Romulo Reis Aguiar

Experimental investigation and numerical analysis of the vibro-impact phenomenon

TESE DE DOUTORADO

DEPARTAMENTO DE ENGENHARIA MECÂNICA Postgraduate Program in Mechanical Engineering

Rio de Janeiro March 2010

Romulo Reis Aguiar

Experimental investigation and numerical analysis of the vibro-impact phenomenon

Tese de Doutorado

Thesis presented to the Postgraduate Program in Mechanical Engineering of the Departamento de Engenharia Mecânica, Centro Técnico Científico, PUC-Rio as partial fulfillment of the requirements for the degree of Doutor em Engenharia Mecânica

Adviser: Prof. Hans Ingo Weber

Rio de Janeiro March 2010

Romulo Reis Aguiar

Experimental investigation and numerical analysis of the vibro-impact phenomenon

Thesis presented to the Postgraduate Program in Mechanical Engineering of the Departamento de Engenharia Mecânica, Centro Técnico Científico da PUC-Rio as partial fulfillment of the requirementes for the degree of Doutor em Engenharia Mecânica

> **Prof. Hans Ingo Weber, Dr.-Ing.** Adviser Departamento de Engenharia Mecânica – PUC-Rio

Prof. Gerhard Schweitzer, Dr.-Ing. Institute of Robotics and Intelligent Systems – ETH Zurich

Prof. Ilmar Ferreira Santos, Dr.-Ing. Departament of Mechanical Engineering – Technical University of Denmark, DTU

Prof. José Manoel Balthazar, D.Sc. Departamento de Estatística, Matemática Aplicada e Computacional – UNESP

> **Prof. Marcelo Amorim Savi, D.Sc.** Departamento de Engenharia Mecânica – UFRJ

Prof. Rubens Sampaio Filho, Ph.D. Departamento de Engenharia Mecânica – PUC-Rio

Prof. José Eugênio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, March 29th, 2010

All rights reserved.

Romulo Reis Aguiar

Received his Bachelor of Science degree in Mechanical Engineering from Pontifícia Universidade Católica do Rio de Janeiro (2001). Worked at General Electric, Aircraft Engines Division for three years, on the development of new repair procedures for aircraft engine parts. Obtained his masters degree from PUC-Rio (2006), in the research field of Solid Mechanics, establishing his research in Nonlinear Dynamics and Vibro-impact. Presented many articles with his adviser in international congresses (CILAMCE, DINAME, COBEM and MOVIC).

Bibliographic data

Aguiar, Romulo Reis

Experimental investigation and numerical analysis of the vibro-impact phenomenon / Romulo Reis Aguiar; adviser: Hans Ingo Weber . — 2010.

144 f. : il. (color.) ; 30 cm

Tese (Doutorado em Engenharia Mecânica) -Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2010.

Inclui bibliografia

1. Engenharia Mecânica – Teses. 2. Coluna de Perfuração. 3. Dinâmica Não-linear. 4. Impacto. 5. Vibro-impacto. I. Weber, Hans Ingo. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III. Título. PUC-Rio - Certificação Digital Nº 0611808/CA

Aos meus pais, José e Marina.

Agradecimentos

Inicio meus agradecimentos ao mestre e amigo, Prof. Hans Ingo Weber, pelo incentivo, dedicação, conselhos e exemplo de vida.

Minha família teve um papel fundamental durante esse período da minha vida: meus pais, José e Marina, minha avó, Iacy e minha tia, Jean, agradeço pelo companheirismo, orientação e suporte, imprescindíveis para galgar este passo tão importante.

Gostaria de enfatizar a ajuda do técnico do Laboratório de Dinâmica e Vibrações da PUC-Rio, Wagner Epifânio da Cruz, durante a concepção e fabricação das bancadas experimentais, além de tornar-se um grande amigo em todos esses anos que passei na PUC, desde a iniciação científica até o doutorado.

Expresso minha gratidão aos professores e funcionários do Departamento de Engenharia Mecânica da PUC-Rio, em especial ao Prof. Rubens Sampaio, ao Carlúcio Souza e à Rosely Marins.

Agradeço à PUC, ao CNPq, à FAPERJ e à CSIRO pelo suporte financeiro.

Tive a satisfação de conviver com grandes amizades nesse período na PUC-Rio: Thiago Ritto, Edson Cataldo, Juliana Vianna, Juliana Abrantes, Frank Pruzaesky, Luiz Sampaio, dentre outros, que compartilharam a rotina na universidade; pela amizade e pelas incontáveis trocas de idéias, fontes valiosas que enriqueceram este trabalho.

Dr. Luiz Franca possui um papel importante na minha formação, pela oportunidade única de ter me oferecido o estágio na CSIRO Petroleum, período que adquiri preciosa experiência e conhecimento na área de perfuração de poços de petróleo e interação broca/rocha. Agradeço também a todos os colegas de trabalho do Drilling Mechanics Group: Prof. Emmanuel Detournay, Dr. Thomas Richard, Dr. Joel Sarout, Luis Mariano, Amir Soroush, Greg Lupton e Stephen Banks, pelas diversas discussões que foram essenciais a esta tese.

Deixo aqui minha gratidão à Mariana Costa, por sua amizade, companheirismo e inabalável paciência.

Aproveito a oportunidade para agradecer a todos os meus amigos da música, pelos momentos de alegria e descontração nas inúmeras rodas de choro que assisti e/ ou participei; em especial, agradeço aos músicos do grupo Água no Feijão, a minha "família do choro": Marcus Garrett, Marilynn Mair, Michel Nascimento, Pablo Curty e Raphael Moraes.

Last but not least, expresso meus agradecimentos à Marilynn Mair, pela ajuda ao revisar o texto da tese.

Resumo

Aguiar, Romulo Reis; Weber, Hans Ingo. Experimental investigation and numerical analysis of the vibro-impact phenomenon. Rio de Janeiro, 2010. 146p. Tese de Doutorado — Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Existem aplicações técnicas onde o principal elemento de um sistema mecânico está sujeito a um padrão de vibração. Um exemplo se encontra na perfuração de poços de petróleo em rochas duras utilizando brocas tricônicas, uma vez que esse tipo de interação broca/ rocha impõe uma vibração longitudinal à estrutura. É possível utilizar parte desta energia para excitar um martelo, uma subestrutura do sistema principal capaz de gerar impactos. A onda de tensão gerada pelo impacto pode ser útil para remover o sistema de uma condição de *stick* (*stick-slip*) ou ajudar na propagação de trincas no material a ser perfurado. A perfuração de rochas duras ainda é um grande desafio para as empresas de perfuração e exploração de petróleo. Neste contexto, uma forma de conseguir maior eficiência da coluna de perfuração é combinando a perfuração rotativa convencional com um dispositivo de vibro-impacto. A tarefa de desenvolver um martelo embarcado na coluna de perfuração e que impacta sobre a broca ainda é uma sugestão a ser implementada. O propósito deste trabalho é a investigação experimental e a modelagem matemática do comportamento da força de impacto num sistema de vibro-impacto embarcado. Mudando a rigidez do martelo e a folga é possível investigar o comportamento do sistema sob diferentes freqüências de excitação. É apresentada uma metodologia para a integração numérica de equações diferenciais descontínuas. Este trabalho também estuda a modelagem da força de impacto, investigando qual modelo matemático disponível na literatura melhor representa os dados experimentais. Os resultados experimentais serão usados para validar o modelo matemático, através do qual o sistema será estudado em maior detalhe. Uma análise não-linear é realizada (diagramas de bifurcação, mapas de Poincaré e mapas de Peterka). Finalmente, este trabalho mostra uma aplicação prática deste sistema de vibro-impacto, onde um sistema massa-mola é montado a uma bancada experimental de perfuração. Resultados experimentais mostram que a aplicação da força de impacto durante a perfuração aumenta a taxa de penetração.

Palavras-chave

coluna de perfuração, dinâmica não-linear, impacto, vibro-impacto.

Abstract

Aguiar, Romulo Reis; Weber, Hans Ingo. Numerical-experiment investigation and nonlinear analysis of the vibroimpact phenomenon. Rio de Janeiro, 2010. 146p. PhD. Thesis — Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

There are technical applications when the main element of a mechanical system is subjected to a regular vibration pattern. An example of this is drilling with tricone bits on hard material, because under normal condition the contact surface becomes lobular, imposing a longitudinal vibration on the drilling structure. It is possible to use part of this energy to resonate a hammer, that is a substructure of the system and impacts on it. The stress wave created by the impact may be useful to release the system from the stick condition of stick-slip phenomenon or to help in the crack propagation of the material being cut. Hard rock drilling is still a great challenge for oil companies. Optimum productivity is made possible by combining the advantages of rotary and percussive drilling. The task of developing an internal hammer in the drillstring that impacts on the drill bit remains an idea to be implemented. The subject of this work is the experimental investigation and the mathematical modeling of the impact force behavior in a vibro-impact system, where a hammer is mounted on a cart that imposes a prescribed displacement. By changing the hammer stiffness and the impact gap it is possible to investigate the impact force behavior under different excitation frequencies. A methodology is presented to numerically integrate the ODEs with a discontinuous right-hand side. This work also compares different models of the impact force presented in prevailing scientific literature to determine which one best fits the experimental data. This information will be used to create a mathematical model of the test rig. The experimental data will be used to validate the mathematical model. The hammer behavior is studied in more detail using a nonlinear analysis (bifurcation diagrams, Poincaré maps and Peterka map). Nonlinear analysis shows the various responses of the hammer, such as dynamical jumps, bifurcations and chaos. Finally, this work shows the field application of this vibro-impact system. A mass-spring system is mounted to an experimental drilling rig. Experimental results shows that impact forces during drilling improve the rate of penetration.

Keywords

oilwell drillstring, nonlinear dynamics, impact, vibro-impact.

Table of Contents

$1 \mid$	ntroduction	20
1.1	Oil well drilling	20
1.2	Rotary drilling - oil well drillstring	22
1.3	Drillstring vibration and bit/rock interaction	23
1.4	Hard rock drilling and Resonance Hammer Drilling (RHD)	26
1.5	Literature survey	27
1.6	Objective and scope of the thesis	28
2 3	Study of an embarked vibro-impact system: experimental analysis	30
2.1	First experiment - hammer supported by wires	30
2.2	Second experiment - hammer supported by beam springs	44
2.3	Impact force comparison between experiments	68
2.4	Final remarks	69
3 5	Study of an embarked vibro-impact system: mathematical modeling	
ä	and nonlinear analysis	71
3.1	Brief impact theory	71
3.2 3.3	Numerical integration of discontinuous ordinary differential equations Hammer supported by wires: mathematical modeling and comparison between numerical simulation and experimental results	77 89
3.4	Hammer supported by beam springs - mathematical modeling and	02
	comparison between numerical simulation and experimental results	105
3.5	Final remarks	115
4 I	Experimental study of a real size vibro-impact system for the RHD	117
4.1	CSIRO and the Drilling Mechanics Group	117
4.2	RHD, Frank Jr. and experimental results	119
4.3	Hammer design considerations	128
4.4	Final remarks	130
5 (Conclusions and future works	132
5.1	Topics for Further Research	134
Refe	erences	136

List of Figures

1.1 1.2	Oilwell drilling - field photos (website geocities.yahoo.com.br). Sketches: a) drilling rig (website www.howstuffworks.com); b)	21
	oil well drillstring.	21
1.3	Roller cone bits (website geocities vahoo.com.br).	23
1.4	Drillstring vibration [29].	25
1.5	a) Roller cone bit (website geocities.yahoo.com.br/perfuracao); b) trilobe formation on hard rocks caused by roller cone bits drilling [25].	25
1.6	a) Resonance Hammer Drilling (RHD) technique [29].; b)	
	Vibro-impact system.	26
2.1	First test rig: hammer supported by wires. Picture of the entire	
	test rig, including acquisition hardware.	31
2.2	First test rig: cart and hammer sketch.	32
2.3	First test rig photos: a) Detail of cart and hammer; b) Impact	
	gap device, composed by knurled nut and screw.	33
2.4	Hammer supported by wires. No impact: a) Beat, excitation	
	frequency 2.00 Hz; b) Frequency response.	34
2.5	Hammer supported by wires. Gap 0.0 mm. Excitation frequency	
	3.75Hz. Impact force over time.	35
2.6	Hammer supported by wires. Gap 0.0 mm. Excitation frequency	
	3.75Hz. Impact force over time; hammer acceleration over time;	
	displacements (cart and hammer)	36
2.7	Hammer supported by wires. Gap 0.0 mm. Bifurcation.	
	Excitation frequency 4.75 Hz: a) Displacements; b) Hammer	
	phase plane.	36
2.8	Hammer supported by wires. Gap 0.0 mm. Maximum impact	
	force on frequency band $z = 1/2$. Excitation frequency 7.25 Hz:	
	a) Impact force; b) Hammer acceleration.	37
2.9	Hammer supported by wires. Gap 0.0 mm. Maximum impact	
	force on frequency band $z = 1/2$. Excitation frequency 7.25 Hz:	
	a) Displacements; b) Hammer phase plane.	37
2.10	Hammer supported by wires. Gap 0.0 mm. Transitory behavior.	
	Hammer phase planes: a) Excitation frequency 8.25 Hz; b)	
	Excitation frequency 8.50 Hz.	38
2.11	Hammer supported by wires. Gap 0.0 mm. Frequency domain	
	response: a) Maximum impact force; b) non-dimensional force,	
	F_i/mg .	39
2.12	Hammer supported by wires. Gap 1.0 mm. Maximum impact	
	force on frequency band $z = 1/1$. Excitation frequency 3.00 Hz:	
	a) Impact force; b) Hammer acceleration.	40
2.13	Hammer supported by wires. Gap 1.0 mm. Maximum impact	
	force on frequency band $z = 1/1$. Excitation frequency 3.00 Hz:	
	a) Displacements; b) Hammer phase plane.	40

2.14	Hammer supported by wires. Gap 1.0 mm. Maximum impact force on frequency band $z = 1/2$. Excitation frequency 6.25 Hz:	
	a) Impact force; b) Hammer acceleration.	41
2.15	Hammer supported by wires. Gap 1.0 mm. Maximum impact	
	force on frequency band $z = 1/2$. Excitation frequency 6.25 Hz:	
	a) Displacements; b) Hammer phase plane.	41
2.16	Hammer supported by wires. Gap 1.0 mm. Transitory behavior.	
	Excitation frequency 7.00 Hz: a) Displacements; b) Hammer	
	phase plane.	41
2.17	Hammer supported by wires. Gap 1.0 mm. Frequency domain	
	response: a) Maximum impact force; b) non-dimensional force,	
	F_i/mg	42
2.18	Hammer supported by wires. Gap 2.4 mm. Frequency domain	
	response: a) Maximum impact force; b) non-dimensional force,	
	F_i/mg_1	42
2.19	Hammer supported by wires. Frequency domain response,	
	non-dimensional force F_i/mg , comparison among gaps.	43
2.20	Hammer supported by wires. Nonlinear behavior. Hammer	
	displacement over time: a) Condition of no impact/ energy	
	inserted into the system/ system impacts but return to	
	non-impact condition; b) Condition of no impact/ energy	
	inserted into the system/ system impacts and remains in the	
	impact condition.	44
2.21	Second test rig.	45
2.22	Second test rig. Detail of beam springs supporting the hammer	45
2.23	Second test rig: experiment sketch.	46
2.24	Hammer supported by beam springs. Couplings distance 170	
	mm, gap 0.0 mm. Excitation frequency 4.00 Hz: a) Impact force;	
	b) Hammer acceleration.	47
2.25	Hammer supported by beam springs. Couplings distance	
	170 mm, gap 0.0 mm. Excitation frequency 4.00 Hz: a)	
	Displacements; b) Hammer phase plane.	48
2.26	Hammer supported by beam springs. Couplings distance 170	
	mm, gap 0.0 mm. Maximum impact force on the first frequency	
	band. Excitation frequency 9.00 Hz: a) Impact force; b) Hammer	
	acceleration.	48
2.27	Hammer supported by beam springs. Couplings distance 170	
	mm, gap 0.0 mm. Maximum impact force on the first frequency	
	band. Excitation frequency 9.00 Hz: a) Displacements; b)	
	Hammer phase plane	49
2.28	Hammer supported by beam springs. Couplings distance 170	
	mm, gap 0.0 mm. Transitory behavior. Excitation frequency	
	12.25 Hz: a) Displacements; b) Hammer phase plane.	49
2.29	Hammer supported by beam springs. Couplings distance 170	
	mm, gap 0.0 mm. Excitation frequency 15.25 Hz: a) Impact	
	torce; b) Hammer acceleration.	50

2.30	Hammer supported by beam springs. Couplings distance	
	170 mm, gap 0.0 mm. Excitation frequency 15.25 Hz: a)	F 0
	Displacements; b) Hammer phase plane.	50
2.31	Hammer supported by beam springs. Couplings distance 1/0	
	mm, gap 0.0 mm. Frequency domain response: a) Maximum	
	impact force; b) non-dimensional force, F_i/mg .	51
2.32	Hammer supported by beam springs. Couplings distance 170	
	mm, gap 1.0 mm. Frequency domain response: a) Maximum	
	impact force; b) non-dimensional force, F_i/mg .	52
2.33	Hammer supported by beam springs. Couplings distance 170	
	mm, gap 3.0 mm. Frequency domain response: a) Maximum	
	impact force; b) non-dimensional force, F_i/mg .	52
2.34	Hammer supported by beam springs. Couplings distance 150	
	mm, gap 1.0 mm. Cart displacement amplitude <i>versus</i> excitation	
	frequency.	53
2.35	Hammer supported by beam springs. Couplings distance 150	
	mm. gap 0.0 mm. Excitation frequency 12.00 Hz; a) Impact	
	force: b) Hammer acceleration.	53
2 36	Hammer supported by beam springs Couplings distance	
2100	150 mm gap 0.0 mm Excitation frequency 12.00 Hz a)	
	Displacements: b) Hammer phase plane	54
2 37	Hammer supported by beam springs Couplings distance 150	01
2.01	mm gap 0.0 mm Frequency domain response: a) Maximum	
	impact force: b) non dimensional force E_c/ma	54
2 3 8	Hammer supported by beam springs. Couplings distance 150	04
2.50	mm gap 1.0 mm Excitation frequency 0.25 Hz; a) Impact force:	
	h) Hammer acceleration	55
0.20	D) Hammer supported by been springs. Couplings distance	55
2.39	150 mm ron 10 mm Evolution fragmency 0.25 Hr. a)	
	150 mm, gap 1.0 mm. Excitation frequency 9.25 Hz: a)	
0.40	Usplacements; b) Hammer phase plane.	99
2.40	Hammer supported by beam springs. Couplings distance 150	
	mm, gap 1.0 mm. Excitation frequency 12.50 Hz: a) Impact	FO
0.44	force; b) Hammer acceleration.	50
2.41	Hammer supported by beam springs. Couplings distance	
	150 mm, gap 1.0 mm. Excitation frequency 12.50 Hz: a)	
	Displacements; b) Hammer phase plane.	56
2.42	Hammer supported by beam springs. Couplings distance 150	
	mm, gap 1.0 mm. Excitation frequency 14.00 Hz: a) Impact	
	force; b) Hammer acceleration.	57
2.43	Hammer supported by beam springs. Couplings distance	
	150 mm, gap 1.0 mm. Excitation frequency 14.00 Hz: a)	
	Displacements; b) Hammer phase plane.	57
2.44	Hammer supported by beam springs. Couplings distance 150	
	mm, gap 1.0 mm. Frequency domain response: a) Maximum	
	impact force; b) non-dimensional force, F_i/mg .	58
2.45	Hammer supported by beam springs. Couplings distance 150	
	mm, gap 3.0 mm. Excitation frequency 7.25 Hz: a) Impact force;	
	b) Hammer acceleration.	58

2.46	Hammer supported by beam springs. Couplings distance 150 mm gap 3.0 mm Excitation frequency 7.25 Hz a)	
	Displacements: b) Hammer phase plane	59
2.47	Hammer supported by beam springs. Couplings distance 150	00
	mm. gap 3.0 mm. Excitation frequency 13.00 Hz; a) Impact	
	force: b) Hammer acceleration.	59
2.48	Hammer supported by beam springs. Couplings distance	00
	150 mm. gap 3.0 mm. Excitation frequency 13.00 Hz: a)	
	Displacements: b) Hammer phase plane.	60
2.49	Hammer supported by beam springs. Couplings distance 150	
	mm. gap 3.0 mm. Frequency domain response: a) Maximum	
	impact force: b) non-dimensional force. F_i/ma .	60
2.50	Hammer supported by beam springs. Couplings distance 135	00
	mm. gap 0.0 mm. Frequency domain response: a) Maximum	
	impact force: b) non-dimensional force. F_i/ma .	61
2.51	Hammer supported by beam springs. Couplings distance 135	01
	mm. gap 1.0 mm. Frequency domain response: a) Maximum	
	impact force: b) non-dimensional force. F_i/ma .	61
2.52	Hammer supported by beam springs. Couplings distance 135	01
2.02	mm gap 3.0 mm Frequency domain response: a) Maximum	
	impact force b) non-dimensional force F_i/ma	62
2.53	Hammer supported by beam springs. Couplings distance 170	02
	mm comparison among gaps Frequency domain response a)	
	Maximum impact force b) non-dimensional force. F_i/ma .	62
2.54	Hammer supported by beam springs. Couplings distance 150	•-
2.0.1	mm: comparison among gaps. Frequency domain response: a)	
	Maximum impact force b) non-dimensional force F_i/ma	63
2.55	Hammer supported by beam springs. Couplings distance 135	00
	mm: comparison among gaps. Frequency domain response: a)	
	Maximum impact force: b) non-dimensional force. F_i/ma .	63
2.56	Hammer supported by beam springs. Gap 0.0 mm; comparison	
	among stiffness. Frequency domain response: a) Maximum	
	impact force: b) non-dimensional force. F_i/ma .	64
2.57	Hammer supported by beam springs. Gap 1.0 mm; comparison	
	among stiffness. Frequency domain response: a) Maximum	
	impact force; b) non-dimensional force, F_i/mq .	65
2.58	Hammer supported by beam springs. Gap 3.0 mm; comparison	
	among stiffness. Frequency domain response: a) Maximum	
	impact force; b) non-dimensional force, F_i/mq .	65
2.59	Frequency domain response in free flight after impact. Couplings	
	distance 170 mm; a) Hammer accelerometer; b) Beam spring	
	accelerometer.	67
2.60	Frequency domain response in free flight after impact. Couplings	
	distance 150 mm: a) Hammer accelerometer: b) Beam spring	
	accelerometer.	67
2.61	Hammer supported nylon wires. FFT of several acceleration	
	signals at moment of impact.	68
	6 ·····	00

3.1	Energy flow associated with impact [15].	72
3.2	Spring-dashpot model [34]	75
3.3	Impact of a rigid mass against a rigid wall, for different velocities	
	before impact [2]: a) phase plane; b) contact force profile.	
	Parameters: $m = 2Kq$, $k_i = 2.1 \cdot 10^8 N/m$, $n = 1.6$, $\lambda_i = 0.6s$.	76
3.4	Change of Poincaré map topology of the smoothed system under	
•	different parameter values (a). (b) and (c): and for discontinuous	
	system (d) From the work of Wiercigroch [81]	81
35	One DOF system with discontinuous support and base	01
0.0	excitation application of the Switch model	82
36	One DOF system with discontinuous support and base	0-
0.0	excitation transition between sub-spaces during one impact	83
37	Impact parameters identification new hammer	84
3.0	New hammer released from a initial condition of 3 mm	01
5.0	(approximately) impact force and acceleration of first impact	85
20	(approximately), impact force and acceleration of first impact.	00
5.9	impact force parameters identification. Comparison between	
	experimental data and numerical simulation. Impact modeled	96
2 10	using the spring-dashpot model.	80
3.10	impact force parameters identification. Comparison between	
	experimental data and numerical simulation. Impact modeled	0.0
0 1 1	using the spring-dashpot model.	86
3.11	Model of hammer supported by wires, physical representation.	87
3.12	Hammer supported by wires, comparison between numerical	
	simulation and experimental results. Non dimensional force	
	versus non dimensional frequency. Gap 0.0 mm.	91
3.13	Hammer supported by wires, comparison between numerical	
	simulation and experimental results. Non dimensional force	
	<i>versus</i> non dimensional frequency. Gap 1.0 mm.	91
3.14	Hammer supported by wires, comparison between numerical	
	simulation and experimental results. Non dimensional force	
	<i>versus</i> non dimensional frequency. Gap 2.4 mm.	92
3.15	Poincaré map [90].	93
3.16	Hammer supported by wires, gap 0.0 mm, non dimensional	
	frequency 2.7. Numerical (blue)/ experiment (red) comparison:	
	a) Hammer displacement; b) Phase plane (solid line) and	
	Poincaré map (dots).	94
3.17	Hammer supported by wires, gap 0.0 mm, non dimensional	
	frequency 3.8. Numerical simulation (blue)/ experimental data	
	(red) comparison: a) Hammer displacement; b) Phase plane	
	(solid line) and Poincaré map (dots).	94
3.18	Hammer supported by wires, gap 1.0 mm, non dimensional	
	frequency 1.5. Numerical simulation (blue) / experimental data	
	(red) comparison: a) Hammer displacement; b) Phase plane	
	(solid line) and Poincaré map (dots).	95
3.19	Hammer supported by wires, gap 1.0 mm. non dimensional	-
	frequency 3.3. Numerical simulation (blue) / experimental data	
	(red) comparison: a) Hammer displacement: b) Phase plane	
	(solid line) and Poincaré map (dots).	95
	() · · · · · · · · · · · · · · · · · ·	

PUC-Rio - Certificação Digital Nº 0611808/CA

3.20	Hammer supported by wires, gap 1.0 mm, non dimensional	
	frequency 4.7. Numerical simulation (blue)/ experimental data	
	(red) comparison: a) Hammer displacement; b) Phase plane	
	(solid line) and Poincaré map (dots).	96
3.21	Hammer supported by wires, gap 2.4 mm, non dimensional	
	frequency 1.2. Numerical simulation (blue)/ experimental data	
	(red) comparison: a) Hammer displacement; b) Phase plane	
	(solid line) and Poincaré map (dots).	96
3.22	Hammer supported by wires, gap 2.4 mm, non dimensional	
	frequency 1.4. Numerical simulation (blue)/ experimental data	
	(red) comparison: a) Hammer displacement; b) Phase plane	
	(solid line) and Poincaré map (dots).	97
3.23	Hammer supported by wires, gap 2.4 mm, non dimensional	
	frequency 2.7. Numerical simulation (blue)/ experimental data	
	(red) comparison: a) Hammer displacement; b) Phase plane	
	(solid line) and Poincaré map (dots).	97
3.24	Hammer supported by wires, numerical result, Peterka map.	98
3.25	Hammer supported by wires, numerical (bright colors) /	
	experiment (dots) comparison, Peterka map	98
3.26	Hammer supported by wires, Peterka map of $z = 1/1$ with	
	impact force magnitude addressed	99
3.27	Hammer supported by wires, gap 0.0 mm, bifurcation	
	diagrams: a) Hammer displacement, Numerical simulation	
	(blue)/ experimental data (red) comparison; b) Impact force	
	(numerical).	100
3.28	Hammer supported by wires, gap 0.0 mm, bifurcation diagrams,	
	hammer displacement, details of Figure 3.27(a).	100
3.29	Hammer supported by wires, gap 0.0 mm, bifurcation diagrams,	
	Impact force, details of Figure 3.27(b).	100
3.30	Hammer supported by wires, gap 1.0 mm, bifurcation	
	diagrams: a) Hammer displacement, Numerical simulation	
	(blue)/ experimental data (red) comparison; b) Impact force	101
0.01	(numerical).	101
3.31	Hammer supported by wires, gap 1.0 mm, bifurcation diagrams,	101
2 2 2	Hammer displacement, details of Figure 3.30(a).	101
3.32	Hammer supported by wires, gap 1.0 mm, bifurcation diagrams,	101
	Impact force, details of Figure 3.30(b).	101
3.33	Hammer supported by wires, gap 2.4 mm, bifurcation	
	diagrams: a) Hammer displacement, Numerical simulation	
	(blue)/ experimental data (red) comparison; b) impact force	100
2 2 4	(numerical).	102
3.34	nammer supported by wires, gap 2.4 mm, bifurcation diagrams,	100
0 0F	nammer displacement, details of Figure 3.33(a).	102
3.35	nammer supported by wires, gap 2.4 mm, bifurcation diagrams,	100
2.20	Impact force, details of Figure 3.33(D).	102
3.30	manufaction; condition of $\frac{1}{2}$ imported by wires, basins of attraction; condition of $\frac{1}{2}$	
	impact (Diue) / no impact (red): a) $M/\omega = 2.00 \ gap/A_0 = 2.00$;	100
	b) $M/\omega = 2.00 \ gap/A_0 = 1.50.$	103

3.37	Hammer supported by wires, basins of attraction; condition of impact (blue) / no impact (red); a) $\Omega/\omega = 1.75 \ agn/A_0 = 2.50$;	
	b) $\Omega/\omega = 1.75 \ qap/A_0 = 3.50.$	104
3.38	Hammer supported by wires, basins of attraction; condition of	
	impact (blue) / no impact (red): a) $\Omega/\omega=2.15~gap/A_0=1.60;$	
0.00	b) $\Omega/\omega = 2.25 \ gap/A_0 = 1.50$.	104
3.39	Model of hammer supported by beam springs, physical	105
3 40	Hammer supported by beam springs couplings distance 170	105
5.10	mm. Numerical/ experiment comparison. Non dimensional force <i>versus</i> non dimensional frequency. a) Gap 0.0 mm. b) Gap 1.0 mm. c) Gap 3 mm.	108
3.41	Hammer supported by beam springs, couplings distance 150	
	mm. Numerical/ experiment comparison. Non dimensional force <i>versus</i> non dimensional frequency. a) Gap 0.0 mm. b) Gap 1.0 mm. c) Gap 3 mm	108
3 42	Hammer supported by beam springs couplings distance 135	100
0.12	mm. Numerical/ experiment comparison. Non dimensional force	
	versus non dimensional frequency. a) Gap 0.0 mm. b) Gap 1.0	
	mm. c) Gap 3 mm.	108
3.43	Hammer springs, couplings distance 170 mm, bifurcation	
	diagrams, nammer displacement, numerical simulation (blue)/	
	mm: c) gap 3.0 mm.	109
3.44	Hammer springs, couplings distance 150 mm, bifurcation	
	diagrams, hammer displacement, numerical simulation (blue)/	
	experimental data (red) comparison: a) gap 0.0 mm; b) gap 1.0	
2 / 5	mm; c) gap 3.0 mm. Hammar, springs, sounlings, dictance, 125 mm, hiturcation,	110
5.40	diagrams hammer displacement numerical simulation (blue)/	
	experimental data (red) comparison: a) gap 0.0 mm; b) gap 1.0	
	mm; c) gap 3.0 mm.	110
3.46	Hammer springs, couplings distance 170 mm; a) Peterka map;	
o 17	b) Detail of map.	111
3.47	Hammer springs, couplings distance $1/0$ mm, Peterka map of	110
3 48	z = 1/1 with impact force magnitude addressed. Hammer springs, couplings distance 150 mm ⁻ a) Peterka map	112
5.70	b) Detail of map.	112
3.49	Hammer springs, couplings distance 150 mm, Peterka map of	
	z=1/1 with impact force magnitude addressed.	113
3.50	Hammer springs, couplings distance 135 mm; a) Peterka map;	
0 F 1	b) Detail of map.	113
3.51	naminer springs, couplings distance 150 mm, Peterka map of $z = 1/1$ with impact force magnitude addressed	114
0 50		T T 4

3.52 Hammer springs, couplings distance 170 mm, basins of attraction; condition of impact (blue) / no impact (red): a) $\Omega/\omega = 1.80 \ gap/A_0 = 1.60$, b) $\Omega/\omega = 2.20 \ gap/A_0 = 1.50$. 114

PUC-Rio - Certificação Digital Nº 0611808/CA

3.53 3.54	Hammer springs, couplings distance 150 mm, basins of attraction; condition of impact (blue) / no impact (red): a) $\Omega/\omega = 1.80 \ gap/A_0 = 1.74$; b) $\Omega/\omega = 2.10 \ gap/A_0 = 1.40$. Hammer springs, couplings distance 135 mm, basins of attraction; condition of impact (blue) / no impact (red): a)	115
	$\Omega/\omega = 2.15 \ gap/A_0 = 1.60; \text{ b}) \ \Omega/\omega = 2.25 \ gap/A_0 = 1.50.$	115
4.1	Frank photo and schematics (<i>Courtesy of Dr. Luiz Fernando Franca, CSIRO</i>).	119
4.2	Frank's hammer device.	121
4.3	Frank Jr. photos: a) Roller-cone bit; b) Set up before drilling test	.121
4.4	Frank Jr. Schematics (<i>Courtesy of Greg Lupton, CSIRO</i>).	122
4.5	Frank Jr. photos: a) Rock sample after drilling; b) Rock sample borehole.	124
4.6	Frank Jr. drilling tests on cement. Bit penetration with and	
	without percussive action for weight on bit = 2.83 kN, Ω_d = 20 RPM, excitation amplitude = 40 mm, excitation frequency	
	= 4.8 Hz hammer mass $= 5.03 kg$	124
4.7	Frank Jr. drilling tests on cement. Bit penetration with and	
	without percussive action for weight on bit = 2.83 kN, Ω_d =	
	60 RPM, excitation amplitude = 30 mm and 40 mm , excitation	
	frequency = 4.8 Hz, hammer mass = 5.03 kg.	125
4.8	Drilling tests performed in cement. Reduction of weight on bit	
	and torque on bit as the hammering system is turned on.	125
4.9	FRF of acceleration signal, drilling test under dynamic control:	
	a) $\Omega_d = 60 RPM$.	127
4.10	FRF of acceleration signal, drilling test under dynamic control:	
	a) $\Omega_d = 90 RPM$.	127
4.11	FRF of acceleration signal, drilling test under dynamic control:	
	a) $\Omega_d = 120 RPM$	128
4.12	Hammer springs design, excitation frequency $\Omega = 3Hz$: a)	
	Impact force <i>versus</i> mass ratio; b) Non-dimensional force	
	(F_i/mg) versus mass ratio.	129
4.13	Hammer springs design, excitation frequency $\Omega = 4.5Hz$:	
	a) impact force versus mass ratio; b) inon-dimensional force (E_1)	120
/ 1 <i>/</i>	(Γ_i/mg) versus mass ratio. Hammer springs design excitation frequency $\Omega = 6 H_{ev}$ a)	130
4.14	Impact force versus mass ratio b) Non-dimensional force	
	$(F_{\rm c}/m_a)$ versus mass ratio	130
		100

List of Tables

2.1	First experiment. Sensor specs.	34
2.2	Impact resonance frequencies (experimental).	43
2.3	Second experiment. Sensor specs.	47
2.4	Impact resonance frequencies and impact force magnitudes	
	(experimental), frequency band $z = 1/1$.	66
2.5	Non-dimensional impact resonance frequencies (Ω/ω) , all	
	hammer configurations, frequency band $z=1/1.$	69
3.1	lmpact parameters - spring-dashpot model.	86
3.2	Hammer supported by wires - parameters identification.	88
3.3	Hammer supported by beam springs - parameters identification.	106

Notation

BHA	Bottom Hole Assembly.
MWD	Measurement While Drilling.
LWD	Logging While Drilling.
HWDP	Heavyweight drill pipes.
TOB	Torque on bit.
WOB	Weight on bit.
RHD	Resonance Hammer Drilling.
FRF	Frequency response function.
DOF	Degree of freedom
sin	Sine.
cos	Cosine.
z	Impact condition (number of impact per cycles of excitation)
F_i	Impact force, N.
F_{exc}	Excitation force, N
m_{tot}	Total mass, kg .
m	Hammer mass, kg .
M	Cart mass, kg .
A_0	Excitation amplitude, m .
l	Length, <i>m</i> .
g	Acceleration of gravity, $9.81\ m/s^2$
t	Time, s.
С	Damping coeficient, Ns/m .
ζ	Damping ratio.
θ	Angle, <i>rad</i> .
$\dot{ heta}$	Angular velocity, rad/s .
$\ddot{ heta}$	Angular acceleration, rad/s^2 .
x	Displacement (hammer), m .
y	Displacement (excitation), m .
Ω	Excitation frequency, Hz or rad/s .
ω	System natural frequency, Hz or rad/s .
δ	Indentation during impact, m .
$\dot{\delta}$	Velocity of indentation during impact, m/s .
$\dot{\delta}^{(-)}$	Instant velocity before impact, m/s .
k_i	Stiffness of impact (modeling), N/m .
c_i	Damping of impact (modeling), Ns/m
n	constant.
λ_i	Damping/ stiffness ratio (impact modeling), s .
e	Coefficient of restitution.
gap	Impact gap, m .
Γ	Subspace.
\sum	Hyper-surface.
$h(\mathbf{x})$	Scalar function.
η	Narrow band thickness.
x	State-space vector.
\overline{CO}	Convex set

L'essentiel est invisible pour les yeux.

Antoine de Saint-Exupèry, Le Petit Prince.