

Perlita Rosmery Esaine Barrantes

Análise sísmica e hidromecânica de uma barragem de terra zonada no Peru

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pósgraduação em Engenharia Civil do Departamento de Engenharia Civil da PUC-Rio.

Orientador: Prof. Celso Romanel

Rio de Janeiro Abril de 2013

Perlita Rosmery Esaine Barrantes

Análise sísmica e hidromecânica de uma barragem de terra zonada no Peru

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil do Centro Técnico Científico da PUC-Rio. Aprovada pela Commissão Examinadora abaixo assinada.

> Prof. Celso Romanel Orientador Departamento de Engenharia Civil - PUC-Rio

> > Prof^a. Michéle Dal Toé Casagrande

Departamento de Engenharia Civil - PUC-Rio

Prof. Celso Romanel Co-Orientador Departamento de Engenharia Civil - PUC-Rio

Prof^a. Ana Cristina Castro Fontenla Sieira Universidade do Estado do Rio de Janeiro

> Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 15 de Abril de 2013.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Perlita Rosmery Esaine Barrantes

Graduou-se em Engenharia Civil pela Universidade Nacional de Cajamarca – UNC (Cajamarca-Peru) em 2000. Principais áreas de interesse: geotecnia computacional e barragens.

Ficha Catalográfica

Barrantes, Perlita Rosmery Esaine

Análise Sísmica e Hidromecânica de uma Barragem de Terra Zonada no Peru / Perlita Rosmery Esaine Barrantes ; orientador: Celso Romanel – 2013.

191 f. il. (color.) ; 30 cm

Dissertação (mestrado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil, 2013. Inclui bibliografia

1. Engenharia civil – Teses. 2. Modelagem numérica. 3. Análise hidromecânica. 4. Análise dinâmica. 5. Hardening soil model. 6. Barragem de terra. I. Romanel, Celso. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. III. Título.

CDD: 624

Aos meus pais, Wilzet e Jenny,

Pelo amor, compreensão, apoio e incentivo.

Agradecimentos

A Deus, meu pai... tenho certeza que me acompanhou durante todo este caminho, foi duro sim, mas também tive muitas alegrias e agradeço a Ele porque hoje ao encerrar esta etapa levo além dos conhecimentos aprendidos, uma experiência de vida que me fez crescer e ser mais forte.

Aos meus pais, Wilzet e Jenny e meus irmãos Fernando e Elizabeth, porque mesmo de longe me incentivaram para atingir este momento e tiveram que conviver com minha falta.

Ao professor Celso Romanel, pela valiosa e paciente orientação e conhecimentos transmitidos.

As pessoas que de alguma maneira influíram na realização deste trabalho, especialmente ao Gary Durán, pela sua paciente companhia e amizade, a Lidia Pacheco pelo seu carinho e alegria em todo momento, ao Frank Pérez que soube compartilhar e transmitir seus conhecimentos para enriquecer este trabalho, a Mariana Benessiuti pela sua amizade e conselhos, a Miriam Escayala e Ronald Macazana que me ofereceram apoio incondicional desde o início do mestrado.

Aos meus amigos e colegas da PUC-Rio que conviveram e compartilharam comigo todo este tempo e se converteram em minha família brasileira, dos quais não vou mencionar nomes para não esquecer ninguém.

A Merit, a empresa que me deu apoio e incentivo para dar este último passo, através do Nick Blanchette, agregando mais valor a esta meta.

A todos os professores e funcionários do Departamento de Engenharia Civil da PUC-Rio.

A CAPES pelo apoio financeiro.

Ao Brasil e seu povo acolhedor, obrigada pela oportunidade...

Resumo

Barrantes, Perlita Rosmery Esaine; Romanel, Celso (orientador) Análise sísmica e hidromecânica de uma barragem de terra zonada no Peru. Rio de Janeiro, 2013. 191 p. Dissertação de Mestrado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Prever o comportamento de estruturas de solo de grande porte, como barragens, durante a construção, em operação e inclusive sob o efeito de eventos sísmicos tem muita importância para evitar possíveis consequências catastróficas e indesejáveis. Neste sentido, este estudo apresenta, através de uma análise acoplada hidromecânica pelo método dos elementos finitos, os resultados numéricos discutidos em termos de tensões e suas trajetórias, deslocamentos verticais e horizontais, poropressões, incluindo a estabilidade de taludes. Além disso, é apresentada também a análise da resposta sísmica quando a estrutura é submetida a um carregamento dinâmico. Para tanto, analisou-se a barragem de terra zonada Recreta, situada na província de Huaraz – Peru, mediante o emprego do programa PLAXIS 2010. Foram descritas as metodologias de análise para simular passo a passo a construção incremental da barragem, o primeiro enchimento do reservatório por incrementos de níveis de água, o avanço da frente de saturação até atingir a condição de fluxo permanente e a avaliação da resposta dinâmica quando a barragem é submetida ao último maior movimento sísmico (história de acelerações) registrado em 1974 na capital do Peru, Lima, adjacente à cidade onde se localiza este projeto. Também se empregou o software Seismosignal versão 5.0, para o tratamento do sinal sísmico, e os programas Shake 2000 e Strata para a calibração dos parâmetros de amortecimento. Os resultados fornecidos por estas ferramentas numéricas foram avaliados em função do fundamento teórico, exposto na revisão bibliográfica, e de uma série de testes para o estabelecimento das metodologias e procedimentos mais adequados para a obtenção destes resultados.

Palavras – chave

Modelagem numérica; análise hidromecânica, análise dinâmica, Hardening soil model, barragem de terra.

Abstract

Barrantes, Perlita Rosmery Esaine; Romanel, Celso (advisor). **Seismic and hydromechanical analysis of a zoned earth dam in Peru.** Rio de Janeiro, 2013. 191 p. M.Sc. Dissertation – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Predicting the behavior of soil structures, such as large-scale dams, during construction and operation, including the effect of earthquakes, is very important prevent possible catastrophic and undesirable consequences. to This study presents, through a coupled hydromechanical analysis by the finite element method, numerical results discussed in terms of stresses and trajectories, vertical and horizontal displacements, poropresssures and soil slope stability The investigation of the seismic response when the structure is analyses. subjected to a seismic load is also included, considering the dynamic behavior of the zoned earth dam Recreta, located in the province of Huaraz in Peru. The numerical analyses were carried out using the computational program PLAXIS 2010 to simulate the incremental construction of the dam, the first fill of the reservoir by increments of the water levels, the advance of the front of saturation until achieving the condition of steady flow condition and the seismic response when the dam is subject to the last major earthquake (accelerations history) registered in Peru's capital, Lima, in 1974, which is located near to the site of the Recreta dam. The Seismosignal software version 5.0 was also used for seismic signal processing and the programs SHAKE 2000 and STRATA were also employed for calibration of the damping parameters of the soils. All the results provided herein were discussed, based on the theoretical basics presented in the literature review as well as on the various numerical examples investigated with the main purpose to better understand the hydromechanical behavior of a zoned earth dam subject to static and dynamic loads.

Keywords

Numerical modeling, hydromechanical analysis, dynamic analysis, Hardening soil model, earth dam.

Sumário

1 Introdução	25
2 Comportamento estático e dinâmico de barragens de terra	27
2.1. Introdução	27
2.2. Comportamento durante a fase de construção da barragem	27
2.2.1. Distribuição dos recalques	27
2.2.2. Influencia da anisotropia	30
2.3. Comportamento durante o enchimento do reservatório	31
2.3.1. Percolação por fundações e barragens	31
2.3.2. Comportamento durante o primeiro enchimento	34
2.3.3. Pressão hidráulica no núcleo	35
2.3.4. Pressão hidráulica na fundação e sub pressão no	
núcleo central	36
2.3.5. Sub pressão a montante	36
2.3.6. Colapso devido à saturação	37
2.4. Transferência de cargas	37
2.4.1. Transferência de cargas do aterro para as ombreiras	37
2.4.2. Transferência de cargas entre o núcleo e os	
espaldares	38
2.5. Trajetória de tensões	39
2.5.1. Trajetória de tensões durante a construção	39
2.5.2. Trajetória de tensões durante o enchimento	40
2.6. Análise de estabilidade e segurança de barragens	42
2.6.1. Estabilidade durante a construção	45
2.6.2. Estabilidade em condição de fluxo permanente com	
reservatório cheio	46
2.6.3. Estabilidade durante o rebaixamento rápido	46
2.6.4. Segurança do fluxo em barragens	47
2.6.5. Erosão regressiva	49
2.7. Conceitos de sismologia	49

2.7.1. Estrutura interna da terra	50
2.7.2. Ondas sísmicas	50
2.7.3. Grandeza de um sismo	54
2.7.4. Parâmetros do movimento do terreno	56
2.7.5. Quantificação do movimento do terreno	60
2.7.6. Frequência fundamental do sistema	61
2.8. Fatores que influenciam a resposta sísmica	61
2.8.1. Efeitos da fundação	62
2.8.2. Efeitos da não linearidade dos materiais	64
2.8.3. Não homogeneidade da barragem	65
2.9. Características da resposta sísmica	66
2.9.1. Excitação dos modos de vibração	66
2.9.2. Amplificação na crista	67
2.9.3. Degradação da rigidez dos materiais	68
2.10. Comportamento tensão-deformação sob carregamentos cíclicos	69
2.10.1. Amplificação dinâmica de solos	69
2.10.2. Parâmetros de amplificação	70
2.10.3. Módulo de cisalhamento máximo G _{máx}	72
2.10.4. Curva de redução do módulo cisalhante G/G _{max}	74
2.10.5. Razão de amortecimento	76
2.10.6. Critério do módulo de descarregamento-	
recarregamento	78
3 Modelos constitutivos	80
3.1. Introdução	80
3.2. Modelos constitutivos elasto-plásticos	80
3.2.1. Modelo de Mohr-Coulomb	80
3.2.2. Modelo hardening soil model - HSM	81
3.2.3. Modelo linear equivalente	90
4 Modelagem numérica	93
4.1. Modelagem da fase de construção por camadas	93
4.1.1. Número de camadas	93

4.2. Modelagem da fase do primeiro enchimento	94
4.2.1. Número de etapas de enchimento	94
4.3. Modelagem da fase dinâmica	95
4.3.1. Transmissão de ondas	95
4.3.2. Filtragem do registro sísmico	96
4.3.3. Correção da linha base	97
4.3.4. Carregamento dinâmico	98
4.3.5. Condições de contorno	99
4.3.6. Amortecimento mecânico	100
4.3.7. Efeitos da geometria do modelo de elementos finitos	105
5 Análise da barragem Recreta	106
5.1. Análise estática da barragem Recreta	108
5.1.1. Características gerais	108
5.1.2. Parâmetros geotécnicos dos materiais	110
5.1.3. Condições de contorno	114
5.2. Resultados da análise estática	116
5.2.1. Apresentação dos resultados - fase de construção	117
5.2.2. Apresentação dos resultados do enchimento (fluxo	
transiente) e fluxo permanente	126
5.2.3. Apresentação dos resultados do rebaixamento rápido	143
5.2.4. Trajetórias de tensões efetivas	146
5.3. Análise de estabilidade	150
5.3.1. Análise de estabilidade durante a construção	150
5.3.2. Análise de estabilidade durante o enchimento e fluxo	
permanente	151
5.3.3. Análise de estabilidade em rebaixamento rápido	153
5.4. Análise dinâmica da barragem Recreta	154
5.4.1. Características gerais	154
5.4.2. Calibração do módulo de amortecimento do modelo	158
5.4.3. Tratamento do registro sísmico	165
5.4.4. Condições de contorno e carregamento dinâmico	168
5.5. Simulação da análise dinâmica	170

5.6. Resultados da análise dinâmica	171
5.6.1. Tensão e deformação cisalhante máxima	172
5.6.2. Deslocamentos horizontais e verticais	172
5.6.3. Resposta história tempo acelerações	173
6 Conclusões	179
6.1. Analise estática	179
6.2. Analise dinâmica	181
6.3. Sugestões para pesquisas futuras	182
Referências bibliográficas	183
ANEXO	189

Lista de Figuras

Figura 2.1 - Construção de aterro de grande extensão por camadas
sucessivas-Law, 197528
Figura 2.2 - Perfil de recalque em um aterro, com valor máximo a
média altura H/2 (Law, 1975)29
Figura 2.3 - Curvas de distribuição do recalque em diferentes etapas
da construção do aterro (Law, 1975)30
Figura 2.4 - Efeitos do primeiro enchimento do reservatório em uma
barragem zonada (de Nobari e Duncan, 1972)
Figura 2.5 - Trajetórias de tensão durante a fase de construção
(Naylor 1992)40
Figura 2.6 - Trajetórias de tensão típicas no material de enrocamento
(Veiga Pinto, 1983)41
Figura 2.7 - Trajetórias de tensão típicas no material do núcleo central
(Veiga Pinto, 1983)41
Figura 2.8 - Deformações produzidas por ondas de corpo: (a) ondas P
e (b) ondas SV (Kramer, 1996)51
Figura 2.9 - Ondas superficiais Love e Rayleigh
(http://www.geologia.ufpr.br/graduacao/geofisica2007/ondassismi
cas-aula1.pdf)52
Figura 2.10 - Deformações causadas por ondas superficiais: (a) ondas
de Rayleigh; (b) ondas de Love (Kramer, 1996)53
Figura 2.11 - Ondas sísmicas registradas a 10.000km do epicentro: a)
sismo de foco profundo; b) sismo de foco superficial (Sauter,
1989)53
Figura 2.12- Acelerograma e suas principais características
Figura 2.13 - Aceleração, velocidade e deslocamento tempo história
do Giroy (Kramer, 1996)58
Figura 2.14 - Espectro de amplitude de Fourier para o registro sísmico
Giroy 2 (Kramer 1996)59

- Figura 2.15 Influência da frequência na resposta de uma camada linear, elástica amortecida (Kramer, 1996)......61

- Figura 2.20 Efeito da amplificação em diferentes tipos de solo (de Seed et al, 1976)......70
- Figura 2.21 Gráfico tensão-deformação a) para um ciclo; b) histerético.......71

Figura 2.22 – Esqueleto da curva mostrando a variação típica de G_{sec} com a deformação cisalhante (Kramer, 1996)72

- Figura 2.23 Variação do módulo de cisalhamento K_{2max} para areias em densidades relativas em função das deformações cisalhantes
 – Seed e Idriss (1970)......75
- Figura 2.24 Faixa de variação de G/G_{max} com a deformação cisalhante para areias (Seed e Idriss, 1970)......75

Figura 2.27 - Variação da razão de amortecimento para areias (Seed
e Idriss, 1970)
Figura 2.28 - Comparação da variação da razão de amortecimento
para solos com pedregulho e areias (Seed et al., 1986)77
Figura 2.29 - Efeito do índice de plasticidade nas curvas de variação
da razão de amortecimento vs deformação cisalhante para solos
coesivos (Vucetic e Dobry, 1991)78
Figura 2.30 - Carregamento inicial e repetido (de Byrne et al., 1986) 79
Figura 3.1- Critério de escoamento de Mohr-Coulomb: a) no plano (
σ, au); b) em plano octaédrico (Ibañez, 2003)
Figura 3.2 - Idealização da relação tensão-deformação do modelo de
elasto-plasticidade perfeita82
Figura 3.3 Superfície de fluência no espaço das tensões principais.
(Nieto, 2009)82
Figura 3.4 - Módulo Eref obtido a partir do ensaio odométrico
(PLAXIS, 2010)
Figura 3.5 - Relação tensão-deformação hiperbólica para ensaios
triaxiais consolidados drenados (PLAXIS, 2010)85
Figura 3.6 - Modelo HSM. Superfícies de escoamento para vários
valores de ^{<i>p</i>} . (Ibañez, 2003)88
Figura 3.7 - Modelo HSM. Superfície "cap" no plano p´-q. (Ibañez,
2003)
Figura 3.8 - Modelo HSM. Curva de deformação volumétrica para
ensaio triaxial drenado com indicação de cut-off. (PLAXIS, 2010)90
Figura 3.9 - Comportamento cíclico típico dos solos (Kramer, 1996): a)
Relação tensão - deformação cisalhante para o primeiro ciclo de
carregamento. b) Variação da rigidez em função do nível de
deformação por cisalhamento91
Figura 4.1 : Influência do número de níveis d'água e incrementos de
carga nos deslocamentos verticais durante o enchimento do
reservatório (de Veiga Pinto, 1983)95
Figura 4.2- Processo de correção da linha base (manual do FLAC
v.5)

Figura 4.3 - Influência dos parâmetros de amortecimento de Rayleigh.
(PLAXIS, 2010)101
Figura 4.4-Variação da razão de amortecimento critico normalizada
em relação à frequência angular. (Itasca, 2005 apud Bustamante,
2010)
Figura 4.5 - Elementos da barragem: altura H, largura lateral da
fundação B e largura da base da fundação W. Jiryaei (2010)105
Figura 5.1 - Localização projetada da barragem de Recreta. (Parra,
1996)
Figura 5.2 - Características da fundação da barragem Recreta (Parra,
1996)
Figura 5.3 - Seção transversal A-A analisada (Parra, 1996)108
Figura 5.4 – Seção transversal A-A, Perfis 1-1, 2-2, 3-3, 4-4 e
camadas indicando os materiais e condições de contorno para
análise estática (PLAXIS)109
Figura 5.5 - Malha de elementos finitos para análise estática da
barragem Recreta110
Figura 5.6 - Modelo estendido para comprovar a influência da locação
dos contornos115
Figura 5.7 – Influência dos contornos na leitura das a)Tensões
principais e b) Deslocamentos verticais
Figura 5.8 - Condições de contorno para o análise de fluxo116
Figura 5.9 - Distribuição da rigidez após a construção e perfis 2-2 (-
10m do eixo) e 3-3 (-24m do eixo)118
Figura 5.10 - Distribuição da tensão principal maior efetiva após
construção e detalhe da seção 1-1119
Figura 5.11 - Distribuição da tensão principal menor efetiva após
construção120
Figura 5.12 - Distribuição dos deslocamentos a) verticais e b)
horizontais, caso 1
Figura 5.13 - Distribuição dos deslocamentos a) verticais e b)
horizontais. Após a décima primeira camada, caso 2

Figura 5.29 - Deslocamentos verticais sem incluir os da construção, à
montante (Perfil 2-2)136
Figura 5.30 - Deslocamentos horizontais sem incluir a construção, no
eixo (Perfil 1-1)136
Figura 5.31 - Deslocamentos horizontais sem incluir a construção, à
montante (Perfil 2-2)137
Figura 5.32 - Deslocamentos verticais do primeiro enchimento
incluindo a construção, no eixo (Perfil 1-1)137
Figura 5.33 - Deslocamentos verticais do primeiro enchimento
incluindo a construção, à montante (Perfil 2-2)
Figura 5.34 - Deslocamentos horizontais do primeiro enchimento
incluindo os da construção, no eixo da barragem (perfil 1-1)139
Figura 5.35 - Deslocamentos horizontais do primeiro enchimento
incluindo os da construção, à montante (seção 2-2)139
Figura 5.36 - Distribuição das poropressões após a fase 9 do primeiro
enchimento, caso 4140
Figura 5.37 – Pressões de água no Perfil 1-1 (eixo da barragem) após
enchimento141
Figura 5.38 - Pressões de água no Perfil 2-2 (montante) após
enchimento141
Figura 5.39 - Determinação do tempo para atingir o estado
permanente142
Figura 5.40 - Distribuição da rigidez após o rebaixamento rápido e
perfil 3-3 (-24m do eixo)144
Figura 5.41 - Distribuição da tensão principal maior efetiva após
rebaixamento rápido144
Figura 5.42 - Distribuição da tensão efetiva principal menor após
rebaixamento rápido145
Figura 5.43 - Distribuição da resistência ao cisalhamento após
rebaixamento rápido145
Figura 5.44 - Distribuição da relação entre a tensão cisalhante
mobilizada e a resistência ao cisalhamento máxima após
rebaixamento rápido145

Figura 5.45- Distribuição do grau de saturação após rebaixamento146
Figura 5.46 - Pontos de controle de tensões efetivas146
Figura 5.47 Trajetórias de tensões efetivas no núcleo na construção,
enchimento e rebaixamento rápido147
Figura 5.48 - Trajetórias de tensões efetivas à montante na
construção e enchimento148
Figura 5.49 – Trajetória de tensões efetivas à jusante, na construção e
enchimento149
Figura 5.50 - Superfície aproximada de rotura - após a) camada 5 e
b) camada 11, caso 2151
Figura 5.51 - Superfície aproximada de ruptura - fase de enchimento 9152
Figura 5.52 - Superfície aproximada de ruptura – condição
permanente152
Figura 5.53- Superfície aproximada de ruptura - rebaixamento rápido
em 5 dias153
Figura 5.54 - Secção transversal A-A154
Figura 5.55 - Malha de elementos finitos para análise dinâmica da
barragem Recreta – PLAXIS156
Figura 5.56 - Mapa de isoacelerações espectrais para 10% de
excedência em 100 anos (Alva e Castillo, 1993)157
Figura 5.57- Curvas de isoacelerações para 10% de excedência em
100 anos na zona em estudo (Alva e Castillo, 1993), Peru158
Figura 5.58 - Seção transversal do modelo para calibração e pontos
de controle160
Figura 5.59- Determinação das razões de amortecimento () no
programa Strata162
Figura 5.60-Frequencias fundamentais do modelo elástico (camadas
horizontais)162
Figura 5.61 – Calibração do PLAXIS com SHAKE 2000, para a)
frequências 2,11 e 7,84 e ξ =5% e 11%, b) frequência 7,84 e ξ
=4% e c) frequência 7,84 e ξ =5%164
Figura 5.62- Registro de acelerações do terremoto de Lima de
03/10/1974

Figura 5.63 - Registro normalizado das acelerações do terremoto de
Lima de 03/10/1974 em relação à aceleração máxima de 0,26g
no embasamento rochoso166
Figura 5.64 - Espectro de potência do registro de acelerações a)
original e b) com filtro de 14,69 Hz. (SeismoSignal)167
Figura 5.65- História de velocidades com e sem correção da linha
base (SeismoSignal)167
Figura 5.66- História de deslocamentos com e sem correção da linha
base (SeismoSignal)167
Figura 5.67- História de aceleração horizontal na fase intensa do
sismo considerando filtro de 14,69Hz e corrigido por linha base 168
Figura 5.68 – Carregamento dinâmico como história de tensões 169
Figura 5.69 – Locação dos pontos de controle170
Figura 5.70 - Espectro de potência das acelerações horizontais não-
amortecidas após construção. Frequências fundamentais = 1,84
e 2,11 Hz170
Figura 5.71-Distribuição de $\sigma 1'$ após construção durante
Figura 5.72-Deformaçao cisalhante máxima172
Figura 5.73-Distribuição das tensões cisalhantes máximas ao final da
excitação sísmica após construção172
Figura 5.74-Distribuição dos deslocamentos horizontais ao final da
excitação sísmica após construção173
Figura 5.75-Deslocamentos horizontais obtidos durante a excitação
sísmica após a construção174
Figura 5.76-Comparação entre o tempo-história das acelerações de
entrada e da resposta na a) cresta, topo da fundação b) da
jusante e c) de montante da barragem após a construção176
Figura 5.77 – Espectro de resposta na a) cresta, b) na base da
jusante e c) montante da barragem após a construção178

Lista de Tabelas

Tabela 2.1 – Valores típicos do coeficiente de permeabilidade k
(Romanel, 2010)33
Tabela 2.2 – Classificação quanto ao grau de permeabilidade
(Terzaghi e Peck, 1967)33
Tabela 2.3-Levantamento de acidentes em barragens (Middlebrooks,
1953 apud Sandroni, 2012)48
Tabela 2.4-Escala de Mercalli Modificada de intensidade sísmica
(http://pt.wikipedia.org/wiki/Escala_de_Mercalli)55
Tabela 2.5 - Escala de Ritcher de magnitude sísmica 56
Tabela 2.6 - Estimativa de $K_{2,max}$ (Seed e Idriss, 1970)
Tabela 3.1 - Parâmetros do modelo HSM (PLAXIS, 2010)
Tabela 4.1- Valores de c1 e c2 em função do coeficiente de Poisson ${f \upsilon}$
(White et al, 1977 apud Bustamante, 2010)100
Tabela 4.2- Valores típicos da razão de amortecimento crítico (Richart
et al., 1970, apud Bustamante, 2010)103
Tabela 5.1- Parâmetros do modelo hiperbólico para análise estática
do comportamento da barragem e da fundação112
Tabela 5.2- Parâmetros do modelo HSM para análise estática do
comportamento da barragem e fundação113
Tabela 5.3 - Parâmetros de fluxo 114
Tabela 5.4 - Deslocamentos máximos e mínimos casos 1 e 2121
Tabela 5.5 – Permeabilidade dos materiais da barragem
Tabela 5.6 Fatores de segurança por etapas de construção152
Tabela 5.7 Fatores de segurança durante o fluxo153
Tabela 5.8 - Parâmetros do modelo Mohr Coulomb para análise
dinâmica do comportamento da barragem e fundação156
Tabela 5.9 Valores representativos de critérios de projeto
considerando movimentos sísmicos (Parra, 1996)159

Lista de Símbolos

- c coesão
- e índice de vazios
- E módulo de Young
- E_{ur} módulo de elasticidade em descarregamentorecarregamento
- *E*^{*ref*} módulo de elasticidade referencial no carregamento
- *E*^{*ref*}_{*ur*} módulo de elasticidade referencial no descarregamentorecarregamento
- *E*^{*ref*} módulo de compressão confinada referencial
- *E*₅₀ módulo de elasticidade no carregamento
- *E*_{oed} _ módulo de compressão confinada
- F função de escoamento
- Fp força de percolação
- j força de percolação por unidade de volume
- ϕ ângulo de atrito interno do solo
- G módulo cisalhante
- Gmax módulo cisalhante máximo
- Gt módulo cisalhante tangencial
- g aceleração da gravidade
- H espessura do aterro
- γ peso específico
- γ_m peso específico natural
- γ_{sat} peso específico saturado
- γ_w peso específico d'água
- K₀ coeficiente de empuxo no repouso
- K_b parâmetro do modelo hiperbólico relativo ao módulo de compressibilidade volumétrica
- K_{ur} parâmetro do modelo hiperbólico relativo ao módulo no descarregamento

- K_I número de rigidez adimensional
- Kt rigidez tangencial
- K_G número do módulo cisalhante tangencial
- m parâmetro do modelo hiperbólico relativo ao módulo de compressibilidade volumétrica
- *m* parâmetro do modelo HSM relativo à dependência da rigidez com o estado de tensão
- n parâmetro do modelo hiperbólico relativo ao módulo tangencial
- v coeficiente de Poisson
- p_a pressão atmosférica
- ξ coordenada local ou razão de amortecimento
- p tensão média
- q tensão desviadora
- *q^a* valor assintótico da tensão desviadora
- R_f razão de ruptura
- ρ recalque vertical
- S grau de saturação
- σ tensão normal
- σ₁ tensão normal principal maior
- σ₃ tensão normal principal menor
- T período natural do sistema
- τ tensão cisalhante
- _{Cp} velocidade de onda compressional
- C_S velocidade de onda cisalhante
- ω1 frequência fundamental de vibração
- Δt intervalo de tempo