2

Processos Geológicos Utilizados na Simulação

Para o desenvolvimento do STENO foram feitos estudos sobre os principais processos que controlam os padrões de estratos e distribuições litofácies nas bacias sedimentares. Segundo Vail (1987), há três variáveis principais que controlam o preenchimento das bacias sedimentares (figura 2.1): subsidência tectônica; variação eustática do nível do mar; volume de sedimentos.

Figura 2.1: Processos responsáveis para formação de bacias sedimentares.

A acomodação, que é o espaço colocado em disponibilidade para potencial acumulação de sedimentos na bacia, é função das variações eustáticas e da subsidência (figura 2.2). Nas próximas seções será mostrado um resumo teórico do estudo feito sobre os três processos citados acima e como eles foram considerados no STENO.

2.1 Curvas Eustáticas

A Eustasia é o conceito que representa a variação absoluta do nível do mar. A variação relativa do nível do mar é a alteração na distância vertical entre a posição da superfície do corpo d'água e um *datum* situado no fundo do mar ou próximo dele, como por exemplo, o embasamento. A lâmina d'água é a distância entre a superfície do mar e o fundo do mar, e este parâmetro estará sendo modificado ao longo da simulação devido à sedimentação e/ou erosão (figura 2.3).

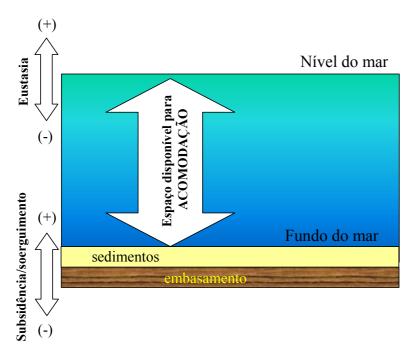


Figura 2.2: Espaço disponível para acomodação gerado pela inter-relação entre a eustasia (subida/queda) e a tectônica (soerguimento/subsidência). Adaptado de Posamentier et al., 1998.

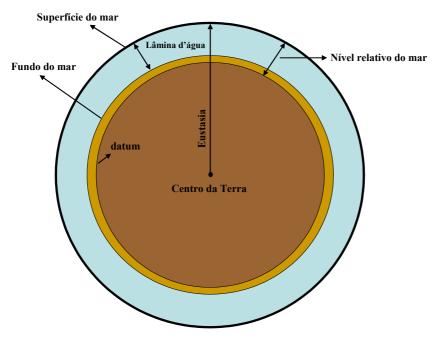


Figura 2.3: Definições de Eustasia, nível do mar relativo e profundidade da lâmina d'água. (Posamentier et al. 1998).

As causas da variação relativa do nível do mar são (Fávera, 2001):

Glacioeustática – Relacionam-se à formação de calotas glaciais em áreas continentais da Terra em épocas determinadas. Seus efeitos mais notáveis acontecem no Neógeno (2 Ma a 25 Ma), apesar de a primeira calota terciária ter sido percebida no Eoceno (36 Ma a 54 Ma). Esses períodos podem ser vistos na

figura 2.4. Nos períodos glaciais, a água líquida dos oceanos é retida em forma de gelo sobre os continentes; sendo o volume total de água no planeta relativamente constante, tem-se como consequencia a diminuição do nível eustático. Por outro lado, em outras épocas pode ocorrer o derretimento das calotas glaciais, gerando aumentos significativos no nível eustático.

Tectonoeustáticas – Estão relacionadas com o movimento das placas litosféricas. Em períodos de existência de supercontinentes (massas agrupadas), a tendência é que o nível eustático esteja baixo, uma vez que em tais intervalos de tempo a maior parte da crosta oceânica circundando o continente será "antiga", já resfriada e abatida estruturalmente, trazendo como resultado a máxima capacidade volumétrica possível para as bacias oceânicas.

A ruptura dessas grandes massas continentais, e a consequente criação de oceanos, injeta grandes volumes de material sub-crustal agora à superfície (cadeias meso-oceânicas). Estas massas rochosas "novas", quentes e elevadas, reduzem a capacidade volumétrica dos oceanos, e a consequencia é uma subida eustática (efeito de transbordamento).

Eustasia do geóide — Hipótese propagada por Mörner (1976), que relaciona o nível do mar à forma do geóide. Segundo ele, o nível do mar atual conteria protuberâncias (80m em 8000km) correspondentes a variações do campo gravitacional, e, portanto, a sua variação seria totalmente diácrona, isto é, não ocorre ao mesmo tempo na superfície.

Esforços intraplacas – Relacionam-se à variação relativa do nível do mar, sendo difundida por Cloethig (1998). Considera que seqüências de 3º ordem seriam geradas por movimentos verticais da litosfera, induzidos tectonicamente, em bacias de margem passiva. Estes esforços seriam gerados pela dinâmica das placas.

No que diz respeito ao espectro de freqüência as curvas eustáticas contém contribuições de baixa freqüência (*long term* – ciclos de 1° e 2° ordens e *short term* – ciclos de 3° ordem) e de alta freqüência (Ciclicidade Orbital de Milankovitch), relativamente ao tempo geológico.

ION I	ERA		ERA	EPOCH		AGE	Abb-	Ma	DURATION		
		Qu	aternary (Q)	Holocene Pleistocene			Hol	0.01	0.01	2.0	
		or Ple	sistogene (Ptg)				Ple	2.0	1.99	2.0	
				Pliocene	2	Piacenzian	Pia	. 2.0			
A			1004	(Pli) 3.1 1		Zanclian	Zan	-	3.1		
L				A	_	Messinian	Mes	5.1	6.2		
0				(Mio)	3	Tortonian	Tor 11.3				
r			Neogene		Serravallian	Srv	11.3	0.6	22.6		
1	Ö	P			2	Langhian - Late	Lan ₂	14.4	3.1.		
NE	IOZOL	5			1	Langhian - Early	Lan ₁	24.6	0.2		
E	02	T: B				Burdigalian	Bur				
-	- 11	ertiary				Aquitanian	Agt				
	0	F		Oligocene	2	Chattian	Cht				
	O			(Oli) 13.4	1	Rupelian	Rup 32.8	38.0	5.2		
-				ψ	3	Priabonian	Prb	42.0	4.0		
Ti-				16	2	Bartonian	Brt	42.0	0.5	40 4	
1				816.9		Lutetian	Lut	50.5	8.5	40.4	
E E		02		(Foc)	1	Ypresian	Ypr	50.5	4.4		
E	65	63	(Day	Paleocene	2	Thanetian	Tha	54.9	5.3		
	(Cz)	(11)	(TT) 40.4 (Pg)	(Pal) 10.1		Danian	Dan	V-7	4.8		

Figura 2.4: Escala Geológica de tempo de Harland (Harland, 1982).

Existem, na literatura, dois tipos básicos de curvas eustáticas de baixa freqüência: a de *Haq*, mostrada na figura 2.5 e que foi utilizada para fazer as simulações deste trabalho e a de *Harland* (Harland, 1982).

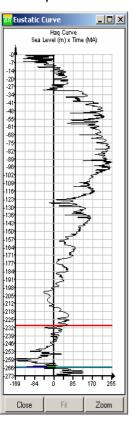


Figura 2.5: Curva de Haq disponível no STENO.

As curvas eustáticas de alta freqüência são representadas pela composição de harmônicas baseadas na equação do movimento ondulatório como abaixo:

$$SL = Asen(wt + \phi) \tag{2.1}$$

Onde:

- $SL \rightarrow \text{nível do mar } (Sea Level);$
- A → Amplitude Máxima, obtida através da análise estatística das funções periódicas extraídas da Transformada de Fourier de um perfil elétrico de um poço;
- $\omega \to 2\pi/T$; onde T é o período do ciclo de Milankovitch relativo à amplitude escolhida;
- $t \rightarrow \text{tempo geológico da simulação};$
- $\Phi \to {\rm \hat{A}ngulo}$ de fase: é o ângulo equivalente à amplitude do nível do mar no início da simulação.

Será utilizada a seguinte classificação das curvas eustáticas, de acordo com o período:

 3^{a} ordem \rightarrow 1.000.000 a 5.000.000 anos

 4^{a} ordem \rightarrow 100.000 e 400.000 anos

 5^{a} ordem \rightarrow 40.000 anos

 6^{a} ordem \rightarrow 20.000 anos

Estas curvas foram organizadas em tabelas que relacionam o nível do mar com um determinado tempo geológico, de modo que na primeira coluna indica o tempo geológico em milhões de anos (MA) e a segunda coluna a posição do nível do mar naquele tempo.

A escolha das curvas eustáticas depende do tipo de simulação a ser feito. Neste trabalho o STENO pode simular eventos relacionados a ciclos de 1°, 2° ordens e 3° ordem. Esta escolha é feita utilizando a diálogo mostrado na figura 2.6.

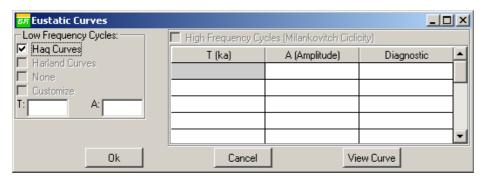


Figura 2.6 - Diálogo do STENO: definição das curvas de baixas e altas freqüências.

2.2

Subsidência

Subsidência é o movimento de natureza tectônica ou termal que afeta o substrato das bacias. Segundo Vail *et al.* (1977) a subsidência não varia em curtos períodos de tempo (dentro da 3º ordem de grandeza ou menor que 3 Ma). A subsidência torna-se maior à medida que se avança para o centro da bacia. A porção onde a subsidência passa a ser expressiva numa bacia é chamada de *linha de charneira*. A subsidência tectônica é a resposta da litosfera sob a forma de movimentação vertical negativa a estímulos promovidos por campos de tensões de origem tectônica, A subsidência térmica é o abatimento litosférico gerado por processos de perda de calor e contração que ocorre na restauração da estrutura térmica original de regiões da crosta previamente aquecidas. A figura 2.7 mostra o efeito da subsidência passo a passo.

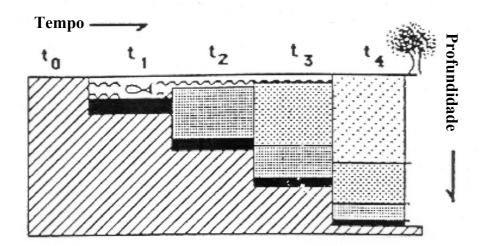


Figura 2.7: Efeito da subsidência passo a passo. (Adaptado de Einsele, 1992).

Basicamente ela é função dos seguintes fatores:

- Rebaixamento ou elevação devido a eventos tectônicos do embasamento da bacia (subsidência tectônica);
- Peso da cunha sedimentar depositada sobre o embasamento;
- Compactação da cunha sedimentar;
- Variação do nível do mar; e
- Paleobatimetria.

Para o STENO, a subsidência é fornecida uma tabela de taxas de subsidência tectônica/térmica em função do tempo geológico para alguns pontos do conjunto inicial de pontos fornecidos como mostra a figura 2.8. Na seção 3.1 do capítulo 3 é explicado o algoritmo utilizado para interpolar as taxas de subsidência em toda a região que será modelada. O estudo da subsidência propriamente dito será objeto de implementação em etapa posterior, sendo o usuário orientado, na primeira etapa, a obter os dados através de um programa apropriado para tal tarefa. Neste trabalho as curvas de subsidência são obtidas utilizando o aplicativo BASS (Kiang, 1991).

Entretanto, o programa BASS fornece as curvas de subsidência na forma de deslocamento absoluto do horizonte correspondente ao embasamento da bacia sedimentar em função do tempo geológico. Tais curvas, no STENO, são transformadas para tabelas de taxa *versus* tempo, utilizando a curva sem sobrecarga sedimentar daquele programa.

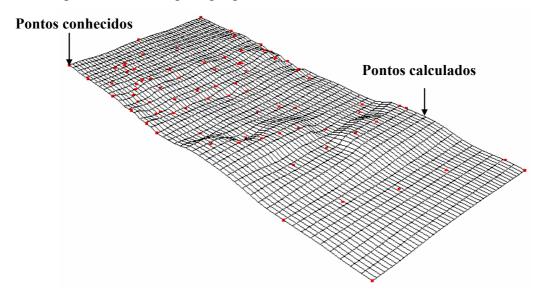


Figura 2.8 – Região a ser modelada mostrando pontos onde se conhece a variação da subsidência (pontos em vermelho são conhecidos, pontos da malha são calculados).

2.3 Aporte de sedimentos

O aporte de sedimentos é estabelecido através do volume de sedimentos ao longo da linha de costa, que pode ser uma função, dada nas colunas ao longo da borda de costa do modelo numérico. O usuário deve fornecer o volume de sedimentos por litologia (areia, argila e silte). Caso os volumes sejam fornecidos

em apenas algumas colunas, os demais valores serão obtidos por interpolação ao longo da linha de costa, isso é mostrado na figura 2.9.

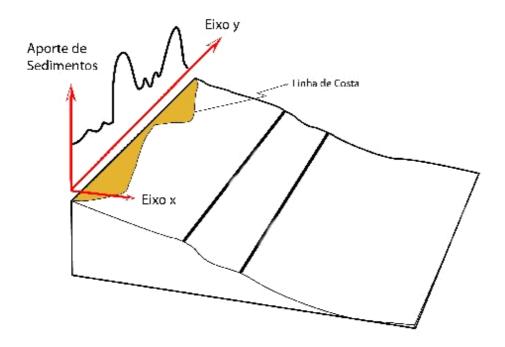


Figura 2.9 – Aporte de Sedimentos

Para indicar esse volume de sedimentos o usuário deverá utilizar o banco de dados de concentrações e volumes de litologias. Este banco de dados foi elaborado pela equipe do setor de Geologia do Cenpes (Centro de Pesquisa da PETROBRAS). A seguir é mostrado o método utilizado para construir esse banco de dados.

2.3.1

Método

Para especificar este banco de dados foram utilizados os mapas (Hansen & Poulain, 1996 e Harris & Coleman, 1998) que foram construídos com base em estimativa global de sedimentos costeiros/plataformais em suspensão e mostram a distribuição percentual de diferentes tamanhos de grãos na linha de costa, no período de 1992 a 1995.

Inicialmente, foram escolhidos globalmente pontos que melhor representassem os diferentes ambientes deposicionais, selecionando-se tipos de sistemas costeiros, segundo o clima (tabela 2.1), além de pontos de descarga de rios significativos, de porte médio a grande (tabela 2.2).

Tipo de Costa	Tamanho do Grão		Concentrações Parciais de Sedimentos Remobilizados							
col.1	col.2	col.3 1992 - 93	col.4 1993 - 94	col.5 1994 - 95	col.6 A	col.7 B				
Mar do Norte	ARG (0.01m)			>10%, <=50%	2	5				
	SLT (0.1mm)			>10%, <=50%	3	5				
	AFN (0.5mm)			>10%, <=50%	25	20				
	AMD (1mm)			>10%, <=50%	40	40				
	AGR (2mm)			>1%, <=10%	30	30				
Labrador	ARG (0.01m)			>10%, <=50%	2	5				
	SLT (0.1mm)			>1%, <=10%	3	5				
	AFN (0.5mm)			>1%, <=10%	25	20				
	AMD (1mm)			>1%, <=10%	40	40				
	AGR (2mm)			<1%	30	30				
Alasca	ARG (0.01m)			>10%, <=50%	5	2				
	SLT (0.1mm)			>10%, <=50%	5	3				
	AFN (0.5mm)			>1%, <=10%	20	25				
	AMD (1mm)			>1%, <=10%	40	40				
	AGR (2mm)			<1%	30	30				
Complexo	ARG (0.01m)	>10%, <=50%		>1%, <=10%	79	43				
Recifal	SLT (0.1mm)	>1%, <=10%	>1%, <=10%	<=1%	16	43				
	AFN (0.5mm)	<=1%	0,01	<=1%	2	6				
	AMD (1mm)	<=1%	0,01	0,01	1	4				
	AGR (2mm)	<=1%	0,01	0,01	1	4				

Tabela 2.1: Exemplos de Concentrações Parciais em Sistemas Costeiros.

Tipo de Rio	Tamanho do Grão	Cor de Sec	Porcent Ajusta			
col.1	col.2	col.3	col.4	col.5	col.6	col.7
		1992 - 93	1993 - 94	1994 - 95	Α	В
São Francisco	ARG (0.01m)	>10% <=50%	>10% <=50%	>10% <=50%	79	72
	SLT (0.1mm)	>1%, <=10%	>1%, <=10%	>1%, <=10%	16	7
	AFN (0.5mm)	<=1%	<=1%	>1%, <=10%	2	7
	AMD (1mm)	<=1%	<=1%	<=1%	2	7
	AGR (2mm)	<=1%	<=1%	<=1%	1	7
Amazonas	ARG (0.01m)	>50%, <100%	>50%, <100%	>50%, <100%	79	58
	SLT (0.1mm)	>10%, <=50%	>10%, <=50%	>10%, <=50%	16	29
	AFN (0.5mm)	>1%, <=10%	>1%, <=10%	>10%, <=50%	2	6
	AMD (1mm)	>1%, <=10%	<=1%	>1%, <=10%	2	6
	AGR (2mm)	<=1%	<=1%	>1%, <=10%	1	1
Orinoco	ARG (0.01m)	>50%, <100%	>50%, <100%	>50%, <100%	79	50
	SLT (0.1mm)	>10%, <=50%	>10%, <=50%	>10%, <=50%	16	25
	AFN (0.5mm)	>1%, <=10%	>1%, <=10%	>10%, <=50%	2	23
	AMD (1mm)	>1%, <=10%	0,01	<=1%	2	1
	AGR (2mm)	<=1%	0,01	<=1%	1	1
Foz do Ganges	ARG (0.01m)	>50%, <100%	>50%, <100%	>50%, <100%	79	62
(Índia)	SLT (0.1mm)	>10%, <=50%	>10%, <=50%	>10%, <=50%	16	31
	AFN (0.5mm)	>1%, <=10%	>1%, <=10%	>1%, <=10%	2	6
	AMD (1mm)	<=1%	<=1%	<=1%	2	1
	AGR (2mm)	<=1%	<=1%	<=1%	1	1

Tabela 2.2: Descarga Sedimentar Total.

Posteriormente, a partir desses pontos, foram obtidas as porcentagens referentes às concentrações parciais de sedimentos em suspensão, correspondentes a cinco frações granulométricas: argila, silte, areia fina, média e grossa. Cabe ressaltar que os mapas fornecem a percentagem da fração que entra em suspensão, devido a remobilização dos sedimentos de fundo, ocasionada pela energia das ondas influenciadas pelo clima (tempestades). Por esse motivo o somatório das

concentrações parciais originais (Tabelas 2.1 e 2.2 – colunas 3, 4 e 5) não totalizam os 100%. A aproximação adotada (colunas 6, 7 e 8) foi obtida através da simples proporcionalidade entre o total obtido e os 100%.

Region col.1	Coast col.2	Drainage Area (million Km2) col.4	Sediment Discharge (million tons/year) col.5		
North America	US Atlantic Coast	0,74	~ 13		
	Gulf Coast	4,5	~ 256		
	S. Alaska (glacial)	0,34	~ 340		
	N.NE Canada	3,73	~ 30		
South America	Northwest	0,3	~ 150		
	Magdalena	0,24	~ 220		
	Eastern	3	~ 28		
	Southern	4,38	~ 154		
Europe	Alpine	0,55	~ 66		
Asia	Yellow (Huangho)	0,77	1080		
	SE Asia and Himalayas	3,93	3128		
Africa	West	6,86	~ 113		
	Nile	2,16	~~ 0		
Australia	East / North	2,2	~ 62		

Tabela 2.3: Descarga Sedimentar em Sistemas Costeiros (adaptado de Hansen & Poulain, 1996 e Harris & Coleman, 1998).

Foram elaboradas, ainda, tabelas de descarga sedimentar na desembocadura de rios significativos e ao longo das plataformas rasas das mesmas regiões costeiras citadas anteriormente (Tabelas 2.3 e 2.4). Os valores de descarga inicialmente obtidos foram calculados com dimensional de massa/tempo (milhões de toneladas/ano). A conversão para volume/tempo foi feita através da Tabela 2.5.

Region	River	Sedime	nt Discharge	e (million ton	s/year)
col.1	col.2	col.4	col.5	col.6	Average
North America	Colorado (México)	135	135	~ 0.1	135
	Copper (Alaska)			70	70
	Mississ. (+Atchafalaya)	500	349	210 ~	350
South America	Magdalena (Colomb.)		?	220	220
	Orinoco (Venez.)	~ 86	~ 86	210	130
	Amazon (Brazil)	498	364	900	600
	San Francisco (Brazil)	?	?	~6	6
	La Plata (Argentina)	129	~ 82	~ 92	100
Europe	Rhone (France)	~ 31	?	~ 10	20
	Po (Italy)	~ 18	~ 15	~ 15	15
	Danube (Romania)	~ 67	~ 19	~ 67	67
Asia	Mekong (Vietnam)	170	170	160	170
	Indus (Pakistan)	435	440	100	320
	Ganges/Brahmaputra (Bang.)	2180	2180	1670	2000
	Yellow (Huangho) (China)	1890	1890	1080	1600
Africa	Nile (Egypt)	110	111	~ 0	100
	Niger (Nigeria)	~ 67	~ 4	~ 40	40

Tabela 2.4: Descarga Sedimentar de rios significativos (adaptado de Hansen & Poulain, 1996 e Harris & Coleman, 1998).

Tipo de Rio / Costa	Descarga Sedimentar Total	Cor	Concentrações Parciais de					Descargas Volumétricas				Valores Finais		
	(milhões ton/ano)	Sedimentos (%)					(milhões de Km3/ano)							
		ARG	SLT	AFN	AMD	AGR	ARG	SLT	AFN	ARM	AGR	ARG	SLT	AREIA
São Francisco	220	72	7	7	7	1	59	6	6	6	1	59	6	12
		79	16	2	2	1	65	13	2	2	1	65	13	4
		45	23	22	5	5	101	52	50	11	11	101	52	72
Amazonas	600	58	29	6	6	1	130	66	14	14	2	130	66	29
		79	16	2	2	1	177	36	5	5	2	177	36	11
Orinoco	100	50	25	23	1	1	19	9	9	0	0	19	9	9
		79	16	2	2	1	29	6	1	1	0	29	6	2
								255			_		255	
Ganges (Índia)	2180	62	31	6	1	1	504	255	49	8	8	504	255	66
		79	16	2	2	1	643	132	16	16	8	643	132	41
Auetrália	60	43	43	6	4	4	10	10	1	1	1	10	10	3
Austrália		79	16	2	2	1	18	4	0	0	0	18	4	1
		32	17	17	17	17	5	3	3	3	3	5	3	8
Mar do Norte	40	56	11	11	11	11	8	2	2	2	2	8	2	5
		56	11	11	11	11	8	2	2	2	2	8	2	5
Labrador	40	72	7	7	7	7	11	1	1	1	1	11	1	3
		12	,	<u> </u>	,	,		1	1	1		-11	1	3
								_						
Alasca	40	39	19	19	19	4	6	3	3	3	1	6	3	6
		62	12	12	12	2	9	2	2	2	0	9	2	4
			Argila											
DADOC DE DENCIDADE (/ 2)					2,68			lanasn	e Davida	in (100	S) a 44-	win P G-		(000)
DADOS DE DENSIDADE (g/cm3)					2,65 Fontes : Hansen & Poulain (1996) e Harris & Coleman (1998) 2,65									

Tabela 2.5: Composição percentual de Sedimentos.

A Tabela 2.5 foi incorporada no STENO e é com ela que o usuário irá estimar o volume de sedimentos ao longo da linha de costa.

No próximo capítulo, serão mostradas as soluções numéricas adotadas para efetuar o transporte e deposição dos sedimentos.