4. FREQUÊNCIAS NATURAIS E CARGAS CRÍTICAS

O presente capítulo apresenta a análise linear de vigas de seção aberta e paredes delgadas simplesmente apoiadas, mostrando o processo de discretização por Galerkin e as equações de movimento linearizadas. Com base nestas equações faz-se o cálculo das frequências naturais, das cargas críticas axiais e da relação entre carga axial e frequência para diversos perfis encontrados em aplicações práticas com o intuito de mostrar o efeito da assimetria nas vibrações e estabilidade da estrutura.

4.1. Aplicação do método de Galerkin

Através do método de Galerkin, as equações diferenciais parciais de movimento (Equações (3.68) a (3.70)) podem ser reduzidas a um sistema de equações diferencias ordinárias no domínio do tempo.

Para uma viga simplesmente apoiada, o primeiro modo de vibração em flexão nas duas direções ortogonais e o modo de torção são dados por:

$$v(x,t) = v_o(t)\sin\left(\pi\frac{x}{L}\right)$$
(4.1)

$$w(x,t) = w_o(t)\sin\left(\pi\frac{x}{L}\right)$$
(4.2)

$$\theta(x,t) = \theta_o(t) \sin\left(\pi \frac{x}{L}\right) \tag{4.3}$$

onde $v_o(t)$, $w_o(t)$, e $\theta_o(t)$ são as amplitudes modais dependentes do tempo, associados aos três graus de liberdade. Cabe ressaltar que para uma barra simplesmente apoiada a solução analítica para os modos de flambagem em flexão e torção coincidem com os modos de vibração. Substituindo as Equações (4.1) a (4.3) em (3.68) a (3.70), e aplicando o método de Galerkin, obtém-se o seguinte sistema de equações diferencias ordinárias de movimento:

$$\frac{mL^{2}}{\pi^{2}} \left(\frac{d^{2}}{dt^{2}} v_{0} + z_{c} \frac{d^{2}}{dt^{2}} \theta_{0} \right) + P_{z} \left(v_{0} + \frac{\pi^{2}}{8L^{2}} v_{0}^{3} \right) - P \left(v_{0} + z_{c} \theta_{0} \right) - P \frac{4y_{c} \theta_{0}^{2}}{3\pi}$$

$$+ \left(P_{z} - P_{y} \right) \left(\frac{8}{3\pi} w_{0} \theta_{0} - \frac{3}{4} v_{0} \theta_{0}^{2} \right) - \frac{32}{\pi^{3}} M_{0y} = 0$$

$$\frac{mL^{2}}{\pi^{2}} \left(\frac{d^{2}}{dt^{2}} w_{0} - y_{c} \frac{d^{2}}{dt^{2}} \theta_{0} \right) + P_{y} \left(w_{0} + \frac{\pi^{2}}{8L^{2}} w_{0}^{3} \right) - P \left(w_{0} - y_{c} \theta_{0} \right) - P \frac{4z_{c} \theta_{0}^{2}}{3\pi}$$

$$+ \left(P_{z} - P_{y} \right) \left(\frac{8}{3\pi} v_{0} \theta_{0} + \frac{3}{4} w_{0} \theta_{0}^{2} \right) - \frac{32}{\pi^{3}} M_{0z} = 0$$

$$\frac{mL^{2}}{\pi^{2}} \left(I_{0} \frac{d^{2}}{dt^{2}} \theta_{0} + z_{c} \frac{d^{2}}{dt^{2}} v_{0} - y_{c} \frac{d^{2}}{dt^{2}} w_{0} \right) + I_{0} P_{0} \theta_{0} + \frac{3\pi^{2}}{8} \frac{EI_{t}}{L^{2}} \theta_{0}^{3}$$

$$- P \left(I_{0} \theta_{0} - y_{c} w_{0} + z_{c} v_{0} \right) + P \frac{8z_{c} w_{0} \theta_{0}}{3\pi} - P \frac{8y_{c} v_{0} \theta_{0}}{3\pi}$$

$$+ \left(P_{z} - P_{y} \right) \left(\frac{8}{3\pi} v_{0} w_{0} - \frac{3}{4} \theta_{0} v_{0}^{2} + \frac{3}{4} \theta_{0} w_{0}^{2} \right)$$

$$- M_{0z} \left(\frac{32}{\pi^{3}} e_{y} - \frac{8}{\pi^{2}} e_{z} \theta_{0} \right) = 0$$

$$(4.4)$$

Nas equações (4.4) - (4.6), P_y , P_z e P_θ , são as cargas de flambagem em flexão e torção para o problema desacoplado, P é a carga axial compressiva, M_{0z} , e M_{0y} são os máximos momentos de flexão resultante das cargas laterais uniformes $q_z e q_y$ respectivamente, para uma viga simplesmente apoiada. Estes parâmetros são dados por:

$$P_z = \frac{\pi^2 E I_z}{L^2} \tag{4.7}$$

$$P_{y} = \frac{\pi^{2} E I_{y}}{L^{2}}$$

$$\tag{4.8}$$

$$P_{\theta} = \frac{1}{I_0} \left(\frac{\pi^2 E I_{\omega}}{L^2} + G J \right)$$
(4.9)

$$M_{0z} = q_z \frac{L^2}{8}$$
 e $M_{0y} = q_y \frac{L^2}{8}$ (4.10)

As Equações (4.4) a (4.6) formam um sistema de três equações não lineares acopladas que deve ser resolvido através de métodos numéricos.

4.2. Linearização das equações de movimento.

Para calcular as frequências naturais e a carga crítica, é preciso linearizar as equações (4.4) - (4.6), obtendo-se:

$$\frac{mL^2}{\pi^2} \left(\frac{d^2}{dt^2} v_0 + z_c \frac{d^2}{dt^2} \theta_0 \right) + P_z v_0 - P(v_0 + z_c \theta_0) = 0$$
(4.11)

$$\frac{mL^2}{\pi^2} \left(\frac{d^2}{dt^2} w_0 + y_c \frac{d^2}{dt^2} \theta_0 \right) + P_y w_0 - P(w_0 + y_c \theta_0) = 0$$
(4.12)

$$\frac{mL^2}{\pi^2} \left(I_0 \frac{d^2}{dt^2} \theta_0 + z_c \frac{d^2}{dt^2} v_0 - y_c \frac{d^2}{dt^2} w_0 \right) + I_0 P_\theta \theta_0$$

$$-P \left(I_0 \theta_0 - y_c w_0 + z_c v_0 \right) = 0$$
(4.13)

Verifica-se que o acoplamento no sistema linearizado é função dos parâmetros geométricos y_c e z_c . Isto significa que em seções monosimétricas ou assimétricas, onde o centro de cisalhamento não coincide com o centro de gravidade da seção, há modos de vibração e flambagem com acoplamento entre flexão e torção.

4.3. Frequências naturais e cargas críticas axiais da viga.

Para avaliar a possibilidade de ocorrência de ressonância, faz-se necessário conhecer as frequências naturais da estrutura. Estas frequências naturais são obtidas a partir do problema de vibração livre e não amortecida descrito pelas equações diferenciais de movimento, (4.11) a (4.13), que é um sistema de equações diferenciais lineares com coeficientes constantes e que pode ser expresso matricialmente como:

$$[M]\{\ddot{U}\} + \{\![K_e] - P[K_G]\!\} \{\!U\} = 0 \tag{4.14}$$

onde $\{U\}$ é o vetor dos deslocamentos, [M] é a matriz de massa, $[K_e]$ matriz de rigidez, $[K_G]$ é matriz geométrica e $\{F\}$ é o vetor das forcas externas. Para o cálculo das frequências naturais da estrutura descarregada, tem-se o problema de autovalor:

$$[M]\{\ddot{U}\}+[K_e]\{U\}=0 \tag{4.15}$$

onde:

$$\begin{bmatrix} M \end{bmatrix} = \frac{mL^2}{\pi^2} \begin{bmatrix} 1 & 0 & z_c \\ 0 & 1 & -y_c \\ z_c & -y_c & I_0 \end{bmatrix}$$
(4.16)

e

$$\begin{bmatrix} K_e \end{bmatrix} = \begin{bmatrix} P_z & 0 & 0 \\ 0 & P_y & 0 \\ 0 & 0 & I_0 P_{\theta} \end{bmatrix}$$
(4.17)

a solução da Equação (4.15) é da forma:

$$v_0(t) = \overline{v}e^{i\omega_0 t} \tag{4.18}$$

$$w_0(t) = \overline{w}e^{i\omega_0 t} \tag{4.19}$$

$$\theta_0(t) = \theta \, e^{i\omega_0 t} \tag{4.20}$$

onde ω_{o} é a frequência natural e \overline{v} , \overline{w} e $\overline{\theta}$ são as amplitudes modais.

Da substituição das Equações (4.18) a (4.20) na Equação (4.15), chega-se à seguinte equação característica do problema de autovalor:

$$\left[K_e - \lambda M\right] = 0 \tag{4.21}$$

onde:

$$\lambda = \omega_o^2 \tag{4.22}$$

ou seja, os autovalores representam o quadrado das frequências naturais e os autovetores os modos de vibração.

Em um problema de instabilidade linearizado, o cálculo da carga crítica e os modos de flambagem também resultam de um problema de autovalor linear generalizado na forma abaixo:

$$\left[K_e - P K_G\right] = 0 \tag{4.23}$$

onde:

$$\begin{bmatrix} K_G \end{bmatrix} = \begin{bmatrix} -P & 0 & -Pz_c \\ 0 & -P & Py_c \\ -Pz_c & Py_c & -PI_0 \end{bmatrix} \qquad \begin{bmatrix} K_e \end{bmatrix} = \begin{bmatrix} P_z & 0 & 0 \\ 0 & P_y & 0 \\ 0 & 0 & I_0P_{\theta} \end{bmatrix}$$
(4.24)

As frequências da estrutura carregada e a relação entre carga axial e frequência de vibração podem ser obtidas através da solução do problema de autovalor, Equação (4.14).

4.4. Análise numérica de vários tipos de perfis

Com o propósito de ilustrar melhor os efeitos considerados obtêm-se as frequências naturais, cargas críticas axiais e relação frequência-carga axial para alguns perfis frequentemente utilizados em aplicações práticas como "I", "T", "C" e "L", incluindo assim seções duplamente simétricas, seções monosimétricas e seções assimétricas.

Os resultados numéricos são obtidos para uma viga simplesmente apoiada com módulo de Young E = 210 GPa, módulo de Cisalhamento G = 80.77 GPa, densidade do material $\rho = 7800$ kg/m³ e comprimento L = 4 m. As propriedades geométricas dos perfis foram obtidas com a ajuda do programa ShapeDesigner (2013).

4.4.1. Seção duplamente simétrica - perfil "I".

A Figura 4.1 apresenta os eixos principais de inércia (eixos de simetria), campo de deslocamentos e características geométricas de um perfil "T" com dupla simetria. Na Tabela 4.1, encomtram-se as dimensões do perfil utilizado na presente análise e as principais propriedades geométricas deste perfil.

Figura 4.1: Perfil simétrico "I" e suas dimensões características.

	Propriedades Geométricas									
b	=	15,00	cm	A	=	= 51,881 cm ²				
h	=	30,00	cm	J	=	= 15,898 cm ⁴				
t_f	=	1,07	cm	I _M	, =	= 1,258E+05 cm ⁶				
t_w	=	0,71	cm	I_y	=	= 7999,000 cm ⁴				
y_c	=	0,00	cm	I_z	=	= 602,710 cm ⁴				
Z_c	=	0,00	cm	I_r	. =	= 1,83E-06 m ⁶				

Tabela 4.1: Propriedades geométricas da seção "I".

As equações lineares de movimento para este perfil são:

$$65,6029\frac{d^2}{dt^2}v_0 + 7,8074\ 10^5v_0 = 0 \tag{4.25}$$

$$65,6029\frac{d^2}{dt^2}w_0 + 1,0632\ 10^5w_0 = 0 \tag{4.26}$$

$$1,0877 \frac{d^2}{dt^2} \theta_0 + 29136,7652 \theta_0 = 0 \tag{4.27}$$

Note-se que as Equações (4.25) a (4.27) são desacopladas em função do centro de cisalhamento coincidir com o centro de gravidade. Tem-se assim o problema de autovalor:

$$\left[\left[K_{e} - \lambda M \right] \right] = \begin{bmatrix} 7,81\ 10^{5} - 65,60\lambda & 0 & 0 \\ 0 & 1,04\ 10^{7} - 65,60\lambda & 0 \\ 0 & 0 & 29136,77 - 1,09\lambda \end{bmatrix} = 0$$

$$(4.28)$$

cujo polinômio característico é dado por:

$$-4681,08\lambda^3 + 9,20\ 10^8\lambda^2 - 3,01\ 10^{13}\lambda + 2,36\ 10^{17} = 0 \tag{4.29}$$

Resolvendo a Equação (4.29), têm-se as três frequências naturais e os respectivos modos de vibração que são apresentados na Tabela 4.2. Estes valores foram corroborados pelos valores obtidos por F. Mohri, L. Azrar e M. Potier-Ferry (2001).

Tabela 4.2: Frequências naturais (rad/s) e modos de vibração da seção "I".

	Mada	$(\mathbf{n}, \mathbf{d}, \mathbf{d})$	Componentes				
	MOUO	ω_o (rau/s)	Direção (v _o)	Direção (w _o)	Direção (θ_o)		
Γ	F	109,092	1,000	0,000	0,000		
	F	397,426	0,000	1,000	0,000		
	Т	163,671	0,000	0,000	1,000		

As cargas de bifurcação são obtidas a partir do determinante:

$$\left[\left[K_{e} - P \ \mathrm{K}_{G} \right] \right] = \begin{bmatrix} 7,81\ 10^{5} - P & 0 & 0 \\ 0 & 1,04\ 10^{7} - P & 0 \\ 0 & 0 & 29136,77 - 0,02P \end{bmatrix} = 0$$
(4.30)

que leva ao seguinte polinômio característico:

$$-0.02P^{3} + 2.14\ 10^{5}P^{2} - 4.59\ 10^{11}P + 2.36\ 10^{17} = 0$$

$$(4.31)$$

Resolvendo a Equação (4.31) têm-se as três raízes e os respectivos autovetores apresentados na Tabela 4.3. A carga crítica ($P_{cr}=780,7kN$), corresponde a um modo de flambagem de flexão em torno do eixo de menor inércia. Note-se também que, neste caso, a carga crítica coincide com a carga crítica de Euler.

Tabela 4.3: Cargas de modos de bifurcação da seção "I".

Mada	Pcr. (kN)	Componentes				
NIOUO		Direção (v _o)	Direção (w _o)	Direção (θ_o)		
F	780,7	1,000	0,000	0,000		
F	10360,0	0,000	1,000	0,000		
Т	1757,0	0,000	0,000	1,000		

Para estudar a variação das frequências naturais em função da carga axial aplicada utilizasse o seguinte determinante:

$$\left[\left(K_e - P \ K_G \right) - \lambda M \right] = 0 \tag{4.32}$$

A Figura 4.2 mostra a variação das três frequências com a carga axial compressiva *P*. À medida que o valor da carga de compressão aumenta, os valores das frequências diminuem até chegar à carga crítica em cada modo. Nota-se que há uma grande influência do carregamento nas frequências de vibração. Para efeito prático, quando se atinge a primeira carga crítica, um dos autovalores se torna negativo e ocorre a flambagem, passando a estrutura a vibrar em torno de uma configuração de equilíbrio pós-crítica. Precisa-se, portanto, de uma formulação não linear para a análise deste problema.

Figura 4.2: Relação carga - frequência de vibração da Seção "I".

A carga crítica e a frequência natural variam de forma não linear com o comprimento da coluna. A Figura 4.3 mostra a variação das cargas de bifurcação do perfil e das três frequências naturais com o comprimento da viga L. O modo crítico depende da dimensão das secções e também do comprimento da viga. Como esperado, tanto as frequências quanto as cargas de bifurcação decrescem à medida que L cresce.

Figura 4.3: Relação carga – comprimento (a) e Relação frequência natural – comprimento (b) da viga de Seção "I".

4.4.2. Seção monosimétrica - perfil "T".

A Figura 4.4 apresenta uma seção monosimétrica em T. Na Tabela 4.4, apresentam-se as dimensões e as principais propriedades geométricas do perfil aqui analisado.

Figura 4.4: Perfil monosimétrico "T" e suas dimensões características.

			Prop	riedades Geométricas		
b	=	10,00	cm	A =	18,776	cm^2
h	=	19,20	cm	J =	3,136	cm^4
t_f	=	0,85	cm	$I_w =$	36,224	cm ⁶
t_w	=	0,56	cm	$I_y =$	717,590	cm^4
y_c	=	0,00	cm	$I_z =$	71,102	cm^4
Z_c	=	5,21	cm	$I_r =$	2,590E-07	m^6

Tabela 4.4: Propriedades geométricas da Seção "T".

As equações de movimento obtidas para este perfil são:

$$23,742\frac{d^2}{dt^2}v_0 + 1,236\frac{d^2}{dt^2}\theta_0 + 92104,505v_0 = 0$$
(4.33)

$$23,742\frac{d^2}{dt^2}w_0 + 9,296\ 10^5w_0 = 0 \tag{4.34}$$

$$1,236\frac{d^2}{dt^2}v_0 + 0,164\frac{d^2}{dt^2}\theta_0 + 2537,236\theta_0 = 0$$
(4.35)

Note-se que a Equação (4.34) é desacoplada e as demais tem um acoplamento geométrico que depende do parâmetro z_c .

As frequências naturais são obtidas a partir do determinante:

$$\begin{bmatrix} K_e - \lambda M \end{bmatrix} = \begin{bmatrix} 92104, 51 - 23, 74\lambda & 0 & -1, 24\lambda \\ 0 & 9, 29 \, 10^5 - 23, 74\lambda & 0 \\ -1, 24\lambda & 0 & 2537, 24 - 1, 16\lambda \end{bmatrix} = 0$$
(4.36)

Resolvendo a Equação (4.36) têm-se as três raízes que são as frequências naturais e os modos de vibração mostradas na Tabela 4.5. Verifica-se que há um modo de flexão relativo ao eixo de maior inércia (Equação desacoplada (4.34)) e dois modos de flexo-torção.

Tabela 4.5: Modos de vibração da seção "T".

Mada	(mod/a)	Componentes				
IVIOUO	ω_o (rau/s)	Direção (v _o)	Direção (w _o)	Direção (θ_o)		
FT	59,012	0,000	0,910	0,415		
F	197,869	-1,000	0,000	0,000		
FT	168,349	0,000	-0,998	0,060		

As cargas críticas são obtidas a partir de:

$$\begin{bmatrix} K_e - P \ K_G \end{bmatrix} = \begin{bmatrix} 92104, 51 - P & 0 & 0, 05P \\ 0 & 9, 30 \ 10^5 - P & 0 \\ 0, 05P & 0 & 2537, 24 - 0, 01P \end{bmatrix} = 0$$
(4.37)

Resolvendo a Equação (4.37) têm-se as três raízes que são as cargas de bifurcação dos modos de flambagem apresentados na Tabela 4.6. Neste caso observa-se que tanto a frequência natural fundamental quanto a carga crítica correspondem a um modo acoplado de flexo-torção envolvendo os deslocamentos $v_o \ e \ \theta_o$. Note-se também que a carga crítica é aproximadamente 90% da carga crítica de Euler para flambagem por flexão em torno do eixo de menor inércia. Este decréscimo se deve à interação entre flexão e torção que diminui a capacidade de carga do perfil.

Mada	Don (KN)			
IVIOUO		Direção (v _o)	Direção (w _o)	Direção (θ_o)
FT	82,680	0,000	0,910	0,415
F	929,556	-1,000	0,000	0,000
FT	672,879	0,000	-0,998	0,060

Tabela 4.6: Modos de Flambagem da seção "T".

A Figura 4.5, apresenta a variação da frequência natural com a carga aplicada para as três direções do sistema.

Figura 4.5: Relação carga - frequência de vibração da Seção "T".

A influência do comprimento da barra nas frequências de vibração e cargas de bifurcação é ilustrada na Figura 4.6. Verifica-se que para L = 4,78 m há duas frequências coincidentes, gerando uma ressonância interna 1:1. Pode-se também observar que há outras proporções inteiras entra as frequências naturais, o que pode gerar diversos problemas de ressonância interna. Por exemplo, para L = 2 m tem-se que $\omega_{02}=2\omega_{01}$ e $\omega_{03}=2\omega_{02}$. Para este comprimento também há coincidência de duas cargas de bifurcação. Nesta faixa de valores de *L* a flambagem sempre ocorre no modo flexo-torsional. O modo de flambagem depende da dimensão da seção e também do comprimento da viga.

Figura 4.6: Relação carga – comprimento (a) e Relação frequência natural – comprimento (b) da viga de Seção "T".

4.4.3. Seção monosimétrica - perfil "C".

A Figura 4.7 apresenta uma viga simplesmente apoiada de seção monosimétrica "C".

Figura 4.7: Perfil monosimétrico "C" e suas dimensões características.

Na tabela Tabela 4.7, apresentam-se as principais propriedades geométricas deste perfil.

	Propriedades Geométricas								
b	=	10,00	cm		Α	=	19,500	cm ²	
h	=	20,00	cm		J	=	1,692	cm^4	
t_f	=	0,50	cm		I_w	=	1,289E+04	cm^6	
t_w	=	0,50	cm		I_y	=	1236,600	cm^4	
y_c	=	-6,08	cm		I_z	=	193,450	cm^4	
Z_c	=	0,00	cm		I_r	=	3,51E-07	m ⁶	

Tabela 4.7: Propriedades geométricas da Seção "C".

As equações de movimento para este perfil são:

$$24,658\frac{d^2}{dt^2}v_0 + 2,506\ 10^5v_0 = 0 \tag{4.38}$$

$$24,658\frac{d^2}{dt^2}w_0 + 1,500\frac{d^2}{dt^2}\theta_0 + 1,602\ 10^5w_0 = 0$$
(4.39)

$$1,500\frac{d^2}{dt^2}w_0 + 0,272\frac{d^2}{dt^2}\theta_0 + 3035,879\theta_0 = 0$$
(4.40)

Note-se que a Equação (4.38) tem um desacoplamento linear para a direção v_0 , e as demais equações têm um acoplamento geométrico que depende do parâmetro y_c .

As frequências naturais e modos de vibração são apresentados na Tabela 4.8. Nota-se neste caso que há dois modos de vibração com a praticamente a mesma frequência natural, o que gera uma ressonância interna 1:1.

Componentes Modo ω_o (rad/s) Direção (v_o) Direção (w_o) Direção (θ_o) F 100,811 1,000 0.000 0.000 FT 322,546 0,000 0,160 -0,987 0,000 -0,012 -0.999 FT 102,390

Tabela 4.8: Frequências naturais e modos de vibração da seção "C".

As cargas críticas e os respectivos modos de flambagem são mostrados na Tabela 4.9 Novamente têm-se duas cargas de bifurcação próximas, o que pode levar a um acoplamento modal com perda de rigidez e, consequentemente, uma diminuição da capacidade de carga na presença de imperfeições geométricas iniciais. A Figura 4.8 mostra a variação das frequências naturais com a carga compressiva axial. Nota-se que a ressonância interna ocorre independente do valor da carga, mantendo-se a relação $\omega_{02}=\omega_{01}$.

Mada	Don (kN)			
MOUO	FCI. (KIN)	Direção (v _o)	Direção (w _o)	Direção (θ_o)
F	250,592	1,000	0,000	0,000
FT	2565,276	0,000	0,160	-0,987
FT	258,501	0,000	-0,012	-0,999

Tabela 4.9: Cargas e modos de bifurcação da seção "C".

Figura 4.8: Relação carga - frequência de vibração da Seção "C".

Figura 4.9: Relação carga – comprimento (a) e Relação frequência natural – comprimento (b) da viga de Seção "C".

A Figura 4.9 mostra a variação das cargas criticas de flambagem do perfil de seção "C", e das frequências naturais com o comprimento da viga L. Verificase que em toda a faixa de L analisada a interação modal pode ocorrer em virtude da proximidade de cargas e frequências tanto em problemas estáticos quanto dinâmicos.

4.4.4. Seção monosimétrica - perfil "L".

A Figura 4.10 apresenta uma viga simplesmente apoiada de seção monosimétrica "L".

Figura 4.10: Perfil monosimétrico "L" e suas dimensões características.

Na Tabela 4.10, apresenta as propriedades geométricas deste perfil.

	Propriedades Geométricas								
b	=	15,00	cm		Α	=	14,750	cm ²	
h	=	15,00	cm		J	=	1,262	cm^4	
t_f	=	0,50	cm		I_w	=	22,240	cm^{6}	
t_w	=	0,50	cm		I_y	=	334,540	cm^4	
у	=	-3,68	cm		I_z	=	334,090	cm^4	
z	=	-3,68	cm		I_r	=	1,39E-07	m^6	
					I_{yz}	=	-200,45	cm^4	

Tabela 4.10: Propriedades geométricas da Seção monosimétrica "L".

Para analisar este exemplo, precisamos que as propriedades geométricas sejam referenciadas a seus eixos principais de inércia. Para isto deve-se utilizar as seguintes formulações:

$$Tan(2\gamma) = \frac{-I_{yz}}{\left(I_y - I_z\right)/2}$$
(4.41)

$$I_{\max}_{\min} = \frac{I_{y} + I_{z}}{2} \pm \sqrt{\left(\frac{I_{y} - I_{z}}{2}\right)^{2} + I_{yx}^{2}}$$
(4.42)

$$x_{p} = x \cos \gamma + y \sin \gamma$$

$$y_{p} = y \cos \gamma - x \sin \gamma$$
(4.43)

Substituindo os valores da Tabela 4.10 nas Equações (4.41)-(4.43), obtêmse as seguintes propriedades listadas na Tabela 4.11.

Tabela 4.11: Propriedades geométricas principais da Seção monosimétrica "L".

Propriedades Geométricas nos Eixos Principais							
y_c	=	-5,210	cm	I _{max}	=	$534,990 \text{ cm}^4$	
Z_{c}	=	0,000	cm	I_{min}	=	$134,090 \text{ cm}^4$	
				γ	=	45,000 °	

As equações de movimento fornecidas para este perfil são:

$$18,651\frac{d^2}{dt^2}v_0 + 1,737\ 10^5v_0 = 0 \tag{4.44}$$

$$18,651\frac{d^2}{dt^2}w_0 + 0,971\frac{d^2}{dt^2}\theta_0 + 6,930\ 10^5w_0 = 0$$
(4.45)

$$0,971\frac{d^2}{dt^2}w_0 + 0,135\frac{d^2}{dt^2}\theta_0 + 1022,279\theta_0 = 0$$
(4.46)

Note-se que a Equações (4.44) - (4.46) tem um acoplamento linear geométrico que depende do parâmetro $y_{c.}$

Resolvendo o problema de autovalor têm-se as três raízes que são as frequências naturais com as quais se podem calcular os modos de vibração mostrados na

Tabela 4.12.

Mada	(\mathbf{u}, \mathbf{d})		Componentes	
NIOUO	ω_o (rau/s)	Direção (v _o)	Direção (w _o)	Direção (θ_o)
F	96,504	1,000	0,000	0,000
FT	253,925	0,000	0,122	-0,993

-0,012

-0,999

0,000

Tabela 4.12: Frequências naturais e modos de vibração da seçãomonosimétrica L.

As cargas críticas e os modos de flambagem deste perfil são apresentados na Tabela 4.13. A relação frequência natural versus carga axial é apresentada na Figura 4.11.

Tabela 4.13: Cargas e modos de bifurcação da seção monosimétrica "L".

Dingaão	Don (I-N)	Modos de Flambagem				
Direçao	PCr. (KIN)	Direção (v _o)	Direção (w _o)	Direção (θ_o)		
F	173,698	1,000	0,000	0,000		
FT	1202,591	0,000	0,122	-0,993		
FT	129,870	0,000	-0,012	-0,999		

Figura 4.11: Relação carga – frequência de vibração da Seção monosimetrica "L".

FT

83,445

Figura 4.12: Relação carga – comprimento (a) e Relação frequência natural – comprimento (b) da viga de Seção monosimetrica "L".

A Figura 4.12 mostra a variação das cargas criticas de bifurcação do perfil "L" em função do comprimento da viga. Pode-se observar que até um comprimento L = 4.51m a flambagem ocorre para um modo de flexão puro, mais para valores maiores o comportamento é flexo-torsional. Mudança semelhante ocorre no modo associado à frequência de vibração mínima. Assim como o perfil de seção "C", para certos comprimentos há a possibilidade de ressonância interna e interação modal.

4.4.5. Seção assimétrica - perfil "L".

Finalmente neste último exemplo analisa-se o problema referente a uma seção assimétrica. A Figura 4.13 apresenta uma viga com seção transversal assimétrica "L".

Figura 4.13: Perfil assimétrico "L" e suas dimensões características.

A Tabela 4.14 apresenta as propriedades geometricas deste perfil.

Propriedades Geométricas								
b	=	7,50	cm	A =	=	11,000	cm^2	
h	=	15,00	cm	J :	=	0,930	cm^4	
t_f	=	0,50	cm	I_w =	=	12,391	cm ⁶	
t_w	=	0,50	cm	I_y =	=	266,130	cm^4	
у	=	-1,20	cm	I_z =	=	48,006	cm^4	
z	=	-4,90	cm	I_r =	=	7,10E-08	m^6	
				I_{yz} =	=	-64,879	cm^4	

Tabela 4.14: Propriedades geométricas da Seção assimétrica "L".

Utilizando as Equações (4.41) a (4.43) do exemplo anterior, obtêm-se as propriedades geométricas com relação a seus eixos principais de inércia tal como mostra a Tabela 4.15.

Tabela 4.15: Propriedades geométricas principais da seção assimétrica "L".

Propriedades Geométricas nos Eixos Principais						
y_c	=	-2,45	cm	I _{max}	=	$283,970 \text{ cm}^4$
Z_c	=	-4,41	cm	I_{min}	=	$30,167 \text{ cm}^4$
				γ	=	15,374 °

As equações de movimento fornecidas para este perfil são:

$$13,909\frac{d^2}{dt^2}v_0 - 0,613\frac{d^2}{dt^2}\theta_0 + 39077,897v_0 = 0$$
(4.47)

$$13,909\frac{d^2}{dt^2}w_0 + 0,341\frac{d^2}{dt^2}\theta_0 + 3,678\ 10^5w_0 = 0$$
(4.48)

$$-0,613\frac{d^2}{dt^2}v_0 + 0,341\frac{d^2}{dt^2}w_0 + 0,075\frac{d^2}{dt^2}\theta_0 + 753,065\theta_0 = 0$$
(4.49)

Note-se que as Equações (4.47) a (4.49) tem um acoplamento linear geométrico em nas todas as direções e que dependem do parâmetro $y_c e z_c$.

As frequências naturais e modos de vibração são obtidos a partir do problema de autovalor:

$$\left[\begin{bmatrix} K_e - \lambda M \end{bmatrix} \right] = \begin{bmatrix} 39077, 89 - 13, 91\lambda & 0 & 0, 61\lambda \\ 0 & 3, 68 & 10^5 - 13, 91\lambda & -0, 34\lambda \\ 0, 61\lambda & -0, 34\lambda & 753, 06 - 0, 07\lambda \end{bmatrix} = 0$$

$$(4.50)$$

Sendo os resultados apresentados na Tabela 4.16 onde se observa que, em função da assimetria da seção, todos os modos são de flexo-torção.

Componentes Modo ω_o (rad/s) Direção (v_o) Direção (θ_o) Direção (w_o) -0,998 -0,030 FT 120,528 -0,054 0.996 -0,077 FT 196,654 0,047 FT 50,073 0,344 -0,939 -0,002

Tabela 4.16: Modos de vibração da seção assimétrica "L".

As cargas críticas são obtidas de:

$$\left\| \begin{bmatrix} K_e - P \ \mathbf{K}_G \end{bmatrix} \right\| = \begin{bmatrix} 39077, 89 - P & 0 & 0,04P \\ 0 & 3,69 \ 10^5 - P & -0,02P \\ 0,04P & -0,02P & 753,06 - 0,01P \end{bmatrix} = 0$$
(4.51)

Os resultados são apresentados na Tabela 4.17, onde, novamente, todos os modos são de flexo-torção.

Tabela 4.17: Modos de Flambagem da seção assimétrica L.

Mada	Pcr. (kN)	Componentes			
IVIOUO		Direção (v _o)	Direção (w _o)	Direção (θ_o)	
FT	202,062	-0,054	-0,998	-0,030	
FT	537,915	0,047	0,996	-0,077	
FT	34,875	0,344	-0,939	-0,002	

Os resultados dos diversos exemplos mostram que, em virtude das características geométricas dos perfis esbeltos de seção aberta e assimétricas, a interação entre flexão e torção sempre ocorre, sendo em muitos casos a carga crítica e a frequência fundamental associada a um modo de flexo-torção. Também, em virtude das características geométricas destas estruturas, perfis com modos de

75

flexão e flexão-torção com a mesma carga crítica pode ocorrer gerando o fenômeno de interação modal. Frequências iguais também podem ocorrer gerando uma ressonância interna 1:1. Finalmente varias relações do tipo $\omega_{0i}/\omega_{0j}=n \text{ com } n$ inteiro podem ser observadas na presente análise paramétrica, mostrando a possibilidade de diversas ressonâncias internas. Estes problemas de interação modal se tornam ainda mais importantes quando se consideram nas barras esbeltas os acoplamentos devidos as não linearidades geométricas e excentricidades da carga com relação ao centro de cisalhamento, assunto abordado no próximo capítulo da dissertação.