not know if developers are able to
actually use them to identify design problems (Research Problem 2).

However, addressing these research problems is not su�cient. For in-
stance, we can find in these investigations that either code smells are not key
design problem symptoms or developers cannot use them to identify design
problems. Thus, since our goal is to understand how developers identify design
problems in practice, we still need to investigate if they use other symptoms in
addition to code smells. Unfortunately, we do not know if developers use other
symptoms in practice (Research Problem 3). Then, we should understand the
relative importance of various types of symptoms.

Research Problem 3. What design problem symptoms that devel-
opers use in practice are unknown.

By studying these three specific research problems, we expect to under-
stand how developers identify design problems in practice. In summary, the
investigation of these specific problems discussed heretofore will contribute to
better understand how developers identify design problems in practice, in par-
ticular when the source code is the only artifact available in a project (General
Problem).

General Problem. How developers identify design problems in
practice is unknown.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 1. Introduction 24

Lack of su�cient knowledge of how developers identify design problems
in practice may be preventing us, researchers, from providing the required
support to assist developers during design problem identification. We are not
able to conceive e�cient assistant techniques if we do not know: (i) what other
design problem symptoms that they use, (ii) what steps they follow to identify
a design problem, and (iii) what criteria they use to confirm the presence of one.
In fact, we do not even know how to assess existing solutions to help developers
on identifying design problems, since we do not know how the identification
task takes place in practice.

1.3
Goal and Research Questions

Design problem identification is not trivial (Section 1.1), and we do not
have much information about it (Section 1.2). The complexity of this task
and the lack of knowledge lead to various unaddressed research problems, as
discussed in the previous section. Without addressing these research problems,
we will continue unfamiliar with how design problem identification happens in
practice. Consequently, we may be doomed to not providing the necessary
support for developers. In fact, these research problems are essential to
provide the knowledge required to anyone understand (i) how design problem
identification happens in practice, (ii) the role that code smells play in the
identification task, (iii) what symptoms of design problems developers use,
and, finally, (iv) how to provide support that is aligned with how developers
identify design problems in practice. Given this context, the goal of this thesis
is stated as follows:

Goal. Understand how developers identify design problems in prac-
tice.

To achieve this goal, we mapped the aforementioned research problems
into one or more research questions. For instance, Research Problems 1 and
2 were mapped onto two research questions, which address the role that code
smells play in helping developers to identify design problems. As previously
discussed, code smells have been the center of di�erent techniques to support
the identification of design problems (41, 38, 39, 28, 47, 46). However, if smells
are not key symptoms or developers cannot use them, then techniques that
rely on code smells may fall short of expectations, or worse, they may not
be adopted in practice (41, 38, 39, 28, 47, 46). Therefore, to address the first
research problem, our first research question is stated as follows:

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 1. Introduction 25

RQ1. Are code smells key symptoms to indicate relevant design
problems for developers?

To answer RQ1, we need to investigate if, in practice, code smells indicate
design problems that are somehow relevant for developers. Another alternative
is to ask developers if they consider code smells key symptoms to indicate
design problems, similar to what Yamashita and Moonen did (29). In that
study, the authors asked 73 developers to answer a survey about code smells.
The majority of respondents (50 developers – 68%) indicated that they apply
code smell concepts in their daily activities or, at least, they know about them.

Unfortunately, the results of this survey are not enough to answer RQ1.
First, the authors were more interested in knowing if developers care about
code smells rather in knowing if code smells are key symptoms to indicate
design problems. Second, RQ1 requires observing in practice if code smells are
key symptoms to indicate design problems. In other words, we cannot simply
rely on a survey without actually observing the practice. Responses in a survey
often do not represent what the developers actually do in their projects (57). In
fact, this study reported that what people say they do in response to surveys
bears no relationship to what they do in their work practices (57). Therefore,
just asking developers if they apply smell concepts is not enough. Thus, we
need to investigate the phenomenon in terms of actions indeed realized by
developers in their projects.

We can answer RQ1 by investigating if code smells are key symptoms
to indicate relevant design problems. As aforementioned, a relevant design
problem is one that developers focused their e�ort to identify and remove
from the source code. We can find these relevant design problems by searching
for elements that developers refactored due to their deterioration. Since, the
presence of design problems is one of the reasons why elements can reach a
deteriorated state (15, 16), we can investigate elements that developers focused
on repairing them through refactoring. If these refactored elements contain
code smells, then we can assume that code smells are key symptoms to indicate
relevant design problems. Nevertheless, we highlight that we can only make
this assumption if we have a sign indicating that these elements had design
problems.

The answer for RQ1 can provide us a better understanding of to what
extent code smells are key design problem symptoms. For instance, we expect
to find out if relevant design problems can be spotted by multiple code
smells or just one is enough to locate them. We can find out, on the other
hand, that code smells are not key symptoms for developers identify design

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 1. Introduction 26

problems after all. Even if code smells are key symptoms for developers identify
relevant design problems, in practice, they may not be able of using smells
(Research Problem 2). Unfortunately, our knowledge about how developers
identify design problems with code smells is limited. Therefore, we need to
find an answer to the following research question.

RQ2. Are developers able to use code smells to identify design
problems?

To answer RQ2, we should conduct a study in which we provide code
smells for developers, and we investigate if they can use them to identify
design problems. As some studies have proposed smell-based techniques to
help developers to identify design problems (27, 28, 29, 47, 51, 53, 55), we
cannot neglect these techniques if we also want to find out if code smells su�ce
in helping developers to identify design problems. Therefore, in the context of
RQ2, we also want to investigate if developers using one of these techniques can
find better precision in identifying design problems. Code smell agglomeration,
proposed by Oizumi et al. (47), is an example of one of these techniques.

An agglomeration is a group of interrelated code smells. In their studies,
Oizumi et al. found that most code smells associated with a design problem
were part of one or more agglomerations (82). Due to their results, there is
a high chance that developers can identify design problems using code smell
agglomerations. Consequently, it seems reasonable to choose agglomeration
as a technique to investigate if developers can obtain better precision in
identifying design problems. Furthermore, agglomeration is a technique that
exclusively relies on code smells. Di�erent from other smell-based techniques
(27, 28, 39, 58), agglomeration only groups code smells, i.e., there is no other
symptom used together with smells.

We can find out in the investigation of RQ2 that either developers are
not able to use smells in practice, or smells do not su�ce to help them identify
design problems. Either way, these results can be an issue since we do not
know what other symptoms developers use in practice (Research Problem 3).
Since our goal is to understand how developers identify design problems in
practice, we cannot focus only on code smells. We also have to investigate
if developers use other design problem symptoms. Hence, our third research
question is stated as follows:

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 1. Introduction 27

RQ3. What are the design problem symptoms that developers use
in practice?

In order to answer RQ3, we should conduct a study in which developers
have to identify design problems in their source code. Our goal is to observe
them working in practice, allowing us to find other symptoms that they may
use. Indeed, there is a high chance that developers use other symptoms, which
explains why other studies focused on proposing techniques that rely on other
indicators (44, 40, 59, 42, 45). Unfortunately, this is knowledge that we do not
have.

Our lack of knowledge does not restrict to not knowing only which
symptoms developers use. In fact, we do not know how they use these
symptoms. We do not know what steps developers follow to identify a design
problem. We do not even know what criteria developers consider before
confirming or refuting the presence of a design problem. This limited knowledge
has prevented researchers and tool engineers from providing most appropriate
support to developers. In fact, our limited knowledge does not even allow us
to make sure that we have been appropriately assessing techniques to support
the design problem identification. As far as we know, no other study has
observed developers during the identification of design problems. Even with
several studies that have investigated how to help developers to identify design
problems, we still do not know how developers identify design problems in
practice. Therefore, our fourth research question is stated as follows:

RQ4. How do developers identify design problems in practice?

In order to answer RQ4, we should conduct a multi-trial industrial ex-
periment with developers from di�erent software companies. In this study,
developers will have to identify design problems in their systems under devel-
opment. We plan to capture data on their behavior by filming the environment,
recording audio and capturing their computer screens on video. These data will
allow us to conduct an in-depth qualitative analysis.

We are aware that design problem identification is a cumbersome task,
which requires much e�ort from researchers to understand it and to propose
techniques to support it. One could have expected that we skip research ques-
tions 1 and 2, and focus on questions 3 and 4. However, we cannot skip these
research questions because they address research problems necessary to under-
stand how developers identify design problems in practice. We cannot neglect

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 1. Introduction 28

investigating code smells since they have been discussed in the literature as a
consistent indicator of design problems (53, 28, 47, 51, 27, 55, 29). They are
also part of the developers’ routine (29). Conversely, we could not only focus
on code smells and pretend that developers do not use other symptoms, which
makes us to look at the practice all the time.

Without investigating how developers identify design problems in prac-
tice, we may not understand the identification task. Consequently, we may not
be able to provide support that is aligned with the practice. We expect that
answers to the previous research questions can bring knowledge to support the
identification of design problems. The two first research questions can help us
to understand the state-of-art as code smells have been used in several tech-
niques. The other two research questions can gather knowledge about the iden-
tification task in practice. We expect to achieve our research goal by answering
these questions, paving the way for more e�ective identification techniques.

1.4
Main Contributions

This thesis presents studies aimed at understanding how developers
identify design problems in practice. For each study, we defined research
questions, in which we found the following results:

– In RQ1, we investigated if code smells are key symptoms to indicate
relevant design problems in practice. For that, we analyzed 50 software
systems in order to observe how developers refactored their source code.
We found that developers tend to apply refactoring operations when the
code elements contain several smells. After ensuring that these refactored
elements were likely to contain design problems, we found that in most
cases code smells are key symptoms to indicate relevant design problems.
However, we found a few cases in which refactored elements may contain
design problems even though code smells cannot indicate design problems
on them. As a matter of fact, our investigation was limited in two senses.
First, we only investigated the refactored code. Thus, we do not know if
code smells are key symptoms to indicate relevant design problems if the
element has not been refactored. Second, we did not actually investigate
developers’ behavior; instead, we conducted a retrospective study. Even
though our results indicate that in most cases code smells likely represent
key symptoms, we still have to investigate if code smells su�ce to help
developers in identifying design problems in practice. The need for this
investigation is even more evident when we take into account related
studies that focused on investigating if code smells are perceived by

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 1. Introduction 29

developers as critical for the system (51, 29), which is not always the
case.

– In RQ2, we investigated if developers are able to use code smells to iden-
tify design problems. We also investigated if developers using agglomera-
tions (a smell-based technique to support developers) obtain better pre-
cision in identifying design problems. The comparison of code smells and
agglomerations helped us to find if code smells su�ce in helping develop-
ers during the design problem identification. The investigation of RQ2 re-
vealed that there was no statistically significant improvement in precision
when developers used agglomerations. Only 36.36% of them found more
design problems using agglomerations rather than using smells without
being agglomerated. Unfortunately, we noticed that code smells are not
enough to support developers in identifying design problems. This result
confirmed that developers need better support to analyze elements than
code smells can provide, which was something that developers mentioned
in the study. Interestingly enough, the previous study, which was used
to answer RQ1, already indicated the role of code smells for developers.
In that study, we found that developers focus on refactoring code ele-
ments with several code smells. To a certain degree, we could claim that
developers already use smells to find elements to refactor. Nevertheless,
combining the results of RQ1 and RQ2, we found that in practice de-
velopers can benefit from the analysis of multiple code smells. We also
found that code smells do not su�ce in helping developers to identify
design problems. These results motivated us even more to find the other
symptoms that developers use in practice.

– In RQ3, we observed developers identifying design problems in practice
in order to find out what symptoms they use in addition to code smells.
The need for this study became even clearer after the study used to
answer RQ2, in which we noticed the need to find other symptoms to
support developers during the identification task. An appropriate way
to find these symptoms was by observing what they already use in
practice. The investigation of RQ3 revealed that, in practice, developers
search for multiple symptoms of a design problem in source code before
identifying it. In fact, they use and combine multiple ones to identify
a single design problem. What is interesting about this result is its
implication for the state-of-the-art. We now know that some techniques
to support developers have been mistakenly assuming that developers
only use a predefined, dominant indicator of a design problem. Instead,
these techniques should provide multiple indicators (symptoms) and let

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 1. Introduction 30

developers combine them during the identification of design problems.
This knowledge has not been reported in any other study.

– In RQ4, we kept observing how developers identify design problems in
their software systems. We had to continue our investigation with more
experiments because, while the previous study used to answer RQ3 pro-
vides us a finding hitherto unknown, that study did not provide enough
evidence to explain the phenomenon, which is the design problem identifi-
cation. The investigation of RQ4 resulted in a theory describing this phe-
nomenon, which serves to understand the identification of design prob-
lems in practice. We found the activities and factors that influence how
developers identify design problems. For example, the theory presents
the steps that developers follow to identify a design problem. This is an-
other result that has been reported nowhere else. The findings provided
by the theory not only shed light on how developers identify design prob-
lems, but these results can also be used to improve the techniques to help
developers.

1.5
Thesis Outline

This introductory chapter portrayed an overview of this thesis. The
remainder of the thesis is structured as follows. Chapter 2 introduces an
overview of basic concepts required to understand the thesis and also presents
the related work. Chapter 3 presents the study in which we use refactoring
to investigate if code smells are key symptoms to identify relevant design
problems, which provides answers to RQ1. Chapter 4 presents a study to
investigate if developers can use code smells to identify design problems, which
provides answer to RQ2. In this chapter, we also discuss if code smells su�ce
in helping developers to identify design problems. Chapter 5 describes a theory
of how developers identify design problems in practice. We answer RQ3 and
RQ4 in this chapter while we explain how the design problem identification
happens in practice. Finally, Chapter 6 concludes this thesis by summarizing
the achieved research contributions, making final considerations, and pointing
out directions for future research.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

2
Background and Related Work

This chapter presents the background and related work of this thesis.
Section 2.1 outlines aspects of software design and how they relate to design
problems. Section 2.2 presents the types of design problems addressed in the
context of this thesis. Section 2.3 discusses the relation between code smells and
design problems. Finally, Section 2.4 presents related work that investigated
code smells and other indicators of design problems.

2.1
Software Design and Design Problems

Software design is the result of creating a software-based solution for
a specific problem (2). To target the problem, a software system needs to meet
a set of requirements that, when considered and treated all together, should
result in the problem solution. Therefore, software design is the description
of (i) how the system is decomposed and organized into components and (ii)
how these components should behave (62, 63). Hence, it is a set of models
and artifacts that record the major decisions that have been taken during
the software development. Accordingly, the system stakeholders should make
fundamental design decisions towards the problem solution. These design
decisions will a�ect the software system and its development process. A design
decision comprises the “description of the choice and considered alternatives
that (partially) realize one or more requirements” (64). Therefore, design
decisions and the reasons behind them describe what is allowed in the software
system from its designing until its deployment and maintenance.

Eventually, design decisions impact the entire software system, either pos-
itively or negatively. For instance, let us consider non-functional requirements,
which are aspects of or constraints on a system that are not specifically related
to the system functionality; instead, they specify properties that the system
must have, such as maintainability, understandability, usability, and perfor-
mance (65, 66). Some inappropriate design decisions, such as overloading an
interface with several non-cohesive services or spreading a functionality over
several elements, may have a negative impact on non-functional requirements.
In this vein, we state that a design problem exists when these inappropriate

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 2. Background and Related Work 32

design decisions have a negative impact on non-functional requirements.
Design problem is the manifestation of one or more design decisions

that impact non-functional requirements negatively. Figure 2.1 summarizes
the relation between design decisions, design problems, and non-functional
requirements. On the one hand, design decisions drive how the system will
be developed; thus software design can be faced as the results of a set of
these decisions (1, 2). On the other hand, each design decision can impact
the system non-functional requirements either positively (straight arrows) or
negatively (dotted arrows) (6). In the meantime, these design decisions a�ect
how the code elements are implemented.

Legend

Software Design

Design Decisions

Code Elements Non-functional Requirements

affects

negative
impact

...

positive
impact

positive
impact

affects affects

Non-functional
Requirement

Elements affected by
a Design Problem

Design Decision

Set

Code Element

Figure 2.1: Design Problem

In the context of our research, we focused on those design problems that
can be identified by the analysis of code elements a�ected by inappropriate
design decisions, which negatively impact non-functional requirements. We
focused on design decisions related to modularity aspects, i.e., how the modules
are designed and how they communicate in the system. Hence, we consider
design decisions that include, but are not limited to, how the system is

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 2. Background and Related Work 33

organized into subsystems and components, how and which code elements
encapsulate process and data to address each functionality, and how the
elements interact with each other and their execution environment (7, 8, 9).
These design decisions are those related to design problems often harmful in
software systems (14, 15, 16, 17).

Given the frequent lack of design documentation, developers have to rely
on the analysis of code elements a�ected by the design decisions to identify a
design problem, as illustrated in Figure 2.1. That is the reason why we focus on
design problems that can only be identified from the analysis of relevant code
elements for the system modularity, such as interfaces, components, hierarchies
and other elements that encapsulate process and data in the system design (10).
Consequently, design problems that (i) cannot be identified by the analysis of
code elements, and (ii) are resulting from design decisions that are not related
to modularity aspects are out of the scope of this thesis. For instance, we
do not consider design problems that can only be identified with the design
documentation or design problems related to the choice of an inappropriate
database or library.

2.2
Types of Design Problems

Due to the type of design problems that we focus on, we use the inap-
propriate design decisions in addition to the a�ected code element (classes,
hierarchies, interfaces, components, and the like) to classify the design prob-
lems. For instance, let us consider an inappropriate design decision related to
overloading an element with many functionalities. If the overloaded element is
a component, then we classify the design problem as a Component Overload.
On the other hand, if an interface is the element overloaded with many func-
tionalities, then we classify the design problem as a Fat Interface. In these two
examples, the same inappropriate design decision led to two di�erent design
problems. However, the manifestation of the design decision was di�erent in
each code element. In other words, the combination of the design decision and
the a�ected element was which characterized the type of design problem.

This classification allow us to focus on design problems that are domain-
independent, i.e., design problems that are not specific to a particular software
domain (Section 2.4.1), but instead, design problems that recurrently appear
in systems from di�erent domains. Thus, we can classify some common design
problems found in the literature (34, 7, 8, 31, 9, 52, 32, 11, 33). Figure 2.2
presents these design problems and how they are related to one or more design
decisions. We describe these design problems next.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 2. Background and Related Work 34

Design Decisions

Incomplete

Abstraction

Unused

Abstraction

Cyclic

Dependency

Unwanted

Dependency

Scattered

Concern

Misplaced

Concern

Concern

Overload

Ambiguous

Interface

Abstraction Separation of Concern Dependency

Legend

Design Decision Relation between
Design Decisions

Fat

Interface

Design Problem
Design Decision
that leads to a
design problem

Fat

Interface

Component

Overload

Specialization Consequent relation

Figure 2.2: Types of Design Problems

2.2.1
Design Problems related to Abstractions

The first set of design problem types are those related to the design of
abstractions. These design problems have in common an inappropriate design
decision that a stakeholder made when he designed the abstraction, thereby
leading to an incomplete, unused or ambiguous abstraction. Badly designed
abstractions can be reified as one or more elements in a program.

The first design problem in the set is Incomplete Abstraction (ICA).
This problem happens when a stakeholder designed an abstraction to partially
implement a functionality; however, the rest of the responsibility is covered
nowhere else (33). The stakeholder can also inappropriately split a responsibil-
ity among two or more code elements, which results in one or more incomplete
abstractions (32). This design problem can be identified in the source code
when a code element, usually a class, does not support a responsibility com-
pletely in its enclosing component (31, 32, 33).

Unused Abstraction (UA) is the second design problem related to the
design of an abstraction. This design problem happens when the code element
representing the abstraction is not directly used or is unreachable (34, 9).
Usually, this design problem manifests in the source code due to modifications
that make code elements obsolete, for instance, when the responsibility imple-
mented by some classes ceases to be part of the system’s functionality. Such
scenario can happen to concrete classes as well as stand-alone interfaces and
abstract classes that do not have subtypes or clients. In both cases, the system
understandability decreases since these elements add an unnecessary e�ort to
understand them even though they are unused in the system.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 2. Background and Related Work 35

Ambiguous Interface (AMI) is the third design problem resulting from
the inappropriate design of an abstraction. It refers to interfaces representing
the abstraction that do not reveal which services it o�ers. AMI happens in
the source when the interface of a component o�ers only a single, generic
and ambiguous entry-point for its clients (7, 8). Usually, Ambiguous Interface
appears in components that have several similar services to expose. However,
these services are so similar to each other that they can be accessed by the
same interface method. In this case, which di�ers a service from the other is
the parameter received in the interface method. In other words, the component
has an interface with only a general method with few parameters, at which the
parameters dictate what service will be accessed. Ambiguous Interface hampers
system understandability because the interface does not reveal which services
a component is o�ering. Hence, the client has to inspect the component’s
implementation before using its services.

2.2.2
Design Problems related to Dependencies

The second set of design problem types are those related to the depen-
dency between abstraction. Design problems within this set have in common
dependencies that should not exist. These design problems manifest when
stakeholders introduce dependencies that should not exist in the system ei-
ther because they were not part of the intended system design or because they
cause an undesired e�ect on non-functional requirements.

Unwanted Dependency (UWD) is the first design problem related to
dependencies. It happens when a stakeholder creates a dependency in the
software system that violates an intended design decision, i.e., when there
is a dependency between abstractions that does not exist in the intended set
of design decisions of a system (6). In the source code, this design problem
manifests when there is a dependency between code elements that was not
defined in the system design or a dependency that violates architectural
and design patterns. For instance, let us consider the Layer pattern (70).
Specification for this pattern instructs to design a system in layers at which
only adjacent layers can directly communicate with each other. However,
if a layer communicates with another non-adjacent one, then there is a
dependency that should not exist. This violation of the intended design
decision leads to Unwanted Dependency. A design problem such Unwanted
Dependency decreases the changeability of the system due to the introduction
of dependencies that should not exist.

The second design problem related to dependencies is Cyclic Dependency

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 2. Background and Related Work 36

(CCD). This design problem happens when a stakeholder creates dependencies
that create cycles. In the source code, this design problem manifest when
two or more elements depend on each other directly or indirectly (11). This
design problem can be introduced in di�erent scenarios, for instance, when
the stakeholder designs a class that calls a second one, which calls a third
class; in its turn, the third class calls the first one back. These classes can
even be in di�erent components (13); in this case, there is the violation of the
Acyclic Dependencies Principle (13). The cycle can also be created when
a supertype directly or indirectly refers to one of its subtypes, forming a cycle
in the hierarchy (71, 56). Despite the scenario, when there are long dependency
cycles among the elements, the system might end up at a stage where these
cycle dependencies compromise the understandability, testability, reusability,
and maintainability of the software systems (11). Also, Cyclic Dependency can
cause deadlock (12), which negatively impacts the system performance and
availability.

2.2.3
Design Problems related to Separation of Concerns

The third set of design problem types are those related to the separation
of concerns. A concern comprises anything that stakeholders of a software
project may want to consider as a conceptual unit (69). Design problems
in this set have in common the violation of the Separation of Concerns

Principle, i.e., when the stakeholder intentionally or not inappropriately
decomposes the system concerns into dependent parts instead of independent
ones (68, 67).

Concern Overload (CCO) is the first design problem related to the
separation of concerns. It happens when a stakeholder creates an abstraction
that fulfills to many concerns (52). In the source code, this design problem
manifests in a interface, an abstract class or even a component. Depending on
the element, this design problem can also violate other modularity principles.
For instance, abstract classes and system components also tend to violate
Single Responsibility Principle since they implement more than one
concern (13). Interfaces, on the other hand, may also violate the Interface

Segregation Principle once these interfaces force their clients to depend
on methods they do not use (13). Despite the abstraction type, this type of
design problem negatively impacts the system understandability, extensibility,
reusability, and testability. As represented in Figure 2.2, Concern Overload can
be split into other design problem types depending on the a�ected element.
For example, when an interface is overloaded with concerns, it has the design

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 2. Background and Related Work 37

problem named of Fat Interface. These specializations of Concern Overload
are explained as follow.

Fat Interface (FTI) is a specialization of Concern Overload, which results
from when the stakeholder designs the interface as the entry point for more
than one unrelated concern (13). For instance, in the example discussed in
Section 1.1, the stakeholder created the IFacade interface to provide access
to services of three di�erent components. However, the services (concerns)
provided by these components were not related to each other directly. In
this case, the stakeholder should have created an independent interface for
each concern; instead, he put three unrelated concerns into only one interface.
Consequently, he created dependency among them, violating the Separation

of Concerns Principle. Furthermore, the interface clients are forced to
depend on methods defined in the interface that they do not use. As a
consequence, there is the violation of the Interface Segregation Principle

as well. Design problems as Fat Interface impact the system understandability,
extensibility, and testability since to understand, extend or test the services,
it is required to handle the other services under the same interface. Similarly,
the design problem also impacts the system reusability once the interface is
too coupled with other modules and clients.

Component Overload (CPO) is the second specialization of Concern
Overload, which happens when a stakeholder designs a system compo-
nent to fulfill too many concerns (52). Hence, in addition to the violation
of Separation of Concerns Principle, components that have this design
problem are likely to contain classes violating the Single Responsibility

Principle (13). This possibility exists because the classes within an a�ected
component may be implementing more than one concern, which led to the
Component Overload at the first place.

Conceptually, Component Overload and Fat Interface represent the same
inappropriate design decision. They are the results of overloading an abstrac-
tion with too many concerns (Concern Overload). In fact, they represent two
faces of the same decision, in which they di�er in the role that the a�ected
abstraction provides. Fat Interface provides an entry point to access the many
concerns, whereas Component Overload contains implementations of these too
many concerns. As an example, a system component may be implementing
di�erent services (i.e., concerns), in its turn, these services can be exposed
altogether through the same interface.

Scattered Concern (STC) is another type of design problem related to
the separation of concerns (7, 8). This design problem type happens when the
stakeholder decomposes the system concerns into dependent parts instead of

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 2. Background and Related Work 38

independent ones (68, 67). As a consequence, multiple elements are responsible
for partially implementing the same concern; thus, violating the Separation

of Concerns Principle. To make matters worse, sometimes the scattered
concern is not the predominant one in at least one of the elements. In
these cases, the element implements two concerns: its predominant concern
and another one, which the predominant concern can either the scattered
one or not. Hence, this element also violates the Single Responsibility

Principle. This type of design problem tends negatively to impact the system
modifiability, understandability, testability, and reusability.

The last design problem related to the separation of concerns is Misplaced
Concern (MPC). This type of design problem happens when a stakeholder
creates an abstraction that implements a concern that is not its predominant
one. In the source code, this design problem can be faced as the consequence
of having either Concern Overload or Scattered Concern. For instance, if a
component has two concerns instead of one, then one of them has been
misplaced implemented in the component. Therefore, the component has at
least two instances of design problems: Component Overload and Misplaced
Concern. Similarly, when Scattered Concern a�ects a set of elements, there is
a high chance of one of these elements to implement a misplaced concern. In
this scenario, we can have two possible alternatives. In the first alternative,
the predominant concern in the element is the same scattered one. Thus, the
misplaced concern is another implemented concern. In the second alternative,
the predominant concern in the element is not the scattered one. Thus, the
misplaced concern is exactly the scattered one.

2.3
Code Smells and Design Problems

As discussed in the previous section, design problems have a negative
impact on non-functional requirements. In fact, their negative consequences
for software systems can increase the cost related to the maintenance of
software projects. Despite they are often targets of significant maintenance
e�ort (7, 17, 20), identification of design problem is non-trivial (26, 27). First,
software systems tend to be increasingly large in size and complexity, thereby
expanding the search space for problems. Second, some design problems may
pervade the implementation of multiple elements (7, 28). Thus, developers may
need to analyze several elements to identify a single design problem (27). Third,
design documentation is often unavailable or outdated, making the source code
the only artifact available for developers to identify design problems in most
cases.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 2. Background and Related Work 39

Due to the lack of design documentation, developers need to locate
indicators of design problems directly on the source code. Some studies have
been investigating information extracted from the source code that can be used
as indicators of design problems, such as metrics (72), quality attributes (42),
modularity principles (27, 58). In our context, any indicator that developers
use in practice to identify a design problem, we call it as symptom. Therefore,
we define a design problem symptom as a partial sign or indication of the
presence of a design problem that is used in practice. Code smell is an example
of symptom usually associated with design problem identification. A code smell
is a microstructure in the system that represents a surface, sometimes partial,
indication of a design problem (21). Examples of code smell types vary from
method-level smells, such as Long Method and Feature Envy, to class-level
smells, such as God Class, and Data Class (21, 30). Table 2.1 presents 17
types of code smells. These are code smells that are commonly studied in the
literature, and some of them are closely related to design problems.

Studies based on code smells use them as indicators of design problems
since code smells tend to co-occur in elements a�ected by design problems
(53, 47, 54). The use of code smells to indicate design problems is indeed
reasonable as each smell may be fully or partially associated with a design
problem (41, 38, 28, 47, 73, 27, 46). For instance, Speculative Generality,
a code smell that indicates an element, usually a class, that was created to
support anticipated future features that never have been implemented (21).
This code smell can be associated with Unused Abstraction (34, 9). Moreover,
smells can be identified directly in source code, which is often the only tangible
artifact available for developers. Hence, it is no surprise that the use of code
smells is often associated with design problem identification in the literature
(21, 41, 38, 39, 28, 47, 46).

Some of these aforementioned studies have investigated the relation
between code smells and design problems (74, 16, 75, 53, 38, 28, 47, 51, 76,
27, 55, 29). Based on them, we can associate some types of code smells with
some types of design problems, as we did when we associated Speculative

Generality with Unused Abstraction. This association is possible due to smell
patterns reported in studies that investigated the relation between smells and
design problems. A smell pattern in our context is one or more types of
code smells that are likely to indicate a design problem if they appear in code
elements. Table 2.2 shows these patterns.

As an example of how this association between code smells and design
problems can help developers in the identification task, let us consider the
example in Figure 2.3, which uses a UML-like notation to show a partial

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 2. Background and Related Work 40

Table 2.1: List of Smell Types
Smell Type Description

Brain Class Long and complex class that centralizes the intelligence of
the system

Brain Method Long and complex method that centralizes the intelligence of
a class

Class Data Should
Be Private

A class exposing its fields, violating the principle of data
hiding

Complex Class A class having at least one method having a high cyclomatic
complexity

Data Class These are classes that have only fields and accessors methods

Dispersed Coupling A method that accesses many elements, and the accessed code
elements are dispersed among many classes

Feature Envy A method that is more interested in a class other than the one
it actually is in

God Class When a class centralizes the system functionality

Intensive Coupling A method that has tight coupling with other methods, and
these coupled methods are defined in the context of few classes

Lazy Class A class having very small dimension, few methods and with
low complexity

Long Method A method that is unduly long in terms of lines of code
Long Parameter
List

A method having a long list of parameters, some of which
avoidable

Message Chain A long chain of method invocations is performed to implement
a class functionality

Refused Bequest A class redefining most of the inherited methods, thus signaling
a wrong hierarchy

Shotgun Surgery When a change performed on it demands a lot of little changes
to several di�erent classes

Spaghetti Code A class implementing complex methods interacting between
them, with no parameters, using global variables

Speculative
Generality

A class declared as abstract having very few children classes
using its methods.

view of a university management system: UniM system. Service is one of
the main components in the system, which is composed of classes that
implement services for database transactions. AbstractService is an abstract
class within the component that defines the main database operations, such
as inserting element, searching an element by id and updating elements.
Thus, all the service classes within the component extend the AbstractService
class. Due to the relevance of Service component, a developer may search for
design problem on it. Classes that extend the AbstractService is a good start
point for the analysis since they should have similar characteristics due to
their common methods to access the database. One of these classes is the
InstitutionalEnrollmentService.

After analyzing InstitutionalEnrollmentService source code, a developer
can find di�erent instances of code smells. This class contains instances
of Long Method, i.e., methods that are very long regarding lines of code

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 2. Background and Related Work 41

Table 2.2: Association Between Design Problems and Smell Patterns
Design Problem Code Smells

Ambiguous Interface Long Method and Feature Envy and Dispersed Coupling
in elements that are related to the interface

Cyclic Dependency Intensive Coupling and Shotgun Surgery

Component Overload
Shotgun Surgery, and Divergent Change, and Feature
Envy, and God Class, and Intensive Coupling,
and Long Method

Concern Overload
Divergent Change, and Feature Envy, and God Class,
and Intensive Coupling, and Long Method, and
Shotgun Surgery

Fat Interface
Shotgun Surgery in the interface or Divergent Change,
and Dispersed Coupling, and Feature Envy
in elements related to the interface

Incomplete Abstraction Lazy Class

Misplaced Concern God Class or Dispersed Coupling, and Feature Envy,
and Long Method

Scattered Concern
Dispersed Coupling, and Divergent Change, and Feature
Envy, and God Class, and Intensive Coupling, and
Shotgun Surgery

Unused Abstraction Speculative Generality
Unwanted Dependency Feature Envy, Long Method, Shotgun Surgery

(LOC), for instance, the calGradePointAverage method. This method receives
a student enrollment and calculates its grade point average – the average of
all grades from all classes that a student has been enrolled. To perform this
computation, the class has to call other classes, such as InstitutionalEnrollment1,
StudentService and CourseService, to calculate the average. Due to this high
coupling with other classes, InstitutionalEnrollmentService contains two other
types of code smells: Dispersed Coupling and Intensive Coupling. In fact,
methods as calGradePointAverage also contain instances of Feature Envy, since
these methods have to access other classes to perform their computation.
Consequently, they become more interested in other classes rather than in
its own class (21).

The smell pattern composed of Intensive Coupling, Long Method, and
Feature Envy in the class are associated with the Concern Overload, as showed
in Table 2.2. Indeed, the reason for these smells appear in the InstitutionalEn-
rollmentService is because the class implements two distinct concerns, query
enrollment and management enrollment, which are represented in the figure
by green and blue, respectively. The first implemented concern, query enroll-
ment, is due to the hierarchical relation with AbstractService and its enclosing
component (Service). The second implemented concern, management enroll-
ment, is due to a responsibility that should not have been implemented by the

1This class does not appear in Figure 2.3 because it belongs to another component.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 2. Background and Related Work 42

pkg Service

InstitutionalEnrollmentService

+ isLikelyGraduating(enrollment: InstitutionalEnrollment): boolean
+ checkForEnrollment(enrollment: InstitutionalEnrollment, student: Student)

+ calcGradePointAverage(enrollment: InstitutionalEnrollment): float
+ completeClass(student: Student, course: Course): void
+ createSpareEnrollment(student: Student, course: Course): void

AbstractService

StudentService

CourseService

Query

Management

Concerns

Low Maintainability and Understandability

Violation of Single Responsibility Principle

Implementation of Unrelated Concerns High Coupling and Low Cohesion

High Cyclomatic Complexity

Code Smells (Intensive Coupling, Dispersed Coupling, Long Method and Feature Envy)

Symptoms

Punishment

AcademicEnrollmentService

PunishementService

Figure 2.3: Service Component in the UniM System

class. Hence, the class has Concern Overload design problem indeed. Thus,
the code smells appear in the class due to the overload of concerns, which, in
its turn, can be used to identify the design problem. Unfortunately, Institu-
tionalEnrollmentService is not the only class within the Service component that
implements more than one responsibility; PunishmentService and AcademicEn-
rollmentService are some of these classes. Therefore, Service component mani-
fests Component Overload as well.

This example in Figure 2.3 illustrates how code smells can be indicators of
design problems. Indeed, the example also shows the association between code
smells and design problems. Similar to design problems, code smells appear in
source code due to inappropriate decisions, which can lead to a design problem.
Even though some authors tend to classify code smells and design problems as
the same (28, 73, 27), they have subtle di�erences. Code smells tend to a�ect
a reduced scope, for instance, the Long Method that a�ects only the scope
of calGradePointAverage method. On the other hand, some design problems
may a�ect multiple code elements, such as Scattered Concern. Furthermore,
design problems tend to occur in relevant elements for the system, sometimes
a�ecting multiple elements associated with the design problem, for instance,
the Service component. Additionally, code smells do not impact non-functional
requirements with the same intensity as design problems. For example, a
method that is long regarding LOC (Long Method smell) has a less impact
on understandability then a component overloaded of concerns (Component
Overload). Due to these subtle di�erences, code smells are usually faced as
symptoms of the presence of a design problem. Hence, it is no surprise that
they have been the center of di�erent techniques to identify design problems
(41, 38, 39, 28, 47, 46).

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 2. Background and Related Work 43

2.4
Related Work

This thesis encompasses the search for knowledge regarding the process
of identifying design problems directly in source code. In fact, other studies
have contributed to gathering this knowledge. In this section, we discuss
some of these studies and how they have contributed to shed some light
on the identification of design problems. Section 2.4.1 presents some studies
towards the categorization of design problems. In this subsection, we discuss
some particularity of each catalog. Additionally, we discuss the strengths and
weaknesses of the catalog based on our point of view of what constitutes
a design problem. Section 2.4.2 presents studies that explore the relation
between code smells and design problems. In this subsection, we discuss how
these studies contributed to show how code smells are associated with design
problems, and how they can be used as indicators of design problems. Finally,
Section 2.4.3 presents studies that proposed techniques to identify design
problems. In this subsection, we discuss how these studies extract information
from source code that can indicate design problems.

2.4.1
Catalogs of Design Problems

Some authors have proposed classification schemes to classify common
design problems into a catalog. Each scheme usually represents the author’s
point of view of what constitutes a design problem. We discuss these catalogs
here, presenting their main particularities, classification scheme and also
intersections with the set of design problems that we consider in this thesis
(Section 2.2).

Garcia et al. (8) proposed a set with four design problems: Connector
Envy, Scattered Parasitic Functionality, Ambiguous Interfaces, and Extraneous
Adjacent Connector. These design problems, which they call architectural bad
smells (7), are the results of design decisions that negatively impact system
lifecycle properties, such as understandability, testability, extensibility, and
reusability. The four design problems in their catalog emerged from the reverse-
engineering and re-engineering of two large industrial systems as well as case
studies that the authors found in the literature. In this catalog, the authors
specified the four types of design problems regarding to standard architectural
building blocks (9, 79): components, connectors, interfaces, and configurations
(relations between components and connectors). A disadvantage of such a
specification is that it does not comprise some types of design problems, such as
those related to an inappropriately designing of abstractions (e.g., Incomplete

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 2. Background and Related Work 44

Abstraction). Furthermore, not all software systems can be easily represented
according to these architectural building blocks, which hinders the search for
these four types of design problems in these systems. Therefore, the set of
design problems we consider in this thesis only includes design problems from
Joshua et al.’s catalog that are independent of this block-based specification.
They are Ambiguous Interface and Scattered Parasitic Functionality, which is
similar to Scattered Concern.

Another catalog of design problems is the one proposed by Ganesha,
Sharma and Suryanarayana (80). In this catalog, the authors used the violation
of one of four fundamental object-oriented design principles (principles of
abstraction, encapsulation, modularity, and hierarchy) to create a classification
scheme. As a consequence of using the violation of object-oriented principles,
this catalog includes code smells and design problems, which authors call them
both of design smells. Posteriorly, Suryanarayana, Samarthyam and Sharma
(73) extended the catalog to a total of 31 design smells. A disadvantage of
this catalog is to treat design problems and code smells as part of the same
group. In addition to overly simplifying the definition of code smells and design
problems, considering them to be part of the same catalog compromises the
notion of code smells being a type of design problem symptom. In other words,
an issue in treating them all together is not to be able to use code smells as an
indicator of design problems. On the other hand, an advantage of this catalog is
the authors used the violation of common object-oriented principles to classify
their design smells, which leads to a uniform categorization. Additionally, the
names used for each type of design smell provides an intuitive understanding
of the smell. Furthermore, the authors exemplified the negative impact of some
of these smells. On the whole, we only considered some design smells that meet
our definition of design problems.

Trifu et al. also proposed a catalog of design problems (27, 58). Their
catalog comprises design problems that are the results of design decisions that
contradict commonly accepted design practices. Their catalog contains three
types of design problems, which was expanded as part of Trifu’s PhD thesis
to a total of ten design problems (81). Even though Trifu et al. used di�erent
terminology to name the design problems, their catalog includes some common
design problems found in the literature, such as Concern Overload. On the
other hand, other design problems in their catalog correspond to code smells.
Such intersection happens because Trifu et al. used common design principles
to classify the design problems. For instance, a violation of a hierarchy relation
in which a subclass uses only some of the methods inherited from its parent will
be catalogd as a design problem, even though there is a code smell with this

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 2. Background and Related Work 45

characteristic: Refused Bequest (21). Such intersection does not represent an
issue; as previously mentioned, some authors consider code smells and design
problems as the same structural problem. However, in the case of Trifu et al.’s
catalog, this intersection can be problematic because they use code smells as
indicators of design problems. Therefore, this intersection can be faced as an
inconsistency in their catalog. Despite this inconsistency, a strength of their
catalog is to treat each design problem as a disease. Thus, they can characterize
each design problem according to the symptoms they manifest in the system
as well as a possible treatment for it.

2.4.2
Relation between Code Smells and Design Problems

As previously discussed, code smells have been in the center of several
techniques to support the identification of design problems. The reason is due
to their relation to design problems. In this sense, some studies have shown
how code smells can be an indicator of software maintenance problems such as
design problems. For instance, Abbes et al. (49) brought up the notion of code
smells that interact to each other in the source code. They conducted three
experiments to verify the impact of two code smells (God Class and Spaghetti

Code) on software understandability. They also investigated the e�ects of such
interaction. They concluded that classes a�ected by God Class and Spaghetti

Code in isolation did not increase the maintenance e�ort; however, when these
two smells appeared together, they led to a statistically significant increase in
maintenance e�ort.

Yamashita and Moonen (50) also investigated the interaction between
code smells. Nevertheless, they conducted an empirical study with a set of 12
code smells to observe how their interactions a�ect the software maintenance.
In the study, the authors hired six software engineers to maintain four
medium-sized Java systems during a month. Their results indicate that smells
that interact with each other negatively a�ect the software maintenance.
Posteriorly, Yamashita et al. (54) replicated the aforementioned study. In their
new study, they investigated collocated smells – code smells that interact in the
same source code file –, and coupled smells – code smells that interact across
di�erent source code files. In addition to corroborating their findings from the
previous study, they observed that limiting the analysis to collocated smells
would reduce developers capability to reveal design problems since coupled
smells may reveal critical design problems that were not revealed by collocated
smells.

These studies mentioned above indicated that not all code smells are

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 2. Background and Related Work 46

related to design problems. In this context, Macia et al. (52) investigated the
relation between code smells and design problems. They analyzed the relevance
of code smells to identify design problems in six software systems. Their results
showed that the majority of the design problems in the source code happened
in code elements with code smells. In fact, approximately 65% of all detected
code smells were related to 78% of all design problems used in the study. In
this vein, Macia et al. (38) investigated if code smells identified by automatic
detection strategies were related to design problems. Unfortunately, their result
revealed that many of the code smells detected by the employed strategies were
not related to design problems. Even worse, over 50% of the smells that have
not been detected by the strategies were related to design problems. Such
results suggest that state-of-the-art detection strategies are not able to locate
relevant code smells to support the identification of design problems. In order
to tackle such deficiency, Macia et al. (53) proposed a tool, named SCOOP, that
detects code smells that are relevant to the identification of design problems.
The evaluation showed that SCOOP was able to detect code smells related to
293 out of 368 design problems found in three software systems. In this study,
Macia et al. also proposed the detection of recurring code smells patterns. Each
pattern comprises a group of code smells structurally related in source code
that are likely to indicate a design problem.

Following Macia’s steps, Oizumi et al. (82) used the code smells patterns
to improve the notion of group of interrelated code smells, leading them to
define code smell agglomerations. An agglomeration consists of a group of
code smells that are related to each other for some reason, for instance,
through method calls or inheritance. Oizumi et al. analyzed seven systems
of di�erent sizes and found that 70% of all design problems were related to
agglomerations in most of the analyzed systems. Given such result, Oizumi
et al. (82) investigated to what extent agglomerations and design problems
are associated with each other. They analyzed a total of 5418 code smells
and 2229 agglomerations within seven systems. Their results indicated that
most of the code smells associated with a design problem were part of one or
more agglomerations. In fact, for each agglomeration associated with a design
problem, an average of 2 to 4 code elements with smells were a�ected by a
design problem. Finally, their results hinted that some types of agglomerations
could be better indicators of design problems than others. Regarding such
matter, Oizumi et al. (47) investigated which types of agglomerations are likely
to be associated to a design problem. They also investigated if agglomerations
were more likely to be related to design problems than single smells, i.e.,
smells that are not part of any agglomeration. After analyzing more than 2200

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 2. Background and Related Work 47

agglomerations of code smells from seven software systems, they concluded
that certain types of agglomerations, such as those related to the separation
of concerns, are consistent indicators of design problems. They also found that
the chance of each code smell within an agglomeration being related to a design
problem is more than five times higher than every single smell.

These studies showed that code smells are related to design problems.
Therefore, not only they brought knowledge about the identification of design
problems, but they also justified why code smells have been used in several
techniques. Unfortunately, these studies fell short of evaluating if code smells
are key symptoms for developers in practice and if developers can use them
to identify design problems. Indeed, these techniques can narrow down the
number of code smells for developers to analyze, but developers may not be
able to use these smells to identify a design problem, which can be even worse
if code smells are not key symptoms in practice. Since these studies did not
conduct such an evaluation with developers in practice, we do not know to
what extent these techniques support developers during the identification of
design problems. Consequently, we sill do not know what is the role that code
smells play in supporting developers in identifying design problems.

2.4.3
Techniques to Identify Design Problems

Studies from previous subsection showed the relation of code smells and
design problems. However, code smells are not the only indicator of design
problem that can be extracted from the source code. Some studies have
focused on other information that can be used to indicate design problems. For
instance, Xiao, Cai and Kazman (42) have used the Design Rule Theory (83)
to identify design problems. Design Rule Theory states that the system should
be decoupled into mutually independent modules. Xiao, Cai and Kazman
followed this theory to visualize the system as a set of independent modules
and design rules, which are design decisions that decouple the system into
independent modules. They called this visualization of DRSpace; based on it,
they represented the systems as a square matrix, which shows all the files
in source code and their connection. Using DRSpace, they observed classes
that changed together, despite not being related to each other. They found
that these classes contained design problems and were the cause of bugs. This
result was further confirmed by Kazman et al. (43), who were able to identify
these classes.

Based on Xiao, Cai and Kazman’s study, Mo et al. (44) proposed and
evaluated a suite of hotspot patterns, which are recurring design problems

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 2. Background and Related Work 48

that lead to high maintenance cost. These patterns were defined using the
DRSpace notion, and they were detected by the combination of structural,
history and design information. In their study, they showed that these patterns
might be the cause of bug-proneness and change-proneness. Furthermore, they
consulted developers, who mentioned that these patterns comprised design
problems. Posteriorly, Xiao et al. expanded the DRSpace notion to include
a conditional probability of a file change (45). Thus, they built a regression
model to approximate the probabilities of change propagation among files.
Based on this model, they could quantify the technical debt due to design
problems. Unfortunately, a downside of these studies regards the information
they use to identify design problems. These studies rely on history and design
information, which may not be available for many software systems, specially
if these system are in their first versions.

Mo, Gueheneuc and Leduc proposed a technique that uses a domain-
specific language to describe some code smells (39). Then, they used the de-
scription to generate detection algorithms automatically from the specifica-
tion of each code smell. Their technique was developed to identify code smells
mainly; posteriorly, Mo et al. extended it to detect design problems as well
(40, 59). Finally, Mo et al. improved their previous work by proposing DECOR,
a method that describes steps necessary for the specification and detection of
code smells and design problems (28). A downside of Mo et al. technique is the
dependency to the domain-specific language. A developer to use DECOR has
to specify the types of design problems that he needs to identify. However, a
developer may not know how to specify some types of design problems. In fact,
some types of design problems may not be specified, especially considering that
the characteristics of each type of design problem may change from a software
system to another one. Thus, a developer would need to keep changing the
specification for each new setting.

2.5
Summary

This chapter presented the main concepts addressed in this thesis. In
Section 2.1, we presented aspects of software design that are related to design
problems. In particular, we presented the definition of design problem adopted
throughout this thesis. According to our definition, a design problem is the
result of one or more inappropriate design decisions that have a negative
impact on non-functional requirements. In Section 2.2, we used this definition
to categorize the types of design problems. We introduced a classification
scheme based on the combination of inappropriate design decisions and a�ected

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 2. Background and Related Work 49

elements. We used this scheme to classify our set of design problems according
to three categories.

In Section 2.3, we discussed the relation between code smells and design
problems. In this section, we presented an example with two-fold purposes:
(i) to illustrate how code smells can be used to indicate design problems, and
(ii) to show the di�erence between code smells and design problems. We also
discussed in this section why code smells have been used in several techniques
as an indicator of design problems.

Finally, we presented some related studies in Section 2.4. We divided
this section into three subsections. The goal was to explore how studies
in each subsection helped to bring knowledge to the process of identifying
design problems. First, we presented some studies that categorized some design
problems found in the literature. Second, we presented studies that explored
the relation between code smells and design problems; thus, allowing us to
discuss why code smells have been the center of several techniques. Finally,
we presented techniques that used other types of symptoms to identify design
problems.

Based on the discussion presented in this chapter, we claim that we do not
know if code smells su�ce in helping developers to identify design problems.
Thus, the next chapter provides the first investigation to better understand the
role of code smells in helping developers to identify design problems. For this
purpose, we conducted a retrospective study aimed to find if code smells are
symptoms to developers’ identification of design problems that are somehow
relevant for them.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

3
Investigating Code Smells as Key Symptoms in Practice

In the previous chapter, we discussed di�erent types of design problems.
We also discussed how a developer can use one or multiple code smells to
identify a design problem. Some studies have explored the relation between
code smells and design problems (53, 47, 54). The relation was established
due to the co-occurrence of code smells and design problems in the same
code elements, which made code smells to be considered consistent indicators
of design problems (41, 38, 47, 46). Consequently, code smells became the
center of di�erent techniques to support the identification of design problems
(41, 38, 39, 28, 47, 46).

These studies tend to take code smells for granted when they assume that
smells are consistent indicators of design problems. Indeed, code smells can be
consistent indicators of design problems, but in the end, the consistency has
little or no importance if smells are not key symptoms for assisting developers
to identify design problems along a software project. A key symptom is one
that helps developers to identify design problems that are somehow relevant
in the software system. If code smells are not key symptoms for developers,
then techniques that rely on smells may fall short of supporting developers in
identifying design problems. Unfortunately, we do not know if code smells are
key symptoms since these studies did not conduct this investigation in practice.
As a matter of fact, our knowledge about the role of code smells in the design
problem identification is limited. As a first step to understand their role in
the design problem identification, we need to investigate if they are indeed key
symptoms for developers identifying design problems in their projects.

To conduct this investigation, we can observe if code smells indicate
design problems that are relevant for developers in their projects. A relevant
design problem can be one that developers ended up identifying and removing
from the source code. We can consider these design problems to be relevant
because developers decided to focus their e�ort on removing them from the
source code, for instance, by applying refactoring operations. Refactoring is
a program operation used for improving the code structure of a system (21).
Often, it can be applied to repair a deteriorated code (25), which can be
deteriorated due to the presence of design problems. Since the presence of

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 3. Investigating Code Smells as Key Symptoms in Practice 51

design problems is one of the reasons why elements can reach a deteriorated
state (15, 16), we can investigate elements that developers focused on during
refactoring. Thus, if these elements contain any sign of design problems and
code smells simultaneously, then we can assume that code smells could have
been used by developers to spot relevant design problems in these elements.

To investigate if code smells are key symptoms for developers to identify
design problems, we conducted a retrospective study to analyze the source
code of refactored elements. Then, we analyzed if refactored elements, i.e.
elements that were refactored, contained code smells. In fact, when we conduct
a study in which we observe how developers refactored their code, we are
analyzing a snapshot of developers’ work. Thus, to a certain degree, we
are investigating what happened in practice. Our results indicate that most
refactoring operations (79.48%) are applied to elements that contain at least
one code smell. In fact, almost half of the refactoring operations (47.38%) were
applied to elements that contained multiple code smells. Since we noticed
signs that these elements had a design problem, we concluded that in most
cases, code smells are key symptoms for developers to identify design problems.
Unfortunately, we found some scenarios in which code smells cannot indicate
design problems. Indeed, when we analyze our results considering results found
in the literature, we conclude that in most cases code smells likely represent
key symptoms to identify relevant design problems; however, smells still may
not su�ce in helping developers to identify design problems in practice.

We describe this study in details next. In Section 3.1, we present
basic concepts and terminology used throughout this chapter. In Section 3.2,
we present our research question. In Section 3.3, we present the procedure
used to conduct our investigation. In Section 3.4, we discuss the results of
our investigation. In Sections 3.5 and 3.6, we present some related studies
and threats to validity, respectively. Finally, we summarize this chapter in
Section 3.7.

3.1
Background and Terminology

Software systems invariably undergo changes over the evolution that can
compromise the structural quality of the systems. If these changes are carried
out recklessly, software systems may reach a deteriorated state that requires
either significant maintenance e�ort or the complete redesign (14, 15, 16, 17).
Since these changes are driven by design decisions, the introduction of design
problems is a reason why software systems can reach such deteriorate state
(15, 16). When the software systems reach such a state, developers usually

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 3. Investigating Code Smells as Key Symptoms in Practice 52

apply refactoring operations to repair the code.
Refactoring is defined as a program transformation intended at preserv-

ing the observable behavior of the software system while improving its internal
structure (84, 21). Often, refactoring operations are applied to repair deterio-
rated code (25), which may happen by removing design problems (22, 23, 24).
Refactoring is a complex code transformation, which includes a type and a
goal, both associated with what the developer intends to do. We describe
these particularities and others as follow.

Refactoring Type. Refactoring type indicates if the refactoring operation is
applied to attributes, methods, classes, or interfaces. These types encompass
changes that can involve only a single class as the Extract Local Variable
refactoring or multiple classes as the Extract Class refactoring. Other examples
of refactoring types involve (25): (i) restructuring or moving class members,
such as Extract Methods, Move Method and Pull Up Method, and (ii) extracting
new elements, such as Extract Superclass and Extract Interface. For this
study, we have considered the 13 types of refactoring operations presented
in Table 3.1. These types, defined in Fowler’s catalog (21), comprise the most
popular types of refactoring operations (25). They are also applied to remove
the code smells that can indicate a design problem (21).

Refactored Elements. All elements directly a�ected by refactoring opera-
tions are considered as refactored elements. For each refactoring type, a dif-
ferent refactored element set is directly a�ected by the refactoring operation.
Let us consider the Move Method refactoring, in which a method m is moved
from class A to B. In this case, the refactored elements are: m, A and B.
Although other elements can be indirectly a�ected by the Move Method on
moving m from A to B, we consider only these three elements as refactored
ones. Table 3.2 shows the list of elements that can be directly a�ected by each
refactoring type. We should know what are the elements a�ected by the refac-
toring operations since these are the elements that we should search for design
problems.

Refactoring Tactics. The goals of refactoring widely vary in practice (85, 86,
87). The goals include combating design degradation, reducing maintenance
e�ort, and facilitating feature additions or bug fixes (85, 86, 87). Given these
goals, developers may follow two main tactics when they refactor the source
code (25): root-canal refactoring and floss refactoring. Developers apply root-
canal refactoring to repair a deteriorated code, and it involves a process of

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 3. Investigating Code Smells as Key Symptoms in Practice 53

Table 3.1: List of Refactoring Types
Type Description

Extract Interface
Several clients use the same subset of a class’s interface, or two
classes have part of their interfaces in common. Then, we extract
the subset into an interface.

Extract Method
A code fragment that can be grouped together. Then, we turn the
fragment into a method whose name explains the purpose of the
method.

Extract Superclass Two classes with similar features. Then we create a superclass
and move the common features to the superclass.

Inline Method

A method is, or will be, using or used by more features of another
class than the class on which it is defined. Then, we create a new
method with a similar body in the class it uses most. Either turn
the old method into a simple delegation, or remove it altogether.

Move Class
A class that is in a package that contains other classes that it is not
related to in function. Then, we move the class to a more relevant
package. Or create a new package if required for future use.

Move Field
A field is, or will be, used by another class more than the class on
which it is defined. Then, we create a new field in the target class,
and change all its users.

Move Method

A method is, or will be, using or used by more features of another
class than the class on which it is defined. Then, we create a new
method with a similar body in the class it uses most. Either turn
the old method into a simple delegation, or remove it altogether.

Pull Up Field Two subclasses have the same field. Then, we move the field to
the superclass.

Pull Up Method Methods with identical results on subclasses. Then, we move them
to the superclass.

Push Down Field A field is used only by some subclasses. Then, we move the field
to those subclasses.

Push Down Method Behavior on a superclass is relevant only for some of its
subclasses. Then, we move it to those subclasses.

Rename Class The name of a class does not reveal its purpose. Then, we change
the name of the class.

Rename Method The name of a method does not reveal its purpose. Then, we
change the name of the method.

exclusively applying refactoring operations. As the goal of this tactic is to repair
deteriorated code, there is a high chance of this tactic to be applied to repair
the code by removing design problems. For instance, to get rid of Misplaced
Concern, a developer can apply a Move Method and Move Field to move
the misplaced concern to the class to which it actually belongs. Conversely,
developers apply floss refactoring with the intention of achieving another
objective that is di�erent from structural improvements, such as adding a
new feature or fixing a bug. For example, to fix a bug related to hierarchy,
a developer may need to apply the Push Down Field before fixing the bug.
In order to add a new feature, developers may need to refactor the system
to accommodate the new feature. Even in the floss refactoring, refactoring is
applied in conjunction with other changes to remove a deteriorated state as a
first step to achieve the objective.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 3. Investigating Code Smells as Key Symptoms in Practice 54

Table 3.2: Refactored Elements
Type Refactored Elements

Extract Interface Classes implementing the new interface.

Extract Method The method created; the method from where the new method
was extracted; and class containing both methods.

Extract Superclass Classes extending the new class; and new class created.

Inline Method The method which received the new code; and class containing
the method.

Move Class The class.

Move Field The two classes a�ected by the change: the class which the
field used to reside and the class which received the field.

Move Method The two classes a�ected by the change: the class which the
method used to reside and the class which received the method.

Pull Up Field The two classes a�ected by the change: the class which the
field used to reside and the class which received the field.

Pull Up Method The two classes a�ected by the change: the class which the
method used to reside and the class which received the method.

Push Down Field The two classes a�ected by the change: the class which the
field used to reside and the class which received the field.

Push Down Method The two classes a�ected by the change: the class which the
method used to reside and the class which received the method.

Rename Class The class.
Rename Method The renamed method and the class that contains it.

3.2
Study Design

This section presents the design of our study. Section 3.2.1 presents
the research question that drives the study. Section 3.2.2 presents how we
categorize the refactored elements according to the probability of the element
to contain a design problem.

3.2.1
Research Question

Recent studies have been using code smells as an indicator of the presence
of a design problem (Section 2.4.2). In fact, code smells became the center of
several techniques to support the design problem identification (Section 2.3).
The reason is due to the co-occurrence of code smells and design problems,
which led recent studies to explore code smells as the primary design problem
indicator (53, 47, 54). Unfortunately, these studies have relied on code smells
without investigating in practice if code smells are key symptoms for developers
to identify design problems.

There is a subtle di�erence between being a consistent indicator of a
design problem and being key symptoms for developers to identify relevant
design problems in practice. As showed by some studies (53, 47, 54), code
smells can be indeed consistent indicators of design problems due to the co-

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 3. Investigating Code Smells as Key Symptoms in Practice 55

occurrence. However, when we analyze from the developers’ perspective, code
smells may not indicate relevant design problems in practice, i.e., they are not
key symptoms used in actual project settings. If so, then techniques that rely
on smells are likely to fall short of expectations.

Unfortunately, whether code smells are key symptoms for developers
to identify design problems is knowledge that we do not have. This lack of
knowledge is worrisome, since it compromises how developers identify design
problems when relying on code smells. Indeed, code smells have been proposed
to support developers during the design problem identification; however, we
do not know in practice to what extent code smells support developers in this
task. Therefore, to better understand the role of code smells in the design
problem identification, we need to investigate if they are key symptoms for
developers to identify relevant design problems.

One way is to conduct a retrospective investigation about the practice.
In this investigation, we need to find the elements that developers identified
design problems, and we verify if these elements contain code smells that could
have been used to indicate the design problem found by developers. If code
smells could indicate these design problems, then we can assume that they are
key symptoms for developers to identify design problems. In this investigation,
the first step is to identify the code elements in which developers found design
problems. We can rely on refactoring to identify them.

Refactoring is a common activity that developers use to repair a deteri-
orated code (21, 25), while the presence of design problems is a reason for the
code to reach a deteriorated state. Thus, there is a close relation between refac-
toring and design problems, which makes it reasonable to rely on refactoring
in our investigation. Furthermore, if we can guarantee that, to a certain ex-
tent, the refactored elements had design problems (Section 3.2.2), then we can
state that these design problems are relevant for developers. They are relevant
because developers focused their e�ort to identify and remove them from the
source code through refactoring. Consequently, if we find code smells in these
refactored elements, we can conclude that code smells are indeed key design
problem symptoms. In the context of this investigation, we intend to answer
the following research question:

RQ1. Are code smells key symptoms to indicate relevant design
problems for developers?

To answer this research question, we conducted a retrospective investiga-
tion with 50 software projects. We went through the commits of each project

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 3. Investigating Code Smells as Key Symptoms in Practice 56

to identify the refactored elements in the history of each system. After that,
we verified if these refactored elements had code smells that could have been
used to spot any design problem in the element. To make this verification,
we had to assure that these refactored elements were likely to contain design
problems. We explain as follows how we verified if these refactored elements
could have had any sign of the presence of design problems.

3.2.2
Categorization of Refactored Elements

We have to investigate if code smells are key symptoms to indicate a rel-
evant design problem. For this investigation, we rely on refactoring to identify
elements that were likely to contain design problems. Therefore, to answer our
research question, we are assuming that the refactored elements could have had
design problems, which motivated the refactoring. Such assumption is plausi-
ble since refactoring and design problem identification are directly related to
each other: the former activity succeeds the latter. As we can see in the steps
represented in Figure 3.1, some design problems a�ect code elements (Step 1)
in such a way that they can lead the elements to reach a deteriorated state.
Once design problems are identified, developers can apply refactoring opera-
tions in code elements a�ected by design problems (Step 2) to repair them by
removing the design problems. Since developers focused their e�ort on iden-
tifying and removing design problems through refactoring, then these design
problems are relevant for developers. Then, we can verify if the refactored el-
ements contain code smells (Step 3). Based on the relation between design
problem and refactoring, we can answer our research question (Step 4).

Even though there is a relation between refactoring and design problems,
we cannot presume that all the refactoring operations were applied to elements
with a design problem. As discussed in Section 3.1, developers can refactor the
elements to achieve another objective that is di�erent from structural improve-
ments (floss refactoring). Therefore, we need to assure that these refactored
elements were likely to contain design problems. For such assurance, we cat-
egorized the refactored elements according to their probability of containing
design problems. As we want to investigate if code smells are key symptoms to
identify relevant design problems, our first categorization regards the presence
or absence of code smells:

– Smell-free category: This category encompasses the refactored
elements that are NOT a�ected by code smells.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 3. Investigating Code Smells as Key Symptoms in Practice 57

Refactoring

Design Problems

Code Elements

1. affect

Deteriorated Code

1. lead to2. applied

2. repair

Code Smells

3. do they contain?

4. are key symptoms of?

Figure 3.1: Relation between Design Problems and Refactoring

– Smelly category: This category comprises the refactored elements
that are a�ected by at least one code smell.

According to these categories, we can have two possible results. First,
most refactoring operations belong to the smell-free category. If we find this
result, we can already conclude that code smells are not key symptoms to
indicate relevant design problems. This conclusion is possible because we are
assuming that relevant design problems are those that developers focused
their e�ort to remove from the source code through refactoring. Therefore,
if these relevant design problems a�ect refactored elements that do not have
code smells, then code smells are not key symptoms for developers to identify
relevant design problems. The second possible result is that most refactoring
operations belong to the smelly category. In this case, there is a chance that
code smells are key symptoms to indicate design problems in these elements.
Nevertheless, before reaching any conclusion, we have to assure that the
refactored elements had some sign of containing design problems.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 3. Investigating Code Smells as Key Symptoms in Practice 58

We can assure that the elements had design problems based on three anal-
yses: the number of code smells, the refactoring tactic, and the smell patterns.
In the first one, we use the number of code smells as a sign of a design prob-
lem. The more smells a refactored element has, the greater the probability
that it contains a design problem. Indeed, some studies have shown that el-
ements with various code smells are likely to be related to a design problem
(49, 52, 47, 46, 50). In fact, Oizumi et al. (47, 82) found that most of the code
smells associated with a design problem were part of a group of interrelated
code smells. They gave the name agglomeration for this group of interrelated
smells (82). In this vein, we divided the smelly category into two subcategories
according to the number of smells a�ecting the element: single smell category
and smell agglomerate category. Inspired by Oizumi et al.’s studies, we used the
same term, agglomeration, to name the category that indicates refactored ele-
ments that contain multiple code smells, i.e., the smell agglomerate category.
Both categories as described below.

– Single smell category: This category comprises the refactored
elements a�ected by only ONE code smell.

– Smell agglomerate category: This category includes the refac-
tored elements a�ected by more than one code smell.

In the second analysis to assure the presence of a design problem in the
refactored element, we only investigate root-canal refactoring (25). Since the
root-canal refactoring is explicitly used only to repair a deteriorated code, there
is a high chance that developers target design problems when they apply this
tactic. Nevertheless, that does not mean that developers do not target design
problems when they apply floss refactoring. For instance, design problems
have a negative impact on non-functional requirements such as changeability.
Hence, the presence of a design problem can make it harder for a developer
to make changes in the system, such as the addition of a new feature. Thus,
he (or she) has to refactor the system to accommodate the changes. To better
accommodate them, he (or she) has to target elements that may contain a
design problem, which was the reason why the changes were hard in the first
place. In other words, the code may contain a design problem that is hampering
the changeability of the system. In this case, the developer has to target an
element that may contain a design problem during floss refactoring.

In the third analysis, we rely on the smell patterns to assure that the
refactored elements contain any sign of design problems. A smell pattern

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 3. Investigating Code Smells as Key Symptoms in Practice 59

Table 3.3: Smell Patters Used to Indicate Design Problems
Design Problem Code Smells

Ambiguous Interface Long Method and Feature Envy, and Dispersed Coupling in
elements that are related to the interface

Cyclic Dependency Intensive Coupling and Shotgun Surgery

Component Overload
Shotgun Surgery, and Divergent Change, and Feature
Envy, and God Class, and Intensive Coupling,
and Long Method

Concern Overload
Divergent Change, and Feature Envy, and God Class,
and Intensive Coupling, and Long Method, and
Shotgun Surgery

Fat Interface
Shotgun Surgery in the interface or Divergent Change,
and Dispersed Coupling, and Feature Envy
in elements related to the interface

Incomplete Abstraction Lazy Class

Misplaced Concern God Class or Dispersed Coupling, and Feature Envy,
and Long Method

Scattered Concern
Dispersed Coupling, and Divergent Change, and Feature
Envy, and God Class, and Intensive Coupling, and
Shotgun Surgery

Unused Abstraction Speculative Generality
Unwanted Dependency Feature Envy, Long Method, Shotgun Surgery

represents one or more types of code smells that are likely to indicate a design
problem if they appear in code elements. In Section 2.3, we discussed how
some smell patterns are most likely to be related to some types of design
problems. Based on some studies that have investigated the relation between
code smells and design problems (74, 16, 75, 53, 38, 28, 47, 51, 76, 27, 55, 29),
we characterized some patterns of code smells with some types of design
problems. Hence, if these patterns appear in the refactored elements, there
is a high chance that these elements to contain design problems. Table 3.31

shows the relation between each design problem (Column 1) that is most likely
to be spotted by some smell patterns (Column 2).

Based on these smell patterns, we can have a sign that the refactored
element was likely to contain a design problem. For instance, let us suppose
that a developer applied the Move Method refactoring to move a method from
one class to another. We can only assume that the refactored method was likely
to have a design problem if the moved method had instances of Dispersed

Coupling, Feature Envy, and Long Method. In this case, we assume that the
developer applied the Move Method in an element with Misplaced Concern
according to the smell pattern in the element.

We have to use the smell patterns because only relying on the number
of code smells is not enough. There are some cases that the number of code
smells can be misleading. For example, let us consider two elements. The first

1This table is a copy of Table 2.2 from Section 2.3.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 3. Investigating Code Smells as Key Symptoms in Practice 60

one contains one instance of Lazy Class while the second one contains three
instances of code smells: a Message Chain, a Long Parameter List, and a
Class Data Should Be Private. According to the number of code smells, the
second element is more likely to contain a design problem than the first one.
Nevertheless, when we consider the type of each smell, the first element is most
likely to contain a design problem, in this case, Incomplete Abstraction. Thus,
in this example, the pattern Lazy Class was more appropriate to indicate the
presence of a design problem than the number of code smells. The inverse case
can also happen, which justifies the first analysis of the number of smells.

These analyses provide us with an approach to investigate if code smells
are key symptoms for developers to identify relevant design problems. However,
we highlight that this approach does not cover all scenarios. For instance, a
design problem can a�ect elements that were not refactored. Since we look
only at refactored elements, we can miss these elements. In this scenario, we
cannot make any assumption that code smells are key symptoms to spot these
design problems. We discuss this scenario and others when we present the
results (Section 3.4) and threats to validity (Section 3.6).

3.3
Data Collection and Analysis

This section presents the data collection procedure to answer our research
question. We structure the data collection procedure into four phases, which
are described next.

3.3.1
Phase 1: Selection of Software Projects

The first phase consists of choosing the set of software projects to
compose the sample of our study. For this purpose, we selected open source
projects to be analyzed. We focused our analysis on open source projects so
that our study could be replicated and extended. As GitHub is the world’s
largest open source community, we established GitHub to be the source of
software projects selected for the study. We chose GitHub projects that match
the following criteria:

– Projects with di�erent popularity levels: projects that have been eval-
uated with di�erent levels of popularity. As GitHub star is a metric to
keep track of how popular an open source project is among GitHub users.
We used the number of stars in each project to measure its popularity
level;

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 3. Investigating Code Smells as Key Symptoms in Practice 61

– An active issue tracking system: users actively use the GitHub issue man-
agement system to maintain bug reports and improvement suggestions;

– Java projects: projects with at least 90% of the code repository e�ectively
written in Java.

These criteria allowed us to select 50 software projects that are active and
important to the software community. The selected projects are written in Java.
We focused on Java projects because (i) Java is a very popular programming
language2, and Java projects were also targeted by related studies (85, 88).
Furthermore, we also selected projects in Java due to the availability of tools
to identify refactoring operations (89). As a result of applying these criteria,
we selected Java projects with a diversity of structure, size and popularity.
Table 3.4 presents these projects with their name, lines of code, number of
classes, commits and stars for each selected project. The projects are organized
according to their domain.

3.3.2
Phase 2: Refactoring Detection

The second phase consists of detecting refactoring operations in all
subsequent pairs of versions vi and vi+1 for all projects selected in Phase 1.
Let S = {s1, · · · , sn} be a set of software projects. Each software s has a
set of versions V (s) = {v1, · · · , vm}. Each version vi has a set of elements
E(vi) = {e1, · · · } representing all methods, classes and fields belonging to it.
Transformations between each subsequent pair of versions must be analyzed
to detect refactoring operations. In this way, we assume R is a refactoring
detection function where R(vi, vi+1) = {r1(rt1; e1), · · · , rk(rtk; ek)} gives us a
set of tuples composed by two elements: the refactoring type (rt) and the set
of refactored elements represented by e. So, function R returns the set of all
refactoring operations detected in a pair of software versions. Thus, a tool that
implements the R function can be used to detect refactoring operations in a
software project.

We chose Refactoring Miner (89, 90) (version 0.2.0)3 as the tool to
detect refactoring operations. This tool implements a lightweight version of
UMLDi� algorithm (91) for di�erencing object-oriented models. When the
tool is applied between two versions, it returns the elements that changed
from one version to the other. It also returns the refactoring type associated
to the change. The precision of 98% reported by the authors (90) led to a
very low rate of false positives, as confirmed in our validation phase. The only

2https://www.tiobe.com/tiobe-index/
3Available at https://github.com/tsantalis/RefactoringMiner

https://github.com/tsantalis/RefactoringMiner
DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 3. Investigating Code Smells as Key Symptoms in Practice 62

Table 3.4: Projects Used in the Study
Domain Project LOC Number of

Classes Commits Stars

JARA 188,003 69 109 0
Facebook Fresco 50,779 860 744 14,679
OkHttp 49,739 642 2,645 27,421
Google I/O Sched App 40,015 754 129 15,686
Mayhem and Hell 25,043 304 148 1
PhilJay MPAndroidChart 23,060 268 1,737 23,036
WhatsUp (MarvinBellmann) 10,453 40 108 1
Dagger 8,889 441 696 11,097
Android Bootstrap 4,180 123 230 4,298
LeakCanary 3,738 127 265 19,847

Android

Orhanobut Logger 887 11 68 9,423
Containing 4,022,774 136 818 1
Bublag Confetti 1,481,974 417 210 0
Google J2ObjC 385,012 4,866 2,823 5,172
ArgoUML 177,467 2,597 17,654 5
Apache Ant 137,314 1,784 13,331 205
Achilles 83,124 653 1,188 207
Passsafe 12,203 196 150 0

Application

Market-monitor 3,763 44 125 0
Apache Derby 1,760,766 3,741 8,135 140
Presto DB 350,976 4,146 8,056 7,740Database
Realm Java 50,521 1,018 5,916 9,682
Spring Framework 555,727 12,715 12,974 22,052
Ikasan 537,283 2,515 2,465 15
Apache Dubbo 104,267 1,690 1,836 19,934
Tap4j 34,026 123 146 16
Alfred MPI 5,545 54 145 2

Framework

JUnit4 2,113 1,251 309 6,935
Elasticsearch 578,561 8,845 23,597 32,200
PhiCode Philib 238,086 163 892 1
Spring Boot 178,752 5,178 8,529 26,294
JBoss Xerces 140,908 1,136 5,456 4
Facebook SDK for Android 42,801 836 601 4,534
Netflix Hystrix 42,399 1,569 1,847 14,172
JBoss Ballroom 20,695 215 635 0
Retrofit 12,723 554 1,349 26,557
Drugis Common 12,195 254 240 6
IRC Bot (c2nes/ircbot) 8,159 80 107 0
Whydah - UserAdminService 7,454 60 249 0
Pusher Java Client 7,029 74 352 174
Lyra 6,603 95 192 245
Dynamic Collections 5,955 215 180 6

Library

Elasticsearch Transport Thrift 4,450 48 113 80
Sen Word-Builder 736,148 65 120 0
TUBAME Migration Tool 378,855 552 315 9Pluggin
GitHub Pull Request Builder 8,094 66 589 0
Apache Tomcat 668,720 2,275 18,068 2,406
Media Magpie 62,938 470 336 1
Netflix SimianArmy 16,577 244 710 6,618Web Application

OpenConext-crunche 4,574 31 108 0

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 3. Investigating Code Smells as Key Symptoms in Practice 63

drawback of this tool is the number of refactoring types detected: 13 types
(Section 3.1). Fortunately, these 13 types were amongst the ones reported as
the most common refactoring types (25). Refactoring Miner gives us as output
a list of refactoring operations R(vi, vi+1) = {r1, · · · , rk}, where k is the total
number of refactoring operations identified. Each ri is a tuple containing the
refactoring type rti and the refactored element ei.

3.3.3
Phase 3: Code Smell Detection

In order to verify if code smells are key symptoms for developers to
identify relevant design problems, we need to detect if the refactored elements
contain code smells, which is the third phase of our data collection procedure.
Several strategies have been proposed for detecting code smells. For instance,
there are strategies based on metrics (92, 28), based on the source code
evolution information (93), based on machine learning methods (94, 48), and
based on optimization algorithms such as genetic algorithms (95).

For this study, we have decided to detect code smells with metric-based
strategies (92, 30). Thus, we can compare our results with related studies that
have used the same detection strategies (85, 88). These strategies are based
on a set of metrics and thresholds, in which the metric values are compared
against predefined thresholds and combined using logical operators. For this
purpose, we collected metric (values) for all source files in each selected project
from Phase 1. Next, we collected the code smells by applying a set of previously
defined detection rules (85, 30) used in related studies (85, 88). Unfortunately,
the detection rules were not implemented by any publicly available tool. Thus,
we developed a tool4 that implements all detection rules for the 17 code smells
used in our study (Table 2.1). The specific metrics, rules and thresholds for
the 17 code smells implemented in our tool are defined in (85) and (30),

3.3.4
Phase 4: Manual Validation

The last phase comprises the validation of the refactoring operations.
We used a tool in the second phase to detect refactoring operations (90). Even
though this tool has been reported to achieve a precision of 98%, we were not
sure if the tool would achieve the same precision in our set of selected software
systems. Since we use refactoring to investigate code smells, our results depend
on the refactoring operations detected in each system. Thus, the tool could
find false positives and false negatives that could compromise our analysis.

4The tool is available at https://github.com/opus-research/organic.

https://github.com/opus-research/organic
DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 3. Investigating Code Smells as Key Symptoms in Practice 64

Therefore, we noticed the need to validate the refactoring operations found by
the tool before conducting the study. To validate the refactoring operations,
we conducted two manual inspections of the refactoring operations returned
by the tool.

The first inspection was to validate each one of the 13 types of refactoring
operations that we use in our study (Section 3.1). For this inspection, we
randomly sampled refactoring operations of each type. We decided to sample
refactoring for each type since the precision of the Refactoring Miner could vary
from one type to another. Such variation is due to the rules implemented in the
tool to detect each refactoring type. To deliver an acceptable confidence level
to the results, we calculated the sample size of each refactoring type based
on a confidence level of 95% and a confidence interval of 5 points. For this
inspection, we recruited ten students to validate the samples manually. The
manual inspection started by presenting to the students a pair of versions of
elements marked as refactored by Refactoring Miner. For each pair of elements,
the student had to mark it as a valid refactoring or not. In this way, we were
able to estimate the number of false positives generated by Refactoring Miner.
We highlight that our goal was to ensure the trustability of the tool for our
set of software systems. This is the reason why we relied on the students, who
were familiar with refactoring, to validate the tool.

In general, we observed a high precision for each refactoring type, with
a median of 88.36%. The precision found in all refactoring types is within
one standard deviation (7.73). Applying the Grubb outlier test (alpha=0.05),
we could not find any outlier, indicating that no refactoring type is strongly
influencing the median precision found. Thus, the results found in the repre-
sentative sample represents a key factor to provide trustability to the other
results reported in this study.

The second manual inspection was to validate the refactoring tactics
(Section 3.1). As discussed in Section 3.2.2, we rely on three aspects to assure
that the refactored code elements were likely to contain design problems.
An aspect is the refactoring tactic. Therefore, to investigate this aspect,
we need to identify when developers applied root-canal refactoring and floss
refactoring. To conduct this inspection, first we selected a sample containing
4,991 refactoring operations. Then, we used Eclipse and the eGit plugin5 to
classify a refactoring as root-canal refactoring or floss refactoring. Finally, we
used a di� tool to analyze all the changes in the classes modified by the
refactoring operations. When a behavioral change was identified, we filled a
form explaining it, and we classified the change as floss refactoring. When we

5http://www.eclipse.org/egit/

http://www.eclipse.org/egit/
DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 3. Investigating Code Smells as Key Symptoms in Practice 65

did not find a behavioral change, we classified it as root canal refactoring.
At the end of this inspection, we classified 4,991 refactoring operations into
root-canal and floss refactoring. For this manual inspection, we did not rely
on students; instead, we relied on the expertise of three researchers to conduct
the inspection. We decided to conduct this inspection among us for a couple of
reasons. First, we needed people who had experience with refactoring before.
To determine that there was a behavior change due to a refactoring operation,
one needs to have knowledge that students did not have. Second, this second
inspection requires more e�ort and time than to validate the refactoring types.

3.3.5
Algorithm for Categorization

To answer our research question properly, we have to assure that the
refactored elements were likely to contain design problems. For such assurance,
we have to categorize the refactored elements into three categories: smell-free,
single smell and smell agglomerate categories (Section 3.2.2). Algorithm 1
presents the method we used to categorize the refactored elements.

Algorithm 1 Categorization the Refactored Elements
Require: Set of projects P, versions V, elements E, refactoring operations R
Ensure: The categorization of the refactored elements

1: P Ω {p1, p2, · · · , pn} {Phase 1}
2: for all p œ P do
3: for all vi œ V (p) do
4: if vi+1 œ V (p) then
5: Collect all refactoring operations R(vi, vi+1) {Phase 2}
6: Collect smells for all e œ E(vi) {Phase 3}
7: for all r œ R(vi, vi+1) do
8: smellCategory = categorizeAccordingToSmellPresence(r.e)
9: r.targets += (smellCategory)

10: end for
11: saveResultDB(R(vi, vi+1))
12: end if
13: end for
14: end for

The algorithm receives as input a set of projects, chosen in Phase 1
(Line 1). Then, it iterates over each project (Line 2), in which it retrieves
two versions of the project: the i version and the subsequent one (Lines 3
and 4). The algorithm calls the Refactoring Miner tool (Line 5) to collect the
refactoring operations, which comprises the first phase of the data collection
process. Similarly, the algorithm calls our code smell detection tool to collect
all the code smells for all the elements in the i version (Line 6). This routine

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 3. Investigating Code Smells as Key Symptoms in Practice 66

comprises the third phase of the data collection process. Once the refactoring
operations, smells and structural attributes are available, the next step in the
algorithm is to categorize each refactoring element according to the number of
code smells.

The algorithm iterates over each detected refactoring to categorize the
respective refactored elements (Line 7). Thus, the algorithm calls a function to
categorize the refactored elements according to the number of code smells
a�ecting the element (Line 8). The function in Line 8 returns one of the
categories defined in Section 3.2.2: smell-free, single smell or smell agglomerate.
The categorized element is associated to the refactoring (Line 9); thus, for each
refactoring the algorithm associates all the refactored elements to one category.
Finally, the algorithm saves the results in the database (Line 11).

3.4
Analysis of the Results

We discuss in this section the results that we found when investigating
if code smells are key symptoms to indicate design problems. In Section 3.4.1,
we present the frequency with which refactoring operations are applied to code
elements. In Section 3.4.2, we investigated the refactored elements according
to their probability of containing design problems. Finally, we present in
Section 3.4.3 how previous findings reinforce the answer to our research
question.

3.4.1
Frequency of Refactoring Operations on Code Elements

To answer our RQ (“Are code smells key symptoms to indicate relevant
design problems for developers?”), we investigated if the refactored elements
contain code smells. For this investigation, we considered a broad range of
refactoring and smell types, which led us to analyze 13 di�erent refactoring
types (Section 3.1) and 17 di�erent types of code smells (Section 2.3). After
applying the refactoring detection procedure (Section 3.3.2), we identified
51,227 refactoring operations. These refactoring operations had been applied
to 52,667 elements. Table 3.5 presents the frequency with which refactoring
operations are applied to elements. For this result, we only considered if the
refactored element contains or not code smells.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 3. Investigating Code Smells as Key Symptoms in Practice 67

Table 3.5: Frequency of Refactoring Operations
Total Smell-free Category Smelly Category

Refactoring
operations

51,227
10,512

(20.52%)
40,715

(79.48%)

According to our data, most refactoring operations are applied to smelly
elements. From the 51,227 refactoring operations, 40,715 (79.48%) were applied
to elements with code smells, while 10,512 refactoring operations (20.52%) were
applied to elements without code smells. One could argue that these refactoring
operations were applied to smelly elements because most of them contain code
smells. In other words, the refactored elements contain code smells because
their software system has a high rate of smells, thereby increasing the probabil-
ity that refactoring operations are applied to smelly elements. In order to verify
if most code elements contain smells, we computed the probability of randomly
choosing a smelly element in our dataset (|smelly elements|/|all elements|),
which is 0.3%. This low probability shows that, in our dataset, refactoring
operations are not applied to smelly elements by coincidence. Refactoring op-
erations indeed tend to concentrate on smelly elements, which were confined
to a vast minority of the program elements. This behavior was consistently
observed for both root-canal and floss refactoring.

As previously discussed, if most of refactoring operations belong to the
smelly category, then there is a chance that code smells are key symptoms to
indicate design problems in these elements. This was exactly the result that
we achieved according to our data (Table 3.5). Therefore, this result is the first
shred of evidence that code smells can be key symptoms to indicate relevant
design problems in most cases. Thus, our next step is to conduct the analyses
regarding the probability that these refactored elements have design problems.
Before digging into these analyses, we need to address the 10,512 refactoring
operations applied to elements without code smells.

Indeed, 20.52% of refactoring operations is a number that we cannot ig-
nore. This number represents 10,807 elements that were refactored but did not
have any code smell. According to our assumption, relevant design problems
might exist in these elements, since they were refactored. Unfortunately, in
this scenario, code smells are not key symptoms to identify design problems in
these elements. Therefore, in practice, this result indicates that developers can-
not rely entirely on code smells to identify some instances of design problems.
Consequently, developers should rely on other indicators of design problems.
We will discuss more about this scenario later (Section 3.4.3).

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 3. Investigating Code Smells as Key Symptoms in Practice 68

3.4.2
Investigating the Chance of Elements Containing Design Problems

According to our results, most refactored elements contain code smells.
Thus, there is a chance that code smells are key symptoms to identify design
problems in these elements. However, we need to investigate if these refactored
elements contain any sign of design problems. For this purpose, we conducted
three analyses to assure that the refactored elements were likely to contain
design problems: the number of code smells, the refactoring tactic, and the
smell patterns. We discuss the results for each one as follows.

3.4.2.1
Frequency of Refactoring Operations in Smelly Elements

As presented in Section 3.2.2, we have to assure that the refactored
elements had some sign of containing design problems. The number of code
smells a�ecting a refactored element comprises the first analysis that we
conducted towards achieving such assurance. Thus, we have divided the smelly
category into two other subcategories based on the number of code smells in
the refactored element: single smell category and smell agglomerate category.
This categorization allows us to increase the probability that refactored
elements contain design problems, since the more smells a refactored element
has, the greater the probability that the element contains a design problem
(49, 52, 47, 46, 50). Table 3.6 details the frequency of refactoring operations
applied to smelly elements according to these subcategories.

Table 3.6: Frequency of Refactoring Operations on Smelly Elements
Smelly Category

Total Single Smell Smell Agglomerate
Refactoring
operations

40,715 (79.48%) 16,443 (32.10%) 24,272 (47.38%)

From 40,715 refactoring operations, 47.38% were applied to elements with
more than one smell, while 32.10% to elements with only one smell. 47.38%
of refactoring operations were applied to approximately 24,953 code elements.
Thus, according to our categorization, 47.38% of the refactored elements have
a high chance of containing a design problem. Therefore, in most cases, code
smells are key symptoms for developers to identify relevant design problems.
On the other hand, 32.10% of the refactored elements (16,906 elements) contain
a single code smell. Thus, these elements are less likely to contain design
problems according to the number of code smells. Nevertheless, there are some

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 3. Investigating Code Smells as Key Symptoms in Practice 69

types of design problems that can be identified by a single code smell, such as
Incomplete Abstraction. Hence, we cannot assume that these elements do not
have design problems without considering other analyses to assure the presence
of design problems.

3.4.2.2
Frequency of Refactoring Operations Classified as Root-canal Tactic

Analysis of the root-canal refactoring is another way to assure that the
refactored elements are likely to contain design problems. Root-canal refac-
toring consists of a process of exclusively applying refactoring operations to
repair deteriorated code, which can be deteriorated due to the presence of
design problems. Since root-canal refactoring is applied to repairing deterio-
rated code, elements refactored when developers applied this tactic are the
most likely to contain design problems. To find these elements, we carried
out a manual validation to classify 4,991 refactoring operations according to
the applied tactic: either root-canal or floss refactoring. Table 3.7 presents the
frequency of those refactoring operations classified as root-canal refactoring.

Table 3.7: Frequency of Root-canal Refactoring
Smelly Category

Tactic Operations
Smell-free
Category Total Single Smell

Smell
agglomerate

Root-Canal Refactoring 1,168
134

(11.47%)
1,034

(88.53%)
248

(21.23%)
786

(67.29%)

The results in Table 3.7 show that most refactoring operations are applied
to smelly elements when we consider only the root-canal refactoring. In fact,
this result is expected to a certain degree. As root-canal refactoring is a tactic
usually applied to repair deteriorated code, then the code should show signs
of deterioration. In this case, the sign of deterioration is the code smells. Code
smells are symptoms of design problems, which in their turn are one of the
reasons why elements can reach a deteriorated state (15, 16). Consequently,
this result indicates that indeed the developers focused on refactoring elements
in a deteriorated state. Indeed, the percentage of refactoring operations applied
to elements without smells, i.e., in the smell-free category, (11.47%), is lower
than the overall percentage shown in Table 3.5 (20.52%).

Most refactoring operations were applied to elements with code smells.
As they happened during root-canal refactoring, there is an increase in the
probability that these elements contain design problems. When we consider
only the smelly category, we notice that most refactoring operations were
applied to elements with multiple code smells (67.29%). In fact, this number

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 3. Investigating Code Smells as Key Symptoms in Practice 70

is much higher than the overall refactoring operations applied to the smell
agglomerate category (47.38%) shown in Table 3.5. This result reinforces that
developers were indeed focusing on deteriorated elements as one might expect
to happen during root-canal refactoring. Furthermore, this result indicates
that, in most cases, code smells are key symptoms for developers to identify
design problems, at least when we take into account root-canal refactoring. In
summary, when developers focus their e�ort on repairing deteriorated code,
most refactoring operations are applied to elements that are likely to contain
design problems. Since these elements contain multiple code smells, we can
assume that, in the context of root-canal refactoring, code smells are key
symptoms for developers to identify design problems.

As we conducted the manual validation, we also have the frequency of
refactoring operations when developers applied floss refactoring. Developers
apply floss refactoring when they want to achieve a particular purpose, such as
adding a new feature or fixing a bug. One can argue that the results presented
in previous sections can be di�erent when we consider only one tactic of
refactoring. For instance, root-canal refactoring occurs when developers want
to repair deteriorated code. Thus, if most of the refactoring operations are
root-canal ones, then it is justified that most refactoring operations target
elements with some sign of design problems. On the other hand, the number
of refactored elements when developers apply floss refactoring can be di�erent
since the goal is not to repair a deteriorated code. Consequently, the frequency
of refactoring operations in each category can be di�erent when we take
into account only floss refactoring. Table 3.8 presents the frequency for those
refactoring operations classified as floss refactoring.

Table 3.8: Frequency of Floss Refactoring
Smelly Category

Tactic Operations
Smell-free
Category Total Single Smell

Smell
agglomerate

Floss Refactoring 3,817
509

(13.34%)
3,308

(86.66%)
780

(20.43%)
2,528

(66.23%)

Surprisingly enough, the results for floss refactoring (Table 3.8) are very
similar to those found for root-canal refactoring. Most refactoring operations
were also applied to smelly elements during floss refactoring. In fact, when
we analyze the smelly category, most refactoring operations are applied to
elements with more than one code smell. This similar result is surprising, since
floss refactoring has a di�erent purpose from root-canal refactoring. Thus,
repairing a deteriorated code does not play an essential factor when developers

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 3. Investigating Code Smells as Key Symptoms in Practice 71

choose the element to refactor during floss refactoring. Nevertheless, that does
not mean that the code elements do not contain design problems. They may
have design problems, at least if we take into account the number of code
smells. Unfortunately we cannot have the same guarantee as we had when we
considered the root-canal refactoring. Hence, we can only rely on the number
of code smells as a sign of the presence of design problems.

This comparison between refactoring tactics is also useful to mitigate bias
related to one tactic overshadows the other one in the overall result (Table 3.5).
Thus, comparing the results from both tactics (Tables 3.7 and 3.8), developers
refactor elements with multiple code smells regardless of whether they apply
root-canal refactoring (67,29%) or floss refactoring (66.23%). Therefore, as-
suming that the number of code smells is a sign of a design problem, this
similar result between root-canal and floss refactoring can be faced as another
evidence that smells may be a key symptom to indicate design problems.

In the same way that one tactic could overshadow the other one, there is
a chance of a refactoring type having a strong influence on the results. Thus, we
need to investigate each refactoring type to verify whether developers tend to
focus on smelly elements independently of the refactoring type or not. Table 3.9
presents the frequency of each refactoring type applied to smelly elements. The
table also presents the frequency of root-canal refactoring and floss refactoring.
We can observe that, similar to previous results, developers tend to apply most
refactoring operations to elements with multiple code smells (smell agglomerate
category): 66.23% of floss refactoring and 67.30% of root-canal refactoring. In
other words, independently of type, most refactoring operations are applied
to elements that present a sign of design problem, which can be identified by
code smells.

Indeed, most refactoring types are applied to elements with multiple code
smells, i.e., in elements with a sign of design problem. Only two refactoring
types did not follow this distribution (light gray rows). On the one hand, the
Inline Method was frequently applied to smell-free elements (65.25%) when
developers performed floss refactoring. On the other hand, Move Class was
frequently applied to smell-free elements when developers performed root-canal
refactoring (51.66%). Interestingly enough, none of these two refactoring types
were applied to smell-free elements simultaneously in floss refactoring and root-
canal refactoring. This result can be another piece of evidence that code smells
can be key symptoms for developers to identify design problems, at least in
most cases.

On the other hand, this result for Inline Method and Move Class also
indicates that, in some scenarios, code smells are not key symptoms for

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 3. Investigating Code Smells as Key Symptoms in Practice 72

Table 3.9: Frequency of Each Tactic by Refactoring Types
Floss Refactoring Root-canal RefactoringRefactoring

Type Total Smell-free Single
Smell

Smell
Agglomerate Total Smell-free Single

Smell
Smell

Agglomerate

Extract Interface 32 5
(15.63%)

8
(25.00%)

19
(59.38%) 27 2

(7.41%)
14

(51.85%)
11

(40.74%)

Extract Method 1,137 40
(3.52%)

115
(10.11%)

982
(86.37%) 345 13

(3.77%)
55

(15.94%)
277

(80.29%)

Extract Superclass 213 6
(2.82%)

130
(61.03%)

77
(36.15%) 37 3

(8.11%)
23

(62.16%)
11

(29.73%)

Inline Method 469 306
(65.25%)

27
(5.76%)

136
(29.00%) 38 6

(15.79%)
5

(13.16%)
27

(71.05%)

Move Attribute 511 8
(1.57%)

223
(43.64%)

280
(54.79%) 30 3

(10.00%)
10

(33.33%)
17

(56.67%)

Move Class 48 10
(20.83%)

20
(41.67%)

18
(37.50%) 151 78

(51.66%)
26

(17.22%)
47

(31.13%)

Move Method 393 7
(1.78%)

111
(28.24%)

275
(69.97%) 107 3

(2.80%)
23

(21.50%)
81

(75.70%)

Pull Up Attribute 201 12
(5.97%)

33
(16.42%)

156
(77.61%) 136 4

(2.94%) 34 (25.00 %) 98
(72.06%)

Pull Up Method 246 2
(0.81%)

43
(17.48%)

201
(81.71%) 197 6

(3.05%)
6

(3.05%)
185

(93.91%)

Push Down Attribute 18 0
(0.00%)

3
(16.67%)

14
(77.78%) 11 1

(9.09%)
4

(36.36%)
6

(54.55%)

Push Down Method 42 1
(2.38%)

5
(11.90%)

39
(92.86%) 9 0

(0.00%)
4

(4.00%)
5

(55.56%)

Rename Class 99 24
(24.24%)

18
(18.18%)

57
(57.58%) 2 0

(0.00%)
1

(50.00%)
1

(50.00%)

Rename Method 408 88
(21.57%)

46
(11.27%)

274
(67.16%) 78 15

(19.23%)
43

(55.13%)
20

(25.64%)

Total 3,817 509
(13.34%)

780
(20.43%)

2,528
(66.23%) 1,168 134

(11.47%)
248

(21.23%)
786

(67.30%)

developers to identify design problems. We consider that these smell-free
elements are likely to have design problems since they were refactored; thus in
practice, this result indicates that some design problems cannot be identified
by code smells. Consequently, in practice, code smells may not su�ce to help
developers to identify design problems.

3.4.2.3
Frequency of Refactoring Operations Applied to the Smell Patterns

In the previous subsections, we conducted two analyses to assess the
probability that refactored elements contain design problems. There is a third
analysis: smell patterns. As discussed in Section 3.2.2, if some types of code
smells appear in code elements, there is a high chance that these elements
contain design problems. Based on these occurrences reported in the literature
(74, 16, 75, 53, 38, 28, 47, 51, 76, 27, 55, 29), we presented a list of recurrent
smell patterns that increase the probability that a code element contains design
problems (Table 3.3). Table 3.10 presents the design problems that are likely
to be found in refactored elements according to these smell patterns.

Results in Table 3.10 shed lights about the role of codes smells in
supporting the design problem identification. As discussed in Section 2.3, there
are some design problems that can be identified by only a single smell, such as
Incomplete Abstraction and Unused Abstraction, while there are other design
problems that are most suitable to be identified by multiple code smells, such

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 3. Investigating Code Smells as Key Symptoms in Practice 73

Table 3.10: Design Problems Found in Refactored Elements
Design Problems Single Smell Multiple Code Smells
Ambiguous Interface N/A 0
Ciclic Dependency N/A 31
Concern Overload 490 514
Fat Interface 0 2
Incomplete Abstraction 12503 N/A
Scattered Concern N/A 26
Unused Abstraction 2317 N/A
Unwanted Dependency N/A 11
N/A = Not Applicable

as Ambiguous Interface, Cyclic Dependency, Scattered Concern and Unwanted
Dependency. Finally, there are design problems that can be identified by a
single or multiple smells, such as Concern Overload and Fat Interface. These
two last design problems provide us with some interesting discussions about
the code smells.

In total, we found 1,004 classes that could have Concern Overload
according to the smell patterns. This design problem can be identified with the
pattern God Class (490 instances) or with multiple code smells: Divergent

Change, Feature Envy, God Class, Intensive Coupling, Long Method, and
Shotgun Surgery (514 instances). We randomly sampled 50 classes with only
the God Class pattern and 50 classes that had the pattern with multiple code
smells. After a manual validation of these classes, we noticed that the pattern
with multiple smells is most likely to indicate a design problem. From the
classes that had only God Class, we validated 26% of them as having the
Concern Overload (13 classes). On the other hand, from the classes that had
the pattern with multiple code smells, 64% were validated as having the design
problem (32 classes). This result indicates that indeed elements with various
code smells are likely to be related to a design problem (49, 52, 47, 46, 50).
This result is particularly important to increase the reliability of our analyses,
since we use the number of code smells to assure that refactored elements were
likely to contain design problems (Section 3.2.2).

Fat Interface is another design problem that can be identified by one or
by multiple code smells. However, we did not find any interface in the system
that had the pattern with only one code smell (Shotgun Surgery), i.e., the
smell pattern that could indicate the design problem with only one smell. On
the other hand, we found 2 instances of Fat Interface when we searched for
elements that had the smell pattern used to identify this design problem with
multiple code smells (Divergent Change, Dispersed Coupling, and Feature

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 3. Investigating Code Smells as Key Symptoms in Practice 74

Envy). Even though there were only two instances of Fat Interface, these are
two more cases which show that the pattern with multiple smells is more
likely to indicate a design problem than the pattern with only a single smell.
Consequently, this result also strengthens our assumption about the number of
code smells be suitable to assess the probability that elements contain design
problems.

Another interesting result is the one regarding Ambiguous Interface.
According to the smell patterns, to identify this design problem, a developer
needs to find code elements that use the interface and contain Long Method,
Feature Envy, and Dispersed Coupling. We did not find elements that are
connected to the interface and contain this smell pattern. However, when we
consider only Long Method and Feature Envy, then the number increases to
130 possible instances of design problems. This result is interesting to show
that these elements were presenting the first signs of a design problem. Even
if the developers’ intention was not to remove the design problem, this result
indicates that they refactored elements that had a sign of a design problem,
and these elements had code smells that could indicate a (potential) design
problem.

These results about Concern Overload, Fat Interface, and Ambiguous
Interface are also useful to discuss if a single code smell is enough to identify
design problems. According to our validation of these 102 instances of design
problems, relying on a single code smell may not be enough to identify
design problems in practice. In fact, our data suggest that if developers rely
on smell patterns with multiple code smells, they have a higher chance of
identifying design problems. However, there are some pros and cons in using
these patterns. On the one hand, the analysis of various smells in some of
these patterns may increase the developers’ confidence about the presence of
design problems. On the other hand, to reason about multiple code smells
simultaneously may be a hard task to carry on. Nevertheless, the investigation
of developers using multiple code smells is one that we need to conduct
to understand if code smells su�ce in helping developers to identify design
problems.

Additionally, we highlight that developers cannot identify a design prob-
lem if they expect to find all the instances of the smells within a pattern.
For example, a developer would not identify any Ambiguous Interface in our
dataset if he was expecting to find instances of Long Method, Feature Envy,
and Dispersed Coupling. As we mentioned, we did not find elements con-
nected to the interface with all the smells in this pattern. In other words,
developers cannot expect to find all the smells of a pattern to identify a design

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 3. Investigating Code Smells as Key Symptoms in Practice 75

problem, especially if the a�ected elements are presenting the first signs of a
design problem.

3.4.3
Code Smells are Key Symptoms in Some Scenarios

Results found in previous subsections can be used to reinforce the answer
to our research question. We found that most refactoring operations are
applied to smelly elements. In fact, developers tend to refactor elements that
contain multiple code smells. When we analyze the smelly elements, we noticed
that they present signs of design problems in most cases. For instance, most
refactored elements contain multiple code smells. Not only are these multiple
code smells signs that the elements contain design problems, but they also
evidence that they can be used as key symptoms to identify design problems.
This result is even more evident when we consider only the context of root-
canal refactoring. In this context, most refactoring operations are applied to
elements that have at least one code smell. Surprisingly enough, this same
result is obtained when we analyze only the floss refactoring. This result
is surprising since we were not expecting that developers focused on (floss)
refactoring elements that were deteriorated. Consequently, we can view this
result as another piece of evidence that code smells are key symptoms for
developers to identify design problems in the context of refactoring.

Unfortunately, we found some scenarios where code smells are not key
symptoms. Obviously, code smells are not key symptoms to indicate design
problems in the smell-free elements. However, these elements can be the ones
that also have relevant design problems. In these cases, developers cannot rely
on code smells to identify design problems, which makes us wonder about
other symptoms that developers can use to identify design problems in these
elements. There are also design problems that manifest in elements that were
not the focus of refactoring. Since we are only investigating refactored code,
we missed these elements. In these cases, we cannot say anything about code
smells being key symptoms to identify design problems. We even found some
cases where most refactoring operations were applied to elements without
code smells, e.g., when we analyzed only the Inline Method and Move Class
refactoring types. As we consider that these elements are likely to have design
problems due to the refactoring, code smells cannot be used to indicate design
problems in these elements. In practice, this result indicates that developers
cannot rely on code smells to identify some design problems. These cases where
the refactored elements did not have code smells also make us wonder about to
what extent code smells su�ce to help developers to identify design problems

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 3. Investigating Code Smells as Key Symptoms in Practice 76

in practice. In summary, we can conclude that in most cases, code smells likely
represent key symptoms to indicate design problems, at least when we consider
the refactored code. On the other hand, in practice, code smells may not su�ce
to help developers to identify relevant design problems. This is an investigation
that we need to conduct to understand if code smells su�ce to help developers
during design problem identification.

As mentioned, we conducted a retrospective study to investigate if in
practice code smells are key symptoms to identify design problems. Unfor-
tunately, our study has some limitations. To a certain degree, our results are
grounded in practice, since we are retrospectively looking at snapshots of what
has actually happened. However, we have not strictly investigated develop-
ers’ behavior when using code smells to identify design problems in practice.
Even though we found that in most cases code smells are key symptoms for
developers to identify relevant design problems, we still do not know if code
smells su�ce to help developers. In fact, we have few pieces of evidence that,
in practice, code smells do not su�ce to indicate some design problems. For
instance, there are code elements that do not have code smells. Even so, these
elements were likely to contain design problems. Furthermore, our study was
limited in the sense of focusing on refactored code. Hence, we cannot say if
code smells are key symptoms in code elements that were not refactored. Even
though this study shed light on the role that code smells play during design
problem identification, we sill need to continue our investigation about code
smells. A follow-up investigation is observe developers using code smells in
practice. Consequently, we will be able to state if code smells su�ce or not to
help developers to identify design problems.

3.5
Related Work

We present in this section some studies related to refactoring, code smells
and design problems.

3.5.1
Code Smells as Key Symptoms

Some studies have investigated the developers’ perception of code smells
(51, 29). These studies are closely related to ours. For instance, Yamashita and
Moonen conducted an exploratory survey with developers about their knowl-
edge and concern with code smells (29). In this study, the authors investigated
though developers’ perspective if code smells should be considered meaningful
conceptualization of design problems. For this investigation, they applied a

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 3. Investigating Code Smells as Key Symptoms in Practice 77

survey with 73 software developers. The survey included questions about de-
velopers’ level of knowledge on code smells, their perception on the criticality
of code smells, and their perception on how useful code smell information is
for di�erent software engineering tasks. Based on these questions, the authors
were able to identify the code smells that developers perceived as critical, why
they are critical, and what features a code smell detection tool should have.
The results indicated that only 18% of respondents (13 developers) had a good
understanding of code smells. However, the majority of the developers (19 out
of 50 developers who finished the survey) are concerned to code smells in their
code, while 14% (7 developers) were extremely concerned. Duplicated Code,
God Class, and Long Methods were the smells that developers perceived as
critical.

Palomba et al. reported a similar study, which aimed to analyze to what
extent code smells are perceived as design problems (51). The authors validated
12 di�erent code smells in three open source projects. Next, they showed
developers code snippets a�ected and not a�ected by these 12 code smells.
Then, they asked the developers if they considered that the code snippets
had design problems. If so, they asked developers to explain what design
problems they perceived. They reported that most code smells are, in general,
not perceived by developers as design problems. However, there are some code
smells (Complex Class, God Class, Long Method, and Spaghetti Code) that
developers immediately perceived as design problems.

As mentioned, these studies are related to ours. Thus, one could expect
to use them to answer our research question. Unfortunately, that is not possible
since we have di�erent goals and research methods. Our goal is to investigate
if code smells are key symptoms to identify design problems. Yamashita and
Moonen focused on investigating to what extent developers had a theoretical
knowledge of code smells; while Palomba et al. investigated if developers
perceive code smells as design problems. In summary, these studies provide
general evidence that only in specific circumstances developers perceive code
smells as critical structures in the system. Hence, the results in these studies
may suggest that code smells may not su�ce to help developers in identifying
design problems in practice.

Unfortunately, these studies have limitations that prevent us to use their
results in our context, i.e., to state that code smells are key symptoms for
developers to identify design problems in practice. The first limitation regards
the research method. These previous studies rely on surveys to get evidence
about the relevance of code smells for developers. However, as explained in
(57), some issues appear when using questions to gather information. For

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 3. Investigating Code Smells as Key Symptoms in Practice 78

instance, the questions in a survey may not be designed in a way that yields
useful and valid data. Another issue is to phrase the questions insomuch that
all participants understand them in the same way, especially when the target
population is diverse. The second limitation of these studies is that their results
have not been grounded in practice. Unfortunately, “it is possible that what
people say they do in response to survey questions bears no relationship to
what they actually do because they are unable to introspect reliably on their
work practices” (57). In other words, we cannot rely on only surveys if the goal
is to investigate a phenomenon in practice.

3.5.2
Applying Refactoring Operations

Our data showed that most refactoring operations (79.48%) are applied
to smelly elements. Even though the original motivation of developers is
unknown, we actually observed a similar behavior when they applied both
root-canal and floss refactoring. Mainly in the former case, one would expect
developers to explicitly intend to improve code structure by removing design
problems. Regarding the developers’ motivation, Silva, Tsantalis and Valente
(87) investigated the reasons why developers refactor their code. Their results
indicate that refactoring operations are mainly driven by fixing a bug or
changing the requirements, such as adding a new feature. Their results show
that the refactored code may contain code smells, although developers did not
mention it explicitly as their intention to refactor. For instance, developers said
that they apply the Move Class refactoring when they want to move a class to
a package that is more functionally or conceptually relevant to that particular
class. Even though developers do not mention code smells in this description,
it is possible that the moved classes contain smells such as Feature Envy and
Intensive Coupling.

Based on the assumption that refactoring operations are applied to
elements with design problems, our study investigated whether the refactored
elements contain or not code smells. For that, we investigated a large set
of software systems. This allowed us to analyze refactorings in systems of
various domains and sizes (LOC). Also, we have analyzed 17 types of code
smells considered relevant in the literature. Our results indicate that most
refactored elements (79.48%) contained at least one code smell. When we
analyzed only the refactored code elements that contain code smells, we noticed
that 47.38%% of them contain more than one code smell (smell agglomerate).
Even when developers applied only floss refactoring, i.e. when their goal was
not to repair a deteriorated code, they applied most refactoring operations

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 3. Investigating Code Smells as Key Symptoms in Practice 79

to smelly elements (86.66%). These results suggest that developers are also
motivated (at least implicitly) by design problems. Developers might not be
applying refactoring to remove design problems; nonetheless, they are still
applying refactoring to elements that present signs of design problems.

Bavota et al. (85) investigated whether refactoring operations occur
on code elements where certain indicators suggest that might be a need
for refactoring. Their indicators include structural quality metrics and the
presence of code smells. According to their results, quality metrics do not show
a clear relationship with refactoring, and 42% of the refactorings are applied
to smelly elements. Di�erent from Bavota et al. (85), we investigated a large
set of software systems, and we also performed the validation and classification
of a subset of refactorings. Also, we have considered all the 11 types of code
smells used by Bavota plus 6 other types of code smell deemed relevant in the
literature. Thus, our data sample is much larger than the sample analyzed by
Bavota et al. (85). Surprisingly, our results indicate that most refactorings are
applied to smelly elements.

Cedrim et al. (88) also investigated the frequency with which refactoring
operations are applied to smelly elements. They also found that 79.4% of
refactoring operations are applied to smelly elements. We found the same
percentage of refactoring operations on smelly elements, which is interesting.
We followed the same data collection procedure, we used the same tools, and
we considered the same 23 systems that Cedrim et al.. Therefore, we were
expecting to achieve similar results but, instead, we found the same result,
practically. What makes this similarity interesting is that we have evolved
the study of Cedrim et al.. For instance, we added 27 other systems, four
other types of code smells, and we also added two other refactoring types.
Despite these di�erences, both studies found the same percentage of refactoring
operations applied to smelly elements. Consequently, the same result in two
studies can indicate the reliability of the result.

3.6
Threats to Validity

We discuss in this section the study limitations based on the threats to
validity. We also present the measures that we took to mitigate these threats.

Internal Validity The data collection using the Refactoring Miner tool repre-
sents a threat to internal validity because it may find some false-positives and
false-negatives. To minimize this threat and check the precision of the tool,
we randomly selected samples of each refactoring type and manually validated

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 3. Investigating Code Smells as Key Symptoms in Practice 80

them. In this sense, we could improve confidence regarding the Refactoring
Miner precision.

We could not reach the developers to ask their intentions (root canal or
floss) in all refactorings detected. Therefore, we included the validation whether
the refactoring is root or floss in our manual task, which is another threat to
internal validity. Notice that such analysis is limited to two versions of the
source code directly related to the refactoring, not considering all versions
in the repository. Moreover, the manual analysis only considers behavior
preservation in the refactored elements.

Code smells are fundamentally important for this study since our goal is
to investigate their relevance for developer in practice. We did not validate the
detected code smells, which is a threat. Thus, the results are sensitive to code
smell detection rules. As mentioned before, such rules are based on thresholds.
The risk is that di�erent thresholds can lead to results completely distinct.
Therefore, the detection rules and the choices of thresholds can pose a threat
to this study. To mitigate such risk, we used thresholds previously validated
by others researchers (85, 30).

External Validity We selected a set of 50 software projects to analyze. Thus,
the representativeness of these projects is a recurrent external threat to validity.
We mitigate this threat by establishing a systematic process to sample a set
of valid projects from GitHub. As a result, we obtained relevant Java projects
with an interesting diversity of structure and size metrics.

We theorized that we can investigate if code smells are relevant for
developers in practice by analyzing maintenance activities. Such theorization
is a threat. One may argue that the analysis of maintenance activity is not
appropriate to investigate if code smells are relevant in practice. Consequently,
we would be susceptible to finding artificial results that are not consistent
with practice. We do acknowledge this threat; however, we took measures to
guarantee that our approach to investigating the relevance of code smells is
appropriate. First, we selected a maintenance activity that is closely associated
with code smells. Thus, we can expect that code smells are used in such
activity. Second, we could have conducted our investigation using a di�erent
methodology. For instance, we could have surveyed developers about the use
of code smells in practice. However, we deem that the use of surveys is not
appropriate to our investigation. As reported in (57), what people say they do
in response to surveys may not represent what they do in their work practices.
Consequently, we cannot rely on only a survey without evidence about the use
of code smells observed directly in practice. To work around this situation,

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 3. Investigating Code Smells as Key Symptoms in Practice 81

we decided to investigate software projects in the GitHub repository. These
projects are the results of developers’ work after all. Thus, to a certain degree,
these projects represent what happened in practice.

In our study, we focused on refactored code elements since they are likely
to contain design problems. However, design problems can appear in any code
element regardless of it having been refactored or not, thus, we are missing
these elements. Consequently, we could (erroneously) conclude that code smells
are not key symptoms for developers to identify relevant. In other words, only
considering refactored elements imposes a threat to our study. It is a threat
because code smells and design problems can appear in elements that were not
refactored. Nevertheless, we found that refactoring operations are not applied
to smelly elements by coincidence. The chance of randomly choosing a smelly
element in our dataset is only 0.3%. Thus, refactoring operations indeed tend
to concentrate on smelly elements. Therefore, to use refactoring to investigate
code smells was appropriate. Unfortunately, we cannot say the same about
design problems. We only can say that in the context of refactored code, code
smells are key symptoms to indicate design problems in most cases.

3.7
Summary

This chapter presented the first study to gather knowledge about how
developers identify design problems in practice. In this study, we investigated
if code smells are key symptoms for developers to identify design problems in
practice. The reason for such investigation is due to the role that code smells
play in several techniques to support the design problem identification. Several
studies explore code smells as the primary design problem symptom since they
tend to co-occur with design problems (53, 47, 54). Thus, related studies have
proposed techniques based on code smells.

These studies assume that code smells can indicate design problem.
Unfortunately, these studies did not investigate if code smells are indeed key
symptoms for developers to identify design problems in practice. In this sense,
we conducted a retrospective study to investigate if code smells can indicate
relevant design problems in practice (Section 3.2). For this study, we relied on
refactoring to find elements a�ected by relevant design problems. We relied on
refactoring due to its close relation to design problems. Thus, if the refactored
code has simultaneously signs of design problems and code smells, then we can
assume that code smells are key symptoms to identify design problems.

To conduct our investigation, we selected 50 software projects, in which
we analyzed if the smelly elements were the focus of refactoring operations

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 3. Investigating Code Smells as Key Symptoms in Practice 82

(Section 3.3). Our results indicate that most refactoring operations were
applied to smelly elements (Section 3.4). From 52,667 refactoring operations,
79.48% were applied to elements that contained at least one code smell. In
fact, 47.38% of them were applied to elements with more than one smell,
while 32.10% happened to elements with only one code smell. In other words,
when we consider only refactoring operations applied to smelly elements, most
of them occurred in elements with multiple code smells. This distribution
repeated itself when we analyzed each refactoring type and tactic. These
results indicate that code smells likely represent key symptoms for developers
to identify design problems in most cases.

Unfortunately, we found cases where code smells are not key symptoms.
In fact, the design of our study limited us to the context of refactoring.
Therefore, there are still cases where we cannot state whether code smells
are key symptoms to identify relevant design problems. Based on these results
and to carry on the investigation about the role of code smells in the design
problem identification, our next step is to investigate if code smells su�ce in
helping developers to identify design problems. In other words, our next study
is to investigate if developers can use code smells to identify design problems
in practice.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

4
Investigating the Support of Code Smells to Identify Design
Problems

Although code smells have been a well-researched topic over the last
decade, most studies tend to focus on proposing solutions to support developers
in identifying design problems (52, 53, 38, 28, 47, 46). Unfortunately, little
e�ort has been made towards investigating to what extent code smells support
developers during the design problem identification, which is worrisome. If
there is no understanding about the support provided by smells, these proposed
solutions may fall short of expectation. In light of this topic, we presented
in the previous chapter a retrospective study to investigate if code smells
likely represent key symptoms for developers when identifying relevant design
problems in their projects. In that study, we analyzed the refactored code
to investigate if code smells can spot design problems in the refactored
elements. That study was our first step in our quest to understand the role
that code smells play in supporting developers during the identification of
design problems. We found that code smells likely represent key symptoms
to identify relevant design problems in most cases, at least in the context
of refactored code. However, we found some scenarios at which code smells
cannot be used as key symptoms for developers. Based on these scenarios,
we wondered if in practice code smells su�ce to support developers in design
problem identification.

Indeed, the assumption that code smells can support developers during
the design problem identification is a reasonable one. Some studies have shown
that code smells can be a consistent indicator of design problems (53, 47, 54).
For instance, Oizumi et al. showed that a design problem is often related to an
agglomeration, which is a group of code smells that are somehow related to each
other (47). Even though Oizumi et al. found that code smell agglomerations
can be a consistent indicator of design problems, they did not investigate if
developers can actually use and reason about code smells (agglomerations)
to identify design problems. It may be possible that, in practice, code smells
do not su�ce to help developers to find a design problem. Similarly, other
studies (53, 28, 51, 27, 55, 29) did not investigate if code smells, or their
techniques based on smells, support developers during the identification of

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 4. Investigating the Support of Code Smells to Identify Design

Problems 84

design problems. Such investigation is necessary to understand the role of code
smells in the design problem identification. For instance, if code smells do not
su�ce to support developers during the design problem identification, these
smell-based techniques may be doomed to fall short of expectations.

Therefore, to investigate if code smells su�ce to support developers to
identify design problems, we designed and executed a multi-method study with
11 professional developers. Our goal was to analyze if developers can e�ectively
find design problems when using code smells. As we found in our previous
study that developers focus on refactor code elements that contain either a
single smell our multiple smells (Section 3.4), we divided the developers into
two groups. In the first group, we asked them to identify design problems using
only single smells. In the second group, we asked them to use multiple code
smells – in this group, we asked them to use agglomerations, as defined by
Oizumi et al. (47). As agglomeration is a smell-based technique to support
developers during the identification of design problems, we can investigate
if developers achieve better precision in identifying design problems using
agglomeration. Comparing developers using single smell and multiple smells
(i.e., agglomerations) allows us to investigate to what extent code smells su�ce
to help developers along the identification tasks. For instance, in our previous
study, we discussed that developers may have a higher chance of identifying
design problems when reasoning about multiple smells (Section 3.4.2.3). On
the other hand, to reason about multiple code smells simultaneous may be a
hard task to carry on. Thus, we expect to find out whether developers benefit
of reasoning about multiple smells.

Our analysis revealed that only 36.36% of developers found more design
problems when explicitly reasoning about agglomerations as compared to code
smells. On the other hand, 63.63% of developers reported the lowest number
of false positives. In summary, we noticed that code smells are not enough to
support developers in identifying design problems, even when developers use
agglomerations. Developers actually mentioned that they need better support
to identify design problems; a support that code smells cannot provide. When
we combine this finding with the results from the study reported in Chapter 3,
we realize that in practice code smells do not su�ce to help developers
to identify design problems. Consequently, developers need to rely on other
symptoms in addition to smells.

We describe this study in details next. In Section 4.1, we describe
agglomerations and we explain how developers can use the smells within an
agglomeration to identify a design problem. In Section 4.2, we explain why
we are investigating whether code smells su�ce to support developers during

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 4. Investigating the Support of Code Smells to Identify Design

Problems 85

design problem identification. We also present in this section the procedure
used to conduct our investigation. In Section 4.3, we discuss the results that
we found. In Sections 4.4 and 4.5, we present some related studies and threats
to validity, respectively. Finally, we summarize this chapter in Section 4.6.

4.1
Background

This section presents the background required to understand our study
settings. We intend to investigate whether code smells su�ce to help developers
to identify design problems. For this investigation, we compare developers
using code smells with developers using agglomeration (47). Agglomeration
is a smell-based technique to group code smells that are likely to indicate a
design problem. We explain this technique in this section.

4.1.1
Code Smell Agglomerations

Developers can rely on the analysis of code smells to identify design
problems (Section 2.3). In fact, some studies (49, 38, 47, 54) suggested that
elements with several code smells are likely to have a design problem. Thus, it
is reasonable to expect that developers will be able to find design problems if
they analyze the smells in these elements. Unfortunately, a developer often has
to analyze various code elements to confirm the presence of a design problem.
Furthermore, it is hard and time-consuming to identify which code smells he
should focus. Even for small software systems, there are hundreds of smells
(38). Consequently, analyzing them to identify design problems may not be
trivial for developers.

Some studies try to soften this scenario (52, 47, 46). For instance, Oizumi
et al. (47) proposed a set of heuristics to group code smells that are interrelated
in source code, and named such group an agglomeration. They found that
most code smells associated with a design problem were part of one or more
agglomerations (82). In fact, they found that the chance of each code smell
within an agglomeration being related to a design problem is more than five
times higher than every single smell that is not part of any agglomeration
(47). Furthermore, this result is also aligned to the one found in our previous
study about code smells (Chapter 3). We found that refactored elements with
multiple code smells are likely to contain a design problem, and developers
can benefit of reasoning about these multiple smells to identify it. Thus,
these results suggest that an agglomeration can better help developers to
identify design problems. Unfortunately, Oizumi et al. did not investigate

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 4. Investigating the Support of Code Smells to Identify Design

Problems 86

Table 4.1: Agglomeration Categories
Category Description

Intra-method

Agglomerations of code smells that are located in single methods.
There is an agglomeration in a method if the method is a�ected by
at least T + 1 code smells, where T is a threshold that can
be defined by the developer.

Intra-class

Just like methods, classes may also be a�ected by diverse code
smells. There is an agglomeration in a class if the class is a�ected
by at least Y + 1 code smells, wehre Y is a threshold that can be
defined by the developer.

Intra-component

Agglomerations of code smells that occur inside of a single design
component. This agglomeration comprises code elements that are
located within a single component, and the elements are a�ected by
the same type of code smell. The elements also must be connected
by method calls or type references.

Hierarchical
Agglomerations composed by code elements that are a�ected by
the same type of code smells, and these elements implement the
same interface or inherit from the same code element.

whether developers can use agglomerations to identify design problems. Such
an investigation is necessary, since the relation between design problems and
code smells is often complex.

An agglomeration is determined in the program by the co-occurrence
of two or more code smells in the same method, class, hierarchy or package
(or component). Code smells that co-occur in these cases are only considered
part of an agglomeration if they are syntactically related to each other (47). A
syntactic relation happens when code smells are explicitly related in the source
code. An explicit relation is established between two smelly elements (i.e.,
elements with code smells) whenever they have at least one of the following
dependencies: a shared attribute, a method call, class extension and method
overload. Based on these dependencies, a syntactic agglomeration is classified
according to their scope in the program. Table 4.1 presents four categories of
agglomeration: intra-method, intra-class, hierarchical, and intra-component

4.1.2
Identifying Design Problems with Agglomerations

We define non-agglomerated code smells to be those smells that did not
undergo any type of grouping. Conversely, we define agglomeration as the group
of code smells that were grouped according to Oizumi et al.’s study (47). As
previously discussed, developers can benefit from using agglomerations instead
of using non-agglomerated code smells. For instance, the chance of each code
smell within an agglomeration being related to a design problem is higher than
every non-agglomerated smell. Furthermore, agglomerations can narrow down
the number of code smells that developers need to analyze. Let us consider

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 4. Investigating the Support of Code Smells to Identify Design

Problems 87

repository

«interface»
WorkflowRepository

«interface»
WorkflowRepositoryFactory

PackagedWorkflowRepository

113

DataSourceWorkflowRepository

120

XMLWorkflowRepository

91

DataSourceWorkflowRepositoryFactory

11

Legend

Number of code smells relevant
to identify the design problem

Number of code smells irrelevant
to identify the design problem

Design
component

Class

Association

Interface Implementaion

Fat Interface (symptoms) Agglomeration

Figure 4.1: Example of Agglomeration in the Workflow System

the following example in Figure 4.1 to discuss how developers can benefit from
using agglomerations to identify design problems.

This figure presents some classes that belong to the Workflow Manager
subsystem – a subsystem of the Apache OODT (Object-Oriented Data Tech-
nology) system (96). It is responsible for describing, executing, and monitoring
workflows. Suppose that a developer is in charge of identifying design problems
in the repository component. For this task, he (or she) can rely on agglomer-
ations to spot elements that may contain a design problem. Thus, he can run,
for instance, the Organic tool to find these agglomerations. The Organic tool
(78) is a plug-in developed for the Eclipse IDE, which contains the algorithms
that implement the detection of agglomerations. After running the tool, he will
notice that the repository contains several code smells (represented by circles
in the figure), however only four of them compose an agglomeration.

This agglomeration is formed by four instances of the Feature Envy

smell in this example. As illustrated by Figure 4.1, each of the Feature Envy

occurrences a�ects a di�erent class. In this case, three classes implement the
WorkflowRepository interface. When the developer analyzes these classes based
on the Feature Envy smell, he can realize that these classes contain the smell
because one of their methods is more interested in other classes than in its own
hosting class. This happens because these methods are forced to implement a
method that was defined in the WorkflowRepository interface. The smells in the
agglomeration are indicating that (the corresponding method in) the interface
may contain a design problem. In fact, this interface has the Fat Interface

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 4. Investigating the Support of Code Smells to Identify Design

Problems 88

problem since it declares more than one concern. As a consequence, the design
problem is scattered into the classes that use or implement the interface (they
are indicated in the figure by the puzzle symbol); forcing the other classes to
use or implement these other concerns. This “forced implementation” becomes
a problem because these methods are implementing a concern that should
have not been implemented in their hosting classes. That happens because the
WorkflowRepository interface processes multiple services; thus, any class that
implements this interface needs to handle more services than it actually should
have to, a�ecting the system maintainability and understandability negatively.

In this example, the developer knows that the code smells in the agglom-
eration have the same type (Feature Envy). Also, he knows that three classes
a�ected by the agglomerated smells implement the same interface, as reified in
a hierarchical agglomeration. This interface, in its turn, seems to provide non-
cohesive services. Thus, the developer can infer that Fat Interface is a�ecting
the WorkflowRepository interface. On the other hand, if he did not reflect upon
the code smell agglomeration, it would be harder for him to identify the design
problem. One of the reasons is that the number of code smells spread over the
6 classes and two interfaces within the package. Although the package contains
only eight classes (Figure 4.1 only shows some of them), it has more than 50
code smells. Thus, he would have to analyze many smells to discard, postpone
or further consider them in the identification of design problems.

Let us assume that the developer only reasons about each non-
agglomerated code smell, i.e., without taking into consideration the agglomer-
ation. Thus, he can choose to analyze the DataSourceWorkflowRepository class
first because it contains the highest number of smells. Analyzing the 21 in-
stances of code smells in the class, the developer may notice that the class
has smells related to high coupling with other classes (Intensive Coupling

and Dispersed Coupling), low cohesion (Feature Envy), and an overload of
responsibilities (God Class). However, all these smells may indicate other dif-
ferent problems. Thus, he would have to extend the analysis to other classes
to gather more information that can potentially indicate a design problem.
Unfortunately, the other classes also have di�erent instances of code smells,
and these instances may not be related to any design problem. Therefore, the
developer can face di�culties to find the relevant code smells that can help
him to identify a design problem. Thus, the analysis of agglomerations seems
to be a better strategy. However, there is limited empirical understanding if
agglomerations improve developers’ precision in identifying design problems.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 4. Investigating the Support of Code Smells to Identify Design

Problems 89

4.2
Study Design

This section presents the design of our study. In Section 4.2.1, we present
the research questions that we intend to answer. In Section 4.1.1, we present
the types of agglomerations that we are considering in our study. Finally,
in Section 4.1.2, we explain through an example how developers can use an
agglomeration to identify a design problem.

4.2.1
Research Questions

The identification of design problems in the source code is not a trivial
task (26, 27). A reason is that developers are forced to analyze several elements
in the source code to identify some design problems. For instance, if a interface
does not have a code smells to indicate the presence of a Fat Interface,
developers would need to analyze the source code of a suspicious interface, but
also the classes that either implement or depend on this interface (Section 1.1).
This explains why the occurrence of a code smell in isolation often does not
indicate a design problem (Section 3.4.2.3).

In fact, recent studies revealed that design problems are often located
in code elements a�ected by many smells (49, 38, 47, 50, 54). The more code
smells a code element has, the most likely it contains a design problem (47),
which may help to explain why developers focus their e�ort on refactoring
these elements (Chapter 3). Hence, one may expect that developers can
analyze a smelly element and, then, identify a design problem with in it.
Unfortunately, we do not know whether developers are able to use code
smells to identify design problems in practice, even though several studies
have presented techniques based on code smells to help developers to identify
design problems (41, 38, 39, 28, 47, 46). In this context, we defined the following
broader research question:

RQ2. Are developers able to use code smells to identify design
problems?

To answer this research question, we need to conduct a study in which
developers have to analyze the source code of software system with the support
of code smells. Then, we can verify whether developers were able to use the
smells to identify design problems in these systems. In the context of this
study, we also need to investigate to what extent smells help developers in
identifying design problems. This investigation is necessary since some studies

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 4. Investigating the Support of Code Smells to Identify Design

Problems 90

have proposed smell-based techniques to help developers to identify design
problems (53, 28, 47, 51, 27, 55, 29). If we find out throughout this investigation
that code smells do not su�ce to support developers during the design problem
identification, techniques that rely on code smells may fall short of expectation.

As a matter of fact, we cannot neglect these techniques if we also want
to understand whether code smells su�ce to help developers. Code smell ag-
glomeration is an example of a technique that intends to help developers to
identify design problems (47, 82). According to Oizumi et al. (82), agglom-
erations may help developers to identify design problems. They found that
most code smells associated with a design problem were part of at least one
agglomeration. Second, they found that the chance of each smell within an ag-
glomeration being related to a design problem is more than five times higher
than every smell that is not part of any agglomeration (47). Based on these re-
sults, there is a chance of developers being most e�ective in identifying design
problems using agglomerations. Unfortunately, the authors did not investigate
if agglomerations improve the precision of developers during the design prob-
lem identification. Thus, in the context of our research question, we intend to
answer the following specific research question:

SRQ1. Does the use of agglomerations improve the precision of
developers in identifying design problems?

This specific research question allows us to analyze whether code smell
agglomerations help developers to identify design problems with high precision.
Agglomeration is a technique that exclusively relies on code smells. Di�erent
from other smell-based techniques (39, 28, 27, 58), an agglomeration only
groups smells, i.e., there is no other symptom used together with code smells.
Therefore, investigating agglomerations does not deviate from the context of
our research, which is the investigation of code smells. In fact, investigating
agglomerations helps us to find out if code smells su�ce to help developers
to identify design problems since agglomeration is completely based on code
smells.

One could assume that developers would often benefit from the use
of agglomerations in their quest for finding design problems. However, it is
through the analysis of SRQ1 that we will be able to verify whether developers
can correctly identify more design problems using agglomerations. Regardless
of the result, another question that should be investigated is about how to
better support developers in exploring code smells. Even though previous
studies (53, 28, 47, 51, 27, 55, 29) have shown the strong relation between

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 4. Investigating the Support of Code Smells to Identify Design

Problems 91

design problems and code smells, we do not know whether and how the
identification of design problems with smells can be improved. The second
specific research question addresses this matter.

SRQ2. How can the identification of design problems with code
smells be improved?

To answer our research questions, we conducted a controlled experiment
with 11 professional developers. In this study, precision is measured based on
the percentage of true positives indicated by the developers – i.e., the percent-
age of design problems validated as true design problems (Section 4.2.5). In
order to measure if there was an improvement or not in the precision, we are
comparing the participants using agglomerations with participants identifying
design problems with a list of non-agglomerated smells, i.e., code smells that
were not grouped as agglomeration. Thus, we asked the participants to identify
design problems using agglomerations and non-agglomerated smells. After the
identification, we conducted an analysis over the identified design problems. In
this analysis, we used a ground truth to confirm or refute each design problem
indicated by participants. Then, we compared the number of false positives
and true positives produced with the developers using agglomerations against
developers using non-agglomerated smells.

As part of the study, we also applied a post-experiment questionnaire
to all developers. The objective of this questionnaire was to identify the main
advantages and barriers of reflecting upon multiple smells along the task of
identifying design problems. The outcomes of this analysis could help us to
understand better ways to improve the support for developers identifying
design problems. Moreover, the response for the questionnaire could help us
to understand whether code smells su�ce or not to help developers to identify
design problems. Indeed, the combination of quantitative and qualitative
analyses can help us to draw more well-grounded conclusions about how
developers identify design problems in practice, specifically with the support
of code smells.

4.2.2
Experiment Procedures

In our study, we needed to ensure that participants meet certain re-
quirements (Section 4.2.3). As a consequence, we obtained a small sample of
participants. Thus, we opted for conducting a quasi-experiment (98). A quasi-
experiment is an experiment in which the units or groups are not assigned to

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 4. Investigating the Support of Code Smells to Identify Design

Problems 92

conditions randomly. This allowed us to assign each participant to di�erent
treatments during the experiment steps. The experiment was conducted indi-
vidually with each participant. They had to perform the experiment in two
steps with four tasks in each one. Both steps comprise the same set of tasks
the only di�erence between the steps was regarding the treatment, i.e., usage
of agglomerations or non-agglomerated code smells.

As explained before, we need to compare developers using agglomeration
with them using non-agglomerated smells. This comparison allowed us to
verify whether there was an improvement in the precision when developers
used agglomerations. Thus, we divided the participants into two groups. The
first group would identify design problems using agglomerations in the first
step. After that, they would identify design problems using a list of non-
agglomerated smells in the second step. The second group of participants would
make the identification inversely: using the non-agglomerated smells in the first
step and, then, using the agglomerations in the second one. Thus, in each step,
we have two groups of participants.

As each participant identified design problems twice (first and second
step), we had to select two software projects. Thus, each participant could
identify design problems using a di�erent project in both steps. Another reason
for providing two software projects is to avoid bias with the learning curve. For
example, supposing that the participant uses the same project in both steps.
He could find more problems in the second step than in the first one. That
could happen because he can identify in the second step the same problems
that he identified in the first step, plus other design problems identified only
in the second step. This increase in the number of design problems found in
the second step would not be due to the use of agglomerations, but rather due
to the knowledge acquired by the participant.

There are four possible combinations of participants based on the distri-
bution between steps and software projects. Therefore, all participants were
divided into four mutually exclusive arranges to promote a fair comparison.
Table 4.2 presents the cross design for the four arranges. The agglomeration
group represents the group of participants that identified design problems us-
ing the agglomerations, and the NA-smells group comprises the participants
that identified design problems using the list of non-agglomerated smells.

The study was composed of a set of six activities distributed into three
phases, as represented in Figure 4.2 described as follows.

Activity 1: Apply the questionnaire for subject characteriza-
tion. The subject characterization questionnaire is composed of questions to
characterize each participant, including academic degree, professional experi-

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 4. Investigating the Support of Code Smells to Identify Design

Problems 93

Table 4.2: Combinations of Groups, Projects and Steps
Step 1 Step 2

Arrange Group Project Group Project
1 Agglomeration Project 1 NA-smells Project 2
2 Agglomeration Project 2 NA-smells Project 1
3 NA-smells Project 1 Agglomeration Project 2
4 NA-smells Project 2 Agglomeration Project 1

NA-smells = Non-agglomerated code smells

ence with Java programming, background on code smells and Eclipse IDE.
This questionnaire is available at Appendix B.

Activity 2: Training Session. After defining the order of execution of
each step, the next step was to provide a training session for the participants.
The main objective of the training session was to ensure a common knowledge
base for all participants, which was required to understand and properly exe-
cute the experimental tasks. Thus, they received training about basic concepts
and terminologies. This training was given only once for each participant in-
dividually before the first steps of the experiment. The training consisted of
a 15-minute presentation that covered the following topics: software design,
code smells, and design problems. The training session took approximately
15 minutes, and the participants could make any question throughout it. The
presentation is available at Appendix B.

After the training session, subjects received some artifacts that could be
used during the experiment (Section 2.3). They received a list with a brief
description of the types of design problems presented in the training session.
They also received a list with the description of basic principles of object-
oriented programming and design. They received a document containing: (i) a
brief description of both project systems, and (ii) a very high-level description
of their design blueprint (Appendix B). We gave these documents because when
they have to conduct perfective maintenance tasks, they need to have some
minimal information about the systems to be maintained. The design blueprint
represented the high-level design in the view of the project managers, but it
was not detailed enough to support the identification of design problems. As it
often occurs in practice, the analysis of the source code is inevitably required
to identify a design problem.

Activity 3: System Introduction. We asked participants to read the
document containing the description of the project in which they would identify
design problems. They had 20 minutes to read the description and the design
blueprint of the system. Thus, they could start the identification with a certain
level of familiarity with the software project.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 4. Investigating the Support of Code Smells to Identify Design

Problems 94

Figure 4.2: Experimental Design

Activity 4: Understanding the Task. In this activity, we explained
how the participant could use the Organic tool to collect either the list of
agglomerations or the list of (non-agglomerated) code smells. As the Organic
tool was developed as an Eclipse plug-in, we explained each one of the sections
displayed in the Eclipse IDE and that was related to the Organic tool. This
activity lasted approximately 10 minutes.

Activity 5: Identification of Design Problems. In this activity, the
participant had 45 minutes to identify design problems in the project. We em-
phasized to the participant the importance of achieving the key goal of finding
design problems. For each identified design problem, the participant was asked
to provide in a form (Appendix B) the following information: (i) short descrip-
tion of the problem, (ii) possible consequences caused by the problem, (iii)
classes, methods or packages realizing the design problem in the source code,
and (iv) the category (or categories) of agglomerations (Section 4.1.1) that
helped him to identify the design problems. If the participant was identifying
design problems with the list of non-agglomerated smells, he needed to provide
almost the same information; the di�erence was that instead of providing the
agglomeration (and its category), he needed to provide the code smells that

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 4. Investigating the Support of Code Smells to Identify Design

Problems 95

he used to identify the design problem. For conducting this task, participants
were instructed to use only the information provided by Organic in the current
phase. This means that neither the non-agglomerated group had access to the
list of agglomerations, nor the agglomeration group had access to the list of
non-agglomerated smells. Nevertheless, both the project source code and the
information provided by Organic (agglomerated or non-agglomerated smells)
could be freely explored and analyzed during the design problem identification.

Activity 6: Post-experiment Questionnaire. In this activity, the
participant received a questionnaire to provide feedback. This questionnaire
provides a list of questions, which enables the participant to expose his opinion
on the identification of design problems. This questionnaire is available at
Appendix B. More details about this activity are provided in Section 4.2.6.
After the sixth activity had been completed, we asked the same participant to
repeat all tasks in the second phase.

4.2.3
Software Projects and Participant Selection

In order to conduct the experiment, we selected two software systems in
which developers had to identify design problems. We selected two programs
that represent components of the Apache OODT project (96): Push Pull and
Workflow Manager. We selected subsystems of the OODT project since it is a
large heterogeneous system; then, we could choose subsystems based on their
diversity. Also, the Apache OODT project has a well-defined set of design
problems previously identified by developers who actually implemented the
systems (Section 4.2.5); thus, avoiding the introduction of false positive design
problems in the ground truth. In addition, the OODT project was developed for
NASA, used in other studies (41, 52, 53, 38, 47) and with a global community
involved in its development. A brief description of the project systems are
presented as follows:

– Push Pull: it is the OODT component responsible for downloading
remote content (pull) or accepting the delivery of remote content (push)
to a local staging area.

– Workflow Manager: it is a component that is part of the OODT client-
server system. It is responsible for describing, executing, and monitoring
workflows.

After choosing the projects, our next step was to recruit developers for
the experiment. Thus, we sent a characterization questionnaire for a group of
developers of our network. Their answers were analyzed to determine which

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 4. Investigating the Support of Code Smells to Identify Design

Problems 96

Table 4.3: Knowledge Classification
Classification Description
None I have never heard about it
Minimum I have heard about it, but I do not use it
Basic I have a general understanding, but almost never use it

Intermediary I have a good understanding, and use basic features
sometimes

Advanced I have a deep understanding, and often use advanced
features

Expert I am a specialist in this topic, and use many features
almost every day

Table 4.4: Characterization of the Participants
KnowledgeId Experience

in years
Education

Level Java Code Smells Eclipse
P1 5 PhD Advanced Advanced Advanced
P2 6 Graduate Advanced Basic Advanced
P3 8 Master Advanced Intermediary Advanced
P4 4 Graduate Intermediary Basic Basic
P5 5 Master Advanced Intermediary Intermediary
P6 5 Graduate Intermediary Intermediary Intermediary
P7 12 Graduate Expert Advanced Expert
P8 5 Graduate Advanced Advanced Advanced
P9 10 Graduate Intermediary Intermediary Intermediary
P10 4 PhD Advanced Intermediary Advanced
P11 5 PhD Advanced Intermediary Advanced

of them were eligible to participate in the study based on the following
requirements:

R1. Four years or more of experience with software development and mainte-
nance. We have chosen four years because this is the average time used by
companies such as Yahoo (99) and Twitter (100) to classify a developer
as experienced.

R2. No previous knowledge about Push Pull and Workflow Manager.

R3. At least basic knowledge about code smells.

R4. At least intermediary knowledge of Java programming and Eclipse IDE.

We defined the knowledge of each topic based on a scale composed of
five levels: none, minimum, basic, intermediary, advanced and expert. Table 4.3
shows the description of such classification. We included in the questionnaire
the same description of each level, allowing the subjects to have a similar
interpretation of the answers. Table 4.4 summarizes the characteristics of each
developer selected for the experiment.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 4. Investigating the Support of Code Smells to Identify Design

Problems 97

4.2.4
Quantitative Analysis Procedures

In order to answer our research questions, we asked the experiment
participants to analyze two systems with the aim of identifying design problems
as described above. For each system, we analyzed the precision of participants
regarding the identification of design problems. The precision of participants
was measured based on true positives (TP) and false positives (FP). In this
context, a true positive is a candidate of design problem, as indicated by the
participant, that was confirmed by a ground truth analysis. On the other hand,
a false positive is a candidate of design problem that was not confirmed in the
ground truth analysis. Thus, the precision is calculated using the following
formula:

Precision = TP

TP + FP
(4-1)

Precision is an important aspect of the identification task. Through the
correct identification of design problems, developers are able to optimize their
work by solving problems that really impact the system design. On the other
hand, the lack of precision would lead software development teams to spend
time and budget with irrelevant tasks. For example, in companies adept of code
review practices (97), the lack of precision can lead developers to waste time on
refactoring tasks that do not contribute to system maintainability. The precise
identification of design problems is also important in open source projects.
For instance, the contributions of eventual collaborators via pull requests are
often rejected by core developers due to the presence of design problems (19).
Therefore, in this case, a lack of precision could lead core developers to reject
relevant contributions due to “false design problems”.

In this study, we did not measure recall because of the high number of
design problems in the analyzed systems. Together with the system’s original
developers, we created a ground truth of design problems (Section 4.2.5) with
more than 150 instances of design problems. Hence, it would be impracticable
for participants to find all them due to the time constraints in the study
(45 minutes). Consequently, they were expected to reach a low recall value.
Therefore, we focused on precision.

4.2.5
Ground Truth Analysis

We had to validate the identified design problems as true positives or false
positives for each one of the analyzed systems. However, we could not argue
that a design problem was a “true design problem” or not since we were not

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 4. Investigating the Support of Code Smells to Identify Design

Problems 98

involved with the design of each system. Thus, we relied on the knowledge of the
systems’ original designers and developers to help us in validating the design
problems. We certified they were the people who had the deepest knowledge
of the design of the investigated projects. We highlight these designers and
developers were not subjects of this experiment.

We performed two steps to incrementally develop the ground truth. First,
we asked original OODT designers and developers to provide us a list of
design problems a�ecting the systems. They listed the problems and explained
the relevance of each one through a questionnaire (Appendix B). They also
described which code elements were contributing to the realization of each
design problem. Second, we identified some design problems using a suite of
design recovery tools (101). We asked developers of the systems to validate
and combine our additional design problems with their list. The procedure
for the additional identification was the following: (i) an initial list of design
problems was identified using a method presented in (53), (ii) the developers
had to confirm, refute or expand the list, (iii) the developers provided a
brief explanation of the relevance of each design problem, and (iv) when
we suspected there was still inaccuracies in the list of design problems, we
discussed with them. In the end, we had the ground truth of design problems
validated by the original designers and developers.

4.2.6
Qualitative Analysis Procedures

The experiment with professional developers aimed to help us to assess
the precision of developers in the identification of design problems with ag-
glomerations. However, we also need to investigate whether there is room for
improvements regarding the use of code smells. Therefore, we conducted a qual-
itative analysis to investigate what should be improved from the perspective
of professional software developers. Besides identifying possible improvements,
this analysis also helped us to understand if code smells su�ce to help devel-
opers to identify design problems.

As described in Section 4.2.2, we asked the participants to provide
us feedback about the identification of design problems. They answered a
post-experiment questionnaire (Appendix B), and we used their answers
to conduct a qualitative analysis. The objective of the questionnaire was
to gather participant’s opinion regarding (i) the (dis)advantages of using
the agglomerations or code smells to identify design problems, (ii) whether
the provided information could be easily understood, (iii) which types of
information were fundamental to identify design problems, (iv) what he

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 4. Investigating the Support of Code Smells to Identify Design

Problems 99

believes that should be done to improve the identification of design problems,
(v) what he thought about the use of the code smells for the identification
of design problems, (vi) how the visualization mechanism provided by the
Organic tool a�ected his performance, and (vii) which types of code smells
and categories of agglomerations were the most useful for identifying design
problems. The results of this questionnaire helped us to answer research
question SRQ2.

By applying the questionnaire, we were able to gather the opinion
of developers regarding the use of code smell agglomerations. However, as
reported by (57), what is reported in the questionnaire may not be what
actually happens in practice. Therefore, to obtain more reliable results, we also
observed the participants of our experiment during the identification of design
problems. This observation was performed during the experiment and also in
an analysis after the experiment, through video and audio recorded during
the experiment. This analysis allowed us to look at code smell agglomerations
from the standpoint of professional software developers. It is important to note
that the observation of participants during the experiment does not replace nor
invalidate the questionnaire responses. In fact, the combination of observations
and responses helped us to obtain a deeper understanding and interpretation
on the results observed in the experiment.

4.3
Results and Analysis

The results of this study are organized in three sub-sections. In Sec-
tion 4.3.1, we present the results of our quantitative analysis regarding research
question SRQ1. In Section 4.3.2, we provide the results of our qualitative anal-
ysis to answer research question SRQ2. In Section 4.3.3, we use the results
of the quantitative and qualitative analyses to discuss our broader research
question RQ2. We also discuss if code smells su�ce in supporting developers
during the design problem identification.

4.3.1
Does the Use of Agglomerations Improve Precision?

As described in Section 4.2.4, we conducted a quantitative analysis to
answer our first specific research question (Does the use of agglomerations
improve the precision of developers in identifying design problems?). Table 4.5
presents the precision results for each participant (rows). The first column (ID)
shows the identification number of each participant. The second column (Ag-
glomeration Group) presents the true positives (TP), false positives (FP) and

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 4. Investigating the Support of Code Smells to Identify Design

Problems 100

Table 4.5: Developers’ Precision
Agglomeration Group NA-Smells GroupId TP FP Precision TP FP Precision

1 2 1 66.67% 1 1 50%
2 0 3 0% 1 4 20%
3 3 2 60% 1 4 20%
4 2 0 100% 1 3 25%
5 4 0 100% 3 1 75%
6 1 0 100% 1 0 100%
7 1 1 50% 1 1 50%
8 3 0 100% 3 0 100%
9 0 1 0% 0 6 0%
10 0 0 - 1 1 50%
11 0 1 0% 0 0 -
All 16 9 64% 13 21 38.24%

precision for the participants when they were provided with agglomerations
to identify design problems. Similarly, the third column (NA-smells Group)
presents the true positives (TP), false positives (FP) and precision for the
participants when they were provided with a list of non-agglomerated code
smells.

Developers identified a few more true positives using agglom-
erations. We can see in Table 4.5 that the developers identified a few more
design problems (TPs) when they were in the agglomeration group (16 TP
design problems) than when they were in the NA-smells group (13 TP de-
sign problems). As far as the per-subject analysis is concerned, four developers
(light gray rows) identified more true positives when they used agglomerations
than when they used the list of non-agglomerated code smells in the NA-smells
group. The use of agglomerations outperformed the use of smells in these four
cases. On the other hand, two participants (2, 10) did not identify any true
positive using the agglomerations, but they identified a true positive each in
the NA-smells group. The rest of the participants (6, 7, 8, 9 and 11) identified
the same number of true positives (5 TP design problems) regardless of the
group.

Upon qualitative analysis, we were able to reveal the main reason why the
four developers in the light gray rows identified more true positive design prob-
lems in the agglomeration group than in the NA-smells group. As illustrated
in the example in Figure 4.1 (Section 4.1.2), these four participants system-
atically used each agglomeration’s smell as an indicator of the presence of a
design problem. They analyzed each one of the code smells as a complemen-
tary symptom of the presence of a design problem, which gave them confidence

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 4. Investigating the Support of Code Smells to Identify Design

Problems 101

to confirm the occurrence of the design problem. Surprisingly, we noticed the
same behavior for the participant 8 even being in the NA-smells group. He
was capable of agglomerating the code smells on his own, starting from the
individual smells given in the list of non-agglomerated smells. Then, he used
such agglomerations to identify design problems in the NA-smells group. This
is the reason why he reached a precision value of 100% in both groups.

Agglomerations help developers to avoid false positives. In
general, developers identified less false positives when they used agglomerations
(9 FP design problems) than when they used the list of non-agglomerated
smells (21 FP design problems). With the exception of participant 11, all
others identified either fewer or an equal number of false positives when they
were in the agglomeration group than when they were in the NA-smells group.
When we analyze the NA-smells group, we can notice that more than half of the
identified design problems are false positives (61,76%) while the agglomeration
group identified only 36% of false positives.

After observing how developers identify design problems in the NA-
smells group, we noticed that they did not go further with the analysis of
the elements. Usually, a developer needs to analyze other classes in order to
gather more information that can potentially indicate a design problem as
discussed in Section 4.1.2. When the participants used the agglomerations, they
analyzed multiple elements because they analyzed each code smell within the
agglomeration even when the smells were in di�erent elements. This behavior
did not happen when participants were in the NA-smells group. In most of the
cases, the participants in the NA-smells group analyzed only one code smell,
which increased the likelihood of reporting false positives. Then, they reported
a design problem in the class due to the presence of one smell only. However,
some code smells are not related to any design problem; thus, the developer
can report a false positive if he mistakenly considers a smell that is not related
to a design problem. That explains why developers in the NA-smells group
found so many false positives. As developers tend to look at all agglomeration’
smells before reporting a design problem, the likelihood of reporting a false
positive decreases, even when there is a code smell that is not related to a
design problem.

Agglomerations improve the precision. In this study, participants
achieved higher precision (64%) when they used agglomerations than when
they used code smells (38,24%). Besides calculating the precision for the
participants, we also used a statistical test to verify if there is a statistically
significant di�erence between the two groups – i.e., agglomerations and NA-
Smells. Firstly, we applied the Shapiro-Wilk normality test to verify whether

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 4. Investigating the Support of Code Smells to Identify Design

Problems 102

the precision data follows a normal distribution. This test resulted in p-values
of 0.04133 and 0.5148 for the agglomeration group and the NA-smells group,
respectively. Thus, it is not possible to claim that our sample follows a normal
distribution. Based on this result, we opted for the Wilcoxon Rank Sum Test.
The Wilcoxon test revealed a p-value of 0.3737 (with a confidence level of 95%)
for our population. This means that the di�erence between the two groups is
not statistically significant.

We cannot claim a statistical significance in our results due to the sample
size of this study. However, someone could expect that participants using
agglomerations would significantly outperform the NA-smells group. As a
matter of fact, we noticed some factors that explain, at least partially, why
participants did not find many more design problems when they were in the
agglomeration group than when they were in the NA-smells group. These
factors are presented in the next subsection, and they are useful to discover
improvements for the identification of design problem with the analysis of
smells.

4.3.2
How to Improve Design Problem Identification?

This section presents the answer to our second specific research question
(How can the identification of design problems with code smells be improved?).
We conducted a qualitative analysis to answer this question. As described in
Section 4.2.6, this analysis was mainly based on the analysis of responses to
our post-experiment questionnaire.

Where to start? As discussed in the previous section, the participants
identified few more true positives using agglomerations. Someone could expect
that all developers using agglomerations would significantly outperform the
control group. However, we observed that participants spent much more time
analyzing the agglomerations than analyzing the non-agglomerated smells.
That happened because they analyzed each code smell in the agglomeration, as
previously explained in Section 4.3.1. Furthermore, sometimes the participants
analyzed agglomerations that were not related to any design problem. That is
another factor that explains the almost equal number of true positives between
both groups.

Unfortunately, almost the participants analyzed irrelevant agglomera-
tions i.e., agglomerations that do not lead to a design problem. Participants
6, 9, 10 and 11 were the ones that su�ered the most from the analysis of ir-
relevant agglomerations. Since these four participants faced such issue, they
suggested in our post-experiment questionnaire that the Organic tool should

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 4. Investigating the Support of Code Smells to Identify Design

Problems 103

provide means to prioritize relevant agglomerations and code smells. Hence,
they would not spend time with the analysis of irrelevant code smells. This
issue helps us to explain why they fell short of identifying design problems
through the analysis of agglomerations.

Need for prioritizing smells. The aforementioned need for prioriti-
zation shows that the time and e�ort required to identify design problems is
a key factor for developers; thus, prioritization should be taken into consid-
eration. As a matter of fact, the prioritization of smelly elements has been
the focus of recent research (102, 103, 46). For example, in (46), the authors
proposed and assessed prioritization criteria for smell agglomerations. As they
have observed, the prioritized list of agglomerations would help developers to
progressively analyze the agglomerations that have more chance to represent
design problems, discarding the irrelevant ones. This would be especially useful
in large legacy systems, in which thousands of agglomerations may be detected.
Nevertheless, there is no prioritization criterion that is e�ective for any system
(46).

Based on our qualitative analysis, we noticed that existing criteria
for prioritization should select agglomerations that are cohesive. A cohesive
agglomeration in our context is an agglomeration in which all code smells are
related to the same design problem. If there is one code smell that is not related
to the design problem, such smell may direct the developer away from the
design problem in the worst case. In the best case, the developer will spend
time analyzing a code smell that is useless to identify the design problem.
This fact suggests that developers need accurate algorithms to find cohesive
agglomerations and to discard the less cohesive ones. However, prioritization
algorithms based on existing criteria are unable to do this as far we are
concerned. Consequently, the prioritization of smells and agglomerations still
poses a challenging research topic.

Analysis of multiple code smells is challenging. Besides the prior-
itization issue, participants also su�ered to analyze multiple code smells. This
di�culty was even worse when developers had to identify design problems us-
ing agglomerations. Some developers had to analyze agglomerations a�ecting
larger program scopes, i.e., agglomerations crosscutting implementation pack-
ages or class hierarchies. We noticed that a large agglomeration requires that
developers reason about a wide range of smells scattered over di�erent ele-
ments. As they tend to use each code smell as a symptom of design problem,
they have di�culties to correlate the multiple symptoms of an agglomeration.
This is a challenging task because the higher the number of smells involved
in an agglomeration, the greater is the number of code elements that must

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 4. Investigating the Support of Code Smells to Identify Design

Problems 104

be analyzed. Consequently, developers will have more code to analyze, which
increases the complexity of the analysis.

Need for proper visualization mechanisms. In order to alleviate the
analysis of code smells, some participants suggested the adoption of visualiza-
tion mechanisms for smells and agglomerations. For instance, participant num-
ber eight suggested the visualization of agglomerations through a graph-based
representation (104). He mentioned that such visualization would provide an
abstract and general view of each agglomeration. The main advantage of this
form of visualization is that the more abstract a representation is, the fewer
details will be displayed for analysis. Consequently, the developers would not
be overloaded with details. At the same time, an abstract representation such
as the graph-based visualization would help developers to see the full extent of
an agglomeration (i.e., all the code elements involved in the agglomeration).
After providing an abstract view, a visualization mechanism could allow de-
velopers to progressively explore the agglomeration details such as the types of
smells, location of stinky elements and relationships among smells. Such details
could be displayed in the graph itself, in the source code, or in complementary
views.

Identification of the design problem type. The di�culty in analyz-
ing code smells also raised the need for recommendations on which types of
design problem each smell or agglomeration is most likely to indicate. These
recommendations would reduce the e�ort required to decide whether the ele-
ments are a�ected by design problems or not. For example, the agglomeration
in Figure 4.1 occurs in classes of the same hierarchy that are implementing
the WorkflowRepository interface (Section 4.1.2). All code elements in the ag-
glomerations presented the same type of smell, which was the Feature Envy.
The occurrence of multiple Feature Envies in a unique hierarchy, suggests
that there is a problem in the interface, which is spreading through all classes
of the hierarchy. Therefore, to help developers to decide whether there is a
problem or not, heuristics could suggest that this hierarchical agglomeration
may indicate problems like Ambiguous Interface (7) and Fat Interface (13), for
example.

In Section 2.3, we presented some smell patterns that can be used to
identify design problems. Those patterns include code smells that are likely
to indicate a design problem if they appear in code elements. Suggestions
of design problem types based on those patterns can help developers to fo-
cus their attention in specific characteristics of the suggested design problems
(Section 2.2). However, this kind of recommendation algorithm requires multi-
ple case studies to understand how and when each form of smell pattern may

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 4. Investigating the Support of Code Smells to Identify Design

Problems 105

represent specific types of design problem. As reported in a previous study
(82), this is a challenging research topic.

4.3.3
Do Code Smells Su�ce to Support Design Problem Identification?

Based on the results for our two specific research questions, we can
answer the broader research question (Are developers able to use code smells
to identify design problems?). The data analysis showed that developers were
able to find design problems using both agglomerations and non-agglomerated
smells. Not developers are only able to use code smells but they also find
most design problems when they use code smell agglomerations. We found
that agglomerations helped developers to identify more design problems and
to avoid false positives. When we analyzed the questionnaire answers and how
the developers identified design problems, we noticed that developers tended
to have a higher confidence to identify the occurrence of some design problems
when using agglomerations. That happens because developers tend to analyze
each agglomeration’s smell before reporting a design problem. Consequently,
the likelihood of reporting false positive decreases. In summary, our results
indicate that developers are indeed able to use code smells in practice.

However, we noticed that code smells, either as agglomerations or not,
still do not su�ce to help developers to identify design problems. This result is
most evident when we compare participants who used agglomerations with the
participants who used the non-agglomerated smells. The use of agglomerations
outperformed the use of smells in only four cases (Table 4.5). In the other five
cases, developers identified the same number of true positives when they used
agglomerations and non-agglomerated code smells. To make matters worse,
in two cases, the developers did not identify any true positive using the
agglomerations, but they identified a true positive each when they used non-
agglomerated smells. As mentioned in the previous subsection, there are some
explanations for these results. Even so, these results indicate that code smells
do not su�ce to help developers to identify design problems, at least not in all
cases.

Indeed, the results of our study encourage the use of smell agglomerations
to identify design problems. However, some issues should be addressed before
developers can explore smell agglomerations in a time-e�ective manner. For
instance, there is a need to provide mechanisms for better prioritizing and
visualizing code smells and agglomerations. Although we have found some
room for improvement, we cannot guarantee that, after addressing these
improvements, developers will be able to e�ectively identify design problems

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 4. Investigating the Support of Code Smells to Identify Design

Problems 106

when using code smells. Maybe, we have been expecting too much from code
smells. As we found in Chapter 3, code smells are not key symptoms to
identify design problems in some scenarios, which made us wonder what other
symptoms developers use to identify design problems in these scenarios. When
we take such result into consideration and combine it with the results we found
here, we can conclude that code smells do not su�ce in supporting developers
during the identification of code smells. Since code smells do not su�ce to help
developers to find design problems, we need to investigate other symptoms that
developers use in addition to code smells.

In this context, we can ask developers to use other symptoms to identify
design problems, and then to investigate whether these symptoms su�ce
to help them during the design problem identification. In other words, we
can conduct the same type of investigation that we did with code smells.
Unfortunately, this research strategy may not be the most suitable for our
general goal. We know that code smells are used in practice (29), however we
do not know what other symptoms developers use in practice, which does not
allow us to conduct the same research strategy that we did with code smells.
Therefore, if we intend to understand how developers identify design problems
in practice, the most reasonable research is to investigate what else developers
use to identify design problems. In light of this investigation, we already found
that code smells do not su�ce to help developers to identify design problems.
Therefore, our next study should be towards understanding what are the other
symptoms that developers use in practice and how they use them to identify
design problems.

4.4
Related Work

We found few studies that investigated the detection of agglomerations
(78, 103). In this context, Vidal, Marcos and Díaz-Pace (103) presented a tool
for detecting code smells and agglomerations of a (Java-based) system and
ranking them according to di�erent criteria (103). The main benefit of using
this tool is that developers can configure and extend the tool by providing dif-
ferent strategies to identify and rank the smells and agglomerations. However,
this tool represents agglomerations without showing the relations that could
exist between code smells.

Regarding detection and visualization of non-agglomerated smells, Van
Emden and Moonen (105) presented a tool that detects and visualizes code
smells in source code, displays the code structure as a graph and maps code
smells onto the attributes of that graph. This tool can be problematic for

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 4. Investigating the Support of Code Smells to Identify Design

Problems 107

several reasons. The visualization is built assuming that code smells are
concentrated in a particular region of the code, and that software metrics
will point developers there. This assumption does not always hold; many
code smells require understanding the relationships between many interacting
code elements. These relationships cannot be represented by a simple mapping
between code structure and the attributes of a graph.

Other studies (52, 54) have investigated the e�ects of code smells on
software design. For instance, Yamashita et al. (54) studied collocated smells
– code smells that interact in the same source code file –, and coupled smells –
code smells that interact across di�erent source code files. Regarding software
design, they observed that limiting the analysis to collocated smells would
reduce their capability to reveal design problems, as coupled smells may reveal
critical design problems.

We also found studies that have investigated the use of information other
than code smells to identify design problems (44, 45). In this case, Mo et al.
(44) proposed and evaluated the combination of structural, history and design
information to identify potential design problems. Xiao et al. (45) introduced
an approach that uses a history coupling probability matrix to identify and
quantify design problems. However, one disadvantage of such studies is they
rely on design information, which may not exist for many software systems. In
addition, they have not evaluated their work from the perspective of software
developers.

Based on these related studies, we observed that they did not investigate
whether in practice developers are able to use code smells. In fact, related
works propose techniques for supporting the detection and visualization of code
smells (105, 52, 53, 38, 28, 77, 78, 47, 106, 103, 46, 107). Consequently, we did
not know heretofore whether developers could use code smells to identify design
problems, nor whether smells su�ce to help them during the identification.
Therefore, our research covers this gap by investigating whether smells su�ce
to help developers to identify design problems in practice, which they do not.
Additionally, our results indicate the need to observe in practice the symptoms
that developers use in addition to code smells.

4.5
Threats to Validity

This section presents some threats that could limit the validity of our
main findings. For each threat, we present the actions taken to mitigate their
impact on the research results.

The first threat to validity is related to the number of participants in the

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 4. Investigating the Support of Code Smells to Identify Design

Problems 108

study. We have selected a sample of 11 participants, which may not be enough
to achieve conclusive results. However, instead of drawing conclusions based
on only the quantitative results, we conducted a qualitative analysis as well. In
addition to conducting a qualitative analysis, we defined a set of requirements
for selecting developers suitable for the study. Also, we conducted training
sessions with all participants. Such sections aimed to resolve any gaps in the
participants’ knowledge and any terminology conflicts, allowing us to increase
our confidence in the results.

The second threat is related to possible misunderstandings during the
study. As we asked developers to conduct a specific software engineering task
and to answer a questionnaire, they could have conducted the study di�erently
from what we asked. To mitigate this threat, we assisted the participants during
the entire study, and we helped them to understand the experiment tasks and
the questionnaire. We highlighted that our help was limited to only clarifying
the study in order to avoid some bias on our results.

Finally, there are two threats concerning the selected projects. The first
one is about the di�culty of the participants in understanding the source code
used in the experimental tasks. This di�culty appears due to the complexity of
the source code and time constraints to complete each task. The second threat
is related to the possibility of one software project being easier to identify
design problem than the other. We minimized the first threat by running
a pilot-experiment to define a experimental time reasonable to perform the
tasks. To minimize the second threat, we selected projects with similar size,
complexity, and number of known design problems. We also have trained all
participants about each project. In addition, our results suggest no variation
in di�culty to identify design problems in the two projects.

4.6
Summary

This chapter presented the second study to investigate whether develop-
ers are able to identify design problems based on code smells. This study is also
the second one to understand the role that code smells play to help developers
to identify design problems. We assessed whether developers are e�ective in
revealing design problems when they reason about code smells (Section 4.2).
We conducted this investigation because recent studies have shown that design
problems are likely to be related to code smells. Unfortunately, these studies
did not evaluate whether developers can identify design problems using code
smells. Thus, we conducted a multi-method study with 11 developers. In the
study, we asked them to identify design problems using code smells and ag-

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 4. Investigating the Support of Code Smells to Identify Design

Problems 109

glomerations. An agglomeration is a group of code smells that are somehow
related to each other in the source code. After the experiment, we compared
their results using agglomerations with the results of when they used the non-
agglomerated smells to identify design problems. This comparison allowed us
to better understand whether code smells su�ce to help developers to identify
design problems

The data analysis showed that developers find most design problems
when they use code smell agglomerations to identify design problems. In
fact, we noticed that agglomerations help developers to avoid false positives.
Consequently, we found that agglomerations may improve the precision of
developers in identifying design problems. In our qualitative analysis, we found
that developers tended to have higher confidence to identify the occurrence
of some design problems when using agglomerations. That happens because
some developers analyzed each agglomeration’s smell before reporting a design
problem. Consequently, the likelihood of reporting false positive decreases. This
behavior did not happen when participants used non-agglomerated code smells.
In most of the cases, they analyzed only one code smell, which increased the
likelihood of reporting false positives.

Our results also indicate that developers need better heuristics to support
the analysis of code smells and agglomerations. For instance, the developers
need to prioritize smells and agglomerations that are most likely to indicate
a design problem. Prioritization algorithms are required because the analysis
of smells is di�cult and time-consuming. Thus, developers should focus on
those that are most likely to indicate design problems. In addition, we also
noticed that developers need proper visualization mechanisms to support the
analyses of hierarchies and packages. Additionally, some agglomerations are
widely spread in the source code; a single agglomeration may contain code
smells located in multiple class hierarchies. Thus, developers have a large
program scope to analyze. They may face di�culty to visualize how the code
smells are related in the agglomeration. A graph-based visualization can help
developers to figure out how the code smells are related to each other in the
agglomeration.

On the one hand, the results of our study encourage the use of smell
agglomerations to identify design problems. On the other hand, the results
indicate the need to investigate other symptoms. We found that code smells do
not su�ce to help developers during the identification of design problems. Since
smells may not be the only type of symptom that developers use in practice, we
should investigate whether developers can identify design problems using other
symptoms. However, instead of proposing developers to use other symptoms,

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 4. Investigating the Support of Code Smells to Identify Design

Problems 110

we should investigate what else they use to identify design problems. Thus, our
next step is to investigate in practice how developers identify design problems.
We expect from this investigation to find the symptoms that developers use
and how they use these symptoms during the design problem identification.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

5
Investigating How Developers Identify Design Problems

In the previous chapter, we investigated whether developers can use code
smells to identify design problems. For such investigation, we asked them to
identify design problems in two software systems. In that study, we were inter-
ested in finding out if code smells su�ce to help developers to identify design
problems. For that investigation, we compared developers using code smells
with developers using agglomerations. Our results indicate that agglomera-
tions improve developers’ precision in identifying design problems. Despite the
increase in precision, we noticed that agglomerations, and consequently code
smells, do not su�ce to help developers during design problem identification.

Discussions in our two previous studies (Chapters 3 and 4) shed light on
how developers identify design problems with the support of code smells. For
instance, we found that developers can reason about multiple smells to identify
a design problem. Even though smells do not su�ce to support them, the
analysis of multiple smells gave developers confidence to confirm the occurrence
of the design problem, which may help to explain why they focus their e�ort
on refactoring elements with multiple smells (Section 3.4.1). Indeed, we found
that when developers reason about multiple smells, they analyzed each smell as
a complementary symptom of the presence of a design problem (Section 4.3.1).
Hence, the more symptoms (smells) a code element has, the more confident
developers were regarding the existence of a design problem. These findings
led us to wonder whether the analysis of multiple symptoms helps developers
in design problem identification. However, we need to find out first what
other symptoms developers use in addition to code smells. To identify these
other symptoms, we need to observe developers identifying design problems
in their own systems. Such observation will help us to better understand the
phenomenon, which is the design problem identification.

Unfortunately, there is limited understanding about how developers
identify design problems in practice, in particular when the source code is
the only artifact available in a project. Existing studies tend to focus on
proposing solutions for assisting developers in identifying design problems
(26, 52, 53, 38, 28, 47, 27, 46, 56, 45). However, such proposed solutions may
be misaligned with how developers identify design problems in practice. For

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 5. Investigating How Developers Identify Design Problems 112

instance, most of these studies make oversimplified assumptions about the
process of identifying design problems. They consider that developers would
rely on a single type of symptom (e.g., either code smells (53, 28, 47) or design
principle violations (56, 45)) to infer the occurrence of a design problem.
However, this assumption might not hold in real project settings, especially
after we found that code smells do not su�ce to help developers to identify
design problems. Thus, it is very likely that developers use other symptoms
in addition to code smells. In summary, we know little about how developers
identify, in practice, design problems in source code.

To provide such necessary understanding, in this chapter we investigate
how developers identify design problems in source code. To do so, we conducted
a multi-trial industrial experiment with professional software developers from
five di�erent companies, where they had to identify design problems in their
systems under development. In the experiment, we captured data on their
behaviour by filming the environment, recording audio and capturing their
computer screens on video. These data allowed us to conduct an in-depth
qualitative analysis based on Grounded Theory (60). As a result, we have
built a theory of design problem identification.

According to Stol and Fitzgerald, nascent research areas typically take
the research-then-theory approach, whereas more mature areas rely on (and
refine) theories to further advance the field (108). Aligned with this statement,
the theory presented here o�ers insightful propositions and explanations on
how design problems are identified, which can serve as a basis to improve the
state-of-art. For example, while most studies address only one type of design
problem symptom, the theory reveals that, in practice, developers rely on a
heterogeneous set of symptoms. Thus, previous studies are misaligned not only
for assuming that developers will use a single, dominant type of symptom, but
also for not considering how they use these symptoms. Based on the theory,
researchers can build solutions most suitable to help developers. For instance,
we identified cases when developers consider a symptom useful to identify
design problems. Thus, researchers can use this knowledge to build tools that
prioritize helpful symptoms for developers.

The remainder of this chapter is organized as follows. Section 5.1 presents
our research design. Section 5.2 summarizes the results in which our theory
is grounded. Section 5.3 complements the theory with additional propositions
concerning the developer. Section 5.4 presents how the theory can be used
to drive research on identifying design problems. Section 5.5 and 5.6 present
related work and threats to validity, respectively. Section 5.7 summarizes this
chapter.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 5. Investigating How Developers Identify Design Problems 113

5.1
Research Design

This section presents the design of our study. Section 5.1.1 presents our
research questions. Section 5.1.2 discusses the process to select systems and
developers to participate in the study. Section 5.1.3 describes the experiment
to answer our research questions. Section 5.1.4 presents the data that we
provided for developers during the experiment. Finally, Section 5.1.5 describes
the procedure to collect and analyze the data.

5.1.1
Research Questions

Several researchers have proposed solutions to help developers during the
identification of design problems (26, 52, 53, 38, 28, 47, 27, 46, 45). However,
they do not focus on explaining how developers identify those design problems.
In general, the existing studies propose solutions that will help developers
to identify design problems. Despite their contribution, they do not clarify
“the mechanisms through which and the conditions under which [the cause-
e�ect relationship] holds” (98, p. 8). Therefore, the support they provide for
developers to identify design problems may be somewhat misaligned with
developers’ current practice.

We highlight that before proposing solutions that will help developers to
identify design problems, first, we need to understand how they conduct the
identification task in practice. By understanding this task, researchers will be
able to build mechanisms most suitable for helping developers during the iden-
tification of design problems. Therefore, we need to investigate how developers
analyze the source code in their quest for identifying design problems. Such
investigation is necessary since we know little about how developers actually
identify design problems in source code. Our knowledge is so limited that we
do not even know what symptoms developers use to identify design problems.
Indeed, one might expect that developers use other symptoms to identify de-
sign problems; especially after we found that code smells do not su�ce to help
developers to identify design problems (Chapters 3 and 4). Consequently, the
first step to understand how developers identify design problems is finding
what symptoms they use in practice, which leads us to the following research
question.

RQ3. What are the design problem symptoms that developers use
in practice?

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 5. Investigating How Developers Identify Design Problems 114

Answering this research question provides us with knowledge about
how developers identify design problems in practice. However, RQ1 does not
su�ce to shed light on the process of identifying design problems. In fact,
understanding a phenomenon like the identification of design problems requires
more investigation. For instance, we still need to investigate how developers
use and analyze these symptoms, what factors influence them during the
analysis, what activities occur during the design problem identification, and
the like. Such understanding can be provided by a theory with explanations
and understanding of concepts and factors that go beyond the mere observation
of a phenomena (109, 110, 111, 112). To build this theory, we need to answer
the following research question:

RQ4 How do developers identify design problems in practice?

By answering both research questions, we expect to determine and
understand the symptoms, activities and factors that influence how developers
identify design problems. To answer these questions, we conducted a multi-
trial controlled experiment in di�erent software companies. We then analyzed
the collected data and derived a theory using Grounded Theory (GT). Such
theory provides an overview, explanation and understanding on how developers
identify design problems in source code.

5.1.2
Software Systems and Developers’ Selection

We searched for software companies that could provide us with software
systems and developers to conduct the experiments. We defined the following
criteria to select the companies: experience of their developers, size in terms
of number of developers in a project, application domain of their projects,
and development process. We defined these criteria in order to achieve some
heterogeneity while selecting companies from our industrial collaboration
network, thereby balancing contextual diversity and convenience (113). Based
on these criteria, we chose the following five software companies from the North
and Northeast of Brazil:

– Company 1: The company is incubated at a northeastern university, to
which it provides the management of academic registrations.

– Company 2: The company deals with renting and selling print devices,
and it has a department specialized in software development.

– Company 3: The company develops technological solutions that vary
from vehicle tracking to management software for small businesses.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 5. Investigating How Developers Identify Design Problems 115

Table 5.1: Companies Description
Company Type Domain Programming

Language
Provided
Systems

1 Government University Administration Java S1
2 Private Software Factory Java S2
3 Private Software Factory Java S3

4 Private Industrial Automation Java, Android,
iOS

S4, S5,
S6

5 Government Government Administration Java S7, S8

– Company 4: The company provides software systems for industrial
automation, which vary from Java Desktop systems to Android and iOS
applications.

– Company 5: The company develops and maintains systems for the gov-
ernment administration of a state in the North of Brazil. The company
provided us with two systems.

Table 5.1 shows more details about the companies. The first column
indicates the company identification for the experiment. The second column
indicates if the company is private or from the government. The third column
shows the domain in which the company creates software systems. The fourth
column shows all the programming languages used in the company. The last
column indicates the systems that each company provided to be used in the
experiment. We asked the companies’ managers, some of whom were software
designers, to suggest specific systems that met the following criteria:

1. Systems in di�erent stages of design degradation;

2. Systems from di�erent domains and with di�erent sizes with respect to
the number of modules and developers;

3. Systems that were not in their initial versions;

4. Systems developed in Java.

The first and second criteria allowed us to select systems with a diversity
of design degradation and structure. The third criterion was to ensure that
the system would have design problems since the likelihood that a system
has design problems in their initial version is lower than when the system in
some versions later. The last criterion was to ensure the consistency among the
systems. As each selected company has to provide software systems, we selected
Java projects given the popularity of the Java programming language1. Thus,

1https://www.tiobe.com/tiobe-index/

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 5. Investigating How Developers Identify Design Problems 116

it would be easier to keep the consistency among the provided systems: all of
them implemented in the same programming language. The selected systems
are:

– S1 (71,327 LOC): It is responsible for handling academic registrations for
all undergraduate courses in the university. It was developed using the
Spring, JBoss Seam and Hibernate frameworks. It went into production
in the second half of 2010, and it is still in use today. It requires
maintenance tasks daily.

– S2 (11,729 LOC): It manages the company’s services. It tracks arrivals
and departures of print devices, and manages contract deals with the
clients. It also controls the replacement and reusability of compatible
machinery parts.

– S3 (9,666 LOC): It allows users to create personalized e-mails and
websites for their own company.

– S4 (72,683 LOC): It supports the management of registry o�ces for audit
and control from the Justice Court of Brazil.

– S5 (657,901 LOC): It is a computational solution for maintaining infor-
mation on the patients’ health status and their medical records.

– S6 (27,939 LOC): It is a system developed for keeping track of products
in a production line.

– S7 (475,644 LOC): It is a legacy system to process tax and to control
the entrance of products from a state in the North of Brazil.

– S8 (237,249 LOC): Developed for standardizing budget of a state in the
North of Brazil.

After the companies’ managers provided us with the systems, we asked
them to indicate developers familiar with each one and who could act as
subjects in the study. For conducting our study, the subjects were divided into
teams. Table 5.2 presents the subject characterization and the corresponding
teams. All teams are composed of two developers, except for T10, whose
company asked us to involve three developers.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 5. Investigating How Developers Identify Design Problems 117

Table 5.2: Characterization of the Developers
Team ID Experience (years) System Company

T1 D1 3 S1 1D2 5

T2 D3 13 S1 1D4 14

T3 D5 14 S1 1D6 6

T4 D7 7 S2 2D8 2

T5 D9 4 S2 2D10 4

T6 D11 10 S3 3D12 8

T7 D13 12 S4 4D14 13

T8 D15 4 S5 4D16 8

T9 D17 4 S6 4D18 10

T10
D19 7

S7 5D20 7
D21 9

T11 D22 12 S8 5D23 9

5.1.3
Experimental Tasks

The experiment comprised the following four activities: subjects charac-
terization, training, problem identification, and follow-up questionnaire.

Activity 1: Subjects characterization. We asked the developers to
fill out a questionnaire (Appendix C) to gather their information, including
educational level, professional experience with software development, Java
programming, and knowledge about design problems. Their responses allowed
us to understand their individual characteristics, helping us to identify any
gap in their knowledge or misunderstandings about main concepts used in the
study, and to prepare for the training activity.

Activity 2: Training. We conducted a training session with all the
developers about software design and design problems, with examples of
problems pertaining to di�erent categories. The following design problems were
included in the training session: Ambiguous Interface, Unwanted Dependency,
Component Overload, Cyclic Dependency, Scattered Concern, Fat Interface,
and Unused Abstraction (Section 2.2). We selected these design problems

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 5. Investigating How Developers Identify Design Problems 118

together with the project managers, who suspected that these represented
common cases of design problems in the selected projects. However, we made
it clear to the developers that they were also allowed to identify other types
of design problems with which they were already familiar. The 40-minute
training session was organized in two parts: a Powerpoint-based presentation;
and discussions and questions. The presentation used in the activity is available
in Appendix B.4.

Activity 3: Problem identification. We asked developers to identify
design problems in their software systems. They had 90 minutes to analyze
the source code to identify all the design problems they could find. At the
beginning of this activity, we asked them to explain aloud what they were
doing while we recorded the task on video. Thus, we could triangulate the
results from the questionnaire and the video recording to improve the data
analysis.

Activity 4: Follow-up questionnaire. Developers filled out a ques-
tionnaire about their perception of the task. We also asked them to indicate
whether each symptom was useful to identify a design problem. The question-
naire used in the activity is available in Appendix C. The answers were also
used to complement the qualitative analysis.

5.1.4
Provided Data

For the identification of design problems, developers need to locate symp-
toms of design problems directly on the source code, such as code smells (21).
Similar to what happens with code smells, other types of symptoms may man-
ifest in source code due to the presence of a design problem. Consequently,
many developers use tools to identify these symptoms. Thus, to make Activity
3 more realistic, we provided our subjects with a set of possible symptoms we
had detected in the code of the analyzed systems after running and manually
combining the output of some tools (114, 28, 78); simulating the use of tools,
but not limiting the developers to the output of a specific one.

However, we highlight that we did not know beforehand what symptoms
developers use in practice. In fact, we have a research question to address
this matter. Thus, the selection of symptoms that developers would receive
happened gradually, as we were noticing them using other symptoms. First,
we provided only the code smells, since we knew that developers can use
code smells to identify design problems. Additionally, code smells have been
discussed in the literature as a consistent indicator of design problems (53, 28,
47, 51, 27, 55, 29). They are also part of the developers routine (29). Therefore,

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 5. Investigating How Developers Identify Design Problems 119

code smells were the first type of symptoms that we provided to developers.
After running the experiment with some developers, we noticed that they
start to use other symptoms. Thus, we provided these other symptoms when
we ran the experiment with other developers. We discuss the symptoms
that developers used in practice in the context of our first research question
(Section 5.2.2).

We summarized and presented these symptoms to developers through a
web page based on SonarQube (114) (Appendix C). We provided a visualiza-
tion similar to SonarQube because it is a well-known platform for inspection of
software systems, and it was familiar to most subjects. Thus, we could reduce
the learning curve to how the symptoms are presented. The main di�erence of
our mechanism is that it presents all symptoms in a single page. It is notewor-
thy that, while SonarQube provides several pieces of information unrelated
to design problems, our mechanism provides only symptoms that may help
developers to identify design problems.

5.1.5
Data Collection and Analysis

We used di�erent instruments to collect data. The developers had to
answer characterization and follow-up questionnaires. They also had to write
any observation in a specific field at the web page in which we presented
the symptoms. They could write anything in the observation field, such as:
the name of a design problem a�ecting the elements; whether he agreed with
the suggested symptoms; or even comments about the code. They used either
the Eclipse or IntelliJ IDEs to analyze the source code, and they used the
browser to access the web page with the symptoms. We used the think-aloud
method (116), asking the developers to verbalize their thoughts during the
experiment. All their procedures were recorded on audio and video. We used
Techsmith’s Camtasia2 to record audio and screenshots of their computer. In
addition, a video camera was installed in the room to record the developers
during the study.

Figure 5.1 summarizes the process to collect and analyze data, which can
be divided into three phases. The two first phases concern to collect and analyze
data using Grounded Theory and the third phase concerns the representation
of the resulting theory. These phases are explained next.

2Camtasia is available at www.techsmith.com/camtasia.html

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 5. Investigating How Developers Identify Design Problems 120

Phase 1

Data Collection

Transcription

Open Coding

Axial Coding

D6: "The readability here is awful,
but there is no way to escape from
this (implementation). That is the
standard (implementation). (...)
indeed, it (the class) is not easy to
ready"

Raw Trasnscription

Examples of Open Coding

Code 1: developer mentions that the class
readability is awful

Code 2: developer mentions that there is no
way to escape from the analyzed
implementation

Experiment
Characterization and

Follow-up Questionnaires

Code 3: developer mentions that the
analyzed implementation is the standard
implementation

Code 4: developer accepts that the class is
hard to read

Examples of Axial Coding

Category 1: analysis of a non-
functional requirement

Category 2: explanation for the
existence of the symptom

Phase 2

Data Collection

Selective Coding

Determining
Theoretical Saturation

Phase 3

Writing up the

Theory

Experiment
Characterization and

Follow-up Questionnaires

Figure 5.1: Research Process to Collect and Analyze Data

5.1.5.1
Grounded Theory

We applied the principles of Grounded Theory (GT) to further under-
stand and explain how developers identify design problems in source code.
GT is a qualitative research method that uses a systematic set of procedures
to inductively develop a theory about a phenomenon (60), which the theory
emerges from the data. GT is used to understand the action in a substantive
area from the point of view of the actors involved in a phenomenon. (117).
There are di�erent versions of GT (118), and we chose to adopt Strauss’s and
Corbin’s GT (60), since it allows us to ask questions about the conditions upon
which a phenomenon occurs (118).

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 5. Investigating How Developers Identify Design Problems 121

GT contains three coding procedures: open coding, axial coding, and
selective coding. Coding refers to the task of data analysis (60, 118). Open
coding involves the breakdown, analysis, comparison, conceptualization, and
categorization of the data. Axial coding consists in examining the identified
categories to establish conceptual relations between them. Finally, in selective
coding, we further refine the categories and relations, and identify the core
category to which all others are related. In this procedure, we aim to reach
the theoretical saturation, i.e., the point at which the theory is well supported
and new data do not longer trigger reinterpretations.

In the first phase (Figure 5.1), we collected the data through the
experiment as explained in Section 5.1.3. In this phase, we conducted the
experiment with two companies. After the data collection, we employed GT
procedures to analyze the data. We first transcribe all the video and audio
recordings. We then performed open coding to associate codes with quotations
of developers’ utterances, as shown in the example below:

Raw Transcript. “D6: The readability here is awful, but there is no way to escape
from this (implementation). That is the standard (implementation). (...) indeed, it
(the class) is not easy to ready”
Code 1. developer mentions that the class readability is awful
Code 2. developer mentions that there is no way to escape from the analyzed
implementation
Code 3. developer mentions that the analyzed implementation is the standard
implementation
Code 4. developer accepts that the class is hard to read

We related the codes through axial coding. In this procedure, the codes
were merged and grouped into more abstract categories, and the type of
relation (60) was established. For instance, the previous codes were grouped
into the following two categories:

Category 1. analysis of a non-functional requirement
Category 2. explanation for the existence of the symptom

After the axial coding in Phase 1, we generated 201 codes (these codes
and the relation among them are available in Appendix C.3). We noticed that
some codes did not change anymore, for instance, the codes representing the
type of symptoms that developers use. However, we also noticed that these
codes did not explain completely how developers used these symptoms. Hence,
if we ran the experiment with other teams, we could find more information
to explain how developers used the symptoms. Therefore, we concluded that

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 5. Investigating How Developers Identify Design Problems 122

we did not reach theoretical saturation. Consequently, we had to conduct
additional experiments with more companies.

In Phase 2, we selected more companies that could provide us with
systems and developers (Section 5.1.2). Hence, we replicated the experiment
with three other companies. First, we collected the data, then we transcribed
and conducted the open and axial coding (omitted in the figure). Next,
we used selective coding to identify core categories that best explain how
developers identify design problems. We conducted Phase 2 until we reached
the theoretical saturation. In the end of this phase, we generated a total of 1,161
codes (all codes and the relation among them are available in Appendix C.3).

To determine the theoretical saturation, we had to decide whether the
theory’s components were well supported and new data would no longer need
revisions or reinterpretations of the theory. We reached this conclusion after
running the experiment with companies 3 and 4. When we analyzed how the
T8 team identified design problems, we started to notice that the codes did
not change anymore. Actually, we found that the new codes only provided
further details about the analysis of symptoms. We confirmed that new data
would not trigger the reinterpretations of the theory after analyzing the T9
team. Before claiming to have reached the theoretical saturation, we decided
to run the experiment with another company. We have not found any other
code that would trigger revisions or reinterpretations of the theory after we
analyzed T10 and T11 teams. Thus, in agreement with the other reviewers, we
concluded that we have reached the saturation. The refinement of the codes
among the companies is available in Appendix C.3.

After determining the theoretical saturation, our next step was to write
up the theory in a way that could be described according to constructs (basic
elements) and propositions (the interaction between constructs).

5.1.5.2
Peer Review Process

For each transcript, the codes, memos, and networks showing the rela-
tions in the categories and codes, we peer-reviewed and changed upon agree-
ment with some researchers, who collaborated with the study. Figure 5.2 shows
an overview of the peer review process to collect and analyze data, which can be
divided into four activities. First, four researchers ran the experiments. These
researchers were grouped in pairs; thus, a researcher could help the other dur-
ing the experiment and support each other to avoid bias. The next activity
consisted of the transcription of the videos. This activity was conducted by
two developers. Eleven videos, one for each team, were divided between the

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 5. Investigating How Developers Identify Design Problems 123

two researchers, who had to watch the video and transcribe it. After the tran-
scription, each researcher reviewed the transcription of the other – which is
represented in Figure 5.2 by the dotted arrow. Eventually, a third researcher
reviewed all transcriptions.

Building the Theory

Reviewing Codes, Memos and Networks

Transcribing the Videos

Running the Experiment

Activity 1

Activity 2

Activity 3

Activity 4

Figure 5.2: Peer Review Process to Collect and Analyze Data

In the third activity, the two previous researchers conducted the open
coding, axial coding and selective coding as discussed in the previous subsec-
tion. After the coding, each researcher reviewed the code, memos, and networks
created during the data analysis. This activity was mainly conducted by two
researchers, however, they had the support of other two researchers to avoid
bias during the interpretation of data. Several meetings happened to discuss
the codes, memos, and networks. Finally, in the fourth activity, the researchers
built the theory. In this activity, two researchers, who were the main leaders on

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 5. Investigating How Developers Identify Design Problems 124

the theory construction, compared their resulting theory. This comparison was
made together with other researchers who were involved in previous activities.
Thus, we were able to merge both resulting theories to define the final one. We
conducted several meetings to build the theory, which was important to avoid
distortions when interpreting the data.

5.1.5.3
Writing Up the Theory

In the end of Phase 2, we had artifacts (transcripts, codes, memos, and
networkings) to explain how developers identify design problems. Our next step
was to represent these artifacts as a theory. According to Sjøberg et al. (112),
Software Engineering (SE) theories should not be useful only as an academic
exercise, but also to the software industry. Thus, in Phase 3, we used their
framework to writing up the theory in a way that both research communities
and industry may benefit from using it.

Following their framework, our first step was to divide the description
of our theory into four parts: constructs (basic particles that compose a
theory), propositions (interaction among constructs), explanations (factors
behind propositions) and scope (the universe of discourse in which the theory
is applicable). For this step, we had to map the artifacts found after applying
the GT into these four parts. The categories identified in the axial and selective
coding became eligible candidates to become constructs and propositions. The
memos, codes and the interaction among the codes became the baseline for
the explanations. Since we experimented with software systems from di�erent
companies, the scope is delimited by closed-source software systems.

After the mapping, our next step was to use Sjøberg et al.’s diagrammatic
notation to describe the constructs, propositions, and scope of a theory. In
this notation, we relate the constructs to one of four archetype classes: actor,
technology, activity, and software system. According to their framework, the
typical SE situation is one which an actor applies technologies to perform
specific activities on an (existing or planned) software system. At the end of
this step, we were able to write up the data into a theory.

5.2
A Theory on How Developers Identify Design Problems

In order to answer our research questions, we conducted a multi-trial
controlled experiment to investigate how developers identify design problems
in practice. As a result, we derived a theory describing the activities and
factors that influence how developers identify design problems. Next, we

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 5. Investigating How Developers Identify Design Problems 125

answer our research questions. The first research question (“What are the
design problem symptoms that developers use in practice?”) is answered in
Section 5.2.2. The second research question (“How do developers identify design
problems in practice?”) is answered while we explain the theory’s constructs
and propositions throughout the next sections.

As aforementioned, we used Sjøberg’s framework (112) to describe the
theory, which is summarized by a visual representation in Figure 5.3. Adopting
their terminology, the diagnosis is the process (technology) that the developer
(actor) applies to identify design problems (activity) in the source code
(software system). Regarding the scope, the theory is supposed to be applicable
in closed-source software systems in which developers intend to identify design
problems by analyzing symptoms that manifest themselves in source code.

According to Sjøberg et al.’s framework, our theory fits in the Explanation
type since it describes and explains how the identification of design problems
is conducted (Section 5.2.1), the symptoms and their characteristics (Section
5.2.2), and how the symptoms are used to diagnose design problems (Section
5.2.3). In the framework, they also describe criteria to evaluate theories.
Testability is one criterion, which indicates “the degree to which a theory
is constructed such that empirical refutation is possible.” Regarding such
criterion, our theory has high testability since empirical refutation of its
propositions is possible by replicating the study. In fact, such replication is
feasible given that we first conducted the experiment with two companies
and then replicated it with three more companies until reaching theoretical
saturation.

When describing the theory, we introduce the constructs and proposi-
tions, identifying them in the text with C and P, respectively. We answer our
research questions while we discuss the propositions and their constructs next.
We also present explanations for propositions that are aligned with findings of
previous studies and explanations that comprise findings that have not been
presented elsewhere. Complete description of the constructs and propositions
is available in Table C.1 (Appendix C.4).

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 5. Investigating How Developers Identify Design Problems 126

Software Project

Syndrome

Symptom

Actor

Software Developer

Conscientiousness

Technology

​

​

​P15P19

Activity

Design Problem
Identification

Locating Code Elements

Analyzing Code
Elements
Confirming a Design
Problem

Software System

Diversity

Relation

Element Role

Symptom Type

Density

Accuracy

Design Problem

Confidence (in the
presence of a
design problem)

P4

P5

P6

P7

P8

P9

P10

P11

P18

P17
P16

P20

Symptom Analysis

Epidemic Analysis

Affected Elements

P12

Non-functional
Requirements

Design decisions

P1 and P21

P22

P2

Diagnosis

Tactic

Tactic Step
Tactic Type P13

P14

P3

Figure 5.3: Visual Representation of the Theory

5.2.1
Identification of Design Problems

A design problem (C1) arises in code elements due to one or more design
decisions (C2), made intentionally or accidentally (P1). In fact, when design
decisions impact non-functional requirements negatively, we state that a design
problem exists (P2). A design problem may a�ect one or more elements (C3) in
such a way that these elements manifest symptoms of its presence. A symptom
(C4) is an indication of the presence of a design problem.

Three Steps to Identify Design Problems Using Symptoms. A
code element may contain several design problem symptoms. Thus, we define
a syndrome (C4) as a set of symptoms a�ecting the same code element.
In this context, we refer to diagnosis (C6) as the process of identifying a
design problem through the analysis of symptoms that manifest themselves
in source code (P3). From the data collected during the subjects’ diagnostic
activities, we noticed that the identification of design problems was often
divided into three steps: (i) locating code elements, (ii) analyzing the elements,
and (iii) confirming or rejecting the presence of a design problem. In all these
three steps, developers rely on design problem symptoms that manifest in
source code (P4).

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 5. Investigating How Developers Identify Design Problems 127

5.2.2
Design Problem Symptoms

Towards understanding how developers identify design problems in the
source code, we defined our first research question (“What are the design
problem symptoms that developers use in practice?”). At the end of the study,
we found that developers use the following symptoms:

1. Violation of Non-functional Requirements: Information of non-
functional requirements (e.g., readability, testability, robustness,
security), which were possibly being violated;

2. Code Smells: A code smell is a microstructure in the system that
represents a surface, sometimes only partial, indication of a design
problem (21);

3. Violation of Architectural and Design Patterns: Information on
the use of architectural and design patterns (4), to help identify misused
patterns;

4. Poor Structural Quality Attributes: A structural quality attribute
is a characteristic or feature that reflects properties of a software system.
Examples include coupling, cohesion, size and complexity. These
attributes can be measure using software metrics;

5. Violation of Object-Oriented Principles: Information about object-
oriented principles (115) that were possibly being violated, which
may indicate a problem. These principles have been pointed out as
guides to avoid design problems. The principles include encapsulation,
abstraction, inheritance and polymorphism. Other principles are also
taking into account, for instance, the S.O.L.I.D principles (13);

As far as we know, we were the first one to investigate what the
symptoms that developers use in addition to code smells. Interesting enough,
this investigation happened gradually as we observed each developer during
the design problem identification task. As explained in Section 5.1.5, we ran
the experiment individually with each team. We made clear that they were
free to use any design problem symptom in their quest for design problems. As
we experimented with more teams, we noticed that they started to use other
symptoms that have not been provided by us. After that, we made these other
symptoms available for other teams. In other words, the selection of symptoms
that developers would receive happened gradually, as we were noticing them
using other symptoms. For instance, the two first teams received only the

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 5. Investigating How Developers Identify Design Problems 128

Table 5.3: Helpfulness According to Developers

Symptom Applied
times

N¶. of
contributions

Percentage
of success

Design Pattern Violation 43 34 79.07%
Quality Requirements 43 31 72.09%
Violation of
Non-functional Requirements 62 46 74.19%

Code Smells 37 17 45.95%
Violation of
Object-oriented Principles 38 20 52.63%

code smells. Then, we noticed that they started to use other symptoms, such
as poor quality attributes and violation of object-oriented symptoms. Since
they used these symptoms, when we ran the experiment with other teams,
we added these other symptoms in addition to the code smells. Here in this
section, we will discuss about all these symptoms in general. We will discuss
each one individually when we explain how developers use them to identify
design problems (Section 5.2.3.3).

Symptom helpfulness. We noticed that developers do not always
consider all the symptoms of a syndrome when identifying design problems.
Instead, they only consider those symptom instances that they judge helpful
during the identification. We could identify when developers judge a symptom
helpful because we asked them to evaluate the symptom based on how helpful it
was to identify the problem (Section 5.1.3). Table 5.3 presents the percentage
of helpfulness of each type of symptom. This percentage is calculated only
when the team used the symptom. The first column indicates the name
of the symptom, while the second column shows the number of times that
the symptom was used by developers. The third column shows the number
of occasions that the developers mentioned the symptoms were helpful to
identify a design problem. Finally, the last column indicates the percentage
of helpfulness, i.e., the percentage that developers used the symptom and
evaluated it as helpful.

Symptom attributes that drive developers to select what to
analyze. Based on the helpfulness mentioned by developers, we performed
a qualitative analysis to investigate which symptom attributes i.e., charac-
teristics of the symptom (such as its accuracy or type), developers take into
consideration when they choose the symptoms most likely to help them. We
observed that the following symptom attributes are most helpful for devel-
opers to identify design problems: symptom type, accuracy, density, relation
(among the symptoms), and diversity. Symptom type (C7) indicates a cate-

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 5. Investigating How Developers Identify Design Problems 129

gory to which a set of symptoms with common characteristics belongs (e.g.,
code smell). Accuracy (C8) is the degree to which a symptom is correct in
indicating a design problem, while density (C9) is the number of symptom in-
stances in a syndrome. Regarding these attributes, we were already expecting
that accuracy and density would be attributes that developers take into ac-
count to consider a symptom helpful. However, we had not expected that they
would take into consideration the relation among symptoms and the diversity
of symptoms in the syndrome.

Diversity of a syndrome. Relation (C10) is how two or more symp-
toms are connected to each other. For instance, both Intensive Coupling

smell and violation of the layered pattern (119) measure the degree to
which elements are undesirably coupled with others. Since they measure simi-
lar (albeit complementary) properties of an element, they are related to each
other. We noticed that developers use the relation among the symptoms to
discover other types of symptoms that can indicate a design problem (Sec-
tion 5.2.3.1). We also noticed that developers frequently located elements that
manifested several di�erent types of symptoms (P5). In fact, we observed that
diversity (C11) is another attribute that developers consider. Diversity is the
degree to which a syndrome contains a variety of symptom types. Upon anal-
ysis, we found that the more di�erent types of symptoms a syndrome has, the
greater the chance the developer will identify at least one design problem in
the element (Section 5.3.2).

Indeed, the diversity of a syndrome has a strong influence on the
diagnosis. As this finding had not been observed before, studies that assume
that developers rely on only one type of symptom (44, 47, 56, 45) may be
misaligned with how diagnosis is conducted in practice, in two ways: (i) they
may assume that developers will use a predefined, dominant type of symptom;
and (ii) they may not consider the diversity of symptoms as another indicator
for identifying design problems. We discuss in Section 5.3.2 how diversity
influences human aspects.

Considering the attributes that influence the developers. As
mentioned before, developers do not consider all symptom instances to identify
a design problem. They take into account only those symptoms that they
consider helpful to identify a problem. We showed the attributes developers
consider to assume that a symptom is helpful. For instance, if a syndrome has
several types of symptoms, developers consider the density and diversity to
select the symptom. In other words, developers select a symptom when they are
satisfied with these attributes. Conversely, when attributes do not satisfy the
developers (e.g., the syndrome does not contain diverse types of symptoms),

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 5. Investigating How Developers Identify Design Problems 130

the symptom would be ignored and not considered helpful, possibly leading to
missing a design problem.

Knowing about how developers consider a symptom helpful is useful for
researchers since they can propose solutions that emphasize helpful symptoms
for the developers. For instance, some studies propose solutions to prioritize
smells that can help developers to identify design problems (49, 47, 46). As code
smells are a type of symptom, they also present some of the attributes discussed
above. However, some studies on code smells may not consider attributes as
the density of smells or diversity. Therefore, developers may neglect some code
smells for not considering them helpful for the identification. These studies
could use the attributes that developers take into account as a mechanism to
prioritize smells (Section 5.4).

5.2.3
Design Problem Diagnosis

As aforementioned, diagnosis is the process of identifying a design prob-
lem through the analysis of symptoms. We noticed that developers diagnose
a design problem based on two types of analyses: a symptom analysis (C12),
and an epidemic analysis (C13).

5.2.3.1
Symptom Analysis

In symptom analysis, developers choose and analyze a set of symptoms
a�ecting a single element, i.e., they do not analyze multiple elements. This
happens because they usually rely on the aforementioned symptom attributes:
type, accuracy, density, relation (among symptoms), and diversity. In this
analysis, developers verify, based on these attributes, whether the symptoms
a�ecting the analyzed element indicate a design problem. If so, then they do
not proceed to analyze other elements.

Incorrectly ignoring symptoms. Someone can expect that the accu-
racy (P6), the density (P7), and the type (P8) of the symptoms influence
problem identification. For instance, let us consider code smells. Palomba et
al. investigated to what extent code smells are perceived as design problems
(51). They noticed that developers consider the type of the code smell to decide
whether it is a problem. Surprisingly, developers tend to incorrectly associate
the type of symptom with its accuracy or density, and that does not happen
only with code smells. Thus, if they rely on the accuracy or density to dis-
agree that a symptom indicates a design problem, they tend to not consider
the same type of symptom in the other elements, even when they actually

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 5. Investigating How Developers Identify Design Problems 131

Table 5.4: Combining Symptoms

Symptoms Instances Design
Problems Teams

1 16 11 T7, T8, T9
2 13 10 T1, T3, T7, T8, T9
3 14 11 T3, T4, T5, T6, T7, T8, T9
4 10 6 T2, T3, T5, T8, T9
5 3 1 T4

indicate a design problem. For instance, if a developer analyzes the violation
of a design pattern such as Data Access Object and concludes that this type
of symptom is irrelevant for identifying a design problem, then he is less likely
to consider a violation of a design pattern in the elements he analyzes next.
This happened, for instance, with the T3 developers.

Combining multiple related symptoms. Someone can argue that
analyzing a single element is not enough to identify a design problem. Never-
theless, we noticed that they combine symptoms in a single element in order
to confirm the presence of a design problem. Table 5.4 shows the frequency
with which developers either used only one symptom or combined multiple
symptoms. Its first column indicates the number of symptoms that developers
combined to identify design problems. Its second column indicates how many
times the symptom or combination of symptoms happened. Its third column
indicates the number of design problems found when the subject used a symp-
tom or a combination of symptoms. Its last column indicates the teams that
used or combined symptoms. We obtained these data after applying the GT.
Table C.2 (Appendix C) shows a full version of this table containing (i) which
symptoms were combined and (ii) which design problems the team found.

We can see in Table 5.4 that most developers tend to combine symptoms
to identify a design problem. Also, we noticed that developers identify more
design problems when they combine symptoms. Based on this result, we
investigated how the combination takes place. We noticed that developers
use symptom relations to identify the symptoms to combine. Thereby, the
relation helps developers to identify other helpful symptoms in the syndrome.
Therefore, the more related to others a symptom is, the greater the likelihood
of a developer selecting it for combination (P9).

As an example of how developers use the symptom relation to find other
helpful symptoms, let us consider the developers of the T2 team. They were
analyzing the code smells, and they noticed that the class had the Dispersed

Coupling smell. Due to the presence of this smell, they analyzed the coupling

quality requirement. When analyzing this type of symptom, they noticed it

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 5. Investigating How Developers Identify Design Problems 132

was indicating a high coupling with other classes. This finding increased their
confidence that the class contained a design problem. These developers also
noticed that the coupling was related to a third type of symptom: violation of
non-functional requirements. When they analyzed this symptom, they noticed
that the high coupling was making the class harder to read. In this example,
the developers used the relation among the three symptoms (code smells,
quality requirements, and violation of non-functional requirements). Then they
combined these symptoms to identify that the element was involved in the
Concern Overload design problem (7).

The relation among the symptoms is what drives the combination, by
helping to identify other related symptoms. The combination of the symptoms
is another evidence that previous studies (44, 47, 56, 45) may have proposed
solutions for the problem identification that do not fit the developers’ needs. In
other words, developers consider multiple symptoms (Section 5.2.2) and they
also combine these symptoms to increase their confidence in the presence of a
design problem. Therefore, forcing the developers to use only a reduced set of
symptoms is likely to go against the way in which developers identify design
problems in practice.

5.2.3.2
Epidemic Analysis

When developers analyze an element, they do not consider only the
symptoms a�ecting that element; sometimes they also consider whether other
elements are a�ected by the same set of symptoms. We name this an epidemic
analysis. Analogously to the way in which attributes influence the selection of
symptoms in a single element, there are attributes that developers consider
before choosing elements for an epidemic analysis. In addition to considering
the types of symptoms (P10), developers also take into account the element
role (C14) to choose the epidemic elements most likely to help them to identify
a design problem (P11). Element role is the function that an element plays in
the software system, e.g., the role of Service.

Complementary analysis. The reason why developers use the element
role to identify epidemic elements is that each design problem may be scat-
tered over several elements. Since those elements share the same symptoms,
developers assume that they may help them to identify the design problem,
which justifies the epidemic analysis. However, a surprising finding is that de-
velopers analyzed epidemic elements only when they had used the symptom
analysis but had not succeeded in identifying a design problem. Since they
are not confident about the presence of a design problem during the symptom

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 5. Investigating How Developers Identify Design Problems 133

analysis, they proceed to the epidemic analysis of other elements in order to
decide whether there is a design problem in the elements under analysis.

Prioritization of key elements. Developers tend to prioritize epidemic
elements that provide a central functionality in the system. This happens
because they associate the role played by the element with the probability
of the element containing a design problem (P12). As an example, the T2
developers were analyzing the symptoms of an element. During the analysis,
they noticed that the element was playing the Service role in the system. At
this point, the developers included other Service classes in the analysis. When
they focused the analysis on all the classes that play a service role, this change
of focus led them to identify a design problem. They mentioned that all the
service classes in the systems are a�ected by the Scattered Concern design
problem (7). Curiously, these developers had already analyzed other Service
classes before, without identifying any design problem. In that case, the T2
developers were not applying the epidemic analysis; thus, they did not take
into account the element role to select elements with similar set of symptoms.
Developers are more likely to accept that elements playing an important role
have a design problem. However, we found cases in which subjective factors
influenced their decision, as discussed in Section 5.3.

5.2.3.3
Identification Tactics

Regardless of the type of analysis that developers conduct, they rely
on symptoms in the code elements to identify a design problem. Indeed, as
previously discussed, the identification of design problems was often divided
into three steps. Developers locate a code element in the first step; then, they
analyze the element (or elements) in the second one; and finally, they confirm
or reject the presence of a design problem in the element(s). In these steps, the
action is the same: the analysis of code elements and their symptoms. Tactic
(C15) is how we name this action, i.e., a tactic is a specific action, in which
developers rely on the analysis of the elements and their symptoms towards to
the identification of a design problem.

A tactic can be characterized by two attributes: the type of the tactic
and the moment (step) to which the developer applies it. The tactic type
(C16) indicates the action that developers apply in their quest for design
problems. We noticed two main actions: either (i) developers search for a
specific design problem or a specific element, or (ii) they rely on the analysis of
a specific symptom to identify a design problem (P13). After the qualitative
analysis, we noticed that the developers used six types of tactics: smell-

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 5. Investigating How Developers Identify Design Problems 134

based, problem-based, principle-based, element-based, NFR-based,
and pattern-based tactics. They apply each tactic in a specific moment
during the analysis. The moment that developers apply the tactic – which
we named of tactic step (C17) – refers to one of the three steps in the design
problem identification (P14). In other words, developers apply the tactic either
(i) to locate code elements, (ii) to analyze the elements, or (iii) to confirm or
reject the presence of a design problem.

Figure 5.4 presents the six types of tactics, represented by a yellow
rectangle, and how they are related to the constructs in our theory. We
represent the action that defines the tactic type in green, and we represent
the moment that the tact is usually applied (i.e., the tactic step) in blue. As
we can notice in the figure, the tactic type is either associated with the search
for a specific design problem our element or associated with the analysis of a
symptom type. We describe each tactic as follow.

Syndrome

Element Role

Problem-based
Tactic

​Element-based
Tactic

Pattern-based
Tactic

Smell-based
Tactic

NFA-based
Tactic

Principle-based
Tactic

Tactic

Tactic Step
Tactic Type

​

​

Symptom

​Symptom Type

Code Smells OO Principles
Violations

Architectural and
Design Patterns

Violations

Poor Structural
Quality Attributes

Non-functional
Requirements

Violations

​

​relies on​relies on​relies on ​relies onsearch for

Design Problem

search for

Locating Code Elements

Analyzing Code Elements
Confirming a Design
Problem

​refers to
​

​used for

​used for

​used for

​Legend

Specialization Action Indicates the moment of use

Design Problem
Identification

Figure 5.4: Identification Tactics

Smell-based tactic is the tactic in which the developers rely on code
smells to identify design problem. As mentioned by other studies (53, 52, 38),
developers can use smells as a symptom of design problems. Developers used
the smell-based tactic to confirm the existence of a design problem. They
marked elements as having a design problem whenever they were analyzing
an element, and they noticed that it had a code smell. We also observed that
developers explored some types of code smells that were not in the provided

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 5. Investigating How Developers Identify Design Problems 135

initial list. For example, they explored the number of switch statements
in methods (Switch Statements smell) when they were analyzing certain
classes. Similarly, they mentioned that some classes have similar code snippets
(Duplicate Code smell). As an example, D21 developer identified a God Class

smell even though the instance of the smell was not in the provided list. After
finding the smell, the developer confirmed the occurrence of a design problem
in the class.

Principle-based tactic is the tactic that the developers used poor
structural quality attributes (e.g. cohesion, coupling and complexity) or
the violation of object oriented principles (13) (e.g. open-closed principle

and information hiding) to identify design problems. They mainly used this
tactic to confirm if an element under analysis has a design problem. In this
case, they marked the element as having a design problem when they noticed
that a class under analysis was violating a design principle. This case happened
with D22 developer.

Problem-based tactic is the tactic in which the developers searched
for occurrences of a specific type of design problem they already had in their
mind in the source code. We classify that a subject used the problem-based
tactic when he explicitly mentions he was looking for a specific type of design
problem across the system. We observed that they tended to focus on searching
for design problems related to interfaces and components (realized as packages
in the source code). For instance, Fat Interface (13) and Component Overload
(47) were problems that developers identified with high frequency. On the other
hand, we did not observe developers looking for problems related to abstract
concepts, such as Delegating Abstraction (47) and Unused Abstraction (47).

Element-based tactic is the tactic in which the developers selected
specific code elements to investigate if it is a�ected by a design problem. They
do not necessarily reason about specific types of design problems, but they
look for any sort of indication (e.g., frequent modifications or the element
role in the system) in those elements that may signal the manifestation of a
design problem. In this tactic, the developers focused their reasoning on code
elements – such as core classes, interfaces, and hierarchies – that represent key
design abstractions in the program. Given the relevance of such elements to
the system, developers knew these elements could form structures realizing a
design problem in the implementation. Thus, they directly started inspecting
these code elements and reasoning about their symptoms.

Developers often knew already which code elements they should analyze
first. Interestingly, most of these cases were classes: we expected developers
would also analyze often interfaces and packages given their relative impor-

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 5. Investigating How Developers Identify Design Problems 136

tance to the design. However, such elements were rarely analyzed. Moreover,
there were a few cases in which they had to determine a criterion to choose
such elements explicitly. For example, one of the developers chose a class based
on the number and nature of variables and methods located in the class. An-
other subject decided to limit the search to classes within specific subsystems.
He picked a subsystem that was visibly large regarding the number of classes.
The same subject also suggested restricting the search to a generic subsystem.
All classes that did not belong to any other specific subsystem were created in
or moved to this subsystem.

NFR-based tactic is the tactic where the developers reasoned about
non-functional requirements that are negatively a�ected by certain design de-
cisions. They reasoned how a design decision explicitly hinders one or more
quality attributes. Again, they did not necessarily reason about specific types
of code smells or design problems. The developers used this tactic when they
were analyzing a code element, and they noticed that its implementation im-
pacted one or more non-functional requirements. The most cited non-functional
requirement was maintainability. However, developers also mentioned flexibil-
ity, readability, adaptability, performance, security, and robustness.

Pattern-based tactic is the tactic that developers searched for in-
stances of a design or architectural pattern in the source code and verify if
their implementation violates the pattern rules. This tactic was frequently
used both to locate elements and to confirm the existence of design prob-
lems. In this tactic, developers analyzed code structures potentially violating
a pattern rule. Whenever developers could confirm the violation, they marked
the element as having a design problem. developers discussed a wide range of
patterns, including Adapter, Builder, Facade, SOA and MVC.

In Section 5.2.3.1, we discussed how developers combine multiple related
symptoms. In fact, not only most developers combine symptoms, but also they
identify more design problems when they combine the symptom. Developers
combine the symptoms because they apply multiple tactics, each one in a
di�erent step of the design problem identification. For instance, whenever
they were looking for violations of a design or architectural pattern (pattern-
based tactic) to locate elements, they did not only rely on the violation itself
to support the confirmation of a design problem. They often confirmed the
existence of a design problem when they noticed other symptoms, e.g., the
element was either explicitly a�ecting a non-functional requirement (NFA-
based tactic) or hosting one or more code smells (smell-based tactic). As
previously explained, these combinations happened because an element may
contain several symptoms that indicate design problems. For instance, if an

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 5. Investigating How Developers Identify Design Problems 137

element violates a pattern, it is likely that the element also contains smells
and violations of design principles. Consequently, these symptoms may impact
non-functional requirements negatively.

5.3
Propositions Concerning the Developer

In this section, we provide some additional propositions concerning the
developer, observed through the think-aloud method (116) with the support
of video and audio recordings.

5.3.1
Confidence in the Presence of a Design Problem

The confirmation or rejection of a design problem in a group of elements
is mainly influenced by the developers’ confidence (C18), which is the degree
to which they are convinced about the presence of a design problem. The most
confident the developer is, the greater the likelihood of confirming a design
problem.

Attributes that increase developers’ confidence. The attributes
that influence a design problem diagnosis also a�ect the developers’ confidence
(P15). According to our study, the attributes that influence the developers’
confidence the most are: accuracy, density, element role, and diversity. It is
not a surprise that the more accurate (P16) and denser (P17) the developer
believes that the symptom is, the more confident he will be in the presence of a
design problem. Nevertheless, the element role plays an even greater influence
on the developers’ confidence (P18).

Developers’ divergence regarding element role. At first glance,
when most developers analyze an element that plays an important role in
the system, they tend to assume that the element contains a design problem.
Examining further, we observed two behaviors. When developers analyzed
element role together with other attributes, they tended to confirm the
corresponding design problem. Conversely, whey they only considered the
element role (ignoring other attributes), they tended to reject the design
problem, arguing it is acceptable to have design problem symptoms in elements
that play an important role in the system.

These two behaviors happened with T2 and T4, respectively. T2 de-
velopers confirmed the design problem in the element because, among other
attributes, the element played an important role in the system. On the other
hand, T4 developers said that, due to the element role, it is acceptable that
the element contains the design problems symptoms. According to them, if the

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 5. Investigating How Developers Identify Design Problems 138

element were not an important class for the system, it would not be acceptable
to have a design problem or its symptoms in the class.

Pondering about the number of symptoms. When a developer
analyzes individual symptoms, the number of symptoms with which he agrees
or disagrees influences his confidence in the design problem identification.
When analyzing each symptom, the developer decides whether it indicates
a design problem. In the end, he counts the number of symptoms he judged as
indicating a problem and the number of symptoms he judged as irrelevant. If
the former is greater than the latter, then he confirms that the element has a
design problem. T3 developers used this strategy to increase their confidence
in the presence of a design problem in some elements.

5.3.2
Conscientiousness

Conscientiousness (C19) is a personality trait related to being careful,
responsible, and persevering (120). The more conscientious the developer is,
the greater the likelihood of identifying a design problem. Likewise, when
developers diagnose more design problems, they become more conscientious.
As these attributes have a circular e�ect between them (P19), it would be
interesting to find ways to increase the developers’ conscientiousness.

Diversity as an attribute to increase conscientiousness. The di-
versity of symptoms is the attribute that most influences the conscientiousness
of the developers (P20). The higher the diversity of a syndrome, the greater
the chance the developer will identify a design problem in the element. That
happens because the diversity not only increases the confidence of the develop-
ers, but it can also help the developers to decide whether the element contains
a design problem. In fact, the diversity had a great influence on developers of
the T7, T9, T10 and T11 teams, because they tended to assume diversity as
a strong indicator of a design problem (Section 5.2.2). Therefore, this finding
is another evidence the studies with an assumption that developers rely on
only one type of symptom may be misaligned with the developers’ practice
(47, 45, 56, 44). Even worse, these studies are not taking advantage of the
impact that the diversity attribute has on developers’ conscientiousness.

Side e�ect of only considering the diversity attribute. We noticed
a side e�ect when developers rely too much on the importance of the diversity
of a syndrome without further analyzing other attributes. For instance, after
the T4 developers had analyzed a set of elements with diverse symptoms, they
later judged an element as free of a design problem because it did not have
the same diversity of symptoms as the ones analyzed previously. Although this

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 5. Investigating How Developers Identify Design Problems 139

behavior was not very frequent, it brings out another issue that studies that
rely on only one type of symptom do not take into account.

5.3.3
Incapability of Providing an Alternative

Justifying the presence of a design problem with design de-
cisions. Sometimes the developers are convinced that an element contains
several symptoms that indicate a design problem, even though they do not
confirm the presence of a design problem. Although such behavior seems con-
tradictory, they argue that they do not consider the element as containing a
design problem because they see no other way to implement the element. In
these cases, developers use the concept of design decision to justify why they
do not consider the presence of a design problem (P21). Consequently, the
design decision that developers use as an argument influences their confidence
in the presence of a design problem (P22).

Developers justified the presence of a design problem mostly when they
could not provide an alternative implementation. This behavior is aligned with
the theory discussed by March and Simon (121), who theorized that developers
typically do not choose an optimal solution because such solution would require
that all alternatives to a problem be perceived. However, they argue that in
practice it is unlikely for developers to know all alternatives. Hence, the known
alternatives represent the boundaries that developers face before making a
decision. Therefore, developers stop searching for further solutions when one
that satisfies their needs is found.

Justifying the presence of a design problem with the lack of
an alternative implementation. March and Simon’s (121) theory also
manifests in the context of identifying design problems, as we observed in
our study. The developers used the limited known alternatives to justify why
a specific implementation does not present a design problem. In these cases,
they mentioned that they could not find any alternative solution (optimal or
not) to implement the element. According to them, the element should not be
considered as an element involved in a design problem. In other words, the
known alternatives are not only boundaries that developers face, but also used
to justify the presence or absence of a design problem.

5.4
Towards Improving Design Problem Diagnosis

As mentioned in Section 5.1.5.3, in the third phase of data collection and
analysis, we used the Sjøberg et al. framework to write up the theory in a

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 5. Investigating How Developers Identify Design Problems 140

way that both research community and industry could benefit from it (112).
Thus, the theory presented here provides an explanation of how developers
identify design problems. Researchers and industry practitioners can use the
discussions presented here as an underlying mechanism to drive solutions for
supporting developers during design problem identification. For instance, in
this section, we present some solutions that emerged from the theory, and that
can improve design problem identification.

5.4.1
Supporting Multiple Symptoms

Providing multiple design problem symptoms. Most studies rely
on a single, predefined, dominant type of symptom (44, 47, 56, 45), which may
be limiting how developers identify design problems in practice. Thus, there is
a need for solutions that provide developers with multiple symptoms, and then
help them to navigate among these symptoms and to combine them. In fact,
we noticed that developers would benefit from mechanisms to automatically
provide symptoms for combination. For instance, a solution in this sense is to
provide other symptoms that are complementary to the one being analyzed.
Such tool, for instance, could have helped the T2 developers to identify a
design problem (Section 5.2.3.1). They used the Dispersed Coupling to choose
the coupling attribute to analyze next. Later, they chose the readability non-
functional requirement to complement their analysis. In this example, a tool
could provide the coupling attribute and the readability requirement as soon
as the developers indicate the Dispersed Coupling code smell as helpful.

Filtering relevant symptoms. Developers consider the diversity of
symptoms. However, if an element manifests several symptoms, the developers
could have a hard time to choose the most helpful one. For instance, D16 (T8
team) mentioned the di�culty that he had to choose helpful symptoms:

D16: “Since I was not familiar with each type of symptom and design problem, it
was hard for me to match them. Even with the provided symptoms, I could not
figure out which one was actually related to the design problems.”

To address this issue, an automatic tool could help them to filter those
symptoms that are most likely to indicate a design problem. In the same way
that a tool could propose complementary symptoms to the one being analyzed,
it could hide symptoms that are least similar to the one under analysis. Such
tool could make the analysis of multiple symptoms less cumbersome.

Visualization support. Another solution to help developers to deal
with multiple symptoms is to provide visualization mechanisms. For instance,

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 5. Investigating How Developers Identify Design Problems 141

Scattered Concern (7) problem occurs when multiple code elements implement
a functionality that should have been implemented by only a few elements.
In this case, developers have to analyze multiple elements that may have the
scattered functionality. These elements are likely to share some symptoms.
Perhaps if developers could visualize how the multiple symptoms interact in
the system, they could identify these elements more easily. In fact, D14 (T7
team) mentioned in the follow-up questionnaire that a visualization mechanism
would help him to identify some design problems:

D14: “For some design problems e.g., Cyclic Dependency, Scattered Concern, it’s
hard to find by looking at the source code manually, which is too low level when we
don’t have a higher level architecture view.”

5.4.2
Prioritization of Similar Elements

Prioritizing epidemic elements. Developers tend to prioritize ele-
ments that play an important role in the system. In addition, if these elements
have diverse symptoms, then they should be the first elements to be analyzed
by the developers. Researchers could therefore use the attributes presented
here to build tools that prioritize elements. For instance, developers of the T2
team used the element role during the epidemic analysis (Section 5.2.3.2). In
two cases they relied on the element role to select epidemic elements. However,
in one case they could identify a design problem, whereas in the other case,
they could not. The di�erence between these two cases was related to the num-
ber of epidemic elements playing the same role. While in the first case all the
epidemic elements played the Service role, in the second case only few epidemic
elements played the Controller role. The following quotations illustrate this.

D4: “I think that all the service classes will have (the design problem)”
D3: “Indeed, the service (classes)”
D4: “I guess that (they) are similar to each other. In fact, I believe that the next
service (class) will be similar”

5.4.3
Additional Support for the Developer

Based on the propositions concerning the developers (Section 5.3) we
suggest providing the following additional support.

Providing an alternative implementation. It is often di�cult for
developers to provide an alternative implementation for an element that
may contain a design problem (Section 5.3.3). In this context, a tool could

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 5. Investigating How Developers Identify Design Problems 142

indicate an alternative implementation that could remove the design problem
symptoms. Hence, a developer would not be able to use the lack of an
alternative implementation as justification for not confirming a design problem.

Personalizing the detection of symptoms. The accuracy of the
symptom is also influenced by the developers’ subjectivity. Developers men-
tioned that a certain type of symptom was accurate in indicating a design
problem in some elements, but not in others. Thus, most developers mentioned
that they need tools that allow them to personalize the detection of symptoms
according to their software systems. Allowing developers to adjust thresholds
and detection rules would minimize how the (low) accuracy influences their
confidence in the presence of a design problem. D11 (T6 team) mentioned in
the follow-up questionnaire the need for such feature:

D11: “The symptoms suggest a possible design problem. However, none of them
should be rigid rules. Often, it makes sense to have long methods, message chains
or many parameters (in the method). In some cases, we could replace a long string
of conditional (statements), but it would make it di�cult to understand. A method
was considered long, but its readability was very clear, which did not justify a
refactoring.”

5.5
Related Work

Along this chapter, we presented some studies about the identification of
design problems. We have not found studies that present the diagnosis of design
problems as a theory. Instead, we found studies that focus on presenting the
phenomenon rather than explaining it (26, 52, 53, 38, 44, 28, 47, 27, 46, 45). For
instance, several researchers proposed techniques to identify design problems
(52, 53, 38, 47, 45). Although these studies had encouraging results, they did
not conduct experiments with software developers or they have not taken into
account the attributes that a�ect design problem identification.

For instance, Mo et al. (44) proposed the detection of recurring design
problems by the combination of structural, history and design information.
Xiao et al. (45) introduced a solution – based on a history coupling probability
matrix – to identify and quantify design problems. The proposed solution uses
4 patterns of design flaws that show the correlation between design problems
and reduced software quality. The aforementioned techniques depend on design
information, which may not exist for many software systems. In addition, these
studies rely on only a predefined, dominant type of symptom. However, their
technique does not match with the practice as developers consider and combine
multiple symptoms to diagnose a design problem.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 5. Investigating How Developers Identify Design Problems 143

Vidal et al. (46) presented and evaluated criteria for prioritizing groups
of code smells that are likely to indicate design problems in evolving systems.
Their results provide evidence that one of the proposed criteria helped to
correctly prioritize elements with design problems. However, only one of
the criteria helped to prioritize elements. We showed some attributes that
developers take into consideration to select symptoms likely to help them
5.2.2. Researchers could use the knowledge presented here to build tools that
prioritize elements in a similar way that we showed how developers select the
elements to analyze.

Oizumi et al. (47) investigated to what extent code smells could “flock to-
gether” to realize a design problem. These code smells that flock together and
are related to each other composed what they authors called agglomeration.
After analyzing more than 2,200 agglomerations of code smells from seven soft-
ware systems with di�erent sizes and from di�erent domains, the researchers
concluded that certain forms of agglomerations are consistent indicators of de-
sign problems. Although we also have investigated multiple instances of code
smells as indicators of design problems, our findings are more grounded on the
in-depth observation of the developers’ behavior than in quantitative results
of retrospective studies. Moreover, similar results found on both studies helps
to strength evidence that developers often reason about multiple symptoms to
identify design problems in the implementation.

There is recently a growing interest in studying the relevance of code
smells to support the identification of design problems (47, 51, 46). Palomba
et al. (51) reported an empirical study aimed at analyzing to what extent code
smells are perceived as design problems. In their study, they showed developers
code snippets a�ected and not a�ected by code smells. In an a�rmative case,
they asked developers to explain what problem they perceive. They reported
that some code smells are, in general, not perceived by developers as design
problems. We go beyond Palomba et al. (51). We investigated various strategies
followed by developers to identify a design problem. We found that there
are other strategies than a smell-based strategy to identify design problems.
Moreover, we noticed that when developers use multiple instances of smells,
they succeed to identify design problems.

5.6
Threats to Validity

This section presents and discusses threats to validity.
Construct Validity. We provided some symptoms for developers to

use during design problems diagnosis. These data could have biased the

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 5. Investigating How Developers Identify Design Problems 144

experiments. However, we provided these data considering the literature (115,
4, 53, 52, 38, 47) and considering the companies’ managers. They mentioned
that some of the developers not only were familiar with some symptoms but
also had the culture of using them. Furthermore, we noticed developers using
other symptoms that we have not provided; thus, we decided to provide these
other symptoms for the other developers. However, developers were free to use
these symptoms or not. The time allocated for the tasks could be considered
another threat to validity. However, we conducted a pilot study to adjust the
time required to perform the tasks and thus reduce the threat.

Internal Validity. The di�erence between the developers’ background
knowledge can be a threat. However, in the context of applying an analysis
through GT, we saw this diversity as an opportunity to strengthen the
evidence supporting the depicted propositions. Moreover, we provided training
to mitigate this threat.

External Validity. The number of subject represents a threat. All
of them worked for companies located in Brazil. However, it is important
to note that this is a multi-company study involving five di�erent working
environments and eight di�erent systems. Finally, the presented study covered
only systems developed in Java. Using other programming languages with
di�erent core characteristics may influence developers in identifying design
problems.

Conclusion Validity. This threat concerns the relation between treat-
ment and outcome. We tried to mitigate it by combining data from di�er-
ent resources: quantitative and qualitative data obtained with videos, and
questionnaires. We believe data collection and analysis were properly built
to answer our questions. The participation of the researcher who followed the
GT procedures poses another threat. His beliefs might have caused some dis-
tortions when interpreting the data. To mitigate this threat, the GT coding
activities were shared with other researchers. Moreover, the identification of
the constructs and the depicting of propositions were performed separately
by researchers. In fact, three researchers conducted the Grounded Theory
procedures independently; then we merged their results to shape the theory
(Section 5.1.5.2). Thus, the contents were compared and discussed by the re-
searchers until reaching a consensus.

5.7
Summary

A design problem is the result of one or more inappropriate decisions that
negatively impact non-functional requirements. Despite their harmfulness, the

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 5. Investigating How Developers Identify Design Problems 145

identification of each design problem is not trivial. One of the main reasons is
that design documentation is often unavailable or outdated. Thus, developers
often have to rely on the source code to identify design problems, which
may quickly turn into a complex task. Although researchers have investigated
techniques to help developers, there is little knowledge on how developers
actually proceed to identify design problems in practice.

In order to address this limitation, this chapter presented a study to
investigate how developers identify design problems in practice. We conducted
a multi-trial industrial experiment with developers from di�erent companies,
where they had to identify design problems in their systems (Section 5.1). As a
result, we derived a theory describing the activities and factors that influence
on how developers identify design problems, which can serve to further
understand the identification of design problems (Section 5.2). For example,
the theory reveals that developers rely on a heterogeneous set of symptoms,
and they tend to combine them. The theory also presents the characteristics of
symptoms that developers consider helpful. We also discuss the theory taking
into account propositions concerned to developers (Section 5.3). For instance,
we found some factors that influence their confidence in the presence of a design
problem in an element. Finally, we discussed how the knowledge revealed by
our theory can be used to advance the state-of-art (Section 5.4).

Future steps in this work involve the execution of new empirical studies to
assess in more depth the theory’s propositions and explanations. For instance,
we intend to address some findings described at Section 5.4 and verify whether
they have positive e�ects on design problem identification. The goal of these
studies is to use the theory to implement a novel family of solutions that
are more e�ective than the current ones to help developers to identify design
problems.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

6
Conclusion

Software systems have been discontinued or reengineered due to the
prevalence of certain design problems in the source code (14, 15, 16, 17).
A design problem is the manifestation of one or more inappropriate design
decisions that impact non-functional requirements negatively. In practice,
we delimited design problems to those resulting from design decisions that
include (i) how the system is organized into subsystems and components,
(ii) how and which code elements encapsulate process and data to address
each functionality, and (ii) how the elements interact with each other and
their execution environment (7, 8, 9).

Given the harmfulness of certain design problems, developers should
identify and remove them (with refactoring operations) as early as possible
(7, 17, 20). However, before removing a design problem, developers have to
identify them. As design documentation is often nonexistent, informal or not
up-to-date, developers need to identify design problems directly on the source
code. For this identification, they need to locate symptoms of the presence
of a design problem, such as code smells. Several studies have presented
techniques based on code smells to help developers to identify design problems
(41, 38, 39, 28, 47, 46). However, these studies have not investigated if code
smells su�ce to help developers to identify design problems in practice.

As a matter of fact, we had limited knowledge about how developers
identify design problems in practice. For instance, we di not know if code
smells su�ce to help developers during design problem identification. Indeed,
we did not know if code smells are key design problem symptoms for developers
in practice (Research Problem 1). A key symptom is one that helps developers
to identify a design problem that is relevant in the software system. We also
did not know if developers are able to identify design problems in practice
through the use of code smells (Research Problem 2). Since we did not
know to what extent code smells su�ce to help developers to identify design
problems, smell-based techniques could not support developers entirely during
the identification.

Lack of knowledge was not restrict to not knowing only if code smells
su�ce to support developers. In fact, we did not even know how to assess

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 6. Conclusion 147

existing techniques since we do not know how the design problem identification
takes place in practice. Additionally, we did not know if developers use other
symptoms in addition to code smells (Research Problem 3). Lack of su�cient
knowledge of how developers identify design problems in practice (General
Problem) could have been preventing researchers and tool engineers from
providing the required support for developers to identify design problems. In
this context, the goal of this thesis was to stepwisely understand how developers
identify design problems in practice. To achieve such a goal, we conducted
several studies, which are summarized as follows.

6.1
Revisiting the Thesis Contributions

In our quest to understand how developers identify design problems in
practice, our first step was to investigate the role that code smells play in the
identification. Code smells have been discussed in the literature as a consis-
tent indicator of design problems (53, 28, 47, 51, 27, 55, 29). Notwithstanding,
we did not know if in practice code smells are key symptoms for developers
identifying relevant design problems. A relevant design problem is one that de-
velopers had to identify and remove from the source code. Thus, we conducted
a retrospective study (Chapter 3) to answer the following research question:
Are code smells key symptoms to indicate relevant design problems for devel-
opers?

To answer this research question we analyzed the source code of 50
software projects. In this analysis, we verified if the refactored elements were
likely to contain design problem. Then, we analyzed if these elements contain at
least one code smell closely related to the design problem. If the code elements
contain code smells, then smells have the potential to serve as key symptoms
to help developers to identify relevant design problems in practice. As a result
of this analysis, we found that most refactored elements had code smells that
could be used to identify design problems in the elements. In this context, the
first contribution of this thesis was:

1st Contribution. First evidence that code smells likely represent
key symptoms for developers to identify relevant design problems. Further-
more, certain design problems bear no relationship with code smells

Even though our results indicate that in most cases code smells can
represent key symptoms, we found some scenarios in which code smells could
not indicate design problems. For instance, we found some refactored elements

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 6. Conclusion 148

that did not have code smells but they were likely to be a�ected by a design
problem. This result led us to investigate if in practice developers can use and
reason about code smells to identify design problems.

In this follow-up study (Chapter 4), we aimed to answer the following
research question: Are developers able to use code smells to identify design
problems? To answer this research question, we asked 11 developers to identify
design problems using single code smells. In this study, we also asked the
same developers to use multiple code smells. As we found that developers can
benefit from analyzing multiple smells, we also wanted to investigate whether
they could reason about multiple smells in practice. In this sense, we asked
developers to use agglomerations of code smells. Comparing developers using
single smells and using multiple smells (i.e., agglomeration) allowed us to
find whether code smells su�ce to help developers during the design problem
identification. As the result of this study, we found that not only developers are
able to use code smells but also the use of agglomerations improves developers’
precision in finding design problems. Unfortunately, we also found that code
smells do not su�ce to help developers to identify all design problems. In this
context, the second contribution was:

2nd Contribution. Code smells do not su�ce to assist developers
along the task of identifying design problems in practice.

Even though smells do not su�ce to support them, we found that devel-
opers can benefit from the analysis of multiple smells. In fact, such analysis
gave developers confidence to confirm the occurrence of the design problem,
which may help to explain why they refactor refactoring elements with mul-
tiple smells (Section 3.4.1). Interesting enough, we found that although the
analysis of multiple smells can be cumbersome, developers use each smell as a
complementary symptom of the presence of a design problem. This result led
us to wonder if developers also benefit from the analysis of other symptoms in
addition to smells. To identify what symptoms developers use, we conducted a
multi-trial study (Chapter 5) to answer the following research question: What
are the design problem symptoms that developers use in practice?.

To answer this research question, we asked professional software devel-
opers to identify design problems in their own systems. In this study, we cap-
tured data of developers identifying design problems by filming the environ-
ment, recording audio and capturing their computer screens on video. These
data allowed us to conduct an in-depth qualitative analysis based on Grounded
Theory procedures (60), which also allowed us to answer the following research

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 6. Conclusion 149

question: How do developers identify design problems in practice? As the re-
sult for the first research question in this study, we found the five preeminent
symptoms that developers use in practice. They are violation of non-functional
requirements, code smells, violation of architectural and design patterns, poor
structural quality attributes, and violation of object-oriented principles. Thus,
the third contribution of this thesis was:

3rd Contribution. The symptoms that developers use in practice
in addition to code smells.

In addition to finding what symptoms developers use in practice, we also
found out how they use these symptoms. In fact, we found out how they select
the symptoms that they consider useful to identify a design problem. We found
out when they use these symptoms, and which factors influence them during
their use towards the identification of design problems. All this knowledge
heretofore unknown was wrapped up in a theory that provides an overview,
explanation, and understanding on how developers identify design problems in
source code. Therefore, the fourth contribution of this thesis was:

4th Contribution. A theory on how developers identify design
problems in practice.

This theory explains how software developers identify design problems
through the analysis of symptoms that manifest in the source code. It has
constructs about how developers conduct the identification, for instance, which
steps they follow. The theory also contains constructs about the symptoms that
developers use in practice. For instance, developers rely on a heterogeneous set
of symptoms, and they tend to combine those five preeminent symptoms. The
theory also presents the characteristics of symptoms that developers consider
helpful, such as the symptom type, its relation with other symptoms and the
frequency that it emerges in an element. These and other characteristics are
used by developers to prioritize elements and symptoms during design problem
identification. The theory also has constructs and propositions concerning
developers. For instance, we found some factors that influence their confidence
in the presence of a design problem in an element, such as the diversity of
symptoms, which increases the developers’ conscientiousness.

We highlight that before proposing solutions that will help developers to
identify design problems, first, we need to understand how they conduct the
design problem identification in practice. Therefore, the contributions listed

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 6. Conclusion 150

Table 6.1: Papers Produced in the Context of this Thesis
Paper Chapter

Leonardo da Silva Sousa. 2016. Spotting design problems with
smell agglomerations. In Proceedings of the 38th International

Conference on Software Engineering Companion – Doctoral
Symposium (ICSE ’16).

4

*Willian Oizumi, Leonardo Sousa, Alessandro Garcia, Roberto
Oliveira, Anderson Oliveira, O. I. Anne Benedicte Agbachi,
and Carlos Lucena. 2017. Revealing design problems in stinky
code: a mixed-method study. In Proceedings of the 11th Brazilian

Symposium on Software Components, Architectures, and Reuse
(SBCARS ’17).

4

Leonardo Sousa, Roberto Oliveira, Alessandro Garcia, Jaejoon
Lee, Tayana Conte, Willian Oizumi, Rafael de Mello, Adriana
Lopes, Natasha Valentim, Edson Oliveira, and Carlos Lucena.
2017. How Do Software Developers Identify Design Problems?:
A Qualitative Analysis. In Proceedings of the 31st Brazilian

Symposium on Software Engineering (SBES’17).

5

*Leonardo Sousa, Anderson Oliveira, Willian Oizumi, Simone
Barbosa, Alessandro Garcia, Jaejoon Lee, Marcos Kalinowski,
Rafael de Mello, Baldoino Fonseca, Roberto Oliveira, Carlos
Lucena, and Rodrigo Paes. 2018. Identifying design problems
in the source code: a grounded theory. In Proceedings of the 40th

International Conference on Software Engineering (ICSE ’18).

5

Leonardo Sousa, Isabella Ferreira, Diego Cedrim, Alexander
Chávez, Alessandro Garcia, and Carlos Lucena. 2018. The
Structural Quality of Refactored Code: A Study of 50 Software
Projects. Journal. under submission process.

3

* Distinguished Paper Award

here can advance both state-of-the-art and state-of-the-practice. Researchers
and industry practitioners can use the discussions in this thesis to define
mechanisms that drive news solutions for supporting developers during design
problem identification. The knowledge provided here can help researchers
in building more suitable mechanisms that are aligned with how developers
identify design problems in practice.

Finally, to facilitate future references to works that resulted from this
thesis, Table 6.1 presents the papers produced in the context of this thesis and
the respective chapters to which they are related.

6.2
Future Work

New challenges and opportunities for improvement have emerged along
the studies conducted in the context of this thesis. Based on them, further
directions for future work are presented next.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 6. Conclusion 151

Investigating Heuristics to Prioritize Smells and Agglomera-
tions. In Chapter 4, we relied on code smells and their agglomerations to
investigate to what extent they su�ce to help developers to identify design
problems. Even though we concluded that smells do not su�ce, they are still
preeminent symptoms used in practice. We noticed the need to prioritize smells
and agglomerations, which was also confirmed by developers. A software sys-
tem can have thousands of code smells (38), which can lead to hundreds of
possible agglomerations. However, not all code smells and, consequently, ag-
glomerations in a system will be related to a design problem. Thus, in order to
support developers during the design problem identification, we need to inves-
tigate heuristics to prioritize smells and agglomerations that are most likely to
indicate a design problem.

These heuristics for prioritization can be based on the knowledge pro-
vided by the theory. Since we know how developers select symptoms that may
be useful to identify a design problem, we can apply this knowledge to cre-
ate heuristics to select code smells and agglomerations. We can also explore
other types of relations that can be established between code smells. For in-
stance, Oizumi et al. proposed agglomerations that explore code smells that
are semantically related to each other (47). We can also explore other types
of relations. For instance, code smells that are related to each other due to
exception flow. Thus, if elements that handle exceptions contain code smells,
and they are in the same exception flow, then we can create an agglomera-
tion with these smells. In this vein, we can also explore data flow to create
agglomerations.

Exploring the Theory to Improve the Design Problem Diag-
nosis. In Section 5.4, we discussed some solutions that can emerge from the
theory and can be used to improve the design problem identification. Each
one of those discussed solutions requires extensive investigation. Among these
investigations, the prioritization of elements is essential. In the same way that
a system can have thousands of code smells, it can have thousands of design
problem symptoms. Thus, developers need to prioritize code elements that
have symptoms that indicate a design problem.

Based on how developers select symptoms that they consider useful, we
can propose heuristics to select elements that contain these useful symptoms.
For instance, we can select elements that have a high density or diversity
of symptoms. We can also investigate heuristics to find the relation among
the symptoms, and use these relations to prioritize elements that contain
symptoms that are related to each other. We also need to investigate heuristics
to identify elements that play the same role in the system, and that have

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Chapter 6. Conclusion 152

a similar set of symptoms. These elements can be grouped based on the
element role and if they have the same symptom types. Thus, the more common
symptom types a group has, the higher its priority.

Validating the Theory Propositions. As discussed in Section 5.2,
the theory has high testatibility since it is possible to replicate the study in
a way that empirical refutation is possible. In this sense, the theory o�ers
several propositions that can be tested individually. Testing these propositions
not only serves to validate the propositions but can also reveal further
details about the design problem identification. This new knowledge can
be used to improve the support for developers to identify design problems.
For instance, propositions concerning the developer can be validated. This
validation can reveal methods to reduce the impact that human factors have
on the identification of design problems.

Extending the Theory. The design problem identification is an activity
associated with maintainability. Thus, we wonder whether the theory can
be extended to other activities in the maintenance context, for instance,
refactoring. As mentioned, refactoring and design problem identification are
two activities closely related to each other: the former succeeds the later. Thus,
the theory could also be extended to include refactoring. In this context, other
studies can also be conducted to investigate what propositions can be applied
in another maintenance context, such as, debugging.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Bibliography

[1] TANG, A.; ALETI, A.; BURGE, J. ; VAN VLIET, H.. What makes
software design e�ective? Design Studies, 31(6):614 – 640, 2010.
Special Issue Studying Professional Software Design.

[2] TAYLOR, R. N.; VAN DER HOEK, A.. Software design and archi-
tecture the once and future focus of software engineering. In:
2007 FUTURE OF SOFTWARE ENGINEERING, FOSE ’07, p. 226–243,
Washington, DC, USA, 2007. IEEE Computer Society.

[3] BRUNET, J. A.; MURPHY, G. C.; TERRA, R.; FIGUEIREDO, J. ; SEREY,
D.. Do developers discuss design? In: PROCEEDINGS OF THE 11TH
WORKING CONFERENCE ON MINING SOFTWARE REPOSITORIES,
MSR 2014, p. 340–343, New York, NY, USA, 2014.

[4] GAMMA, E.; HELM, R.; JOHNSON, R. ; VLISSIDES, J.. Design Pat-
terns: Elements of Reusable Object-oriented Software. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[5] LARMAN, C.. Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and Iterative Develop-
ment (3rd Edition). Prentice Hall PTR, Upper Saddle River, NJ, USA,
2004.

[6] PERRY, D. E.; WOLF, A. L.. Foundations for the study of software
architecture. SIGSOFT Softw. Eng. Notes, 17(4):40–52, Oct. 1992.

[7] GARCIA, J.; POPESCU, D.; EDWARDS, G. ; MEDVIDOVIC, N.. Iden-
tifying architectural bad smells. In: CSMR09; KAISERSLAUTERN,
GERMANY. IEEE, 2009.

[8] GARCIA, J.; POPESCU, D.; EDWARDS, G. ; MEDVIDOVIC, N.. Toward
a catalogue of architectural bad smells. In: Mirandola, R.; Gorton, I.
; Hofmeister, C., editors, ARCHITECTURES FOR ADAPTIVE SOFTWARE
SYSTEMS, p. 146–162, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[9] LIPPERT, M.; ROOCK, S.. Refactoring in Large Software Projects:
Performing Complex Restructurings Successfully. Wiley, 2006.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Bibliography 154

[10] TAYLOR, R.; MEDVIDOVIC, N. ; DASHOFY, E.. Software Architec-
ture: Foundations, Theory, and Practice. Wiley Publishing, 2009.

[11] PARNAS, D. L.. Designing software for ease of extension and con-
traction. In: PROCEEDINGS OF THE 3RD INTERNATIONAL CONFER-
ENCE ON SOFTWARE ENGINEERING, ICSE ’78, p. 264–277, Piscataway,
NJ, USA, 1978. IEEE Press.

[12] CHEN, X.; DAVARE, A.; HSIEH, H.; SANGIOVANNI-VINCENTELLI, A. ;
WATANABE, Y.. Simulation based deadlock analysis for system
level designs. In: PROCEEDINGS OF THE 42ND ANNUAL DESIGN
AUTOMATION CONFERENCE, DAC ’05, p. 260–265, New York, NY, USA,
2005. ACM.

[13] MARTIN, R. C.; MARTIN, M.. Agile Principles, Patterns, and
Practices in C# (Robert C. Martin). Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2006.

[14] GODFREY, M.; LEE, E.. Secrets from the monster: Extracting
Mozilla’s software architecture. In: COSET-00; LIMERICK, IRE-
LAND, p. 15–23, 2000.

[15] VAN GURP, J.; BOSCH, J.. Design erosion: problems and causes.
Journal of Systems and Software, 61(2):105 – 119, 2002.

[16] MACCORMACK, A.; RUSNAK, J. ; BALDWIN, C.. Exploring the
structure of complex software designs: An empirical study of
open source and proprietary code. Manage. Sci., 52(7):1015–1030,
2006.

[17] SCHACH, S.; JIN, B.; WRIGHT, D.; HELLER, G. ; OFFUTT, A.. Main-
tainability of the linux kernel. Software, IEE Proceedings -, 149(1):18–
23, 2002.

[18] CURTIS, B.; SAPPIDI, J. ; SZYNKARSKI, A.. Estimating the size,
cost, and types of technical debt. In: PROCEEDINGS OF THE
THIRD INTERNATIONAL WORKSHOP ON MANAGING TECHNICAL
DEBT, MTD ’12, p. 49–53, Piscataway, NJ, USA, 2012. IEEE Press.

[19] SILVA, M. C. O.; VALENTE, M. T. ; TERRA, R.. Does technical debt
lead to the rejection of pull requests? In: PROCEEDINGS OF THE
12TH BRAZILIAN SYMPOSIUM ON INFORMATION SYSTEMS, SBSI ’16,
p. 248–254, 2016.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Bibliography 155

[20] YAMASHITA, A.; MOONEN, L.. Do code smells reflect important
maintainability aspects? In: ICSM12, p. 306–315, 2012.

[21] FOWLER, M.. Refactoring: Improving the Design of Existing
Code. Addison-Wesley Professional, Boston, 1999.

[22] KUMAR, M. R.; KUMAR, R. H.. Architectural refactoring of a mis-
sion critical integration application: A case study. In: PROCEED-
INGS OF THE 4TH INDIA SOFTWARE ENGINEERING CONFERENCE,
ISEC ’11, p. 77–83, New York, NY, USA, 2011. ACM.

[23] SAMARTHYAM, G.; SURYANARAYANA, G. ; SHARMA, T.. Refactoring
for software architecture smells. In: PROCEEDINGS OF THE 1ST
INTERNATIONAL WORKSHOP ON SOFTWARE REFACTORING, IWoR
2016, p. 1–4, New York, NY, USA, 2016. ACM.

[24] TAHVILDARI, L.; KONTOGIANNIS, K.. A metric-based approach
to enhance design quality through meta-pattern transforma-
tions. In: SEVENTH EUROPEAN CONFERENCE ONSOFTWARE MAIN-
TENANCE AND REENGINEERING, 2003. PROCEEDINGS., p. 183–192,
March 2003.

[25] MURPHY-HILL, E.; PARNIN, C. ; BLACK, A. P.. How we refactor, and
how we know it. In: PROCEEDINGS OF THE 31ST INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING, ICSE ’09, p. 287–297,
Washington, DC, USA, 2009. IEEE Computer Society.

[26] CIUPKE, O.. Automatic detection of design problems in object-
oriented reengineering. In: PROCEEDINGS OF TECHNOLOGY OF
OBJECT-ORIENTED LANGUAGES AND SYSTEMS - TOOLS 30 (CAT.
NO.PR00278), p. 18–32, Aug 1999.

[27] TRIFU, A.; MARINESCU, R.. Diagnosing design problems in object
oriented systems. In: WCRE’05, p. 10 pp., Nov 2005.

[28] MOHA, N.; GUEHENEUC, Y.; DUCHIEN, L. ; MEUR, A. L.. Decor: A
method for the specification and detection of code and design
smells. IEEE Transaction on Software Engineering, 36:20–36, 2010.

[29] YAMASHITA, A.; MOONEN, L.. Do developers care about code
smells? an exploratory survey. In: 2013 20TH WORKING CONFER-
ENCE ON REVERSE ENGINEERING (WCRE), p. 242–251, Oct 2013.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Bibliography 156

[30] LANZA, M.; MARINESCU, R.. Object-Oriented Metrics in Practice.
Springer, Heidelberg, 2006.

[31] KERIEVSKY, J.. Refactoring to Patterns. Pearson Higher Education,
2004.

[32] PAGE-JONES, M.. Fundamentals of Object-oriented Design in
UML. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2000.

[33] SIMON, F.; SENG, O. ; MOHAUPT, T.. Code-Quality-Management -
technische Qualität industrieller Softwaresysteme transparent
und vergleichbar gemacht. dpunkt.verlag, 2006.

[34] BUDD, T. A.. An Introduction to Object-Oriented Programming.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 3rd
edition, 2001.

[35] GREENWOOD, P.; BARTOLOMEI, T.; FIGUEIREDO, E.; DOSEA, M.;
GARCIA, A.; CACHO, N.; SANT’ANNA, C.; SOARES, S.; BORBA, P.;
KULESZA, U. ; RASHID, A.. On the impact of aspectual decom-
positions on design stability: An empirical study. In: PRO-
CEEDINGS OF THE 21ST EUROPEAN CONFERENCE ON OBJECT-
ORIENTED PROGRAMMING, ECOOP’07, p. 176–200, Berlin, Heidelberg,
2007. Springer-Verlag.

[36] SOARES, S.; LAUREANO, E. ; BORBA, P.. Implementing distribution
and persistence aspects with aspectj. In: PROCEEDINGS OF THE
17TH ACM CONFERENCE ON OBJECT-ORIENTED PROGRAMMING,
SYSTEMS, LANGUAGES, AND APPLICATIONS; SEATTLE, USA, p. 174–
190. ACM Press, 2002.

[37] BOOCH, G.; RUMBAUGH, J. ; JACOBSON, I.. The Unified Modeling
Language User Guide. Addison-Wesley, Boston, 2005.

[38] MACIA, I.; GARCIA, J.; POPESCU, D.; GARCIA, A.; MEDVIDOVIC, N.
; VON STAA, A.. Are automatically-detected code anomalies
relevant to architectural modularity?: An exploratory analysis
of evolving systems. In: AOSD ’12, p. 167–178, New York, NY, USA,
2012. ACM.

[39] MOHA, N.; G. GUEHENEUC, Y. ; LEDUC, P.. Automatic generation
of detection algorithms for design defects. In: 21ST IEEE/ACM

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Bibliography 157

INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGI-
NEERING (ASE’06), p. 297–300, Sept 2006.

[40] MOHA, N.; GUÉHÉNEUC, Y.-G.; LE MEUR, A.-F. ; DUCHIEN, L.. A do-
main analysis to specify design defects and generate detection
algorithms. In: Fiadeiro, J. L.; Inverardi, P., editors, FUNDAMENTAL
APPROACHES TO SOFTWARE ENGINEERING, p. 276–291, Berlin, Hei-
delberg, 2008. Springer Berlin Heidelberg.

[41] MACIA, I.. On the Detection of Architecturally-Relevant Code
Anomalies in Software Systems. PhD thesis, Pontifical Catholic
University of Rio de Janeiro, Informatics Department, 2013.

[42] XIAO, L.; CAI, Y. ; KAZMAN, R.. Design rule spaces: A new
form of architecture insight. In: PROCEEDINGS OF THE 36TH
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, p.
967–977, New York, NY, USA, 2014. ACM.

[43] KAZMAN, R.; CAI, Y.; MO, R.; FENG, Q.; XIAO, L.; HAZIYEV, S.;
FEDAK, V. ; SHAPOCHKA, A.. A case study in locating the
architectural roots of technical debt. In: PROCEEDINGS OF THE
37TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING
- VOLUME 2, ICSE ’15, p. 179–188, Piscataway, NJ, USA, 2015. IEEE
Press.

[44] MO, R.; CAI, Y.; KAZMAN, R. ; XIAO, L.. Hotspot patterns:
The formal definition and automatic detection of architecture
smells. In: SOFTWARE ARCHITECTURE (WICSA), 2015 12TH WORK-
ING IEEE/IFIP CONFERENCE ON, p. 51–60, May 2015.

[45] XIAO, L.; CAI, Y.; KAZMAN, R.; MO, R. ; FENG, Q.. Identifying and
quantifying architectural debt. In: PROCEEDINGS OF THE 38TH
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ICSE
’16, p. 488–498, New York, NY, USA, 2016. ACM.

[46] VIDAL, S.; GUIMARAES, E.; OIZUMI, W.; GARCIA, A.; PACE, A. D. ;
MARCOS, C.. Identifying architectural problems through priori-
tization of code smells. In: SBCARS16, p. 41–50, Sept 2016.

[47] OIZUMI, W.; GARCIA, A.; SOUSA, L.; CAFEO, B. ; ZHAO, Y.. Code
anomalies flock together: Exploring code anomaly agglomera-
tions for locating design problems. In: THE 38TH INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING; USA, 2016.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Bibliography 158

[48] KHOMH, K.; PENTA, M. D. ; GUEHENEUC, Y.. An exploratory study
of the impact of code smells on software change-proneness. In:
PROCEEDINGS OF THE 16TH WORKING CONFERENCE ON REVERSE
ENGINEERING; LILLE, FRANCE, p. 75–84, 2009.

[49] ABBES, M.; KHOMH, F.; GUEHENEUC, Y. ; ANTONIOL, G.. An
empirical study of the impact of two antipatterns, blob and
spaghetti code, on program comprehension. In: PROCEEDINGS
OF THE 15TH EUROPEAN SOFTWARE ENGINEERING CONFERENCE;
OLDENBURG, GERMANY, p. 181–190, 2011.

[50] YAMASHITA, A.; MOONEN, L.. Exploring the impact of inter-
smell relations on software maintainability: an empirical study.
In: PROCEEDINGS OF THE 35TH INTERNATIONAL CONFERENCE ON
SOFTWARE ENGINEERING; SAN FRANCISCO, USA, p. 682–691, 2013.

[51] PALOMBA, F.; BAVOTA, G.; PENTA, M. D.; OLIVETO, R. ; LUCIA, A. D..
Do they really smell bad? a study on developers’ perception of
bad code smells. In: 2014 IEEE INTERNATIONAL CONFERENCE ON
SOFTWARE MAINTENANCE AND EVOLUTION, p. 101–110, Sept 2014.

[52] MACIA, I.; ARCOVERDE, R.; GARCIA, A.; CHAVEZ, C. ; VON STAA, A..
On the relevance of code anomalies for identifying architecture
degradation symptoms. In: CSMR12, p. 277–286, March 2012.

[53] MACIA, I.; ARCOVERDE, R.; CIRILO, E.; GARCIA, A. ; VON STAA, A..
Supporting the identification of architecturally-relevant code
anomalies. In: ICSM12, p. 662–665, Sept 2012.

[54] YAMASHITA, A.; ZANONI, M.; FONTANA, F. A. ; WALTER, B.. Inter-
smell relations in industrial and open source systems: A repli-
cation and comparative analysis. In: SOFTWARE MAINTENANCE
AND EVOLUTION (ICSME), 2015 IEEE INTERNATIONAL CONFERENCE
ON, p. 121–130, Sept 2015.

[55] TUFANO, M.; PALOMBA, F.; BAVOTA, G.; OLIVETO, R.; DI PENTA, M.;
DE LUCIA, A. ; POSHYVANYK, D.. When and why your code starts
to smell bad. In: PROCEEDINGS OF THE 37TH INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING, ICSE ’15, New York, NY,
USA, 2015. ACM.

[56] WONG, S.; CAI, Y.; KIM, M. ; DALTON, M.. Detecting software
modularity violations, May 2011.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Bibliography 159

[57] EASTERBROOK, S.; SINGER, J.; STOREY, M.-A. ; DAMIAN, D.. Se-
lecting Empirical Methods for Software Engineering Research.
Springer London, London, 2008.

[58] TRIFU, A.; REUPKE, U.. Towards automated restructuring of
object oriented systems. In: CSMR ’07, p. 39–48, Washington, DC,
USA, 2007. IEEE.

[59] MOHA, N.; GUÉHÉNEUC, Y.-G.; MEUR, A.-F.; DUCHIEN, L. ;
TIBERGHIEN, A.. From a domain analysis to the specification
and detection of code and design smells. Form. Asp. Comput.,
22(3-4):345–361, may 2010.

[60] STRAUSS, A.; CORBIN, J.. Basics of Qualitative Research: Tech-
niques and Procedures for Developing Grounded Theory. SAGE
Publications, 1998.

[61] SOUSA, L.; OLIVEIRA, R.; GARCIA, A.; LEE, J.; CONTE, T.; OIZUMI, W.;
DE MELLO, R.; LOPES, A.; VALENTIM, N.; OLIVEIRA, E. ; LUCENA,
C.. How do software developers identify design problems?:
A qualitative analysis. In: PROCEEDINGS OF 31ST BRAZILIAN
SYMPOSIUM ON SOFTWARE ENGINEERING, SBES’17, 2017.

[62] BUDGEN, D.. Software Design. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2 edition, 2003.

[63] LISKOV, B.; GUTTAG, J.. Program Development in Java: Abstrac-
tion, Specification, and Object-Oriented Design. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 2000.

[64] VAN DER VEN, J. S.; JANSEN, A. G. J.; NIJHUIS, J. A. G. ; BOSCH,
J.. Design Decisions: The Bridge between Rationale and Ar-
chitecture, p. 329–348. Springer Berlin Heidelberg, Berlin, Heidelberg,
2006.

[65] JACOBSON, I.; BOOCH, G. ; RUMBAUGH, J.. The Unified Software
Development Process. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1999.

[66] WIEGERS, K. E.. Software Requirements. Microsoft Press, Redmond,
WA, USA, 2 edition, 2003.

[67] PARNAS, D. L.. On the criteria to be used in decomposing
systems into modules. Commun. ACM, 15(12):1053–1058, Dec. 1972.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Bibliography 160

[68] DIJKSTRA, E. W.. A Discipline of Programming. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1st edition, 1997.

[69] ROBILLARD, M. P.; MURPHY, G. C.. Representing concerns in
source code. ACM Trans. Softw. Eng. Methodol., 16(1), Feb. 2007.

[70] BUSCHMANN, F.; HENNEY, K. ; SCHMIDT, D.. Pattern-Oriented
Software Architecture: A Pattern Language for Distributed
Computing. John Wiley & Sons, 2007.

[71] DIETRICH, J.; MCCARTIN, C.; TEMPERO, E. ; SHAH, S. M. A.. Barriers
to modularity - an empirical study to assess the potential for
modularisation of java programs. In: Heineman, G. T.; Kofron, J. ;
Plasil, F., editors, RESEARCH INTO PRACTICE – REALITY AND GAPS,
p. 135–150, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[72] MO, R.; CAI, Y.; KAZMAN, R.; XIAO, L. ; FENG, Q.. Decoupling level:
A new metric for architectural maintenance complexity. In: 2016
IEEE/ACM 38TH INTERNATIONAL CONFERENCE ON SOFTWARE EN-
GINEERING (ICSE), p. 499–510, May 2016.

[73] SURYANARAYANA, G.; SAMARTHYAM, G. ; SHARMA, T.. Refactoring
for Software Design Smells: Managing Technical Debt. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 2014.

[74] EICK, S. G.; GRAVES, T. L.; KARR, A. F.; MARRON, J. S. ; MOCKUS,
A.. Does code decay? assessing the evidence from change
management data. IEEE Trans. Softw. Eng., 27(1):1–12, Jan. 2001.

[75] BERTRAN, I. M.. Detecting architecturally-relevant code smells
in evolving software systems. In: PROCEEDINGS OF THE 33RD
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ICSE
’11, p. 1090–1093, New York, NY, USA, 2011. ACM.

[76] SARKAR, S.; RAMACHANDRAN, S.; KUMAR, G. S.; IYENGAR, M. K.;
RANGARAJAN, K. ; SIVAGNANAM, S.. Modularization of a large-
scale business application: A case study. IEEE Softw., 26(2):28–35,
Mar. 2009.

[77] MURPHY-HILL, E.; BLACK, A. P.. An interactive ambient visual-
ization for code smells. In: PROCEEDINGS OF THE 5TH INTERNA-
TIONAL SYMPOSIUM ON SOFTWARE VISUALIZATION; SALT LAKE
CITY, USA, p. 5–14. ACM, 2010.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Bibliography 161

[78] OIZUMI, W.; GARCIA, A.. Organic: A prototype tool for the
synthesis of code anomalies, 2015.

[79] SHAW, M.; GARLAN, D.. Software Architecture: Perspectives on
an Emerging Discipline. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1996.

[80] GANESH, S.; SHARMA, T. ; SURYANARAYANA, G.. Towards a
principle-based classification of structural design smells. Journal
of Object Technology, 12(2):1:1–29, June 2013.

[81] TRIFU, A.. Towards automated restructuring of object oriented
systems. PhD thesis, Karlsruhe Institute of Technology, 2008.

[82] OIZUMI, W.; GARCIA, A.; COLANZI, T.; FERREIRA, M. ; STAA, A..
When code-anomaly agglomerations represent architectural
problems? An exploratory study. In: PROCEEDINGS OF THE 2014
BRAZILIAN SYMPOSIUM ON SOFTWARE ENGINEERING (SBES); MA-
CEIO, BRAZIL, p. 91–100, 2014.

[83] BALDWIN, C. Y.; CLARK, K. B.. Design Rules: The Power of
Modularity Volume 1. MIT Press, Cambridge, MA, USA, 1999.

[84] BOURQUIN, F.; KELLER, R. K.. High-impact refactoring based on
architecture violations. In: 11TH EUROPEAN CONFERENCE ON
SOFTWARE MAINTENANCE AND REENGINEERING (CSMR’07), p. 149–
158, March 2007.

[85] BAVOTA, G.; LUCIA, A. D.; PENTA, M. D.; OLIVETO, R. ; PALOMBA,
F.. An experimental investigation on the innate relationship
between quality and refactoring. Journal of Systems and Software,
107:1 – 14, 2015.

[86] KIM, M.; ZIMMERMANN, T. ; NAGAPPAN, N.. A field study of refac-
toring challenges and benefits. In: PROCEEDINGS OF THE 20TH IN-
TERNATIONAL SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE
ENGINEERING, FSE ’12, p. 50:1–50:11, New York, NY, USA, 2012. ACM.

[87] SILVA, D.; TSANTALIS, N. ; VALENTE, M. T.. Why we refactor?
confessions of github contributors. In: PROCEEDINGS OF THE
2016 24TH ACM SIGSOFT INTERNATIONAL SYMPOSIUM ON FOUN-
DATIONS OF SOFTWARE ENGINEERING, FSE 2016, p. 858–870, New
York, NY, USA, 2016. ACM.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Bibliography 162

[88] CEDRIM, D.; GARCIA, A.; MONGIOVI, M.; GHEYI, R.; SOUSA, L.;
DE MELLO, R.; FONSECA, B.; RIBEIRO, M. ; CHÁVEZ, A.. Under-
standing the impact of refactoring on smells: A longitudinal
study of 23 software projects. In: PROCEEDINGS OF THE 2017 11TH
JOINT MEETING ON FOUNDATIONS OF SOFTWARE ENGINEERING,
ESEC/FSE 2017, p. 465–475, New York, NY, USA, 2017. ACM.

[89] TSANTALIS, N.; GUANA, V.; STROULIA, E. ; HINDLE, A.. A multi-
dimensional empirical study on refactoring activity. In: PRO-
CEEDINGS OF THE 2013 CONFERENCE OF THE CENTER FOR AD-
VANCED STUDIES ON COLLABORATIVE RESEARCH, p. 132–146. IBM
Corp., 2013.

[90] TSANTALIS, N.; MANSOURI, M.; ESHKEVARI, L. M.; MAZINANIAN,
D. ; DIG, D.. Accurate and e�cient refactoring detection in
commit history. In: PROCEEDINGS OF THE 40TH INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING, ICSE ’18, p. 483–494,
New York, NY, USA, 2018. ACM.

[91] XING, Z.; STROULIA, E.. Umldi�: An algorithm for object-
oriented design di�erencing. In: PROC. OF ASE ’05, p. 54–65, 2005.

[92] MARINESCU. Detection strategies: metrics-based rules for de-
tecting design flaws. In: PROCEEDINGS OF 20TH IEEE INTER-
NATIONAL CONFERENCE ON SOFTWARE MAINTENANCE (ICSM);
CHICAGO, USA, p. 350–359, 2004.

[93] PALOMBA, F.; BAVOTA, G.; PENTA, M. D.; OLIVETO, R.; POSHY-
VANYK, D. ; LUCIA, A. D.. Mining version histories for detecting
code smells. IEEE Transactions on Software Engineering, 41(5):462–489,
May 2015.

[94] MAIGA, A.; ALI, N.; BHATTACHARYA, N.; SABANÉ, A.; GUÉHÉNEUC,
Y.-G.; ANTONIOL, G. ; AÏMEUR, E.. Support vector machines for
anti-pattern detection. In: PROCEEDINGS OF THE 27TH IEEE/ACM
INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGI-
NEERING, ASE 2012, p. 278–281, New York, NY, USA, 2012. ACM.

[95] OUNI, A.; GAIKOVINA KULA, R.; KESSENTINI, M. ; INOUE, K.. Web
service antipatterns detection using genetic programming. In:
PROCEEDINGS OF THE 2015 ANNUAL CONFERENCE ON GENETIC
AND EVOLUTIONARY COMPUTATION, GECCO ’15, p. 1351–1358, New
York, NY, USA, 2015. ACM.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Bibliography 163

[96] MATTMANN, C.; CRICHTON, D.; MEDVIDOVIC, N. ; HUGHES, S.. A
software architecture-based framework for highly distributed
and data intensive scientific applications. In: PROCEEDINGS
OF THE 28TH INTERNATIONAL CONFERENCE ON SOFTWARE
ENGINEERING: SOFTWARE ENGINEERING ACHIEVEMENTS TRACK;
SHANGHAI, CHINA, p. 721–730, 2006.

[97] MCINTOSH, S.; KAMEI, Y.; ADAMS, B. ; HASSAN, A. E.. The impact
of code review coverage and code review participation on
software quality: A case study of the qt, vtk, and itk projects.
In: PROCEEDINGS OF THE 11TH WORKING CONFERENCE ON MINING
SOFTWARE REPOSITORIES, p. 192–201, Hyderabad, India, 2014.

[98] SHADISH, C.; 2001, C.. Experimental and Quasi-Experimental
Designs for Generalized Causal Inference. Houghton Mi�in, 2
edition, 2001.

[99] YAHOO!. Explore career opportunities, April 2017. Available at
https://careers.yahoo.com/us/buildyourcareer.

[100] TWITTER. Working at twitter, April 2017. Available at https:

//about.twitter.com/careers.

[101] GARCIA, J.; IVKOVIC, I. ; MEDVIDOVIC, N.. A comparative analysis
of software architecture recovery techniques. In: PROCEEDINGS
OF THE 28TH IEEE/ACM INTERNATIONAL CONFERENCE ON AUTO-
MATED SOFTWARE ENGINEERING; PALO ALTO, USA, 2013.

[102] ARCOVERDE, R.; AES, E. G.; MACÍA, I.; GARCIA, A. ; CAI, Y.. Prioriti-
zation of code anomalies based on architecture sensitiveness. In:
2013 27TH BRAZILIAN SYMPOSIUM ON SOFTWARE ENGINEERING, p.
69–78, Oct 2013.

[103] VIDAL, S. A.; MARCOS, C. ; DÍAZ-PACE, J. A.. An approach to
prioritize code smells for refactoring. Automated Software Engg.,
23(3):501–532, Sept. 2016.

[104] HERMAN, I.; MELANCON, G. ; MARSHALL, M. S.. Graph visual-
ization and navigation in information visualization: A survey.
IEEE Transactions on Visualization and Computer Graphics, 6(1):24–43, Jan
2000.

https://careers.yahoo.com/us/buildyourcareer
https://about.twitter.com/careers
https://about.twitter.com/careers
DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Bibliography 164

[105] EMDEN, E.; MOONEN, L.. Java quality assurance by detecting
code smells. In: PROCEEDINGS OF THE 9TH WORKING CONFER-
ENCE ON REVERSE ENGINEERING; RICHMOND, USA, p. 97, 2002.

[106] RATZINGER, J.; FISCHER, M. ; GALL, H.. Improving evolvability
through refactoring, volumen 30. ACM, 2005.

[107] WETTEL, R.; LANZA, M.. Visually localizing design problems
with disharmony maps. In: PROCEEDINGS OF THE 4TH ACM
SYMPOSIUM ON SOFTWARE VISUALIZATION, p. 155–164. ACM, 2008.

[108] STOL, K.-J.; FITZGERALD, B.. Theory-oriented software engineer-
ing. Science of Computer Programming, 101:79 – 98, 2015. Towards general
theories of software engineering.

[109] HANNAY, J. E.; SJOBERG, D. I. K. ; DYBA, T.. A systematic review of
theory use in software engineering experiments. IEEE Transactions
on Software Engineering, 33(2):87–107, Feb 2007.

[110] JEFFERY, R.. Paths to Software Engineering Evidence, p. 133–144.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[111] JOHNSON, P.; EKSTEDT, M. ; JACOBSON, I.. Where’s the theory
for software engineering? IEEE Software, 29(5):96–96, Sept 2012.

[112] SJØBERG, D. I. K.; DYBÅ, T.; ANDA, B. C. D. ; HANNAY, J. E..
Building Theories in Software Engineering. Springer London,
London, 2008.

[113] RUNESON, P.; HOST, M.; RAINER, A. ; REGNELL, B.. Case Study
Research in Software Engineering: Guidelines and Examples.
Wiley Publishing, 2012.

[114] CAMPBELL, G.; PAPAPETROU, P. P.. SonarQube in action. Manning
Publications Co., 2013.

[115] MARTIN, R.. Agile Principles, Patterns, and Practices. Prentice
Hall, New Jersey, 2002.

[116] ERICSSON, K. A.; SIMON, H. A.. Protocol Analysis: Verbal Reports
as Data. MIT Press. A Bradford Book, 2 edition, 1993.

[117] GLASER, B.. Doing Grounded Theory: Issues and Discussions.
Sociology Press, 1998.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Bibliography 165

[118] STOL, K.-J.; RALPH, P. ; FITZGERALD, B.. Grounded theory in
software engineering research: A critical review and guidelines.
In: PROCEEDINGS OF THE 38TH INTERNATIONAL CONFERENCE ON
SOFTWARE ENGINEERING, ICSE ’16, p. 120–131, New York, NY, USA,
2016. ACM.

[119] BUSCHMANN, F.; MEUNIER, R.; ROHNERT, H.; SOMMERLAD, P. ;
STAL, M.. Pattern-Oriented Software Architecture - Volume 1:
A System of Patterns. Wiley Publishing, 1996.

[120] NORMAN, W. T.. Toward an adequate taxonomy of personality
attributes: replicated factors structure in peer nomination per-
sonality ratings. Journal of abnormal and social psychology, 66:574–583,
June 1963.

[121] MARCH, J.; SIMON, H.. Organizations. Wiley, 1958.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

A
Glossary

– Agglomeration is a group of inter-related code smell that can be related
to a design problem.

– Ambiguous Interface is a design problem that happens when a com-
ponent interface is ambiguous and provides non-cohesive services. It usu-
ally appears on systems where components have interfaces implementing
public methods with generic types as parameter.

– Code smell is a microstructure in the system that represents a surface
indication of a design problem.

– Component Overload is a design problem that happens when a com-
ponent is overloaded with responsibilities/interests. Usually the compo-
nent deals with too many functionalities, some of which are not related
to each other.

– Concern is anything that stakeholders of a software project may want
to consider as a conceptual unit.

– Concern Overload is a design problem that happens when a code
element fulfills too many responsibilities.

– Cyclic Dependency is a design problem that happens when one or
more elements depend on each other, creating a cycle.

– Delegating Abstraction is a design problem that happens when an
abstraction exists only for passing messages from one abstraction to
another.

– Design Decision comprises a set of additions, subtractions, and mod-
ifications to the software design; the rationale, the design rules, design
constraints and additional requirements that (partially) realize one or
more requirements (64). In this context, rationale comprises the reasons

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Appendix A. Glossary 167

behind a decision; the design rules are the mandatory guidelines for fur-
ther design decisions and design constraints describe what is not allowed
in the future of the design.

– Design Problem Aspect comprises a characteristic presented in a
symptom that stands out for developers.

– Design Problem is a manifestation of one or more inappropriate design
decisions that a�ect non-functional requirements.

– Design Problem Symptom is a partial sign or indication of the
presence of a design problem (61).

– Fat Interface is a design problem that happens when an interface
exposes many funcionalities and many of those functionalities are not
related to each other. They usually are generic interfaces that could be
split on specific interfaces

– Floss refactoring is a tactic that developers apply with the intention
of achieving another objective that is di�erent from structural improve-
ments, such as adding a new feature or fixing a bug.

– Incomplete Abstraction is a design problem that happens when an
element does not support a responsibility completely in their enclosing
component.

– Misplaced Concern is a design problem that happens when an element
implements a concern (e.g. functionality), which is not the predominant
one of their enclosing component

– Non-agglomerated Smell is a code smell that has not being grouped
according to Oizumi et al. heuristics (47).

– Non-functional requirements are aspects of or constrains on a system
that are not specifically concerned with the functionality of a system,
but specify properties that the system must have, such as performance,
usability and failure recovery.

– Refactored Elements are all elements directly a�ected by refactoring
operations are considered as refactored elements.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Appendix A. Glossary 168

– Refactoring is a program transformation used for improving the code
structure of a system.

– Refactoring type indicates if the refactoring operation is applied to
attributes, methods, classes, or interfaces.

– Root-canal refactoring is a tactic used to repair a deteriorated code
and that cinvoves a process of exclusively applying refactoring operations.

– Scattered Concern is a design problem that happens when elements
are responsible for the same functionality, but some of which are respon-
sible for functionalities that cross-cut the system.

– Separation of Concern is a modularity principle that comprises the
subdivision of a problem into independent parts.

– Smelly Element represents a code element (method, class, package,
and the like) that contains at least one code smell.

– Software Design can be both a verb and a noun. When it is consider as
a verb, it refers to the process of designing software, at which the design
decisions are taken. On the other hand, when it is considered as a noun,
it refers to the product that is generated from the design process.

– Symptom is a partial sign or indication of the presence of a design
problem that developers use in practice.

– Unwanted Dependency is a design problem that happens when a
dependency violates a rule defined on the system design. It usually occurs
when elements should not communicate with each other, but do.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

B
Study about Design Problem Identification with Code Smells

This appendix presents the subject characterization questionnaire and
the experiment and post-experiment questionnaire (these two last question-
naires were given together in the same file for developers). These questionnaires
were used in the study reported in Chapter 4. This appendix also includes the
Workflow and PushPull blueprints gave during the experiment

B.1
Developers Characterization

Following we present the questionnaire used to characterized the devel-
opers.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Diagnosing Design Problems: Pre­experiment
* Required

1. Name: *

2. ID Number:

3. Date: *

Example: December 15, 2012

4. Where do you Live? *
examples: Curitiba, Brazil ­ London, UK

5. What is your current position? *
examples: Software Developer, Project Manager,
Technical Leader, Consultant

6. Experience with software development (in
years): *

7. Do you have formal education in computer science? *
(College, University, etc)
Mark only one oval.

 Yes

 No Skip to question 11.

Formal Education

8. select your current degree: *
Mark only one oval.

 Technologist

 Graduate

 Master

 PhD

Appendix B. Study about Design Problem Identification with Code Smells 170

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Apache OODT

9. Do you know Apache OODT (Object Oriented Technology)? *
Mark only one oval.

 Yes

 No

10. Have you ever read Apache OODT's source code? *
Mark only one oval.

 Yes

 No

Experience

“Software Design: The overall organization of functionalities into

methods, classes, relationships and components (or packages).”

Given the provided definition for software design, answer the

question below:

11. Have you ever been responsible for design decisions on any object­oriented system? *
Mark only one oval.

 Yes

 No

Please fill the following fields with information about the most

complex project in which you were/are responsible for design

decisions (you can use approximated values if you don't know

exactly)

12. Number of Developers: *

13. Number of Versions: *

14. Size (lines of code): *

Knowledge

Appendix B. Study about Design Problem Identification with Code Smells 171

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Rate your knowledge about the following concepts and

technologies, using the criteria described in Table I:

15. Source Code Metrics: *
Mark only one oval.

 None

 Minimum

 Basic

 Intermediary

 Advanced

 Expert

16. Code Anomalies (a.k.a. Code Smells): *
Mark only one oval.

 None

 Minimum

 Basic

 Intermediary

 Advanced

 Expert

Table I. Classification criteria

Appendix B. Study about Design Problem Identification with Code Smells 172

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

17. Software Anti­patterns: *
Mark only one oval.

 None

 Minimum

 Basic

 Intermediary

 Advanced

 Expert

18. Refactoring: *
Mark only one oval.

 None

 Minimum

 Basic

 Intermediary

 Advanced

 Expert

19. Object­Oriented Design: *
Mark only one oval.

 None

 Minimum

 Basic

 Intermediary

 Advanced

 Expert

20. Design Patterns: *
Mark only one oval.

 None

 Minimum

 Basic

 Intermediary

 Advanced

 Expert

Appendix B. Study about Design Problem Identification with Code Smells 173

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

21. UML: *
Mark only one oval.

 None

 Minimum

 Basic

 Intermediary

 Advanced

 Expert

22. Java 6 (Programming Language): *
Mark only one oval.

 None

 Minimum

 Basic

 Intermediary

 Advanced

 Expert

23. Java EE: *
Mark only one oval.

 None

 Minimum

 Basic

 Intermediary

 Advanced

 Expert

24. Eclipse IDE: *
Mark only one oval.

 None

 Minimum

 Basic

 Intermediary

 Advanced

 Expert

Appendix B. Study about Design Problem Identification with Code Smells 174

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Powered by

25. Other OO Programming Language:
Mark only one oval.

 None

 Minimum

 Basic

 Intermediary

 Advanced

 Expert

26. Specify:

Appendix B. Study about Design Problem Identification with Code Smells 175

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Appendix B. Study about Design Problem Identification with Code Smells 176

B.2
Study Questionnaires

Next we present the questionnaire used during the experiment and the
questionnaire post-experiment.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Diagnosing Design Problems: Tasks
* Required

1. Name: *

2. Phase: *
Mark only one oval.

 1 Skip to question 3.

 2 Skip to question 4.

Basic Training

Task 1) You will receive a basic training about code anomalies

and design problems. The training will be 15 minutes long.

3. Task 1: before starting this task, indicate here what time it is now: *

Example: 8:30 AM

Configuration

4. Component: *

Mark only one oval.

 PushPull

 Workflow

Task 2) You will have 20 minutes to understand the component

above. For this task, you should read the component’s

documentation and source code, which were provided to you

before you start.

5. Task 2: before starting this task, indicate here what time it is now: *

Example: 8:30 AM

6. Technique: *
Mark only one oval.

 Traditional Technique Skip to question 7.

 Synthesis Technique Skip to question 18.

Appendix B. Study about Design Problem Identification with Code Smells 177

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Tasks with Traditional Technique

Task 3) You will understand how to use traditional technique to

diagnose design problems. In this task, you will receive a guide

and a basic training about the traditional technique. The training

will be 10 minutes long.

7. Task 3: before starting this task, indicate here what time it is now: *

Example: 8:30 AM

Task 4) In this task, you will use traditional technique to diagnose

DESIGN PROBLEMS. For each problem found, you have to

provide the following information: (i) short description of the

problem, (ii) possible consequences caused by the problem, (iii)

classes, methods and components realizing the problem in the

source code, and (iv) name(s) of code anomaly(ies) that helped

you to diagnose the design problem. You will have 40 minutes to

finish this task.

8. Task 4: before starting this task, indicate here what time it is now: *

Example: 8:30 AM

9. Design problems: *

(i) short description of the problem, (ii) possible consequences caused by the problem, (iii) classes,
methods and components realizing the problem in the source code, and (iv) name(s) of code
anomaly(ies) that helped you to diagnose the design problem

Answer the following questions regarding Task 4:

10. A ­ Which were the main challenges to diagnose design problems? *

Appendix B. Study about Design Problem Identification with Code Smells 178

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

11. B ­ Did you understand all information provided by the technique? Please provide details

about this. *

12. C ­ Which types of information were fundamental to diagnose design problems? Please rank

these types of information according to their relevance. *

13. D – Was there any piece of provided information that was useless to perform Task 4? Why and

Which one(s)? *

14. E ­ Do you feel there is any non­provided information that could help to diagnose design

problems? Please explain what additional information would be helpful to diagnose the design

problems. *

15. F ­ Have you used all types of code anomaly? Please provide details about this. *

Appendix B. Study about Design Problem Identification with Code Smells 179

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

16. G – Which was the most useful type of code anomaly? *

17. H – How the graphical interface provided by the technique affected Task 4? *

Stop filling out this form.

Tasks with Synthesis Technique

Task 3) You will understand how to use synthesis technique to

diagnose design problems. In this task, you will receive a guide

and a basic training about the synthesis technique. The training

will be 10 minutes long.

18. Task 3: before starting this task, indicate here what time it is now: *

Example: 8:30 AM

Task 4) In this task, you will use synthesis technique to diagnose

DESIGN PROBLEMS. For each problem found, you have to

provide the following information: (i) short description of the

problem, (ii) possible consequences caused by the problem, (iii)

classes, methods and components realizing the problem in the

source code, and (iv) name(s) of agglomeration(s) that helped

you to diagnose the design problem. You will have 40 minutes to

finish this task.

19. Task 4: before starting this task, indicate here what time it is now: *

Example: 8:30 AM

Appendix B. Study about Design Problem Identification with Code Smells 180

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

20. Design problems: *

(i) short description of the problem, (ii) possible consequences caused by the problem, (iii) classes,
methods and components realizing the problem in the source code, and (iv) name(s) of code
anomaly(ies) that helped you to diagnose the design problem

Answer the following questions regarding Task 4:

21. A ­ Which were the main challenges to diagnose design problems? *

22. B ­ Did you understand all information provided by the technique? Please provide details

about this. *

23. C ­ Which types of information were fundamental to diagnose design problems? Please rank

these types of information according to their relevance. *

Appendix B. Study about Design Problem Identification with Code Smells 181

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Powered by

24. D – Was there any piece of provided information that was useless to perform Task 4? Why and

Which one(s)? *

25. E ­ Do you feel there is any non­provided information that could help to diagnose design

problems? Please explain what additional information would be helpful to diagnose the design

problems. *

26. F ­ Have you used all categories of agglomerations? Please provide details about this. *

27. G – Which was the most useful category of agglomeration? *

28. H – How the graphical interface provided by the technique affected Task 4? *

Appendix B. Study about Design Problem Identification with Code Smells 182

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Appendix B. Study about Design Problem Identification with Code Smells 183

B.3
Push Pull and Workflow Blueprints

Next we present the high-level description of their design blueprint for
the Push Pull and Workflow softoware systems.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Push-Pull-Framework

The Push Pull framework is responsible for downloading remote content (pull), or
accepting the delivery of remote content (push) to a local staging area. Content in the
staging area is ingested into the File Manager system by the Crawler Framework. The
Push Pull framework is extensible and provides a fully tailorable Java-based API for the
acquisition of remote content.

Architecture

This section describes the architecture of the Push Pull framework, including its constituent
components, object model, and extension points.

Architectural Components

The major components of the Push Pull Framework are the Daemon Launcher, the
Daemon, the Protocol Layer, and the File Retrieval System, to name a few. The
relationship between all of these components are shown in Figure 1.

Figure 1. Push Pull Components

The Push Pull Framework provides a Daemon Launcher, responsible for creating new
Daemon instances. Each Daemon has an associated Daemon Configuration, and has the
ability to use a File Retrieval Setup extension point. This class is responsible for
leveraging both a Protocol and a File Retrieval System to obtain ProtocolFiles, based on
a File Restrictions Parser that yields eventually a VirtualFileStructure (VFS) model. The
VFS defines what files to accept and pull down from a remote site.

Appendix B. Study about Design Problem Identification with Code Smells 184

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Object Model

The critical objects managed by the Push Pull Framework include:

x Protocol – A means of obtaining content over some file acquisition method, e.g.,
FTP, SCP, HTTP, etc.

x Protocol File - Metadata information about a remote file, including its
ProtocolPath.

x Protocol Path - A pointer to a remote Product file's (or files') location, which can
be used to derive metadata and determine where to place the file in the local
staging area built by the Push Pull Framework.

x Remote Site - Descriptive information about a remote site, including the
username/password combination, as well as an origin directory to start
interrogating.

Each Protocol delivers one or more Protocol Files. Each ProtocoFile is associated with a
single RemoteSite, and each ProtocolFile is associated with a single ProtocolPath. These
relationships are shown in Figure 2.

Figure 2. Push Pull Object Model

Extension Points

Push Pull Framework was constructed by making use of the Factory Method pattern. The
use of this pattern was intended to provide multiple extension points for the Push Pull
Framework. An extension point is an interface within the Push Pull Framework that can
have many implementations. This is particularly useful when it comes to software
component configuration because it allows different implementations of an existing
interface to be selected at deployment time. Each of the core extension points for the
Push Pull Framework is described in TABLE I.

Appendix B. Study about Design Problem Identification with Code Smells 185

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

TABLE I. Push Pull Extension Points

Extension Point Description

Protocol

The Protocol extension point is the heart of the Push Pull
framework. It is responsible for modeling remote sites and for
obtaining their content via different Retrieval Methods, using
different File Restrictions Parsers.

Retrieval Method
The Retrieval Method extension point is responsible for
orchestrating download (pull) and acceptance (push) of remote
content.

File Restrictions
Parser

The File Restrictions Parser extension point is responsible for
defining how to accept or decline files encountered by a Retrieval
Method, in essence modeling remote file and directory structures.

System

The extension point that provides the external interface to the Push
Pull Framework services. This includes the Daemon Launcher
interface, as well as the associated Daemon interface, that is
managed by the Daemon Launcher.

Appendix B. Study about Design Problem Identification with Code Smells 186

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Workflow Management Component

The Workflow Manager component is responsible for description, execution, and
monitoring of Workflows, using a client-server system. Workflows are typically
considered to be sequences of tasks, joined together by control flow and data flow,
which must execute in some ordered fashion. Workflows typically generate output data,
perform routine management tasks (such as sending emails, etc.), and/or describe a
business's internal routine practices. The Workflow Manager is an extensible software
component that provides an XML-RPC external interface, and a fully tailorable (i.e.
adaptable) Java-based API for workflow management.

Architecture

This section describes the Workflow Manager architecture, including its constituent
components, object model, and extension points.

Architectural Components

The major architectural components of Workflow Manager are the Client and Server, the
Workflow Repository, the Workflow Engine, and the Workflow Instance Repository. The
relationship between all of these components are shown in Figure 1.

Figure 1. Architectural components of Workflow Manager

The Workflow Manager Server contains both a Workflow Repository that manages
workflow models, and Workflow Engine that processes workflow instances. The
Workflow Engine also has a persistence layer, called a Workflow Instance Repository,
which is responsible for saving workflow instance metadata and state.

Object Model

The critical objects managed by Workflow Manager include:

x Events - are the stimuli that trigger Workflows to be executed. Events are named
and contain dynamic Metadata information passed in by the user.

x Metadata - a dynamic set of properties and values provided to a
WorkflowInstance via an user-triggered Event.

Appendix B. Study about Design Problem Identification with Code Smells 187

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

x Workflow - a description of both the control flow and data flow of a sequence
of tasks (or stages) that must be executed in some order.

x Workflow Instance - an instance of a Workflow, typically containing additional
runtime descriptive information, such as start time, end time, task clock time, etc. A
WorkflowInstance also contains a shared Metadata context passed in by the user
who triggered the Workflow. This context can be read/written to by the
underlying WorkflowTasks present in a Workflow.

x Workflow Tasks - descriptions of data flow, and an underlying process, or
stage, that is part of a Workflow.

x Workflow Task Instances - the actual executing code, or process, that performs
the work in the WorkflowTask.

x Workflow Task Configuration - static configuration properties that configure a
WorkflowTask.

x Workflow Conditions - any pre (or post) conditions on the execution of a
WorkflowTask.

x Workflow Condition Instances - the actual executing code, or process, that
performs the work in the WorkflowCondition.

Each Event kicks off one or more Workflow Instances, providing a Metadata context
(submitted by an external user). Each WorkflowInstance is a run-time execution model of
a Workflow. Each Workflow contains one or more WorkflowTasks. Each WorkflowTask
contains a single WorkflowTaskConfiguration, and one or more WorkflowConditions. Each
WorkflowTask has a corresponding WorkflowTaskInstance (that it models), as well as it
does each WorkflowCondition has a corresponding WorkflowConditionInstance. These
relationships are shown in Figure 2.

Figure 2. Object Model for Workflow Manager

Appendix B. Study about Design Problem Identification with Code Smells 188

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Extension Points

The Workflow Manager was built with the Factory Method pattern to provide multiple
extension points for the Workflow Manager. An extension point is an interface within the
Workflow Manager that can have many implementations. This is particularly useful when
it comes to software component configuration because it allows different implementations
of an existing interface to be selected at deployment time. Each of the core extension
points for Workflow Manager is described in TABLE I.

TABLE I. Extension Points of Workflow Manager

Extension Point Description

Workflow Instance
Repository

The Workflow Instance Repository extension point is responsible for storing
all the instance data for Workflow Instances, including shared context
metadata, and runtime properties, such as start date time and end date
time.

Workflow
Repository

The Workflow Repository extension point is responsible for managing
Workflow models, storing control flows and data flows. The Workflow
Repository also stores Workflow Condition information, and Workflow
Task Configuration. In essence, the Workflow Repository is a repository of
abstract Workflow models, which get mapped to Workflow Instances by
the Engine extension point.

Workflow Engine

The Workflow Engine's responsibility is to map abstract Workflow models
to executing Workflow Instances. The Workflow Engine tracks and monitors
execution of Workflow Instances, and provides the ability to start, stop
and pause executing Workflow Instances.

System

The extension point that provides the external interface to the Workflow
Manager services. This includes the Workflow Manager server interface,
as well as the associated Workflow Manager client interface, which
communicates with the server.

Appendix B. Study about Design Problem Identification with Code Smells 189

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Appendix B. Study about Design Problem Identification with Code Smells 190

B.4
Presentation

Following we present the slides that we used during the training ses-
sion.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

OPUS Research Group LES | DI |PUC-Rio - Brazil

Willian Oizumi – woizumi@inf.puc-rio.br

Leonardo Sousa – lsousa@inf.puc-rio.br

Roberto Oliveira – rfelicio@inf.puc-rio.br

Alessandro Garcia – afgarcia@inf.puc-rio.br

Diagnosing Design Problems: Basic
Concepts

Appendix B. Study about Design Problem Identification with Code Smells 191

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Software Design

� In the context of this experiment, software design is the
overall organization of functionalities into methods,
classes, relationships and components (or packages).

2 2015 woizumi@inf.puc-rio.br

Appendix B. Study about Design Problem Identification with Code Smells 192

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Component

� A component is a logical structure that groups classes
related to a common concern. In other words, a
component represents a single concern, which in turn is
implemented by a group of classes.

3 2015 woizumi@inf.puc-rio.br

Appendix B. Study about Design Problem Identification with Code Smells 193

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Concerns

� A concern is often the conceptual representation of a
feature implemented in a component.

� However, a concern may also be scattered in several
components, in which it is not the main concern. We call
this kind of concern by cross-cutting concerns, since it
cross-cut the implementation of other concerns.

4 2015 woizumi@inf.puc-rio.br

Appendix B. Study about Design Problem Identification with Code Smells 194

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Connectors

� Two different components communicate with each other
using connectors.

� A connector is a design element that models interactions
among components and the rules that governs those
interactions.

� Examples of connectors are procedure calls, shared
variables access, client-server protocols and asynchronous
event multicast..

5 2015 woizumi@inf.puc-rio.br

Appendix B. Study about Design Problem Identification with Code Smells 195

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Software Design Principles

� Software design principles are principles that help in the
design of modules aiming at best modularize the
implementation of a system

� The violation of such principles often increase the
maintainability cost of the system.

6 2015 woizumi@inf.puc-rio.br

Appendix B. Study about Design Problem Identification with Code Smells 196

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Software Design Principles

Name Description

The Single Responsibility Principle A class should have one, and only one, reason to
change

The Open Closed Principle You should be able to extend a classes behaviour,
without modifying it

The Liskov Substitution Principle Derived classes must be substitutable for their base
classes

The Interface Segregation
Principle

Make fine grained interfaces that are client specific

The Dependency Inversion
Principle

Depend on abstractions, not concretions

7 2015 woizumi@inf.puc-rio.br

Appendix B. Study about Design Problem Identification with Code Smells 197

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Software Design Problems

� A design problem (or a design smell) represents the
realization of either:
� (i) unintended design decisions, which violate the original,

intended design of a system, or

� (ii) violations of well-known software design principles.

� These both types of design problems are high-level
structures that often affect multiple elements in the
source code.

8 2015 woizumi@inf.puc-rio.br

Appendix B. Study about Design Problem Identification with Code Smells 198

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Software Design Problems

Type Description

Unwanted Dependency Dependency that violates an intended design rule.

Fat Interface
Interface of a design component that offers only a single, general entry-
point, but provides two or more functionalities.

Concern Mixing
Component that mix a connector-related concern with other concerns of
the system.

Cyclic Dependency
Two or more design components that directly or indirectly depend on each
other.

Multiple Interaction
Types

Two different connectors that are used to link the same pair of
components.

Scattered Concern
Multiple components that are responsible for realizing the same design
concern.

Overused Interface
Interface that is overloaded with many clients accessing it. That is, an
interface with too many clients.

Unused Interface Interface that is never used by external components.
9 2015 woizumi@inf.puc-rio.br

Appendix B. Study about Design Problem Identification with Code Smells 199

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Fat Interface

� Interface of a design component that offers only a single,
general entry-point, but provides two or more
functionalities.

10 2015 woizumi@inf.puc-rio.br

Appendix B. Study about Design Problem Identification with Code Smells 200

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Code Anomaly (Code Smell)

� Code anomalies (a.k.a. Code Smells) are symptoms in the
source code that ay indicate maintainability problems,
such as design problems.

� Code anomalies are not bugs, instead they only indicate
weakness in the source code design that may cause
maintainability problems.

11 2015 ebarbosa@inf.puc-rio.br

Appendix B. Study about Design Problem Identification with Code Smells 201

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Code Anomaly (Code Smell)

Type Description
Brain Class/God Class Long and complex class that centralizes the intelligence of the system

Brain Method Long and complex method that centralizes the intelligence of a class

Data Class Class that contains data but not behavior related to the data

Disperse Coupling
The case of an operation which is excessively tied to many other operations
in the system, and additionally these provider methods that are dispersed
among many classes

Feature Envy
Method that calls more methods of a single external class than the internal
methods of its own inner class

Intensive Coupling
When a method is tied to many other operations in the system, whereby
these provider operations are dispersed only into one or a few classes

Refused Parent
Bequest

Subclass that does not use the protected methods of its superclass

Shotgun Surgery
This anomaly is evident when you must change lots of pieces of code in
different places simply to add a new or extended piece of behavior

Tradition Breaker Subclass that does not specialize the superclass

12 2015 ebarbosa@inf.puc-rio.br

Appendix B. Study about Design Problem Identification with Code Smells 202

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

C
Study about Design Problem Identification in Practice

This appendix presents the subject characterization questionnaire, the
summary of symptoms and the characterization of the theory.

C.1
Characterization and Follow-up Questionnaires

These are similar to the questionnaires presented in Appendix B.

C.2
Summary of Symptoms

We summarized and presented all symptoms a�ecting an element to
developers through a web page based on SonarQube (114). Figure C.1 shows
the initial web page to which the developers select an element to analyze.

Figure C.1: Home Page to Access the Summary

Figure C.2 shows all the design problems symptoms a�ecting the element
selected by the developer. The figure also shows the specific field at the web
page that developers could write any observation about the symptoms and the
identified design problems.

Figures C.3 and C.4 show the information about two symptoms. Fig-
ure C.3 shows the code smells organized as an agglomeration (47), and Fig-
ure C.4 shows a non-functional requirement that might be violated.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Appendix C. Study about Design Problem Identification in Practice 204

Figure C.2: Summary of Symptoms A�ecting an Element

C.3
Generated Codes

Figure C.5 shows the first codes generated after analyzing the teams of
Company 1 and 2.

Figure C.6 shows the codes generated after analyzing the teams of
Company 3 and 4.

Figure C.7 shows the codes generated after analyzing the teams of
Company 5.

C.4
Characterization of the Theory

Table C.1 presents the constructs and propositions that characterize the
theory.

C.5
Design Problems

In order to support developers during the identification of design prob-
lems, we provided them a guide characterizing each one. In the following, we
present all descriptions for the design problems used in our study.

– Ambiguous Interface (AMI): Component interface that is ambiguous
and provides non-cohesive services. It usually appears on systems where

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Appendix C. Study about Design Problem Identification in Practice 205

Table C.1: Constructs and Propositions of the Resulting Theory
Constructs

C1 Design Problem A design decision that negatively impacts quality attributes
C2 Design Decisions Decisions made during the software development process

C3 A�ected Elements Elements that manifest the presence of a design problem. These elements
usually contain design problem symptoms.

C4 Symptom An indication of the presence of a design problem
C5 Syndrome A set of symptoms a�ecting the same code element

C6 Diagnosis The process of identifying a design problem through the analysis of symptoms
that manifest themselves in the source code

C7 Symptom Type A category to which a set of symptoms with common characteristics belongs
C8 Accuracy The degree to which a symptom is correct in indicating a design problem
C9 Density The number of symptoms instances in a syndrome
C10 Relation How two or more symptoms are connected
C11 Diversity The degree to which a syndrome contains a variety of symptom types
C12 Symptom Analysis The process of analyzing a set of symptoms a�ecting a single element
C13 Epidemic Analysis The process of analyzing elements a�ected by the same set of symptoms
C14 Element Role The function that an element plays in the software system

C15 Identification Tactic A specific action, in which developers rely on the analysis of the elements and
their symptoms, towards to the identification of a design problem.

C16 Tactic Type The action that developers apply in their quest for design problems
C17 Tactic Step The moment to which the developer applies the tactic
C18 Confidence The degree to which they are convinced about the presence of a design problem
C19 Conscientiousness A personality trait related to being careful, responsible, and persevering

Propositions
P1 Inappropriate design decisions lead to design problems
P2 Design problems impact non-functionality requirements negatively
P3 The diagnosis a�ects the identification of design problems

P4 Identification of design problem has three steps in which developers relies on design problems
symptoms in all of them

P5 The diversity of symptoms influences which symptoms the developer will use during the diagnosis
P6 The symptom accuracy influences which symptoms the developer will use during the diagnosis
P7 The density of symptoms influences which symptoms the developer will use during the diagnosis
P8 The type of symptom influences which symptoms the developer will use during the diagnosis

P9 The relation among the symptoms influences which symptoms the developer will use during the
diagnosis

P10 The type of symptom a�ects the developer’s choice of a epidemic element to be analyzed

P11 The role that the element plays on the system a�ects the developer’s choice of a epidemic element
to be analyzed

P12 The role that the element plays on the system is associate with the confirmation of the presence of
a design problem

P13 Developers search for a specific design problem or a specific element, or they rely on the analysis
of the symptoms to identify a design problem

P14 The moment to which the developer applies the tactic refers to one of the three steps in the design
problem identification

P15 The diagnosis a�ects the developer’s confidence in the presence of a design problem
P16 The symptom accuracy a�ects the developer’s confidence in the presence of a design problem

P17 The density of symptoms a�ects the developer’s confidence regarding the presence of a design
problem

P18 The role that the element plays on the system influences the developer’s confidence
P19 The consciousness a�ects the likelihood of a developer diagnoses a design problem
P20 The diversity of symptoms a�ects the conscientiousness of the developers
P21 The design decisions a�ects the confirmation of the presence of a design problem
P22 The design decisions a�ects the developer’s confidence in the presence of a design problem

Scope
The theory is supposed to be applicable in systems in which developers intend to identify
design problems by analyzing symptoms that manifest themselves in the source code.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Appendix C. Study about Design Problem Identification in Practice 206

Figure C.3: Agglomeration of Code Smells in the Element

components have interfaces implementing public methods with generic
types as parameter.

– Cyclic Dependency (CCD): A relation between one or more elements
that depend on each other.

– Concern Overload (CCO): Code element that fulfills too many responsi-
bilities.

– Component Overload (CPO): Component overloaded with responsibili-
ties/interests. Usually the component deals with too many functionali-
ties, some of which are not related to each other.

– Delegating Abstraction (DLA): An abstraction that exists only for
passing messages from one abstraction to another.

– Fat Interface (FTI): Interface that exposes many funcionalities and many
of those functionalities are not related to each other. They usually are
generic interfaces that could be split on specific interfaces

– Incomplete Abstraction (ICA): When an element does not support a
responsibility completely in their enclosing component.

– Misplaced Concern (MPC): Element that implements a concern (e.g.,
functionality), which is not the predominant one of their enclosing
component

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Appendix C. Study about Design Problem Identification in Practice 207

Figure C.4: Non-functional Requirement Information

– Unwanted Dependency (UWD): Dependency that violates a rule defined
on the system design. It usually occurs when elements should not
communicate with each other, but do.

– Scattered Concern (STC): Components responsible for the same func-
tionality, but some of which are responsible for functionalities that cross-
cut the system.

C.6
Symptoms Combination

Someone can argue that analyzing a single element is not enough to
identify a design problem. Nevertheless, we noticed that developers often
combine symptoms in a single element in order to confirm the presence of
a design problem. Table C.2 shows how often developers either used only
one symptom or combined multiple symptoms. Its first column indicates the
symptoms that developers combined to identify design problems. Its second
column indicates how many times the symptom or combination of symptoms
happened. Still on second column, the number in parenthesis indicates the
number of design problems found when the subject used a symptom or a
combination of them. Its third column shows the design problems found. It
last column indicates the teams who used or combined the symptoms.

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Appendix C. Study about Design Problem Identification in Practice 208

Table C.2: Symptoms Combination
Symptoms Instances Design Problems Subjects

Design Pattern Violation 4 (2) UWD, DLA T7, T9
Quality Requirements 3 (3) FTI, CCO T8, T9
Violation of Non-functional Requirements 8 (5) STC, UWD, CPO, CCO, ICA, FTI T7, T9
Code Smells 1 (1) FTI T7
Design Pattern Violation, Violation of
Non-functional Requirements 8 (6) UWD, CPO, CCO T1, T7, T9

Quality Requirements, Violation of
Non-functional Requirements 1 (1) ICA T7

Violation of Non-functional
Requirements, Code Smells 2 (2) FTI, CCO T3, T7

Violation of Non-functional
Requirements, Violation of
Object-oriented Principles

3 (1) UWD, AMI, CPO T8, T9

Design Pattern Violation,
Quality Requirements, Violation of
Non-functional Requirements

3 (2) UWD, CCO T7, 8

Design Pattern Violation, Quality
Requirements, Violation of
Object-oriented Principles

2 (1) CCO T6

Design Pattern Violation, Violation
of Non-functional Requirements,
Code Smells

2 (2) UWD T9

Quality Requirements, Violation of
Non-functional Requirements,
Code Smells

1 (1) CCO T8

Quality Requirements, Violation of
Non-functional Requirements,
Violation of Object-oriented Principles

1 (1) CCO, STC T3

Quality Requirements, Code Smells,
Violation of Object-oriented Principles 3 (2) CCO T4, T5

Violation of Non-functional Requirements,
Code Smells, Violation of Object-oriented
Principles

2 (2) UWD, MPC T7, T9

Design Pattern Violation, Quality
Requirements, Violation of Non-functional
Requirements, Violation of Object-oriented
Principles

5 (3) CCO, STC, UWD T2, T9

Design Pattern Violation, Quality
Requirements, Code Smells,
Violation of Object-oriented Principles

2 (1) UWD, CCO T8

Quality Requirements, Violation of
Non-functional Requirements, Code Smells,
Violation of Object-oriented Principles

3 (2) CCO T3, T5

Design Pattern Violation, Quality
Requirements, Violation of Non-functional
Requirements, Code Smells, Violation of
Object-oriented Principles

3 (1) CCO T4

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Appendix C. Study about Design Problem Identification in Practice 209

is associated w
ith

is associated w
ith

is cause of
is cause of

is cause of
is cause of

is part of
is part of

is a
is a

is part of
is part of

is a
is a

is a
is a

is a
is a

is a
is a

is a
is a

is a
is a

is a
is a

is cause of
is cause of

is a
is a

is part of
is part of

is associated w
ith

is associated w
ith

is part of
is part of

is associated w
ith

is associated w
ith

is associated w
ith

is associated w
ith

is an exam
ple of

is an exam
ple of

is associated w
ith

is associated w
ith

is a
is a

is associated w
ith

is associated w
ith

is a
is a

is part of
is part of

is associated w
ith

is associated w
ith

is a
is a

is a
is a

is associated w
ith

is associated w
ith

is a
is a

is associated w
ith

is associated w
ith

is a
is a

is part of
is part of

is associated w
ith

is associated w
ith

is associated w
ith

is associated w
ith

is a
is a

is a
is a

is an exam
ple of

is an exam
ple of

is associated w
ith

is associated w
ith

is associated w
ith

is associated w
ith

is a
is a

is an exam
ple of

is an exam
ple of

is a
is a

is associated w
ith

is associated w
ith

is cause of
is cause of

is cause of
is cause of

is associated w
ith

is associated w
ith

is a
is a

is a
is a

is a
is a

is cause of
is cause of

is associated w
ith

is associated w
ith

is a
is a

is associated w
ith

is associated w
ith

is associated w
ith

is associated w
ith

is an exam
ple of

is an exam
ple of

is part of
is part of

is associated w
ith

is associated w
ith

is part of
is part of

is associated w
ith

is associated w
ith

is associated w
ith

is associated w
ith

is part of
is part of

is part of
is part of

is associated w
ith

is associated w
ith

is a
is a

is cause of
is cause of

is associated w
ith

is associated w
ith

is an exam
ple of

is an exam
ple of

is a
is a

is associated w
ith

is associated w
ith

is a
is a

is cause of
is cause of

is a
is a

is a
is a

is associated w
ith

is associated w
ith

is associated w
ith

is associated w
ith

is part of
is part of

is a
is a

is cause of
is cause of

is a
is a

is a
is a

is associated w
ith

is associated w
ith

is an exam
ple of

is an exam
ple of

is cause of
is cause of

is part of
is part of

is associated w
ith

is associated w
ith

is associated w
ith

is associated w
ith

is associated w
ith

is associated w
ith

is associated w
ith

is associated w
ith

is associated w
ith

is associated w
ith

is cause of
is cause of

is a
is a

is a
is a

is associated w
ith

is associated w
ith

is a
is a

is an exam
ple of

is an exam
ple of

is cause of
is cause of

is an exam
ple of

is an exam
ple of

is associated w
ith

is associated w
ith

is associated w
ith

is associated w
ith

is a
is a

is associated w
ith

is associated w
ith

is associated w
ith

is associated w
ith

is a
is a

is associated w
ith

is associated w
ith

is part of
is part of

is a
is a

is a
is a

is an exam
ple of

is an exam
ple of

is a
is a

is cause of
is cause of

is associated w
ith

is associated w
ith

is a
is a

is a
is a

is part of
is part of

is associated w
ith

is associated w
ith

is an exam
ple of

is an exam
ple of

is cause of
is cause of

is a
is a

is associated w
ith

is associated w
ith

is a
is a

is part of
is part of

is associated w
ith

is associated w
ith

is an exam
ple of

is an exam
ple of

is associated w
ith

is associated w
ith

is associated w
ith

is associated w
ith

is associated w
ith

is associated w
ith

is associated w
ith

is associated w
ith

is associated w
ith

is associated w
ith

is associated w
ith

is associated w
ith

is cause of
is cause of

is associated w
ith

is associated w
ith

is cause of
is cause of

is a
is a

is an exam
ple of

is an exam
ple of

is a
is a

is associated w
ith

is associated w
ith

is cause of
is cause of

is cause of
is cause of

is cause of
is cause of

is associated w
ith

is associated w
ith

is a
is a

is associated w
ith

is associated w
ith

is a
is a

is a
is a

is cause of
is cause of

is an exam
ple of

is an exam
ple of

is part of
is part of

is part of
is part of

is associated w
ith

is associated w
ith

is part of
is part of

is associated w
ith

is associated w
ith

is cause of
is cause of

is cause of
is cause of

is associated w
ith

is associated w
ith

is a
is a

is a
is a

is a
is a

is an exam
ple of

is an exam
ple of

is cause of
is cause of

is cause of
is cause of

is associated w
ith

is associated w
ith

is a
is a

is a
is a

is associated w
ith

is associated w
ith

is a
is a

is associated w
ith

is associated w
ith

is a
is a

Participante m
enciona

que o padrão gatew
ay que

eles fizeram
 pode ser

considerado um
 problem

a
de design ou não

Participante
solicita a opinião
sobre qual classe
deve ser analisada
em

 seguida

Participantes
com

entam
 quais

funcionalidades
deveriam

 ser
im

plem
etodas na

action e quais não
deveriam

Participante identifica
funcionalidade espalhada
nos elem

entos

Participante explica que o
elem

ento tem
 um

 problem
a

de design porque ele define
as m

ensagem
s estaticam

ente
no código

Participante explica que o
projeto recebe todo tipo de
im

plem
entação porque não

possui um
 contexto bem

definido
G

od Package
Participante sugere

analisar um
a classe que

aparenta ter bastante
problem

as de design

Participante
m

enciona que não
dá pra lem

brar
onde tem

determ

inados
problem

as de
design no projeto

Participante usa o
nom

e do m
étodo para

indicar que ele está
fazendo m

ais de um
a

funcionalidade

[CAT] Com
ponent O

verload
[CAT] Scattered Concern

Participantes
tentam

 entender o
que a classe faz

Participantes
tentam

 lem
brar do

problem
a de design

scattered concern

Participante
m

encionam
 que o

princípio de
responsabilidade
única ficou m

ais
claro

Participante sugere
procurar problem

as de
design nas classes de
controller

Participante
encontram

 um

trecho de código
com

 um
a solução

duvidosa

O
 desenvolvedor fez

um
a gam

biarra

Participantes
pesquisam

 sobre o
princípio aberto-fechado

Participante usa o trecho
de código sem

 problem
a de

design para explicar quando
aquele código teria o
problem

a de design
unw

anted dependecy

Participante indentifica
classes que estão
acessando o DAO

 m
as não

deveriam

[CAT] Cyclic Dependency

Participante
busca por Fat
Interface

Participante
justifica o uso do
padrão gatew

ay
no contexto de
m

icro serviços

A resposta do
participante indica
que o problem

a
de design é um

Fat Interface
C

ited by Program
s = 2

[CAT] Am
biguous Interface

Participante explica com
o o

problem
a de design do elem

ento
dim

inui a flexibilidade do sistem
a e

a internacionalização

Participante sugere
usar a lista com

anom

alias de código
para encontrar
problem

as de design
C

ited by Program
s = 2

Participante
investiga um

a
classe porque ela
é um

a thread

Participante com
eça a

busca por problem
as de

design nos m
aiores projetos

[CAT] Fat Interface

Participante indica a
classe a ser analisada

Participante
m

enciona que o
elem

ento não
segue um

a
padrãonização

Participante acredita que há um

problem
a na interface porque um

dos m

étodos retorna um
 array de

O
bjects, logo não dá pra saber o

que é retornado

Participante
pergunta se o
program

a possui
dependência
cíclica em

 algum

dos elem
entos

A resposta do
participante indica que o
problem

a de design é um

ciclic dependency
C

ited by Program
 = 1

Participante
pergunta se tem

algum

a interface
genérica

Participante explica
porque o aspecto tem

um

a dependência
indesejada

[CAT] Unw
anted Dependency

Participantes m
encionam

que as classes Action tem

problem

a porque elas
im

plem
entam

fucnionalidaes que
deveriam

 está nas classes
service

Participante encontra
um

 exem
plo de

m
isplaced concern na

action que deveria está
na service

Participante usa o
acesso de form

a indevida à
base de dados e seus
atributos com

o justificativa
para indicar que a classe
possui um

 problem
a de d…

Participante
m

enciona que a
m

aioria dos
problem

as não
tem

 alta
gravidade, m

as
eles dificultam

 a
reusabilidade

Participante m
enciona que é

m
ais dificil encontrar Problem

as
de Design do que Anom

alias de
código

Participante m
enciona que eles

im
plem

entaram
 a service com

o apenas
um

 delegador de tarefas porque eles se
basearam

 em
 outras services que já

tinham
 sido im

plem
entadas no sistem

a

Participante m
enciona que

a falta de padronização gera
problem

as de duplicated
code

Sinal de que o
participante está
encontrando
problem

as de
design no próprio
código - ele não
tá escondendo

Participante busca por
Unw

anted Dependency

Participante m
enciona

que o sistem
a deles está

cheio de lazy class

Participante usa a
lista de anom

alias de
código para escolher
um

a classe a ser
analisada

Participante sugere indicar
classes que fazem

 acesso ao
banco de dados com

o tendo
problem

a de design
Aparenta que os participantes estão
se referindo ao problem

a de design
dependência indesejada

[CAT] Conclusões dos participantes

Participantes
explicam

 qual é a
vantagem

 de
im

plem
entar o

Value O
bject

Participante justifica que a
classe que ele escolheu é a
m

enos pior no sistem
a, m

esm
o

ela contendo um
 problem

a de
design

Participante m
enciona

que o projeto não deveria
existir porque ele não tem

um

 contexto bem
 definido

Refatoração

Participantes usa as
duas im

plem
entações

de um
 serviço com

o
m

otivo do problem
a de

design

Participante não
conseguem

 entender um
a

determ
inada classe

Participantes
com

entam
 que se o

sistem
a tivesse

com
eçado certo, eles

teriam
 continuado o

projeto de m
aneira certa

Participante busca por
interfaces

Durante a tarefa de
identificação de
problem

as de design,
participantes com

entam

sobre possíveis
princípios de bom

projeto que o código
fere

Participante busca por
Am

biguous Interface

Participantes
encontram

elem

entos que
deveriam

 ter sido
im

plem
entandos

usando o padrão
Value O

bject

Participante analisa o
PO

M
 para encontrar ciclic

dependency

Participante desconhece o
problem

a de design unw
anted

dependency

Participante
sugere analisar
um

a classe que é
m

ais fácil de ser
explicada

Participante acredita que
é dificil identificar scattered
concern de cabeça
C

ited by Program
s = 2

Participantes usa o alto
acom

plam
ente com

o parte da
justifica da classe possuir um

problem

a de design
Segundo a descrição do participante, o
problem

a de design aparenta ser m
uito

m
ais funcionalidade espalhada do que

dependência indesejada

Participante m
enciona que

é necessário ter um
a

ferram
enta de análise estática

para se encontrar scattered
concern

Participante acredita que o
sistem

a terá bastante fat interface

Participante justifica que a
classe ainda tem

 um
 problem

a
de design idenpendente do
tam

anho do trecho de código
que está acessando
idenvidam

ente outra classe

Participante usa o
princípio de
responsabilidade única
para justificar o problem

a
de design concern overl…

Participante acha caro
ficar procurando por
problem

as de design

Participante explica que a
violação do padrão adapter
está aum

entando a
com

plexidade e dim
inuindo o

reuso

A resposta do
participante indica que o
problem

a de design é um

am
biguous interface

C
ited by Program

s = 1

Participante acredita que determ
inado

trecho de código pode gerar problem
a de

espalham
ento de conceitos no futuro se já

não estiver gerando

A resposta do
participante indica que o
problem

a de design é um

com
ponent overload

C
ited by Program

 = 4

Participante
justifca que até
onde ele conhece,
é norm

al fazer
acesso à base de
dados onde não
se deveria

Participante escolhe as
classes para analisar de
m

aneira aleatória

Participante pergunta
se o outro conhece a
classe que está sendo
afetada por anom

alias de
códigos segundo a lista
de anom

alias

[SUBCAT] Sabe que existe, porém
 não sabe onde

Participante
explica o padrão de
design que foi
utilizado

Participante
m

enciona que
aquela escolha de
im

plem
entação é

norm
alm

ente
seguida

Participante usa o tipo de
retorno defindo no m

étodo
com

o justificativa para indicar
que a interface possui um

problem

a de design

Participante usa o
princípio de
responsabilidade única para
justificar o problem

a de
design unw

anted
dependency

Participante explica porque o
trecho de código está violando
o princípio da responsabilidade
única

Participante faz
a leitura do guia
com

 os princípios
de bom

 projeto

Participante
m

enciona que o
projeto core não
possui um

contexto bem

definido

Participante identifica um

trecho de código que deveria
ser refatorado
C

ited by Program
s = 2

Participante acredita que
funcionalidade espalhada é o
pior problem

a

Participante explica que
ao ter dois padrões de
im

plem
entação se prejudica

a m
anutenibilidade e

entendim
ento do código

A resposta do participante
indica que o problem

a de
design é um

 m
isplaced

concern
C

ited by Program
s = 3

Participante explica
que eles não estão
conseguindo usufrui
dos benefícios do
padrão builder

Participante verifica classe
que está sendo afetada por
anom

alias de código m
as n…

A resposta do participante
indica que o problem

a de
design é um

 Unw
anted

Dependency
C

ited by Program
s = 1

Participante explica todas as
funcionalidades que a classe está
fazendo

[CAT] M
ás práticas

Participante busca classes
que se iniciam

 com
 a letra I,

pois elas são interfaces

Participante fica em
 dúvida se

o problem
a é no design do

sistem
a ou é um

 problem
a m

ais a
nível de im

plem
entação

Participante constata que m
esm

o
que o desenvolvedor tenha tido a
m

elhor das intenções, eles sem
pre

deixa passar algum
a coisa

Participantes
procuram

 por
algum

a classe
action que acessa
classes DAO

Participante acredita que o
princípio de responsabilidade
única ficou m

ais claro porque é
o que eles m

ais usam

[CAT] Desafios na tarefa de Identificação

Participante indica que
vai ser dificil encontrar os
elem

entos que estão
seguindo corretam

ente o
padrão Value O

bject

Participante
explica porque a
classe está
violando o padrão
Builder

A resposta do participante
indica que o problem

a de
design é um

 scattered concern
C

ited by Program
s = 3

Participante recorre ao
plugin Findbugs para
identificar classes candidatas
para a análise

Participante
m

enciona que as
classes services
só estão fazendo
cham

ada

Participante m
enciona

que o m
isplaced concern só

existe porque a interface
está forçando a
im

plem
entação

Participante acredita que há
cyclic dependency no program

a,
m

as ele não sabe onde

Desenvolvedores usam
 o

código com
o exem

plo, m
as se

tem
 problem

a no código, eles
repetem

 o problem
a sem

 saber

Participante explica porque tanto a
interface quanto o com

ponente estão
sobrecarregados de funcionalidades

Participante acredita que a classe
não deve ser m

encionada com
o

tendo um
 problem

a de design
porque é só um

 pequeno trecho de
código que faz acesso a base de
dados que não deveria

Durante a tarefa de
identificação de problem

as de
design, ocorre a divergência de
opinião
Participantes divergem

 se determ
inado

trecho de código está afendando o
principio de responsabilidade única

Participante constata que
o código tem

 m
uito erro

ele está considerando os
problem

as de desing com
o sendo

erro/falha

Participante sabe que tem

dependência indesejada no program
a,

porém
 ele não sabe onde

C
ited by Program

s = 2 Participante usa a falta de
padronização com

o
justificativa para indicar que
a classe possui um

 problem
a

de design

Participante m
enciona que

as classes action possuem
 o

problem
a de design unw

anted
dependency

Participante m
enciona que é

m
ais rápido im

plem
entar daquela

m
aneira

Participante explica
que por não ter um

contexto bem

 definido o
projeto está
sobrecarregado de
funcionalidades

Participante m
ostra um

exem

plo de a classe DAO

está fazendo o acesso aos
dados da m

aneira que foi
planejado

Participante
busca por Ciclic
Dependency

Participante cita o exem
plo de

um
a exceção não tratada que é

m
ostrada para o usuário

[CAT] Estratégia de Identificação de Problem
as de Design que os participantes seguiram

Participante confunde o princípio
aberto-fechado com

o sendo um

problem
a de design

Participante identifica
um

 elem
ento que está

sobrecarregado de
funcionalidade
C

ited by Program
s = 3

Participante inicia a
identificação pelo
problem

a de design
interface am

bigua

Participante dá um
 exem

plo de um
 caso em

que o desenvolvedor com

eçou querendo construir
o m

elhor código, m
as depois ele acabou inserindo

várias m
ás escolhas de im

plem
entação/design

[CAT] Uso das Anom
alias de Código

[SUBCAT] Escolha da classe a ser analisada
[SUBCAT] Busca por tipo de elem

ento

[SUBCAT] Busca pelo tipo de Problem
a de Design

[SUBCAT] G
uiar-se por código existente

Participantes escolhem
 classes que im

plem
entam

 um
 determ

inado padrão

[SUBCAT] Violação de um
 padrão de projeto

Participante acredita que é
necessário ter um

a visão m
ais am

pliada
do sistem

a para se identificar scattered
concern

Participante encontra um

exem
plo de m

isplaced
concern na controller que
deveria está em

 outra
controller

Participante inform
a que o

trecho de código possui um

problem
a de design porque ele

não está seguindo o padrão de
projeto M

VC

Participante
explica porque a
classe está
violando o padrão
M

VC

Participante justifica
com

o que as classes
deveriam

 ter sido
construída para não
violar o padrão M

VC

Participantes explicam

porque a im
plem

entação
da action está afetando a
adaptabilidade e a
robustez

Participante
justifica porque é
ruim

 tem
 o service

com
 m

uita
im

plem
entação

[SUBCAT] Uso dos Princípios de Bom
 Projeto

Participante m
enciona

que todas as classes do
padrão Action possuem

problem

a

M
isplaced C

oncern

Participante m
enciona

onde a funcionalidade na
action deveria ser
im

plem
entada

Justificativa para o m
isplaced

concern e overload concern

Participante
m

enciona que as
classes services estão
apenas delegando
tarefa por isso elas são
instâncias da anom

alia
m

iddlem
an

Participante usa o padrão
Service Layer com

o justificativa
para indicar que a classe possui
um

 problem
a de design

Participante escolhe o
elem

ento que m
ais

claram
ente viola o padrão

Action

Participante usa o
padrão M

VC com
o

justificativa para indicar
que a classe possui um

problem

a de design

Participante explica
com

o o padrão builder
ajuda no entendim

ento do
sistem

a

Participante sugere
analisar classes do padrão
builder porque ele acredita
que eles usam

 o padrão
errado tam

bém

Participante usa o padrão
Builder com

o justificativa
para indicar que a classe
possui um

 problem
a de

design

Participante acredita que
usar um

 fram
ew

ork é a
m

aneira para se evitar
dependência idesejada

Participante
explica o padrão
Value O

bject
C

ited by Program
s = 2

[CAT] M
isplaced Concern

[CAT] Pouco uso de herança e interfaces

Participante acredita ser dificil
ter interface sobrecarregada no
sistem

a deles
Participante pergunta

se eles estão usando
herança em

 algum
a parte

do program
a

Participantes
m

encionam
 que

os outros
princípios afetam

herança e
abstração,
conceitos que
eles não usam

bastante

Participante encontra um
a

anom
alia de código na classe

com
 problem

a de design
C

ited by Program
s = 3

Participante abre a lista
de anom

alias de código
afetando o program

a

Participante indica
indiretam

ente a anom
alia de

código sw
itch statem

ent

Participante indica
indiretam

ente a anom
alia de

código duplicated code

Participante escolha
um

a classe que ele acredita
que tem

 um
a boa estrutura

Participante
m

enciona que
está aprendendo
bastante sobre as
boas práticas

Participante
sugere que código
legado é m

ais
cruel

Participante indica um
 trecho de

código com
 m

á qualidade na
classe que eles consideravam

com

o tendo boa qualidade
estrutural

Participante chega à
conclusão de que é m

uito fácil ter
problem

as de design no sistem
a

Participante busca
problem

as de design nos
aspectos

Participante usa o padrão
Adapter com

o justificativa
para indicar que a classe
possui um

 problem
a de

design

Participante explica
porque a classe está
violando o padrão Action

Participante acha que é
m

ais fácil encontrar classes
que violam

 o princípio da
responsabilidade única

Figure C.5: Codes for the Companies 1 and 2

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

Appendix C. Study about Design Problem Identification in Practice 210

is part ofis part of

is cause ofis cause of

is cause ofis cause of

is associated withis associated with

is associated withis associated with

is part ofis part of

is cause ofis cause of

is part ofis part of

is associated withis associated with

is part ofis part of

is associated withis associated with

is part ofis part of

is associated withis associated with

is cause ofis cause of

is part ofis part of

is cause ofis cause of

is part ofis part of

is associated withis associated with

is part ofis part of

is part ofis part of

is associated withis associated with

is cause ofis cause of

is cause ofis cause of

is cause ofis cause of

is part ofis part of

is cause ofis cause of

is associated withis associated with

is associated withis associated with

is cause ofis cause of

is part ofis part of

is associated withis associated with

is cause ofis cause of

is part ofis part of

is cause ofis cause of

is associated withis associated with

is cause ofis cause of

is part ofis part of

is part ofis part of

is part ofis part of

is part ofis part of

is associated withis associated with

is part ofis part of

is cause ofis cause of

is cause ofis cause of

is part ofis part of

is ais a

is cause ofis cause of

is cause ofis cause of

is part ofis part of

is associated withis associated with

is cause ofis cause of

is cause ofis cause of

is associated withis associated with

is part ofis part of

is part ofis part of

is cause ofis cause of

is part ofis part of

is cause ofis cause of

is associated withis associated with

is cause ofis cause of

is cause ofis cause of

is cause ofis cause of

is part ofis part of

is associated withis associated with

is part ofis part of

is part ofis part of

is cause ofis cause of

is cause ofis cause of

is part ofis part of

is part ofis part of

is cause ofis cause of

is cause ofis cause of

is part ofis part of

is associated withis associated with

is part ofis part of

is cause ofis cause of

is associated withis associated with

is part ofis part of

is cause ofis cause of

is associated withis associated with

is cause ofis cause of

is part ofis part of

is part ofis part of

is cause ofis cause of

is ais a

is part ofis part of

is part ofis part of

is part ofis part of

is part ofis part of

is cause ofis cause of

is ais a

is associated withis associated with

is ais a

is associated withis associated with

is cause ofis cause of

is part ofis part of

is cause ofis cause of

is associated withis associated with

is part ofis part of

is cause ofis cause of

is associated withis associated with

is associated withis associated with

is associated withis associated with

is part ofis part of

is associated withis associated with

is associated withis associated with

is part ofis part of

is associated withis associated with

is part ofis part of

is part ofis part of

is ais a

is cause ofis cause of

is associated withis associated with

is part ofis part of

is part ofis part of

is cause ofis cause of

is cause ofis cause of

is cause ofis cause of

is cause ofis cause of

is cause ofis cause of

is cause ofis cause of

is part ofis part of
is part ofis part of

is part ofis part of

is part ofis part of

is part ofis part of

is associated withis associated with

is part ofis part of

is cause ofis cause of

is part ofis part of

is part ofis part of

is part ofis part of

is cause ofis cause of

is cause ofis cause of

is part ofis part of

is cause ofis cause of

is ais a
is cause ofis cause of

is cause ofis cause of

is part ofis part of

is cause ofis cause of

is cause ofis cause of

is associated withis associated with

is cause ofis cause of

is part ofis part of

is cause ofis cause of

is cause ofis cause of

is part ofis part of

is part ofis part of

is associated withis associated with

is cause ofis cause of

is part ofis part of

is ais a

is part ofis part of

is part ofis part of

is associated withis associated with

is associated withis associated with

is cause ofis cause of

is part ofis part of

is part ofis part of

is part ofis part of

is cause ofis cause of

is part ofis part of

is part ofis part of

is cause ofis cause of

is cause ofis cause of

is part ofis part of

is part ofis part of

is associated withis associated with

is cause ofis cause of

is part ofis part of

is part ofis part of

is part ofis part of

is cause ofis cause of

is cause ofis cause of

is associated withis associated with

is part ofis part of

is associated withis associated with

is ais a

is part ofis part of

is ais a

is part ofis part of

is associated withis associated with

is associated withis associated with

is part ofis part of

is cause ofis cause of

is cause ofis cause of

is part ofis part of

is part ofis part of

is associated withis associated with

is ais a

is part ofis part of

is cause ofis cause of

is cause ofis cause of

is cause ofis cause of

is associated withis associated with

is cause ofis cause of

is cause ofis cause of

is part ofis part of

is part ofis part of

is cause ofis cause of

is cause ofis cause of

is part ofis part of

is ais a

is cause ofis cause of

is associated withis associated with

is associated withis associated with

is ais a

is cause ofis cause of

is part ofis part of

is part ofis part of

is cause ofis cause of

is associated withis associated with

is part ofis part of

is cause ofis cause of

is part ofis part of

is part ofis part of

is cause ofis cause of

is cause ofis cause of

is ais a

is associated withis associated with

is part ofis part of

is part ofis part of

is cause ofis cause of

is associated withis associated with

is cause ofis cause of

is associated withis associated with

is part ofis part of

Participante menciona que o método poderia ser
melhor escrito

Participante
analisa o método

Participante usar
o design para
justificar a
implementação
anômala

Participante
concorda com a
existência da
anomalia Long
Method

Participante
move os nós do
grafo da
aglomeração

Participante ler
a razão da
anomalia Intensive
Coupling

Participante concorda que o
método está longo

Abre sumário "ContractDTO" e expande a aba com anomalias de código. Nesse momen…

[SEC] Participante marca a seção Atributos Não Funcionais Violados como muito relevante

[SEC] Participante marca a seção Atributos Não Funcionais
Violados como bastante relevante

Participante
justifica porque a
anomalia Message
Chain não existe
na classe

Participante
explica como ele
dividira os
serviços do
método

Erro na dependências entre as
classes da aglomeração

[SMELL] Análise de uma anomalia Message Chain

Participante menciona que não
tem como diminuir a quantidade
de parâmetros

[SMELL] Análise de uma anomalia Complex Class

Participante menciona que a classe era
para ser só setup, mas também faz
autenticação

Participantes
mencionam que o
nome do método
é enorme

Participantes mencionam que a classe é
grande mas não é complexa

Participante acredita que há
uma contradição entre o smell e o
padrão de projeto

Participante
acredita que o
método está
fazendo muito
coisa

[SEC] Participante marca a seção Atributos de Qualidade e Princípios Violados como irrelevante

Participante analisa uma classe que
está na aglomeração

Participante
concorda com a
existência da
anomalia
Dispersed
Coupling

Participante menciona que a classe
faz muita coisa

Participante
justifica porque a
anomalia Message
Chain existe na classe

Participante ler
a descrição da
anomalia
Dispersed
Coupling

Participante usa o tamanho da
classe para verificar se os dois su…

Participantes se
surpreendem com as classes
que estão sendo chamadas

Análise dos smells de uma aglomeração

Participante
usa a classe
Builder para
justificar a
anomalia Message
Chain

Participante menciona que a classe realiza setup

Participante menciona
que o método pega
metade da classe

Participante
justifica a
implementação
devdio ao
framework usado

Participante menciona
que o método implementa o
padrão Builder

Participante não
acredita que o padrão de
projeto que ele
implementou é o mesmo
indicado no sumário

[FUN] Análise do atributo Legibilidade

[SMELL] Análise de uma anomalia Dispersed Coupling

[SEC] Participante marca a seção Padrões de Projetos como pouco relevante

Participante percebe a dependência entre as classes
Participante percebe que a

aglomeração possui classes controllers

Participante interage
com a aglomeração para
ver o tipo de code smells
afetando a classe

Participante
explica que é ne…

Análise dos sumários similares

Participante acredita que a legibilidade do código está ruim

[SEC] Participante marca a seção Anomalias de Código como irrelevante

Participante se
surpreende de que a
classe está coesa

Participante ler a razão da
anomalia Dispersed Coupling

Particiapante justifica a
relevância porque eles viram o
problema por meio da
aglomeração

[SEC] Participante marca a seção Anomalias de Código como bastante relevante

Participante menciona que não era sua
intenção reusar a classe

Participantes se surpreendem
com a quantidade de smells em
uma classe da aglomeração

Participante
concorda com a
anomalia Complex
Class antes mesmo de
analisar a classe

Participantes percebem que o
método já não existe mais

Participante menciona que os
problemas são parecidos

Participantes
explicam o que a
classe faz

Participante menciona que o método é
pequeno

Participante não
encontra a referência à
classe Usuário

Participante
encontra um
parâmetro que
não tá sendo
utilizado

Participante menciona que a implementação está horrível

Participantes estão em dúvida
sobre o que é um smell Intensive
Coupling

Participante concorda que a
classe está pouca coesa

[SEC] Participante marca a seção Padrões de Projetos como muito relevante

Participante explica porque a
classe tem um encadeamento
de chamadas

Participante analisa a aglomeração do
sumário similar

Participante concorda que o
método poderia ser melhorado

Participantes
explicam o que o
método faz

Participante encontra
um método que está
fazendo mais de um
serviço

Participantes se questionam se a aglomeração
é pouco relevante ou não

Participante menciona que cada parâmetro
tem uma lista (Java List)

Participante
menciona que a
classe não tem
um smell porque
ela é um DTO

Participante usa o
padrão adotado para
mostrar que o código está
bem implementado

Participantes acreditam que a
aglomeração é sempre relevante porque
ela mostra a relação entre as classes

Participante explica como
melhorar o acoplamento
entre as classes

Participantes discutem sobre como deve ser
feito o relacionamento entre as classes

[FUN] Análise do atributo Reusabilidade

Participante ler a descrição
da anomalia Long Method

Participante
analisa os
parâmetros que o
método recebe

Participante navega
sobre os smells da
aglomeração mencionando
quais ele concorda ou não

[SMELL] Análise de uma anomalia Feature Envy

Participantes
não encontraram
problema de
design na classe

[SEC] Participante marca a seção Aglomeração como bastante relevante

Participante concorda que
a classe está grande

Participante
concorda com o
atributo
complexidade

Participante ler a descrição
do princípio de responsabilidade
única

Participante justifica a
anomalia Feature Envy
devido ao padrão que eles
seguem

Participante conclui que as
duas são parecididas

Participante ler a
descrição da anomalia
Long Paramenter list

Análise visual da aglomeração

Participantes
concordam com a
informação sobre
Dispersed Coupling

Participante
menciona que o
método foi dividido…

Participante encontra um
método que possui a lógica
espalhada

Participante
menciona que
haverá mais
expressividade

Participante menciona que a
classe não precisa tá
encapsulada

Participantes
estão em dúvida
sobre o que é
complexidade
ciclomática

Participante
menciona que o
método constói o
objeto em etapas

Participante usa a classe
Stream para justificar a anomalia
Message Chain

Participante encontra o problema de design

Participantes buscam no google o que é
complexidade ciclomática

Participante concorda com as informações na seção

Participante
acredita que o
tamanho do
método pode ser
reduzido

Participante menciona que a
classe é muito grande

Participante não concorda
com a existência da anomalia
Long Parameter list

Participante
sugere que o
médodo poderia
delegar algumas
tarefas

Participante
concorda com a
existência da
anomalia Intensive
Coupling

Participante
justifica o motivo
da implementação

Participante menciona que
o método acaba delegando
para outras classes porque ele
é grande

[SEC] Participante marca a seção Atributos de Qualidade e Princípios Violados como muito relevante

[SEC] Participante marca a seção Atributos Não Funcionais Violados como pouco rel…

Participante menciona que não
existe outra maneira de obter a
informação

Participante justifica a
legibilidade ruim devido ao
padrão que eles seguem

Participante
concorda com a
existência da
anomalia Long Para…

[SEC] Participante marca a seção Sumários com
Características Similares como pouco relevante

Participante
não concorda
com a existência
da anomalia
Message Chain

[SMELL] Análise de uma anomalia Long Parameter List

Participante menciona
que a classe é um main
gigantesco

Participante
concorda com a
métrica

Participante
menciona que
haverá a
possibilidade de
reuso

[SEC] Participante marca a seção Atributos de Qualidade e
Princípios Violados como bastante relevante

[SEC] Participante marca a seção Aglomeração como muito relevante

[AUX] Partici…

Participante justifica que não
tem outra possibilidade de
implementação

Participante ver
o tamanho do
método

Participante
usam a
funcionalidade do
método para
justificar porque
ela é grande

Participante usa o padrão
adotado para justiifcar a anomalia
de código

A aglomeração é
pequena, só tem
três classe

Participantes discordam de que a
classe deveria ser reusada

Participante
explica porque a
classe possui o
Feature Envy

Participante…

Mostrar alternativas de
implementação

Participante ler
a descrição da
anomalia Intensive
Coupling

Participante analisa um code
smell que está na aglomeração

Participante menciona que a classe é a
principal do projeto

Participante explica que a
implementação se deve ao
banco de dados

Participante ler a
descrição da anomalia
Complex Class

Participante
sugere dividir o
método

[SEC] Participante marca a seção Sumários com Características Simila…

Participante ler
a descrição da
anomalia Message
Chain

Problemas n…

Participante
menciona que as
classes tem atributos
públicos como uma
decisão de design

Participante concorda de que a
classe está implementando mais de
uma funcionalidade

Participantes mencionam
que dar para entender o que
a classe faz

Participante
não concorda
com a existência
da anomalia
Feature Envy

Participantes
concordam com o
sumário

[SMELL] Análise de uma anomalia Long Method

Participante
acredita que não
tem como evitar a
chamadas
aninhadas

[SEC] Participante marca a seção Aglomeração como pouco relevante

[SEC] Participante marca a seção Anomalias de Código como muito relevante

Participantes analisam a
quantidade de parâmetros no
método

Participante analisa um método

Participante acha que a classe do
sumário similar é parecida porque ambas
fazerm o mesmo papel de um serviço

Participante
menciona um
atributo que
poderia ser
privado

Participantes não concordam que
a classe é complexa

Participante menciona que
não quer nem ver a
aglomeração

Participante não concorda
com a reusabilidade da classe

Participante
menciona que
essa
implementação se
deve à linguagem

Participante busca por comentários
na seção de aglomeração

Participante menciona que a
implementação está feia

Participante
menciona que o
método é responsável
por gerar o relatório

[AUX] Partici…

Particiapnte
achava que o
método seria
ainda maior

Participante
usa o tamanho do
método para
justificar a
anomalia Intensive
Coupling

[SMELL] Análise de uma anomalia Intensive Coupling

Participante
concorda com a
existência da anomalia
Feature Envy

[CAT] Estratégia de Análise

Participantes
não sabem o que
é complexidade
ciclomática

[SEC] Participante marca a seção Sumários com Características Similares como bastante relevante

Participante justifica a
legibilidade ruim devido à
linguagem de programação

Participante justiifca que
não tem como fugir desse
tipo de implementação

Participantes analisam o atributo
Complexidade

Participante explica porque
reusabilidade não deveria ser
considerada no caso da classe
analisada

[SMELL] Análise de uma anomalia Class Data Should Be Private

[SEC] Participante marca
a seção Padrões de Projetos
como bastante relevante

Participante menciona
que o método poderia ser
movido para outro lugar
para ficar coeso

Participantes não acham que a aglomeração estão parecidas

Classe Central

Análise superficial

Figure C.6: Codes for the Companies 3 and 4

is associated withis associated with

is cause ofis cause of

is ais a

is cause ofis cause of

is cause ofis cause of

is cause ofis cause of

is ais a

is part ofis part of

is part ofis part of

is part ofis part of

is associated withis associated with

is associated withis associated with

is cause ofis cause of

is part ofis part of

is cause ofis cause of

is cause ofis cause of

is cause ofis cause of

is part ofis part of

is associated withis associated with

is cause ofis cause of

is part ofis part of

is cause ofis cause of

is associated withis associated with

is ais a

is cause ofis cause of

is associated withis associated with

is part ofis part of

is part ofis part of

is cause ofis cause of

is cause ofis cause of

is part ofis part of

Classe Auxiliar

[SEC]
Participante mar…

Participante…

Análise supe…

Aglomeração com classes Services

[SEC] Participante marca a seção Aglomeração como m…

Participantes…

Participante…

[SEC] Partici…

Participante…

[SVAL] Participante
marca a anomalia Feature
Envy como não foi
importante

Feature Envy e
Design Problems

Participante marca a relevância da seção
Aglomeração com base na seção anterior

[SEC] Participante
acredita que a aglomeração
é apenas para dar uma visão
geral

Participante busca pelo problema de
design Cyclic Dependency

Participante
busca pela classe
que ele analisou
anteriormente

Participante
menciona dois
nós da
aglomeração que
estão ligados

[SEC] Participante marca a
seção Aglomeração como
irrelevante

Participante relaciona o problema
encontrado com um problema na lista
com a definição de Problemas de
Design

Estratégia baseada na
análise da classe

[CAT] Estratégia
de Análise

Discordância do sumário

Participantes discutem sobre a coesão

Participante acha que a
seção é interessante porque ela
apresenta uma classe diferente
da classe analisada

[SEC] Participante marca a
seção Padrões de Projetos como
bastante relevante

[SEC] Participante marca a seção
Atributos de Qualidade e Princípios Violad…

Participante não
analisa todas as
informações da seção

[SEC] Participante marca a seção
Sumários com Características
Similares como pouco relevante

Participante fica em dúvida
sobre o que ele deve considerar
como um problema de design

Problemas no Experimento

[IMPORTANTE]

Padrão nas classes services: Características similares

[SEC] Participante marca a seção Sumários com
Características Similares como muito relevante

Participante encontra o problema de design

[AUX] Participante acessa material
com a definição de code smells

Participantes navegam pela lista
de problemas de design

Material De Ajuda

[AUX] Participante acessa material com a definição de problemas
de design

Participante julga a coesão
com base no sumário anterior

Participante ler a descrição do
atributo Complexidade

Influência de sumários anteriores

Participante não acha que a classe
esteja fortemente acoplada

[SEC] Participante marca a seção…

Participante acredita que não tem como evitar
a classe ser longa

[SEC] Participante marca a seção
Aglomeração como bastante relevante

Fatores Influenciadores da Relevância da Aglomeração

Participante acredita que todas as classes services terão
problemas de design

Participantes discutem a seção sobre padrões de projeto
e arquiteturais

Participante ler sobre o padrão de projeto implementado

Erro de interpretação da seção Padrões de Projeto e Arquiteturias
Implementados

Participante usa o mesmo critério para avaliar
a seção

Participante analisa a classe a qual o
método com anomalia está mais interes…

Participante menciona uma classe que faz
parte da aglomeração

Participante sugere trocar o objeto passado
como parâmetro por um id representando o
objeto

Participante sugere uma alternativa de implementação

Implementação Alternativa

Participante justifica que
o método precisa fazer
várias chamadas a classe…

Participante interpreta a
informação sobre coesão e
acoplamento

Interprestação errônea sobre Coesão

Participante fica em dúvida sobre a informação do sumário

Participante começa o processo abrindo a
classe no Eclipse

Análise da classe primeiro

Participante discorda com a informação no sumário

[SEC] Participante marca a
seção Atibutos Não Funcionais
Violados como irrelevante

[SEC] Participante marca a seção
Anomalias de Código como pouco
relevante

[SEC] Participante acredita que a
informação sobre reusabilidade é irrelevante
ou pouco relevante

Consequência da discordância

Classe Central

Participante explica que a classe é uma
entidade central na aplicação

Participante explica que a classe é uma
entidade chave na aplicação

Participante aparenta compreender o
que é um encademento de chamadas

Não entendimento da seção

Participante acredita
que a aglomeração não
tem nada de importante

Participantes estão em
dúvida sobre o que é um
smell Message Chain

Participante menciona que
pelo nome da classe já é possível
perceber que ela é um DAO

[SEC] Participante marca a seção
Padrões de Projetos como pouco relevante

[SEC] Participante marca a seção
Aglomeração como pouco relevante

Análise visual da aglomeração

Participante analisa o
protótipo de um método da
interface

Figure C.7: Codes for the Company 5

DBD
PUC-Rio - Certificação Digital Nº 1412730/CA

	Understanding How Developers Identify Design Problems in Practice
	Resumo
	Table of contents
	Introduction
	Design Problem Identification
	Problem Statement
	Goal and Research Questions
	Main Contributions
	Thesis Outline

	Background and Related Work
	Software Design and Design Problems
	Types of Design Problems
	Design Problems related to Abstractions
	Design Problems related to Dependencies
	Design Problems related to Separation of Concerns

	Code Smells and Design Problems
	Related Work
	Catalogs of Design Problems
	Relation between Code Smells and Design Problems
	Techniques to Identify Design Problems

	Summary

	Investigating Code Smells as Key Symptoms in Practice
	Background and Terminology
	Study Design
	Research Question
	Categorization of Refactored Elements

	Data Collection and Analysis
	Phase 1: Selection of Software Projects
	Phase 2: Refactoring Detection
	Phase 3: Code Smell Detection
	Phase 4: Manual Validation
	Algorithm for Categorization

	Analysis of the Results
	Frequency of Refactoring Operations on Code Elements
	Investigating the Chance of Elements Containing Design Problems
	Frequency of Refactoring Operations in Smelly Elements
	Frequency of Refactoring Operations Classified as Root-canal Tactic
	Frequency of Refactoring Operations Applied to the Smell Patterns

	Code Smells are Key Symptoms in Some Scenarios

	Related Work
	Code Smells as Key Symptoms
	Applying Refactoring Operations

	Threats to Validity
	Summary

	Investigating the Support of Code Smells to Identify Design Problems
	Background
	Code Smell Agglomerations
	Identifying Design Problems with Agglomerations

	Study Design
	Research Questions
	Experiment Procedures
	Software Projects and Participant Selection
	Quantitative Analysis Procedures
	Ground Truth Analysis
	Qualitative Analysis Procedures

	Results and Analysis
	Does the Use of Agglomerations Improve Precision?
	How to Improve Design Problem Identification?
	Do Code Smells Suffice to Support Design Problem Identification?

	Related Work
	Threats to Validity
	Summary

	Investigating How Developers Identify Design Problems
	Research Design
	Research Questions
	Software Systems and Developers' Selection
	Experimental Tasks
	Provided Data
	Data Collection and Analysis
	Grounded Theory
	Peer Review Process
	Writing Up the Theory

	A Theory on How Developers Identify Design Problems
	Identification of Design Problems
	Design Problem Symptoms
	Design Problem Diagnosis
	Symptom Analysis
	Epidemic Analysis
	Identification Tactics

	Propositions Concerning the Developer
	Confidence in the Presence of a Design Problem
	Conscientiousness
	Incapability of Providing an Alternative

	Towards Improving Design Problem Diagnosis
	Supporting Multiple Symptoms
	Prioritization of Similar Elements
	Additional Support for the Developer

	Related Work
	Threats to Validity
	Summary

	Conclusion
	Revisiting the Thesis Contributions
	Future Work

	Bibliography
	Glossary
	Study about Design Problem Identification with Code Smells
	Developers Characterization
	Study Questionnaires
	Push Pull and Workflow Blueprints
	Presentation

	Study about Design Problem Identification in Practice
	Characterization and Follow-up Questionnaires
	Summary of Symptoms
	Generated Codes
	Characterization of the Theory
	Design Problems
	Symptoms Combination

