
4
Modeling of the test rig set-up

On the mathematical modeling topic, much has been done aiming a

better understanding of the dynamic behavior of drilling systems, as already

seen in Section 2.1. Complex models with geometric nonlinearities, stochastic

processes, and/or vibration coupling are used in order to analyze the system

as a whole - as the phenomena happen in the field. The finite element method

is largely used to achieve these complex models (see [45, 54, 59–61, 63, 94, 95]).

There are authors that approach the drilling system via Delay Differential

Equations like [28, 65–67, 96–100] aiming to analyze the stability and/or

propose a control actuation. On the other hand, mathematical modeling via

lumped parameters has also widespread use. This technique may include

vibration coupling, control and stability analysis [51, 56, 101, 102], and it has

presented good results compared to field data [50, 69] and experimental trials

[40,43,48,90,103].

Henceforward the mathematical model is considered: in Section 4.1, the

test bench is described by means of lumped parameters. Subsequently, the

qualitative and quantitative comparisons are presented in order to ensure the

representation of the model. Afterwards, Section 4.3 provides a discussion

about the DC-motor dynamics in order to clarify its implementation. From this

point, the stability analysis of the proposed and validated model is presented

for the purpose of identifying equilibrium and periodic solutions in Section

4.4: herein, the Hurwitz criterion is applied to local stability analysis, followed

by the bifurcation diagrams via numerical methods. The closure remarks are

presented in Section 4.5.

4.1
Equations of motion

The electric subsystem is modeled as a voltage source connected in series

with a resistor and an inductor, providing torque τm. The angular velocity θ̇m

imposed by τm is eight times greater than the angular velocity θ̇3 transmitted

to the mechanical subsystem due to the transmission factor η = 8 : 1.
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Mathematically, the electric subsystem may be expressed as

L
d i

dt
+R i+KE θ̇m = u, (4-1a)

τm = KT i− Cm θ̇m − Tf − Jm θ̈m, (4-1b)

where i denotes electric current of the DC-motor. L and R are the armature

inductance and resistance, respectively. The angular velocity θ̇m is the velocity

of the inertia of the DC-motor Jm. Cm and KT are the speed regulation and

constant torque of the motor, respectively. Further, KE consists of the voltage

constant and Tf is the internal friction torque. The input voltage is denoted

by u.

The mechanical subsystem illustrated in Figure 3.3 is mathematically

written as

J1θ̈1 + d1
(
θ̇1 − θ̇2

)
+ k1 (θ1 − θ2) + Tr1(θ̇1) = 0

(4-2a)

J2θ̈1 + d1
(
θ̇2 − θ̇1

)
+ d2

(
θ̇2 − θ̇3

)
+ k2 (θ2 − θ3) + k1 (θ2 − θ1) + Tr2(θ̇2) = 0

(4-2b)

d2
(
θ̇3 − θ̇2

)
+ k2 (θ3 − θ2) = τs,

(4-2c)

where Ji for i = 1, 2 represents the moment of inertia of each degree of freedom.

The angular displacements, velocities and accelerations are denoted by θi, θ̇i

and θ̈i for i = 1, 2, 3, respectively. The relations between the subsystems are

τs = η τm and θ̇m = η θ̇3. Combining Eq. (4-1b) with Eq. (4-2c), and defining

δ12 = θ1 − θ2 and δ23 = θ2 − θ3,

J1θ̈1 + d1
(
θ̇1 − θ̇2

)
+ k1δ12 + Tr1(θ̇1) = 0 (4-3a)

J2θ̈1 + d1
(
θ̇2 − θ̇1

)
+ d2

(
θ̇2 − θ̇3

)
+ k2δ23 − k1δ12 + Tr2(θ̇2) = 0 (4-3b)

d2
(
θ̇3 − θ̇2

)
− k2δ23 = η

(
KT i− Cmη θ̇3 − Tf − Jmη θ̈3

)
(4-3c)

L
d i

dt
+R i+KE η θ̇3 = u. (4-3d)

The stiffnesses are denoted by k1 and k2, as well as d1 and d2 denote
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the damping. The first (k1 and d1) correspond to the stiffness and damping

between R1 and R2, while the second (k2 and d2) represent the stiffness and

damping between R2 and R3 (see Figure 3.3). From Eq. (4-3), the system may

be rewritten as state space formulation in order to be integrated using VODE

integrator (‘bdf’ method) from Python. The following Eqs. (4-4) and (4-5)

show the state variables and state equations, respectively

x =



θ1 − θ2

θ2 − θ3

θ̇1

θ̇2

θ̇3

i


=



x1

x2

x3

x4

x5

x6


, (4-4)

ẋ1 = x3 − x4 (4-5a)

ẋ2 = x4 − x5 (4-5b)

ẋ3 = [−d1x3 + d1x4 − k1 x1 − Tr1(x3)] /J1 (4-5c)

ẋ4 = [d1x3 − (d1 + d2)x4 − d2x5 + k1 x1 − k2 x2 − Tr2(x4)] /J2 (4-5d)

ẋ5 =
[
k2 x2 − (η2Cm + d2)x5 + d2x4 + ηKT x6 − ηTf

]
/J3 (4-5e)

ẋ6 = [−Rx6 − ηKE x5 + u] /L, (4-5f)

where J3 = η2 Jm. As described in Chapter 3, the DC-motor presents a PI

internal controller which is responsible to maintain the angular velocity of the

motor. Herein, this input voltage may be expressed as

u = kp (ωref − x5) + ki

∫ t

0
(ωref − x5) dt (4-6)

where kp and ki are the proportional and integral constants, ωref is the reference

angular velocity in rad/s. This relation in Eq. (4-6) maintains the idea of a

desired angular speed that is imposed by an operator.

Following, the resistive torque is expressed as Eq. (3-13). This equation

may be rewritten as

Tr1(θ̇1) = N1 r1
[
µk + (µs − µk) · e−vb|θ̇1|

]
· sign

(
θ̇1
)
, (4-7)

where N1 and r1 are the normal force and distance between the contact point

and the rotation center of the disc R1. The static and kinetic friction coefficients

are represented by µs and µk, respectively. The parameter vb represents the

decay factor. Herein, the sign
(
θ̇1
)

is defined as
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sign
(
θ̇1
)

=

 1 for θ̇1 ≥ 0
−1 for θ̇1 < 0

. (4-8)

To solve Eq. (4-5) numerically while avoiding the discontinuity of Eq.

(4-7) one needs to rewrite the last one as follows [70]

Tr1(θ̇1) = N1 r1

 µs θ̇1/ωs for |θ̇1| < ωs[
µk + (µs − µk) · e−vb|θ̇1|

]
· sign

(
θ̇1
)

for |θ̇1| ≥ ωs
,

(4-9)

where ωs = 10−3 and vb = 1. Figure 4.1(a) depicts the discontinuous model of

the dependent-velocity friction, whereas Figure 4.1(b) illustrates the model to

avoid the discontinuity as expressed in Eq. (4-9).

θ̇1

µ

µs

µk

µs

µk

(a)

θ̇1

µ

µs

µk

µs

µk

ωs

(b)

Figure 4.1: Graphic representation of (a) the discontinuous friction model and
(b) the adopted friction model.

4.2
Model validation

Briefly, a model validation aims to assess the mathematical model by

comparing its outputs with experimental measurements and then the dynamic

behavior predictions may be conducted [83]. Once the characterization of the

experimental apparatus had been performed (see Chapter 3), it is possible to

provide the needed parameters to the mathematical model described in the

previous section. The mechanical and electrical parameters are presented in

Tables 3.1 and 4.1.

Therewith, the qualitative and quantitative validation are addressed in

order to verify the correlation between numerical and experimental results.

This procedure illustrates and ensures that the mathematical modeling

corresponds to the drill-string experimental set-up.
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Table 4.1: Mechanical parameters of test rig.

Parameter Description Value Unit

J1 R1 moment of inertia 0.0288 kgm2

J2 R2 moment of inertia 0.0149 kgm2

J3 DC-motor moment of inertia 0.0237 kgm2

k1 stiffness between R1-R2 1.1175 Nm/rad
k2 stiffness between R2-Motor 0.3659 Nm/rad
d1 damping between R1-R2 0.0202 Nms/rad
d2 damping between R2-Motor 0.0167 Nms/rad
µs static friction coefficient 0.500 −
µk kinetic friction coefficient 0.306 −
vb decay factor 1.000 s/rad

– Qualitative comparison. Qualitative comparisons may be roughly described

as binary results, e.g. positive/negative results. For this analysis, the voltage

relating to 3.14 rad/s and 4.19 rad/s (30 and 40 rpm) was imposed on

the DC-motor, thus the angular velocities of the model were compared with

experimental data. Figures 4.2 and 4.3 depict the numerical and experimental

data, where the numerical results present a similar behavior of the acquired

data.
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time [ s ]

0

1

2

3

4

5

6
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[r

ad
/s

]

experimental numerical

(a)
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4

5

6

θ̇ 2
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ad
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]
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(b)

Figure 4.2: Numerical and experimental angular velocity of (a) R1 and (b)
R2 for 3.14 rad/s (30 rpm). Continuous gray and dashed black lines contain
experimental and numerical results respectively.

– Quantitative comparison. Quantitatively, the numerical model also presented

very matched results. According to [104], the Correlation Method is widely

used for its easy implementation. This method (Pearson correlation coefficient)

consists of the Eq. (4-10)
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Figure 4.3: Numerical and experimental angular velocity (a) θ̇1 and (b) θ̇2
for 4.19 rad/s (40 rpm). Continuous gray and dashed black lines contain
experimental and numerical results respectively.

PC =
∑n
i=0X1i

·X2i
−
∑n

i=0 X1i
·
∑n

i=0 X2i

n√√√√(∑n
i=0 X

2
1i
− (∑n

i=0 X1i)
2

n

)
·
(∑n

i=0X
2
2i
− (∑n

i=0 X2i)
2

n

) , (4-10)

where X1i
and X2i

are data of the experimental and numerical models, and n

is the number of points. If PC is equal to 1 means a perfect match between

experimental and numerical data. Otherwise, PC = 0 means a total mismatch

between data. It is important to remark that this correlation coefficient is

applied only in the first 10 seconds.

Another indicator is the Amplitude Pulse Level (APL) which measures

the difference between the data maximum amplitudes [104]. This is quantified

as

APL = |max(X1)−max(X2)|
|max(X1)| . (4-11)

In this indicator, APL = 0 means a perfect match whereas APL = 1
means a total mismatch. In Table 4.2 it is shown the validation method

indicators expressed by Eqs. (4-10) and (4-11) for the angular velocity θ̇1 of

the experimental and numerical results.

– Stick-slip comparison. Moreover, the behavior during stick-slip of the

system is compared (see Figure 4.4). In Figure 4.4(a), one may observe the

increasing phase loss between the amplitude oscillations of the numerical and

experimental models. After nearly 10 peaks, the numerical and experimental

results match again. This behavior may be linked to nonlinear phenomena that

are not modeled by the friction model.
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Table 4.2: Quantitative comparison between experimental and numerical of θ̇1.

ωref [rpm] PC [−] APL [−]
30 0.898 0.010
40 0.893 0.172
50 0.941 0.114
70 0.955 0.119
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Figure 4.4: Test rig response for 3.14 rad/s (30 rpm) with (a) stick-slip and
(b) stick-slip zoomed. N1 = 25.0 N and Tr2 = 0.0 Nm. Continuous gray and
dashed black lines contain experimental and numerical results, respectively.

Nevertheless, the stick time (which means the time during the stick phase

[82]) and the amplitude of oscillations are similar.

4.3
DC-motor dynamics

Several authors do not consider the motor dynamics. Usually, they state

that there is a torque source strong enough to provide constant velocity at

the top end. Other authors add a small harmonic term to the top end speed,

aiming to emulate the motor dynamics.

The DC-motor described in Section 3.1 is not strong enough and the

mechanical subsystem behavior may influence the DC-motor dynamics. Figure

4.5 depicts the free transient oscillations after imposing a step signal of the

reference angular velocity ωref . One may note that the numerical results did not

depict the oscillation amplitude but it oscillates nearly in the same frequency.

This may happen because the DC-motor is old and therefore these parameters

may not match to the actual ones.

In Figure 4.6 the experimental angular velocities of Disc 1, Disc 2,

and DC-motor are shown: the reference angular velocity ωref = 3.0 rad/s

is imposed; then a normal force N1 is applied at R1 (in 8 s) in order to induce
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Figure 4.5: Free oscillations of the angular velocity of the DC- motor θ̇3 for
different reference velocities. Continuous gray and dashed black lines contain
experimental and numerical results, respectively.

stick-slip; thereafter, the N1 is removed (in 46 s). One may easily observe

that the angular velocity of the DC-motor is not constant during stick-slip

phenomenon. Further, θ̇3 presents fluctuations around an angular speed slightly

lower than the reference speed ωref . This latter figure illustrates the influence

of the mechanical subsystem on the electrical subsystem. Here the adopted

DC-motor model does not present this behavior.

Numerically, the angular velocity of Disc 1 (θ̇1) and the armature current

are illustrated in Figure 4.7. The stick-slip phenomenon is observed from time

t = 50 s, when N1 = 25.0 N is applied. In the same time, the armature current

presents large oscillations during torsional vibrations.

4.4
Stability analysis

The qualitative structure of the dynamic flow can change when certain

parameters vary. Therewith, stable solutions can be created or destroyed, or

become unstable. Then, the stability analysis is important to identify changes

in behavior of the system when some bifurcation parameter varies [105–108].

Stable equilibrium points or trajectories (all discs with the same angular

velocity ωref ) and stable limit cycles (torsional vibration at the discs)

were observed in the experimental set-up. Thereby, these behavior sets are
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Figure 4.6: Experimental angular velocities of Disc 1, Disc 2, and DC-motor
for ωref = 3.0 rad/s.
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Figure 4.7: Numerical angular velocity of Disc R1 and the armature current i
of the DC-motor. For time t < 50 s, N1 = 0.0 N; for time t ≥ 50 s, N1 = 25
N. Reference speed is ωref = 3.0 rad/s.

approached in this section.
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4.4.1
Equilibrium points

Remind that the test bench system described by Eq. (4-3) presents

nonlinearities rising from the friction torque model on R1, and at the moment,

there is no torque applied on Disc 2 (R2), so that Tr2 = 0.0 Nm. For the

analytical and stability analysis, the resistive torque described by Eq. (4-7) is

used.

Therewith, in the equilibrium points it holds that
(
δ12, δ23, θ̇1, θ̇2, θ̇3, i

)
=

(δ∗12, δ
∗
23, ω

∗, ω∗, ω∗, i∗) and u = uc so that uc is a constant. Also, δ12 = θ1 − θ2

and δ23 = θ2 − θ3. Thereby, Eq. (4-3) becomes

k1 δ
∗
12 + Tr1(ω∗) = 0, (4-12a)

k2 δ
∗
23 − k1 δ

∗
12 = 0, (4-12b)

Cmη
2 ω∗ − k2 δ

∗
23 = ηKT i

∗ − ηTf , (4-12c)

R i∗ + ηKE ω
∗ = uc. (4-12d)

Equation (4-12c) means a torque balance of the electro-mechanical

system:

Cmη
2 ω∗ + Tr1(ω∗) + ηTf = ηKT i

∗, (4-13)

where the right side means the provided torque and the left side the loss

torques. Also, one may verify the equilibrium point as

δ∗12 = −Tr1 (ω∗
1)

k1
,

δ∗23 = −Tr1 (ω∗)
k2

,

i∗ = uc−ηKE ω∗

R
.

(4-14)

Herein, two possibilities may be considered:

1. equilibrium for ω∗ = 0, i.e., all discs stand still; and

2. equilibrium for ω∗ 6= 0 and all discs present the same angular velocity

such as ω∗ = ωref .

At this point, the input voltage law given by Eq. (4-6) is recalled, and the

time dependent term is unconsidered. The system lies on Case 1 if ωref ≤ ωmin

such that

ωmin = (Tr1s + η Tf ) R
ηKT kp

, (4-15)
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where Tr1s = N1 r1 µs. This means that for ωref ≤ ωmin, the DC-motor does

not provide enough torque to overcome the losses and the system remains still.

The other case concerns all discs with the same angular velocity(
θ̇1 = θ̇2 = θ̇2 = ωref

)
. Therewith,

δ∗12 = −Tr1 (ωref )
k1

δ∗23 = −Tr1 (ωref )
k2

i∗ = η2Cm ωref +Tr1 (ωref )+ηTf

ηKT
.

(4-16)

Equation (4-16) represents the desired situation: the system rotates with

an imposed and constant angular velocity ωref .

4.4.2
Local stability analysis

In order to analyze the local stability for ωref > ωmin, the system is

linearized around an equilibrium point. First, Eq. (4-5) is rewritten as follows

ẋ1 = x3 − x4

ẋ2 = x4 − x5

ẋ3 = [−d1x3 + d1x4 − k1 x1 − Tr1(x3)] /J1

ẋ4 = [d1x3 − (d1 + d2)x4 − d2x5 + k1 x1 − k2 x2 − Tr2(x4)] /J2

ẋ5 = [k2 x2 − (η2Cm + d2)x5 + d2x4 + ηKT x6 − ηTf ] /J3

ẋ6 = [−Rx6 − ηKE x5 + kp (ωref − x5) + ki x7] /L,
ẋ7 = ωref − x5.

(4-17)

Equation (4-17) contains the internal PI controller of the DC-motor and the

error (ẋ7 = ωref − x5) is a state of the system. The Jacobian matrix around

an equilibrium J∗ is defined as

J∗ =
[
∂ẋi
∂xj

]
(4-18)

for i, j = 1, · · · , 7, and then J∗ may be written as

J∗ =



0 0 1 −1 0 0 0
0 0 0 1 −1 0 0

J31 0 J33 J34 0 0 0
J41 J42 J43 J44 J45 0 0

0 J52 0 J54 J55 J56 0
0 0 0 0 J65 J66 J67

0 0 0 0 −1 0 0


(4-19)

where
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J31 = −k1
J1
, J33 = 1

J1
[−∆Tr1 − d1] ,

J34 = d1
J1
, J41 = k1

J2
,

J42 = −k2
J2
, J43 = d1

J2
,

J44 = 1
J2

[−d1 − d2] , J45 = d2
J2
,

J52 = −k2
J3
, J54 = d2

J3
,

J55 = − 1
J3

[η2Cm + d2] , J56 = ηKT

J3
,

J65 = −ηKE−kp

L
, J66 = −R

L
,

J67 = ki

L
.

(4-20)

Equation (4-20) contains the ∆Tr1 that represents the friction damping [44] at

discs R1 provided by the restive torque, i.e.,

∆Tr1 = dTr1

dθ̇1

∣∣∣∣∣
θ̇1=ω∗

. (4-21)

The characteristic polynomial of the matrix J∗ is presented as follows

λ7 + a1λ
6 + a2λ

5 + a3λ
4 + a4λ

3 + a5λ
2 + a6λ+ a7 = 0 (4-22)

Therewith, the Hurwitz criterion is applied. This criterion states that a

characteristic equation will have only eigenvalues with the negative real part

if the coefficients are nonzero and the Hurwitz matrix has positive minors ∆i

(for i = 1, 2, · · · , 7) [109], i.e., ∆i > 0. The H matrix may be written as

H =



a1 a3 a5 a7 0 0 0
1 a2 a4 a6 0 0 0
0 a1 a3 a5 a7 0 0
0 1 a2 a4 a6 0 0
0 0 a1 a3 a5 a7 0
0 0 1 a2 a4 a6 0
0 0 0 a1 a3 a5 a7


. (4-23)

The characteristic polynomial coefficients and the principal minors are

described in Appendix A.

Herein, all the ∆i are polynomials as functions of ∆Tr1 . Therefore, one

may state that the equilibrium point of the system is asymptotically stable for

∆Tr1 > ∆Trmin
(4-24)

where ∆Trmin
= max(∆T∆i

), and ∆T∆i
is the largest real part of the roots of

the polynomial ∆i for i = 1, 2, ..., 7. For the system parameters presented in

Tables 3.1 and 4.1, one obtains
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∆Trmin
= −0.0128 Nms

rad
. (4-25)

Figure 4.8(a) illustrates the following case: N1 = 10.0 N, the system is

locally stable for θ̇1 > 1.994 rad/s. For θ̇1 < 1.994 rad/s, the stability is

not ensured. In addition, Figure 4.8(b) shows the case that N1 = 20.0 N, the

system is locally stable for θ̇1 > 2.689 rad/s, and for θ̇1 < 2.689 rad/s, the

system is unstable, according to Hurwitz criterion. As one may also verify in

Figure 4.8, the negative slope of the friction model may be crucial to the stable

solution.
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Figure 4.8: Graphic illustration of the local stability analysis via Hurwitz
criterion for (a) N1 = 10.0 N, and (b) N1 = 20.0 N. Continuous and dashed
lines mean asymptotically local stable and unstable, respectively.

Using the performed stability analysis so far, the equilibrium set

expressed by Eq. (4-16) is illustrated in Figure 4.9. Before the minimum

angular velocity ωref < ωmin given by Eq. (4-15), there exists a stable

equilibrium branch which means that the system remains still (not enough

torque to overcome the losses). Thereafter, the equilibrium branch becomes

locally unstable. For speeds above the critical velocity observed in Figure 4.8,

the equilibrium branch becomes stable again.

Furthermore, Figures 4.8 and 4.9 may provide the bifurcation type

occurring at ωref = ωc, where ωc represents the critical (limit) value of the

bifurcation parameter. Replacing the limit values into, one may conclude that

the system passes through a Hopf bifurcation (or Andronov-Hopf bifurcation),

meeting the needed conditions for this [105, 107, 110]. Figure 4.10 exhibits a

conjugate eigenvalue of the Jacobian matrix (Eq. (4-19)) crossing the imaginary

axis of the complex plane [44,105–107,110].

The torsional vibration map (TVM) may also be obtained via Hurwitz

criterion [20, 109, 111]. Figure 4.11(a) illustrates two zones: one with stable

periodic solutions and the other with equilibrium solutions [105]. This means
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Figure 4.9: Local stability analysis of the equilibrium branch (Eq. 4-16) via
Hurwitz criterion for (a) N1 = 10.0 N, and (b) N1 = 20.0 N. Continuous and
dashed lines mean locally stable and unstable branches, respectively.
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Figure 4.10: Imaginary-axis crossing of a conjugate eigenvalue of the Jacobian
matrix for different values of ω∗ (in rad/s) and N1 = 10.0 N.

that in the left side of the curve, the system undergoes torsional vibrations

(upper Figure 4.11(b)) and, in the right side, it presents no vibration (lower

Figure 4.11(b)).

4.4.3
Bifurcation diagrams

As experimentally observed in previous sections, the system performs

equilibrium and periodic solutions depending on the reference angular velocity
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Figure 4.11: (a) Torsional vibration map and (b) time response of the Disc 1
(R1) for 2 rad/s (upper) and 4 rad/s (lower). N1 = 0.0 N at 0 < t < 50 and
N1 = 20.0 N at t > 50.

ωref . Therewith, this imposed parameter is chosen as the bifurcation parameter

for the analysis. The limit cycles and equilibria are numerically obtained via

PyDSTool package [112]. This package uses the predictor-corrector method with

Moore-Penrose corrector [110] (apud [112]) to compute equilibria, and the

periodic orbits (and their stabilities) are computed via AUTO package, based

on [113]. This AUTO package is a software for continuation and bifurcation

problems in ordinary differential equations.

The maximum and minimum values of the angular velocity of the Disc 1

(R1) is plotted when a periodic solution is found, while the normal force N1 is

kept constant. Figure 4.12 shows a supercritical Hopf bifurcation occurring at

H1; therewith, a stable periodic branch p1 rises while an unstable equilibrium

branch e1 appears. In ωref = 2.9 rad/s, there exists an unstable periodic branch

p2 and then a subcritical Hopf bifurcation occurs at H2 (ωref = ωc = 1.994
rad/s). From this point, a stable equilibrium branch e2 rises. In addition, the

points 1, 2 and 3 on the periodic branch p1 were depicted in order to illustrate

the torsional vibrations with stick-slip in the phase plane. One may notice

that there is an angular velocity range of bi-stability, i.e., the equilibrium and

periodic solutions coexist. The system will perform either solution depending

on the perturbation on it.

The normal force N1 may be increased, and then the bifurcation diagram

may be generated once again, as depicted in Figure 4.13. The analysis

performed for Figure 4.12 may be applied. However, the ωmin and ωc have

changed. This latter now assumes ωc = 2.689 rad/s, i.e., for ωref > 2.689
rad/s an equilibrium branch e2 rises. Nevertheless, one may notice that the

angular velocity range of bi-stability is greater than that one in Figure 4.12.
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Figure 4.12: Numerical bifurcation diagram of the experimental set-up model
with ωref as bifurcation parameter for N1 = 10.0 N and Tr2 = 0.0 Nm.
Continuous and dashed lines mean locally stable and unstable branches,
respectively. The equilibrium branches are denoted as e1 and e2, whereas the
periodic branches are denoted as p1 and p2.

4.5
Summary

The mathematical description of the drill-string experimental set-up

was performed above. The lumped parameters technique was used to achieve

this mathematical model (see Section 4.1). Thereafter, comparisons between

experimental and numerical solutions in order to validate the mathematical

model were employed in Section 4.2. Some non-modeled phenomena may

influence the response of the system such as the temperature between the disc

and pin. For example, it may increase the friction coefficients which herein

were considered constants. Furthermore, manufacturing limitations imposed

a slight rotation out of the plane of the disc R1 and therewith variation in

the normal force N1 is observed. It is worth mentioning that the validation

herein described was not fully performed. There are many techniques, which

may include uncertainties or not, to perform a more detailed model validation

depending on application requirements (see [83,104,114]).

The DC-motor dynamics was considered in the equations of motion, as

described in Section 4.1. Once the DC-motor is not strong enough to provide

the needed input torque, Section 4.3 presented its angular velocity oscillations
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Figure 4.13: Numerical bifurcation diagram of the experimental set-up model
with ωref as bifurcation parameter for N1 = 20.0 N and Tr2 = 0.0 Nm.
Continuous and dashed lines mean locally stable and unstable branches,
respectively. The equilibrium branches are denoted as e1 and e2, whereas the
periodic branches are denoted as p1 and p2

due to the transient state and the stick-slip phenomenon. The mathematical

model did not depict the oscillation amplitudes but it oscillates nearly in the

same frequency. On this point, an identification of the internal DC-motor

parameters must be performed. Also, the numerical results of the armature

current illustrates large oscillations during stick-slip in R1. This fact proves the

influence of one subsystem on the other, and then both must be considered.

The armature current is not measured experimentally at present: it is the next

step forward for a best description and comparison of the DC-motor dynamics.

The stability analysis of the system was performed in Section 4.4: in

this section, first the stable and unstable equilibrium branches were identified.

One may state that the friction model slope is substantially linked to the

stability of the system solutions. In fact, some researchers show the system

instability in a range of the bifurcation parameter equivalent to the negative

slope of the friction model [44, 72]. Further, the system experiences a Hopf

bifurcation: the critical value is a fixed point of the system; plus, an eigenvalue

presents null real part at ωc; and Real(dλ/dω∗) 6= 0 at ω∗ = ωc - called

the transversality condition [105, 107, 110]. The torsional vibration map was

obtained via Hurwitz criterion where the curve shows two different regions:

one region with stable periodic solutions and the other with stable equilibrium
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solutions. Moreover, the bifurcation diagrams were numerically obtained via a

path-following technique provided by PyDSTool package: the reference angular

velocity ωref was used as bifurcation parameter and the normal force N1 was

considered constant. One may verify that there is an angular velocity range

in which stable periodic and equilibrium solutions coexist. This bi-stability

behavior is later used for the mitigation strategy presented in next chapter.
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