

Renan Ferreira Fraga Wanderley

Validação de Modelo para Análise Estrutural de um Chassi de Kart

Projeto de Graduação

Projeto de Graduação apresentado ao Departamento de Engenharia Mecânica da PUC-Rio

> Orientador: Mauro Speranza Neto Coorientador: Allan Nogueira de Albuquerque

> > Rio de Janeiro Dezembro de 2017

AGRADECIMENTOS

Ao meu orientador Mauro Speranza Neto pela amizade, oportunidade, apoio, orientação e confiança depositados durante a realização deste trabalho.

Ao meu co-orientador: Allan Nogueira de Albuquerque pela amizade e a ajuda indispensável durante o desenvolvimento deste projeto.

Ao PROUNI pelo auxílio financeiro concedido durante todo o curso.

Aos amigos, professores, pesquisadores e funcionários do Instituto Tecnológico de Universidade Católica e do Departamento de Engenharia Mecânica da PUC-Rio, pelos ensinamentos, sugestões e conversas durante a realização deste trabalho.

À minha família, amigos e entes queridos, que de alguma forma, contribuíram para esse projeto.

RESUMO

Validação de Modelo para Análise Estrutural de um Chassi de Kart

De forma geral o kart possui bastante semelhança com um carro comum, contudo seu funcionamento é muito diferente. O kart não possui nem suspensões nem diferencial e por isso, ao entrar em uma curva, o chassi torce e deforma para que não haja arrastamento das rodas e com isso seja capaz de completar a curva. Portanto, é relevante estudar a estrutura do kart para que seja possível analisar seu comportamento e buscar melhorias para esta, de forma a aumentar seu desempenho em pista. Este trabalho propõe uma metodologia com o auxílio de dois softwares, SOLIDWORKS e MATLAB, para obter a matriz de rigidez do chassi através de simulações e testes. Com esta matriz consegue-se determinar os deslocamentos resultantes de quaisquer esforços que sejam aplicados em determinados pontos (juntas) da estrutura. Este método foi validado a partir de comparações com a solução analítica de diversos problemas. Assim, foi possível simular situações reais que ocorrem com o kart durante uma corrida como frenagem, aceleração e as deformações resultantes da realização de curvas. Utilizou-se o software para aplicar esforços referentes à transferência de carga que ocorre com veículos durante seu movimento. Ao estudar o comportamento da estrutura, com a aplicação dos esforços de transferência de carga, durante uma curva, foram verificados alguns comportamentos típicos de situações de corrida, como por exemplo, a perda de contato da roda traseira com o solo.

Palavras chaves: SOLIDWORKS; MATLAB; Matriz; Rigidez; Kart; Simulação.

ABSTRACT

Validation of Model for Structural Analysis of a Kart's Chassi

Generally a kart has a lot of similarity with an ordinary car, however, it's functioning is very different. The kart has neither suspension nor differential, that's why when it enters a curve the chassis twists and deforms so that the tire doesn't drag and it can be able to make the curve. Therefore, the study of the structure of a kart is relevant so that can be possible to analyze its behavior and search improvements for it and finally increase its performance on the track. This report proposes a methodology with the aid of two softwares, SOLIDWORKS and MATLAB, to obtain the stiffness matrix of the chassis through simulations and tests. With this matrix it's possible to determine the displacements resulting from any forces applied to determined points (joints) of the structure. This method was validated from comparisons with the analytical solution of several problems. Therefore, it was possible to simulate real situations that occur with the kart during a race like breaking, acceleration and the deformations resulting the making of a curve. The software was used to apply forces referring to the weight transfer that occur in vehicles during its movement. Due to the study of the structure's behavior, with the application of forces referring to the weight transfer, during a curve, it was verified some typical behavior in a race, like for example, the loss of contact between the tire and the ground.

Key-words: SOLIDWORKS; MATLAB; Matrix; Stiffness; Kart; Simulation.

SUMÁRIO

1.	INTRODUÇÃO	10
1.1.	Motivação	10
1.2.	Objetivos	11
1.3.	Metodologia	12
1.4.	Organização do trabalho	13
2.	REVISÃO BIBLIOGRÁFICA	14
2.1.	Estrutura do kart	14
2.2.	Matriz de rigidez	16
2.3.	Simulação computacional	17
2.4.	Programas para análise estrutural	21
3.	MATRIZES DE RIGIDEZ	28
3.1.	Barras biengastadas	28
3.2.	Viga em balanço	31
3.3.	Tubo L em balanço	37
3.4.	Quadro tubular	40
3.5.	Tubo L em balanço	42
3.6.	Chassi do kart	46
4.	DINÂMICA DO KART	51
4.1.	Introdução	51
4.2.	Transferência de peso longitudinal	52
4.2.	1. Aceleração	52
4.2.2	2. Frenagem	55
4.3.	Transferência de peso lateral	56
5.	CONCLUSÕES E TRABALHOS FUTUROS	62
5.1.	Conclusões	62
5.2.	Trabalhos futuros	62

REFERÊNCIAS BIBLIOGRÁFICAS	
ANEXO A – MATRIZES DE RIGIDEZ	69
A.1 Matriz de rigidez do quadro tubular	69
A.2 Matriz de rigidez do kart	70
ANEXO B – DESENHOS TÉCNICOS	75
CD ANEXO	76

Lista de figuras

Figura 1 - Análise estrutural feita no ANSYS11
Figura 2 - Análise estrutural feita no SOLIDWORKS11
Figura 3 - <i>Flowchart</i> da metodologia12
Figura 4 - Estrutura Analítica do Projeto (EAP)12
Figura 5 - Curvas realizadas por cada roda do carro14
Figura 6 - Kart realizando uma curva15
Figura 7 – Componentes do kart16
Figura 8 – Chassi do kart16
Figura 9 - Exemplo de simulação do túnel de vento17
Figura 10 - Análise estrutural da asa de um carro de Fórmula 1
Figura 11 - (a) modelo de elementos finitos linear. (b) modelo de elementos finitos
quadrático20
Figura 12 - Nós e elementos presentes em uma malha20
Figura 13 - Triangulação de Delaunay (a) no plano com as circunferências
visíveis;(b) com todas as circunferências e seus centros (em vermelho); (c)
conectando-se os centros das circunferências produz-se o Diagrama de Voronoi
(em vermelho)23
Figura 14 – Elemento sólido (a) linear e (b) parabólico (help.solidworks.com,
acessado em 2017)23
Figura 15 – (a) Modelo CAD de uma peça; (b) Malha do modelo gerada com
elementos tetraédricos (help.solidworks.com, acessado em 2017)24
Figura 16 – a) Elemento triangular linear; b) Elemento triangular parabólico
(help.solidworks.com, acessado em 2017)24
Figura 17 – (a) Modelo de chapa metálica (b) Malha de casca criada na superfície
média (help.solidworks.com, acessado em 2017)25
Figura 18 - Malha criada com elementos de viga25
Figura 19 - Diferença entre tempo de solução26
Figura 20 – Etapas do processo de simulação27
Figura 21 - Exercício resolvido28
Figura 22 - Modelo do teste
Figura 23 - Simulação do teste30

Figura 24 - Modelo analítico	32
Figura 25 - Pontos de aplicação da carga	33
Figura 26 - Modelo da viga	33
Figura 27 - Simulação da viga	34
Figura 28 - Esquema da estrutura tubular	38
Figura 29 - Estrutura tubular para teste	38
Figura 30 - Esquema do quadro tubular	40
Figura 31 - Modelo do quadro tubular	41
Figura 32 - Simulação do quadro tubular	41
Figura 33 - Estrutura tubular para teste 2	43
Figura 34 - Tubo L em corte com as forças aplicadas	45
Figura 35 - Kart localizado no LIENG	47
Figura 36 - Modelo do kart	47
Figura 37 - Modelo simplificado do kart	48
Figura 38 - Juntas do modelo	49
Figura 39 - Exemplo de rolagem, arfagem e guinada	51
Figura 40 - Transferência de carga longitudinal	52
Figura 41 - Esquema de transferência de carga longitudinal	52
Figura 42 - Velocidade versus tempo	53
Figura 43 - Deslocamento apenas com peso próprio	54
Figura 44 - Deslocamento do peso próprio mais carga da aceleração	55
Figura 45 - Deslocamento do peso próprio mais carga da frenagem	56
Figura 46 - Exemplo de rolagem	57
Figura 47 - Esquema de transferência de carga lateral	57
Figura 48 - Deslocamento do peso próprio mais carga da curva à esquerda	59
Figura 49 - Torção resultante da realização da curva	60
Figura 50 - Forças resultantes na roda traseira esquerda	60
Figura 51 - Protótipo do chassi em alumínio	63
Figura 52 - Experimento do método de Rayleigh	64
Figura 53 - Modos de vibração	64

Lista de tabelas

35
35
35
37
39
39
42
46
50

1. Introdução

1.1. Motivação

Um chassi de kart, diferentemente de um chassi de carro comum, não possui diferencial nem suspensão. Devido a este fato, durante uma corrida, em diversos momentos, o chassi sofre torções e deformações para que seja possível realizar curvas.

Com isso, o estudo do comportamento estrutural do chassi, assim como os materiais que o compõem, se tornou tema de diversos trabalhos e artigos desde a área de Engenharia Mecânica até a Engenharia Química. Estes estudos visam sempre a melhora na fabricação de chassis para que consequentemente haja uma melhora do desempenho em pista do kart.

Contudo este estudo não é simples. É requisito mínimo que se tenha um entendimento de conceitos matemáticos específicos, elementos finitos e de softwares que sejam capazes de realizar as simulações necessárias para que seja possível obter resultados e analisá-los.

Com o intuito de exemplificar a importância deste estudo têm-se os inúmeros artigos deste tema em revistas como a *IJMET (International Journal of Mechanical Engineering and Technology)* que datam inclusive o ano em que este projeto está sendo realizado. Kelkar, *et al.* e Ramini, *et al.*, cujos estudos foram realizados respectivamente em 2017 e 2015, analisaram o design e a estrutura do chassi do kart através de softwares de simulações, *ANSYS* e *SOLIDWORKS* respectivamente, e conceitos estruturais. Na Figura 1 encontra-se o modelo estudado no *ANSYS* pela primeira referência, enquanto que na Figura 2 tem-se a estrutura estudada no *SOLIDWORKS* pela segunda referência. Apesar de suas estruturas serem ligeiramente diferentes, os dois estudos possuem objetivos e metodologias similares.

Figura 1 - Análise estrutural feita no *ANSYS* (Kelkar, *et al.* 2017)

Figura 2 - Análise estrutural feita no SOLIDWORKS (Ramini, *et al.* 2017)

1.2. Objetivos

Como mencionado anteriormente, o chassi de um kart deve aguentar torções e deformações resultantes de esforços que este sofre ao longo de uma corrida. O objetivo deste estudo é, através do uso de softwares específicos, modelar o chassi do kart e utilizar simulações nesta estrutura para obter a matriz de rigidez do mesmo. Com esta será possível analisar a estrutura em diversas situações, desde esforços estáticos até situações dinâmicas reais como a falta de diferencial durante a realização da curva, frenagem e tração.

O kart utilizado como base para o modelo computacional encontra-se no Laboratório de Introdução à Engenharia e os resultados obtidos neste relatório poderão ser usados para realizar mudanças na estrutura para alcançar um melhor desempenho em pista. Esta metodologia também poderá ser aplicada em outros trabalhos para analisar outros tipos de veículos.

1.3. Metodologia

Inicialmente foi realizado um estudo sobre matrizes de rigidez, elementos finitos, simulações no *SOLIDWORKS* e o funcionamento do chassi de um kart. Com estes conhecimentos foram iniciados testes simples do método que foi utilizado. Foram modeladas estruturas simples e nelas foram feitas simulações para que fosse possível obter suas matrizes de rigidez através do auxílio de outro software, o *MATLAB*.

Testes foram feitos, tanto com a estrutura quanto sua respectiva matriz, com a intenção de se comparar os resultados para validar o método. Este procedimento foi realizado para todos os modelos e em seguida os resultados foram analisados. Finalmente o método foi utilizado para o chassi completo do kart e após sua validação, foram feitos novos testes para simular os esforços dinâmicos provenientes de situações reais em pista. Para simplificar o entendimento da metodologia encontra-se na Figura 3 um *flowchart* desta.

Figura 3 - Flowchart da metodologia

Em adição ao *flowchart* encontra-se na Figura 4 a Estrutura Analítica do Projeto (EAP).

Figura 4 - Estrutura Analítica do Projeto (EAP)

1.4. Organização do trabalho

O desenvolvimento deste trabalho foi feito em cinco partes principais, sendo cada uma destas partes um capítulo do trabalho.

No capítulo 2 são introduzidos brevemente os conceitos necessários para compreender a metodologia aplicada no projeto.

No capítulo 3 encontram-se as estruturas modeladas no SOLIDWORKS, incluindo as simulações realizadas, as matrizes de rigidez encontradas com o auxílio do *MATLAB* e os testes feitos para que os resultados pudessem ser comparados para validar o método. Sendo o último modelo analisado neste capítulo o chassi completo do kart.

No capítulo 4 utiliza-se a matriz encontrada para o kart para simular a estrutura em situações dinâmicas reais de pista como a frenagem, a tração e as torções e deformações encontradas durante a curva em uma corrida.

No capítulo 5 são apresentadas as conclusões do trabalho realizado ao longo deste projeto, assim como sugestões para trabalhos futuros que poderão ser realizados utilizando tanto a metodologia aplicada quanto os resultados obtidos.

2. Revisão Bibliográfica

2.1. Estrutura do kart

Comparando um kart com um automóvel é possível observar muitas semelhanças como: motor, sistema de direção, sistema de transmissão e um chassi. Contudo, no funcionamento do kart há mais diferenças do que semelhanças em relação a um carro.

Nos automóveis, um dos componentes do sistema de transmissão possui papel fundamental na capacidade do veículo de fazer curvas, e este se chama diferencial. Quando um veículo realiza uma curva, as rodas internas à curva percorrem um caminho mais curto que as rodas externas (Figura 5). Caso as rodas de ambos os lados girassem a mesma velocidade, o veículo teria uma resistência ao esterçamento e facilmente seguiria reto (*pushing*). Isso não acontece por que o diferencial se encarrega de reduzir a velocidade da roda motriz interna, e então torna possível o esterçamento do veículo (carrosinfoco.com.br, acessado em 2017).

Figura 5 - Curvas realizadas por cada roda do carro (flatout.com.br, acessado em 2017)

Como no kart não há diferencial, o chassi se torce e flexiona de propósito para garantir a fidelidade das rodas ao piso. Mas, quando o kart é esterçado numa curva, o efeito diferencial é obtido pela redução da carga vertical sobre a roda traseira interna à curva. Ou seja, levantando levemente a roda, fazendo-a girar em falso e possibilitando o esterçamento do kart. Na Figura 6 nota-se o momento em que a roda perde o contato com o solo (carrosinfoco.com.br, acessado em 2017).

Figura 6 - Kart realizando uma curva (flatout.com.br, acessado em 2017)

Com isso o chassi de kart é frequentemente estudado para obter melhores resultados durante uma corrida. Estuda-se tanto sua composição na hora de selecionar o material de fabricação do mesmo quanto em sua estrutura. Na Figura 7 encontra-se um kart com suas partes descritas e na Figura 8, uma vista superior apenas do chassi.

A fabricação utiliza tubos de metal soldados por processo MIG. A espessura dos tubos varia de acordo com o diâmetro externo destes. Estes valores são tabelados pela *FIA* (*Federation Internationale de l'Automobile*), órgão responsável por todas as regulamentações relacionadas a karts de competição (cikfia.com, acessado em 2017).

Figura 7 – Componentes do kart (flatout.com.br, acessado em 2017)

Figura 8 – Chassi do kart (flatout.com.br, acessado em 2017)

2.2. Matriz de rigidez

A matriz de rigidez contém as características geométricas e constitutivas do material, referentes à resistência e à deformação do elemento estudado quando este é submetido a forças (Kenneth, *et al.* 2009)

Esta matriz está relacionada tanto com as forças aplicadas na estrutura quanto com os deslocamentos resultantes dessas. Na Equação 2.1 encontra-se essa relação demonstrada de forma matricial.

$$\begin{vmatrix} F_1 \\ F_2 \end{vmatrix} = \begin{vmatrix} k_1 & k_2 \\ k_3 & k_4 \end{vmatrix} \begin{vmatrix} \delta_1 \\ \delta_2 \end{vmatrix}$$
(2.1)

Ou, de forma compacta na Equação 2.2:

$$|f| = |K| |u|$$
(2.2)

16

Onde:

- $f \rightarrow$ Vetor das forças aplicadas no elemento
- $\mathbf{K} \rightarrow \text{Matriz}$ de rigidez do elemento
- $u \rightarrow$ Vetor dos deslocamentos resultantes no elemento

2.3. Simulação computacional

Diversas empresas empregam a simulação computacional para realizar análises e melhorar a qualidade dos produtos e projetos. Como exemplo tem-se a Fórmula 1 e seus carros. De forma geral, os procedimentos realizados para testar os veículos são: o túnel de vento e o CFD (*Computational Fluid Dynamics*). Sendo este último um teste feito através de simulação computacional que é próximo ao túnel de vento. Na Figura 9 encontra-se um modelo de um carro de Fórmula 1 que está sendo simulado em um túnel de vento, sendo possível observar através da barra de valores da esquerda o que ocorre em cada parte do carro (tecmundo.com.br, acessado em 2017).

Figura 9 - Exemplo de simulação do túnel de vento (esss.com.br, acessado em 2017)

Em 2011 a *Maruska Virgin Racing* (antiga *Virgin Racing*) utilizou apenas a simulação para o carro. O piloto da equipe na época listou os motivos de não utilizarem um túnel de vento. Primeiro, a tecnologia evita a construção e o descarte de peças para teste, gerando praticamente zero de lixo. Ou seja, trata-se de uma tecnologia muito mais sustentável. O segundo motivo foi o custo. Um túnel de vento é muito caro e como no ano anterior o orçamento da Virgin foi limitado, a construção do túnel se tornou inviável. O último motivo foi o tempo, pois com o curto prazo para construção do carro naquele ano investir somente em CFD foi a maneira que eles encontraram para ganhar tempo (tecmundo.com.br, acessado em 2017).

Como outro exemplo da utilização de softwares de simulação existe a publicação de (Vadgama, *et al.* 2015) realizando um estudo estrutural em uma asa de carro de Fórmula 1 para que fosse possível analisar a resistência da mesma sobre a aplicação de certos esforços como a força aerodinâmica durante uma corrida. Na Figura 10 tem-se o modelo da asa com os resultados obtidos na simulação.

Figura 10 - Análise estrutural da asa de um carro de Fórmula 1 (Vadgama, *et al*. 2015)

A MechWorks Tecnologia é líder em diversos estados brasileiros na área de fornecimento de ferramentas de CAD (Computer Aided Design)/CAE (Computer Aided Engineering)/ERP (Enterprise Resource Planning). Atualmente na área de projetos, torna-se necessário migrar do antigo processo 2D para a tecnologia 3D,

que agora atinge total maturidade. Com essa tecnologia 3D, é possível reduzir ciclos de projeto e erros de fabricação, fator determinante para melhorar a qualidade do produto e aumentar a lucratividade do mesmo. A evolução destes softwares é certa e com ela, cada vez mais, será possível otimizar o tempo de concepção de projetos e consequentemente aumentar a margem de acerto. Entre seus clientes têm-se grandes nomes como: Petrobras, Vale, Michelin, Gerdau, entre muitos outros (mechworks.com.br, acessado em 2017).

Os softwares que são utilizados para a realização dessas análises utilizam o método dos elementos finitos, os quais possibilitam a obtenção de respostas para inúmeros problemas de engenharia.

Processos de elementos finitos são atualmente uma importante e frequente parte indispensável do design e análise de engenharia. Softwares que utilizam elementos finitos são usados praticamente em todas as áreas de engenharia para a análise de estruturas, sólidos e fluidos (Bathe, 2014).

Segundo Segerlind (1984), o método dos elementos finitos é um procedimento numérico usado para resolver problemas físicos governados por uma equação diferencial ou um teorema de energia. Este possui duas características que o distinguem de outros processos numéricos:

- O método utiliza uma formulação integral para gerar um sistema de equações algébricas.
- O método usa funções contínuas suaves por partes para aproximação de quantidade ou quantidades desconhecidas.

O modelo de elementos finitos da deflexão de uma viga é demonstrado na Figura 11. Este poderia consistir de vários segmentos lineares definidos em termos dos valores nodais, como mostrado na Figura 11 (a). O intervalo entre cada nó seria considerado um elemento, e a deflexão é aproximada por segmentos de linhas retas. Uma malha alternativa poderia consistir de três elementos sendo cada um definido por três pontos nodais como mostra a Figura 11 (b). Neste caso uma equação quadrática é definida a cada grupo de três pontos (Segerlind, 1984).

Figura 11 - (a) modelo de elementos finitos linear. (b) modelo de elementos finitos quadrático (Segerlind, 1984)

Na Figura 12 encontra-se um modelo feito no software onde seus nós e sua malha já foram definidos. A precisão da simulação depende da quantidade de nós e elementos, do tamanho e dos tipos de elementos da malha. Ou seja, quanto menor for o tamanho e maior for o número deles, em uma determinada malha, maior a precisão nos resultados da análise.

Figura 12 - Nós e elementos presentes em uma malha (esss.com.br, acessado em 2017)

A aplicação deste método abrange a resolução e diagnóstico de problemas de análise estrutural por meio da obtenção de deslocamentos, deformações e tensões, também permite representar diversos cenários e avaliar o desempenho de produtos com a aplicação de critérios de resistência, rigidez ou fadiga. Além disso, variações do método dos elementos finitos viabilizam a análise térmica, acústica, dinâmica, eletromagnética e de fluídos, para casos mais simples de comportamento linear ou outros não lineares, como quando há grandes deslocamentos ou contato entre partes de uma montagem (esss.com.br, acessado em 2017).

2.4. Programas para análise estrutural

O estudo deste projeto necessita de um software que torne viável realizar simulações (com base no método dos elementos finitos) de esforços com condições de contorno específicas. Com isso, tem-se uma variedade significativa para se escolher, sendo os mais conhecidos: *ANSYS*, *COMSOL* e *SOLIDWORKS*.

Para realizar o estudo no SOLIDWORKS é necessário primeiramente modelar a estrutura em questão e depois utilizar sua ferramenta de simulação. Esta fornece, numa mesma tela, soluções para análises térmica, de tensão, frequência, flambagem e otimização. Após escolher o tipo de análise é possível selecionar o material, as condições de contorno, o local e direção/sentido da aplicação das forças (assim como seus valores, no caso da análise de esforços).

Em seguida é necessário criar a malha que representará o modelo que será simulado. O gerador automático de malhas do software gera uma malha com base em um tamanho de elemento global, em uma tolerância e nas especificações de controle de malha local. O controle de malha permite especificar diferentes tamanhos de elemento para componentes, faces, arestas e vértices. O software estima um tamanho de elemento global para o modelo, considerando seu volume, área de superfície e outros detalhes geométricos. O tamanho da malha gerada (número de nós e elementos) depende da geometria e dimensões do modelo. As opções de malha são a malha sólida, a malha de casca, a malha de viga e a malha mista (help.solidworks.com, acessado em 2017).

Existem opções de geração de malha para todos os tipos mencionados anteriormente, com exceção da malha de viga. Nestas opções é possível determinar a qualidade da malha, que pode ser rascunho ou alta, e consequentemente, a qualidade dos resultados. Uma malha com qualidade de rascunho não possui nós intermediários, ela especifica quatro nós de canto para cada elemento sólido e três nós de canto para cada elemento de casca. Esta malha pode ser usada para uma rápida avaliação e em modelos sólidos, quando os efeitos de curvatura são pequenos. A malha de alta qualidade é recomendada para a maioria dos casos, especialmente para modelos com geometria curvada. Quando a qualidade da malha está definida como alta, os pontos jacobianos definem o número de pontos a serem usados na verificação do nível de distorção dos elementos tetraédricos de ordem superior. É possível basear a verificação jacobiana em quatro, dezesseis, vinte e nove pontos gaussianos ou nos próprios nós. Contudo existe também a opção de usar o gerador de malhas padrão que utiliza o esquema de geração de malha de Voronoi–Delaunay para operações subsequentes de geração de malha (help.solidworks.com, acessado em 2017).

O Diagrama de Voronoi é um tipo especial de decomposição de um dado espaço determinado pela distância para uma família de objetos (subconjuntos) no espaço. Estes objetos são chamados de sítios, geradores ou, menos comumente, sementes. Cada um destes está associado a uma célula de Voronoi correspondente, que é formada por um conjunto de todos os pontos no dado espaço cuja distância para o sítio não seja maior que a sua distância para os outros objetos. A Triangulação de Delaunay para um conjunto de pontos P no plano é uma triangulação DT(P) onde nenhum ponto em P está dentro da circunferência formada por qualquer triângulo na DT(P). Este teorema maximiza o menor ângulo de todos os triângulos na triangulação. A relação entre os dois teoremas mencionados acima parte do princípio que a triangulação de um conjunto discreto de pontos P corresponde ao grafo dual do Diagrama de Voronoi para P. Na Figura 13 se encontra o processo utilizado pelo *SOLIDWORKS*, com base na união destes dois teoremas, para a criação dos nós da malha (Berg, *et al.* 2008).

Figura 13 - Triangulação de Delaunay (a) no plano com as circunferências visíveis;(b) com todas as circunferências e seus centros (em vermelho); (c) conectando-se os centros das circunferências produz-se o Diagrama de Voronoi (em vermelho)

(Berg, et al. 2008)

Na malha sólida o software gera elementos com base nas opções de malha que estão ativas. Caso a qualidade da malha tenha sido definida como rascunho, o gerador automático de malhas gera elementos tetraédricos sólidos lineares. No caso da qualidade da malha estar definida como alta, ele gera elementos tetraédricos sólidos parabólicos. Normalmente, os elementos parabólicos fornecem melhores resultados do que os elementos lineares porque eles representam arestas curvadas mais adequadamente e produzem melhores aproximações, entretanto necessitam de mais recursos computacionais do que elementos lineares (help.solidworks.com, acessado em 2017).

Figura 14 – Elemento sólido (a) linear e (b) parabólico (help.solidworks.com, acessado em 2017)

Figura 15 – (a) Modelo CAD de uma peça; (b) Malha do modelo gerada com elementos tetraédricos (help.solidworks.com, acessado em 2017)

Na malha de casca o procedimento é próximo ao descrito acima, dependendo da qualidade da malha definida o software gera elementos de casca diferentes. Para a qualidade de rascunho são gerados elementos de casca triangulares lineares e para a qualidade alta são gerados elementos de casca triangulares parabólicos. O software utiliza malha de casca automaticamente para chapas metálicas com espessuras uniforme e para corpos de superfície (help.solidworks.com, acessado em 2017).

Figura 16 – a) Elemento triangular linear; b) Elemento triangular parabólico (help.solidworks.com, acessado em 2017)

Figura 17 – (a) Modelo de chapa metálica (b) Malha de casca criada na superfície média (help.solidworks.com, acessado em 2017)

No caso da malha de viga o programa identifica as juntas de componentes estruturais em contato ou que interferem uns com os outros e de componentes estruturais que não estão em contato, considerando uma distância determinada. Um elemento de viga é um elemento de linha definido por dois pontos finais e um corte transversal. A malha mista é utilizada pelo software quando diferentes geometrias estão presentes no modelo (help.solidworks.com, acessado em 2017).

Figura 18 - Malha criada com elementos de viga (help.solidworks.com, acessado em 2017)

Após a criação da malha, com infinitos nós, o programa é capaz de simular o estudo através de um tipo de solver, que são: Automático, Direct Sparse, FFEPlus (iterativo), Direct Sparse com problema complexo e Intel Direct Sparse. Cada solver possui uma recomendação de uso com base no tipo de estudo, opções de análise, condições de contato, etc (help.solidworks.com, acessado em 2017).

O solver utilizado durante as simulações deste estudo é o FFEPlus. Este usa técnicas avançadas de reordenação de matrizes que o tornam mais eficiente para grandes problemas (onde, em geral, é mais rápido para obter uma solução), e tornase mais eficiente à medida que o problema torna-se maior (help.solidworks.com, acessado em 2017).

Na Figura 19 é possível observar a diferença entre o tempo de solução dos dois solvers em função do número de graus de liberdade. Neste gráfico nota-se claramente que o método escolhido é melhor, pois conforme o número de graus de liberdade aumenta sua diferença de tempo de solução também aumenta.

FEA Solution Time

Na Figura 20 o processo descrito ao longo deste tópico é resumidamente exemplificado através de três etapas principais: a modelagem da estrutura, a escolha e criação da malha da mesma e por fim o resultado da simulação realizada com os esforços e pontos de fixação escolhidos.

Figura 20 – Etapas do processo de simulação (*help.solidworks.com, acessado em 2017*)

3. Matrizes de rigidez

Neste capítulo serão apresentadas as matrizes de rigidez obtidas para cada teste feito com um modelo simplificado diferente para validar o método utilizado.

3.1. Barras biengastadas

Com o objetivo de comparar o método analítico de cálculo da matriz de rigidez com o método que obtém a matriz de rigidez através de simulações computacionais, foi realizado um breve estudo que será o conteúdo desta seção.

Com base em um exercício resolvido que se encontra em (Kenneth, *et al.* 2010), tem-se uma estrutura biengastada formada por dois cilindros de materiais diferentes, Alumínio e Aço, cujas áreas de suas seções transversais são 13 cm^2 e 7 cm^2 , respectivamente. Pede-se então para determinar o deslocamento do ponto 2. O esquema do exercício encontra-se na Figura 21.

Figura 21 - Exercício resolvido

Para encontrar a matriz de rigidez deste problema é necessário primeiro considerar que para esta estrutura composta por dois materiais distintos a relação matricial é da forma descrita na Equação 3.1:

$$\begin{vmatrix} F_1 \\ F_2 \\ F_3 \end{vmatrix} = \begin{vmatrix} k_1 & -k_1 & 0 \\ -k_1 & k_1 + k_2 & -k_2 \\ 0 & -k_2 & k_2 \end{vmatrix} \begin{vmatrix} \delta_1 \\ \delta_2 \\ \delta_3 \end{vmatrix}$$
(3.1)

Sendo:

$$k_{alumínio} = k_1 = \frac{EA}{L} = \frac{(69 \times 10^9)(13 \times 10^{-4})}{0.3} = 299 \times 10^6 \ N/m$$
 (3.2)

$$k_{a,co} = k_2 = \frac{EA}{L} = \frac{(205 \, x \, 10^9)(7 \, x \, 10^{-4})}{0.4} = 358,75 \, x \, 10^6 \, N/m$$
 (3.3)

Nos dois pontos de engaste não há deslocamento, portanto pode-se afirmar que $\delta_1 = \delta_3 = 0$. Com isso a equação 3.1 se torna:

$$\begin{vmatrix} F_1 \\ -10000 \\ F_3 \end{vmatrix} = (10^6) \begin{vmatrix} 299 & -299 & 0 \\ -299 & 657,75 & -358,75 \\ 0 & -358,75 & 358,75 \end{vmatrix} \begin{vmatrix} 0 \\ \delta_2 \\ 0 \end{vmatrix}$$
(3.4)

Resolvendo a equação 3.4 obtêm-se os seguintes valores:

- $F_1 = 4545,8 N$
- $F_3 = 5454,2 N$
- $\delta_2 = -15,2 \times 10^{-6} m$

Após esta etapa a estrutura em questão foi modelada no SOLIDWORKS em duas partes para que fosse possível simular o conjunto com os dois materiais do problema. Na Figura 22 encontra-se o resultado da modelagem.

A simulação com o esforço, determinado no exercício, está demonstrada na Figura 23 e com esta será possível analisar os resultados obtidos pelo software e compará-los com os que foram obtidos analiticamente.

Figura 22 - Modelo do teste

Figura 23 - Simulação do teste

Os resultados obtidos pela simulação foram:

- $F_1 = 4647,7 N$
- $F_3 = 5336,1 N$
- $\delta_2 = -15,44 \times 10^{-6} m$

O erro encontrado entre os dois métodos para cada variável encontra-se logo abaixo:

- $Erro_{F_1} = 2,19\%$
- $Erro_{F_3} = 2,21 \%$
- $Erro_{\delta_2} = 1,55 \%$

Nota-se que os valores fornecidos pelo SOLIDWORKS são confiáveis, pois o erro é menor que 3%. Acredita-se que este erro é devido a deformações superficiais que ocorrem na estrutura e o software prevê, mas o modelo analítico não leva em consideração na realização dos cálculos.

3.2. Viga em balanço

Primeiramente foi modelada uma viga em balanço (engastada), representada pela Figura 24, para comparar os valores de deslocamento fornecidos pelo *SOLIDWORKS* com os valores obtidos através das seguintes equações:

Figura 24 - Modelo analítico

$$\delta = -\frac{Px^2}{6EI}(3a - x) \qquad (0 \le x \le a) \qquad (3.5)$$

$$\delta = -\frac{Pa^2}{6EI}(3x - a) \qquad (a \le x \le L) \qquad (4.6)$$

Onde,

- $\delta \rightarrow$ Deslocamento da viga engastada
- $P \rightarrow$ Carga que está sendo aplicada
- $a \rightarrow$ Distância do engaste até o local de aplicação da carga
- $E \rightarrow$ Módulo de elasticidade do material
- $I \rightarrow$ Momento de inércia da viga
- $L \rightarrow$ Comprimento total da viga

A modelagem da viga no *SOLIDWORKS* foi realizada com esta possuindo uma seção retangular de 70 mm x 100 mm e um comprimento total de 500 mm. Após esta etapa foi escolhido o material que compõe a estrutura, AISI 1020.

Foram realizadas três simulações, onde em cada simulação somente a carga P era aplicada em um ponto diferente ao longo da viga, conforme visto no esquema da Figura 25.

Figura 25 - Pontos de aplicação da carga

Para facilitar a simulação e a análise dos casos foram modelados na viga três pares de pontos onde em cada par, o que se encontra na linha de centro seria usado para a aplicação da carga e o outro para analisar o deslocamento resultante. O modelo da viga com os pontos é demonstrado na Figura 26.

Figura 26 - Modelo da viga

Na Figura 27 nota-se a malha da viga com todos os seus nós, assim como seu ponto de engaste (verde) e a seta (roxo) indicando o local de aplicação da força durante a simulação. A carga aplicada durante a simulação em todos os casos foi a mesma, -5000 N.

Figura 27 - Simulação da viga

Em cada simulação os valores de deslocamento em cada um dos pontos foram registrados, assim como a força de reação que se encontra no engaste. Estes valores estão descritos na Tabela 1. Nota-se que a simulação 1 corresponde à aplicação de carga no ponto 1 e assim por diante. As referências utilizadas nesta análise consideram os deslocamentos da viga para baixo como negativos e a força da carga aplicada para baixo como positiva.

	δ_1 (mm)	δ_2 (mm)	δ_3 (mm)	F_R (N)
Simulação 1	- 0,09317	- 0,043733	- 0,0088696	- 4905,3
Simulação 2	- 0,043772	- 0,024477	- 0,0056262	- 4906,1
Simulação 3	- 0,0089159	- 0,0056494	- 0,0027527	- 4905,4

Tabela 1 - Resultados da simulação da viga

Após registrar os dados encontrados pelo SOLIDWORKS, foram utilizadas as Equações 3.5 e 3.6 para obter valores analíticos deste problema para que posteriormente estes sejam comparados. Com isso a Tabela 2 mostra os valores encontrados considerando o mesmo cenário para as três simulações.

Tabela 2 - Valores obtidos analiticamente

	δ_1 (mm)	$\delta_2 \ (mm)$	δ_3 (mm)
Simulação 1	- 0,0914338	- 0,0424131	- 0,0078576
Simulação 2	- 0,0424131	-0,0223227	-0,0046431
Simulação 3	-0,0078576	-0,0046431	-0,0014287

Na Tabela 3 têm-se os erros referentes aos resultados obtidos pelos dois métodos.

Tabela 3 - Erro dos métodos

	$Erro_{\delta_1}$ (%)	$Erro_{\delta_2}$ (%)	$Erro_{\delta_3}$ (%)
Simulação 1	1,86	3,02	11,41
Simulação 2	3,10	8,80	17,47
Simulação 3	11,87	17,81	48,10

Na primeira simulação o erro do deslocamento do ponto próximo ao engaste se torna quase quatro vezes maior que o ponto anterior. O mesmo ocorre na segunda simulação e como a força aplicada também se encontra mais próxima do engaste o erro dos três pontos aumenta com relação à simulação anterior. Na última simulação é confirmado o que foi dito para as simulações anteriores. Conclui-se que quanto mais próximo do engaste maior o erro, pois quanto mais próximo do engaste maior será a rigidez e consequentemente menor será o deslocamento resultante.

A matriz de rigidez desta estrutura foi obtida com base na Equação 2.1. A estrutura possui três pontos que são analisados em cada simulação, com isso sabese que a matriz K será uma matriz quadrada 3x3 conforme demonstrado abaixo.

$$\begin{vmatrix} F_1 \\ F_2 \\ F_3 \end{vmatrix} = \begin{vmatrix} k_1 & k_2 & k_3 \\ k_4 & k_5 & k_6 \\ k_7 & k_8 & k_9 \end{vmatrix} \begin{vmatrix} \delta_1 \\ \delta_2 \\ \delta_3 \end{vmatrix}$$
(3.7)

De acordo com o sistema acima existem nove variáveis e apenas três equações. Para resolver este problema é necessário analisar o mesmo ponto da estrutura nas três simulações feitas e reorganizar o sistema da seguinte forma:

$$\begin{vmatrix} F_{11} \\ F_{21} \\ F_{31} \end{vmatrix} = \begin{vmatrix} \delta_{11} & \delta_{12} & \delta_{13} \\ \delta_{21} & \delta_{22} & \delta_{23} \\ \delta_{31} & \delta_{32} & \delta_{33} \end{vmatrix} \begin{vmatrix} k_1 \\ k_2 \\ k_3 \end{vmatrix}$$
(3.8)

Onde para cada $F_{ij} \in \delta_{ij}$:

- $i \rightarrow N$ úmero da simulação
- $j \rightarrow$ Ponto que está sendo utilizado

Utilizando o *MATLAB* para resolver este sistema é possível obter a primeira linha da matriz de rigidez. Repetindo o mesmo processo para os outros dois pontos e encontrando as outras duas linhas obtém-se:

$$K = 10^{6} x \begin{vmatrix} 0,3572 & -0,7058 & 0,2916 \\ -0,7053 & 1,7803 & -1,3693 \\ 0,2905 & -1,3644 & 3,6756 \end{vmatrix}$$
(3.9)

Com a matriz K é possível realizar um teste complementar. Encontram-se os valores de deslocamento para os três pontos através da Equação 3.7 com uma combinação de forças aleatórias e comparam-se com os valores de deslocamento desses mesmos pontos obtidos através da simulação com estas mesmas forças. Na
tabela abaixo se encontram os resultados utilizando $F_1 = -750 N$, $F_2 = 1200 N$ e $F_3 = -2100 N$.

	MATLAB	SOLIDWORKS	Erro (%)
δ_1 (mm)	-0,0072	-0,0072159	0,22
δ_2 (mm)	-0,0031	-0,0030589	1,34
δ_3 (mm)	-0,0011	-0,0011365	3,21

Tabela 4 - Teste entre softwares

É possível comprovar através deste teste que a matriz encontrada apenas com a simulação de uma força de cada vez serve para qualquer combinação de forças.

3.3. Tubo L em balanço

Nesta seção a estrutura modelada é usada para testar o método descrito anteriormente utilizando o *SOLIDWORKS*, para obter os deslocamentos, e o *MATLAB*, para obter a matriz de rigidez. Contudo desta vez o modelo possui uma complexidade maior que a viga modelada anteriormente e o número de pontos estudados também é maior. Um esquema da estrutura é demonstrado na Figura 28.

Figura 28 - Esquema da estrutura tubular

Após decidir o local dos pontos, que serão usados para analisar os deslocamentos, e o diâmetro e espessura do tubo (com base no padrão da *FIA*) é possível modelar a estrutura no *SOLIDWORKS*. A Figura 29 mostra o modelo resultante destas considerações.

Figura 29 - Estrutura tubular para teste

Foram realizadas cinco simulações de forma similar ao descrito na seção 3.2, onde a força aplicada em cada ponto era igual a 1000 N. Abaixo segue a tabela com os valores de deslocamento de cada ponto referente às simulações feitas.

	δ_1 (mm)	δ_2 (mm)	δ_3 (mm)	δ_4 (mm)	δ_5 (mm)	F_R (N)
Simulação 1	-4,5868	-2,6541	-1,2145	-0,53136	-0,1285	950,67
Simulação 2	-2,6237	-1,8337	-1,1458	-0,52443	-0,1268	939,43
Simulação 3	-1,2182	-1,1633	-1,0763	-0,513	-0,12471	951,71
Simulação 4	-0,54651	-0,54544	-0,52477	-0,29262	-0,07782	966,23
Simulação 5	-0,13506	-0,13457	-0,12997	-0,079411	-0,037053	966,16

Tabela 5 - Resultados da simulação do tubo

Utilizando o mesmo método demonstrado na seção anterior e com o auxílio do *MATLAB* obtém-se a matriz K que está demonstrada a seguir:

$$K = 10^{4} x \begin{vmatrix} 0,4501 & -1,0035 & 0,5789 & -0,0027 & -0,0208 \\ -1,0147 & 2,4337 & -1,5347 & 0,1077 & 0,0123 \\ 0,5780 & -1,5162 & 1,7278 & -1,4981 & 0,5499 \\ -0,0067 & 0,1152 & -1,4699 & 3,5093 & -2,7591 \\ -0,0198 & 0,0130 & 0,5160 & -2,6873 & 6,6732 \end{vmatrix}$$
(3.10)

Novamente realiza-se o teste com a matriz K no *MATLAB* e compara-se com o resultado obtido no *SOLIDWORKS*, como foi feito na seção anterior. Desta vez a combinação de forças é $F_1 = -750 N$, $F_2 = 1200 N$, $F_3 = -2100 N$, $F_4 = -2700 N$ e $F_5 = 1700 N$. O resultado encontra-se na tabela abaixo.

Tabela 6 - Teste entre softwares 2	2
------------------------------------	---

	MATLAB	SOLIDWORKS	Erro (%)
δ_1 (mm)	-4,0959	-4,0958	0,0024
δ_2 (mm)	-3,4770	-3,477	0,0
δ_3 (mm)	-2,9921	-2,992	0,0033
δ_4 (mm)	-1,5016	-1,5016	0,0
δ_5 (mm)	-0,3532	-0,35323	0,0085

Com este teste nota-se que mesmo com uma maior complexidade e um maior número de pontos analisados o método ainda é válido.

3.4. Quadro tubular

Neste novo modelo a complexidade da estrutura foi maior e ao mesmo tempo mais próxima a de um kart, além de possuir treze pontos para análise. Na Figura 30 encontra-se um esquema da mesma assim como o posicionamento dos pontos.

Figura 30 - Esquema do quadro tubular

O modelo feito no *SOLIDWORKS* possui a mesma estrutura tubular vista na seção anterior, seguindo o padrão da *FIA*. Ele também possui quatro barras maciças conectadas ao quadro com o intuito de simular os eixos dianteiro e traseiro do kart. Na Figura 31 o modelo em questão está demonstrado.

Figura 31 - Modelo do quadro tubular

Foram realizadas treze simulações seguindo o padrão já descrito nos itens anteriores, sendo desta vez as quatro barras utilizadas como engaste, como é visto na Figura 32.

Figura 32 - Simulação do quadro tubular

Com novamente o auxílio do *MATLAB* foi possível obter a matriz de rigidez para esta estrutura, que está disponível no Anexo A deste relatório.

Novamente realiza-se o teste com os dois softwares como foi feito nas seções anteriores. Desta vez a combinação de forças é $F_1 = -750 N$, $F_2 = 1200 N$, $F_3 = -2100 N$, $F_4 = -2700 N$, $F_5 = 1700 N$, $F_6 = 250 N$, $F_7 = 200 N$, $F_8 = -500 N$, $F_9 = -1900 N$, $F_{10} = -700 N$, $F_{11} = 1100 N$, $F_{12} = -2000 N$ e $F_{13} = 1000 N$. O resultado encontra-se na Tabela 7.

	MATLAB	SOLIDWORKS	Erro (%)		
δ_1 (mm)	-0,3192	-0,31925	0,016		
δ_2 (mm)	0,5315	0,5315	0,0		
δ_3 (mm)	-0,4403	-0,44031	0,0023		
δ_4 (mm)	-1,3468	-1,3468	0,0		
δ_5 (mm)	0,3078	0,30783	0,0097		
δ_6 (mm)	0,1898	0,18982	0,011		
δ_7 (mm)	0,3564	0,3564	0,0		
δ_8 (mm)	-0,3758	-0,37575	0,013		
δ_9 (mm)	-0,7303	-0,73032	0,0027		
δ_{10} (mm)	-0,1200	-0,11998	0,017		
δ_{11} (mm)	0,0627	0,062702	0,0032		
δ_{12} (mm)	-0,0301	-0,030122	0,073		
δ_{13} (mm)	-0,0981	-0,09809	0,010		

Tabela 7 - Teste entre softwares 3

3.5. Tubo L em balanço

Nesta seção a estrutura em L usada anteriormente será simulada novamente, contudo, desta vez não será analisado o deslocamento em apenas um eixo. Para que seja possível obter cada vez mais resultados próximos à realidade durante esta simulação serão analisados os deslocamentos nos três eixos.

Adaptando o método utilizado anteriormente, será necessário aplicar no mesmo ponto uma força na direção dos três eixos. Entretanto, para cada ponto esta

força deve ser aplicada em apenas uma direção por simulação para que seja possível estudar os deslocamentos resultantes.

O modelo utilizado nesta seção não é o mesmo que foi visto anteriormente. Para realizar estas simulações os pontos criados naquele modelo não servem e por isso foi necessário modelar esta estrutura novamente utilizando outro recurso que foi mencionado no Capítulo 2, o componente estrutural. Com ele são criadas juntas que facilitam a aplicação das forças neste caso, mas como consequência do uso deste recurso a malha gerada desta vez é a malha de viga. Na Figura 33 abaixo se encontra a estrutura modelada, com sua malha e suas juntas visíveis.

Figura 33 - Estrutura tubular para teste 2

Nos casos anteriores as matrizes K foram encontradas com base na Equação 2.2 como demonstrado na Equação 3.7. Contudo como nesta seção são estudados os três eixos e seus deslocamentos, a equação sofre algumas alterações como demonstrado a seguir:

$$\begin{vmatrix} F_{1X} \\ F_{1Y} \\ F_{1Y} \\ F_{1Z} \\ F_{2X} \\ F_{2Y} \\ F_{2Z} \\ F_{3X} \\ F_{3Y} \\ F_{3Z} \end{vmatrix} = \begin{vmatrix} k_1 & k_2 & k_3 & k_4 & k_5 & k_6 & k_7 & k_8 & k_9 \\ k_{10} & k_{11} & k_{12} & k_{13} & k_{14} & k_{15} & k_{16} & k_{17} & k_{18} \\ k_{10} & k_{11} & k_{12} & k_{22} & k_{23} & k_{24} & k_{25} & k_{26} & k_{27} \\ k_{28} & k_{29} & k_{30} & k_{31} & k_{32} & k_{33} & k_{34} & k_{35} & k_{36} \\ k_{37} & k_{38} & k_{39} & k_{40} & k_{41} & k_{42} & k_{43} & k_{44} & k_{45} \\ k_{46} & k_{47} & k_{48} & k_{49} & k_{50} & k_{51} & k_{52} & k_{53} & k_{54} \\ k_{55} & k_{56} & k_{57} & k_{58} & k_{59} & k_{60} & k_{61} & k_{62} & k_{63} \\ k_{64} & k_{65} & k_{66} & k_{67} & k_{68} & k_{69} & k_{70} & k_{71} & k_{72} \\ k_{73} & k_{74} & k_{75} & k_{76} & k_{77} & k_{78} & k_{79} & k_{80} & k_{81} \end{vmatrix}$$

$$(3.11)$$

Onde para cada $F_{ij} e \delta_{ij}$:

- *i* → Junta onde a força está sendo aplicada ou o deslocamento está sendo avaliado
- $j \rightarrow$ Direção da força ou do deslocamento

Arrumando a equação como feito anteriormente tem-se:

$ F_{1X} $		δ_{11X}	δ_{11Y}	δ_{11Z}	δ_{12X}	δ_{12Y}	δ_{12Z}	δ_{13X}	δ_{13Y}	δ_{13Z}	$ k_1 $	
F_{1Y}		δ_{21X}	δ_{21Y}	δ_{21Z}	δ_{22X}	δ_{22Y}	δ_{22Z}	δ_{23X}	δ_{23Y}	δ_{23Z}	k_2	
F_{1Z}		δ_{31X}	δ_{31Y}	δ_{31Z}	δ_{32X}	δ_{32Y}	δ_{32Z}	δ_{33X}	δ_{33Y}	δ_{33Z}	k_3	
F_{2X}		δ_{41X}	δ_{41Y}	δ_{41Z}	δ_{42X}	δ_{42Y}	δ_{42Z}	δ_{43X}	δ_{43Y}	δ_{43Z}	k_4	
F_{2Y}	=	δ_{51X}	δ_{51Y}	δ_{51Z}	δ_{52X}	δ_{52Y}	δ_{52Z}	δ_{53X}	δ_{53Y}	δ_{53Z}	k_5	(3.12)
F_{2Z}		δ_{61X}	δ_{61Y}	δ_{61Z}	δ_{62X}	δ_{62Y}	δ_{62Z}	δ_{63X}	δ_{63Y}	δ_{63Z}	k_6	
F_{3X}		δ_{71X}	δ_{71Y}	δ_{71Z}	δ_{72X}	δ_{72Y}	δ_{72Z}	δ_{73X}	δ_{73Y}	δ_{73Z}	k_7	
F_{3Y}		δ_{81X}	δ_{81Y}	δ_{81Z}	δ_{82X}	δ_{82Y}	δ_{82Z}	δ_{83X}	δ_{83Y}	δ_{83Z}	k_8	
$ F_{3Z} $		δ_{91X}	δ_{91Y}	δ_{91Z}	δ_{92X}	δ_{92Y}	δ_{92Z}	δ_{93X}	δ_{93Y}	δ_{93Z}	$ k_9 $	

Onde para cada δ_{sij} :

- $s \rightarrow N$ úmero da simulação
- $i \rightarrow$ Junta onde o deslocamento está sendo avaliado
- $j \rightarrow$ Direção do deslocamento

Uma das juntas foi utilizada como ponto de fixação para representar o engaste e as forças foram aplicadas nas outras três juntas. Em cada uma destas juntas foram aplicadas três forças onde para cada aplicação de uma dessas forças foi feita uma simulação. As dimensões da estrutura são as mesmas do modelo da Seção 3.3, a força aplicada foi de 1000 N e o material da estrutura escolhido foi AISI 1020. Foram realizadas nove simulações e novamente com o auxílio do MATLAB foi possível obter a matriz de rigidez desta estrutura que se encontra a seguir:

				K =				
1737,25	-3,36 <i>e</i> - 29	2,60 <i>e</i> – 10	-11544,18	-1,39 <i>e</i> - 28	1643,38	9806,93	-6,54 <i>e</i> - 29	-1527,88
-3,36e - 29	998,58	1,29 <i>e –</i> 38	6,20 <i>e</i> – 27	-6578,36	6,57 <i>e –</i> 27	−7,21 <i>e</i> − 27	6490,99	-8,26 <i>e</i> - 27
9,46e – 11	−1,42 <i>e</i> − 38	499999,99	-5,14 <i>e</i> - 9	1,31e – 37	-499999,99	5,01 <i>e</i> – 09	−1,37 <i>e</i> − 37	4,11 <i>e</i> – 9
-11544,18	6,20 <i>e</i> – 27	4,31e – 9	400334,56	−2,91 <i>e</i> − 26	283431,79	-388790,38	7,96 <i>e –</i> 26	-279383,25
-1,39 <i>e</i> - 28	-6578,36	-1,25 <i>e</i> - 37	-2,91 <i>e</i> - 26	60476,25	-6,30 <i>e</i> - 26	9,24 <i>e</i> – 26	-62699,87	9,13 <i>e</i> – 26
1643,38	6,57 <i>e –</i> 27	-499999,99	283431,79	-6,30 <i>e</i> - 26	850304,04	-285075,1	1,10 <i>e</i> – 25	-359045,53
9806,93	-7,21 <i>e</i> - 27	−1,73 <i>e</i> − 10	-388790,38	9,24 <i>e</i> – 26	-285075,17	661549,14	-6,13 <i>e</i> - 26	280911,13
-6,54 <i>e</i> - 29	6490,99	1,34e – 37	7,96e – 26	-62699,87	1,10e – 25	-6,13 <i>e</i> - 26	66501,47	-5,53 <i>e</i> - 26
-1527,88	-8,26 <i>e</i> - 27	−9,77 <i>e</i> − 9	-279383,25	9,13 <i>e</i> – 26	-359045,53	280911,13	-5,53 <i>e</i> - 26	371140,36
								(3.13)

Após estes procedimentos é possível realizar um novo teste para novamente comparar os resultados entre os dois softwares. Para a realização desta simulação foram aplicadas apenas três forças: $F_{1X} = 700 \text{ N}$, $F_{2Z} = -1250 \text{ N}$ e $F_{3Y} = -2100 \text{ N}$. Na Figura 34 é apresentada uma vista em corte para facilitar a visualização das forças aplicadas.

Figura 34 - Tubo L em corte com as forças aplicadas

Os deslocamentos obtidos encontram-se na Tabela 8. Com estes resultados confirma-se que o método utilizado previamente também é válido para analisar modelos com forças e deslocamentos nos três eixos simultaneamente.

	MATLAB	SOLIDWORKS	Erro (%)		
δ_{1X} (mm)	3,8121	3,812	0,0026		
δ_{1Y} (mm)	-2,1945	-2,195	0,0228		
δ_{1Z} (mm)	-2,5514	-2,551	0,0157		
δ_{2X} (mm)	0,43358	0,4336	0,0046		
δ_{2Y} (mm)	-2,1945	-2,195	0,0228		
δ_{2Z} (mm)	-2,5514	-2,551	0,0157		
δ_{3X} (mm)	0,0024773	0,002477	0,0121		
δ_{3Y} (mm)	-1,88643	-1,886	0,0228		
δ_{3Z} (mm)	-2,128	-2,128	0,0		

Tabela 8 - Teste entre softwares 4

3.6. Chassi do kart

Nesta última seção do atual capítulo, foi realizado o mesmo estudo em três eixos, contudo desta vez no chassi do kart. Para modelar esta estrutura foi utilizado como base o kart de competição que se encontra no Laboratório de Introdução a Engenharia (LIENG) apresentado na Figura 35 e os desenhos técnicos disponíveis pela FIA, que se encontram no Anexo B.

Figura 35 - Kart localizado no LIENG

Figura 36 - Modelo do kart

Entretanto, para realizar as simulações foi necessário simplificar o modelo e refazê-lo com o recurso de componente estrutural conforme feito na seção anterior. Foram também modelados alguns segmentos com a intenção de representar os apoios das rodas dianteiras e o eixo traseiro.

Figura 37 - Modelo simplificado do kart

1

Como existem juntas que se encontram muito próximas e durante a simulação forneceriam valores muito semelhantes, foi utilizado o comando de unir juntas para que esse número diminuísse e assim obter os pontos que serão usados para obter a nova matriz de rigidez. Foram utilizadas 17 juntas (rosa) onde as forças foram aplicadas para obter a matriz e 4 juntas (verde) como pontos de fixação que representam as rodas dianteiras e traseiras, direitas e esquerdas.

Figura 38 - Juntas do modelo

Após a realização de todas as simulações, novamente com o auxílio do *MATLAB*, foi obtida a matriz de rigidez da estrutura que se encontra no Anexo A.

Conforme visto nas seções anteriores foi feito um teste para que houvesse novamente a comparação entre os valores obtidos pelos dois softwares.

As forças aplicadas neste teste foram: $F_{1X} = 700 \text{ N}$, $F_{2Z} = -1250 \text{ N}$, $F_{3Y} = -2100 \text{ N}$, $F_{4X} = -900 \text{ N}$, $F_{5Z} = 1000 \text{ N}$, $F_{6Y} = 1300 \text{ N}$, $F_{7Y} = -1500 \text{ N}$, $F_{8Z} = -850 \text{ N}$, $F_{9X} = -1100 \text{ N}$, $F_{10X} = -300 \text{ N}$, $F_{11Z} = 500 \text{ N}$, $F_{12Y} = 1500 \text{ N}$, $F_{13Y} = -750 \text{ N}$, $F_{14X} = 450 \text{ N}$, $F_{15X} = -650 \text{ N}$, $F_{16Z} = 1400 \text{ N}$ e $F_{17Z} = -1450 \text{ N}$.

Como são no total 51 deslocamentos (3 para cada junta), para efeito comparativo serão analisados apenas 6 deslocamentos aleatórios. O resultado encontra-se na Tabela 9.

	MATLAB	SOLIDWORKS	Erro (%)
δ_{2X} (mm)	0,0415	0,03954	4,96
δ_{3Y} (mm)	-0,0564	-0,05569	1,27
δ_{9Z} (mm)	-0,1965	-0,2066	4,89
δ_{12X} (mm)	0,0227	0,02244	1,16
δ_{15Y} (mm)	-0,0363	-0,03686	1,52
δ_{17Z} (mm)	-0,0728	-0,07617	4,42

Tabela 9 - Teste entre softwares 5

Nota-se que o erro foi consideravelmente maior em comparação com os testes realizados anteriormente. Supõe-se que ocorrido é devido à alta complexidade do modelo em questão, resultando em um menor ajuste do método aplicado. Contudo, o método ainda se prova válido, pois o erro foi menor que 5%.

4. Dinâmica do kart

4.1. Introdução

Ao se estudar a dinâmica de um veículo é necessário levar em consideração a transferência de peso que ocorre quando o centro de gravidade do mesmo se altera, temporariamente, durante os movimentos de rolagem, arfagem e guinada ou seja, *roll*, *pitch* e *yaw* (Rebello, 1999).

Figura 39 - Exemplo de rolagem, arfagem e guinada (coisasdeengenheiro.wordpress.com, acessado em 2017)

Neste capítulo serão analisadas as transferências de peso longitudinal (ocasionada pela aceleração e pela frenagem) e lateral (ocasionada pela aceleração centrípeta resultante durante a realização de uma curva), através de cálculos analíticos e simulações no software *SOLIDWORKS* utilizando o chassi de kart modelado previamente.

4.2. Transferência de peso longitudinal

A transferência de peso longitudinal pode ocorrer de duas formas diferentes. Durante uma aceleração haverá uma carga sendo deslocada para as rodas traseiras e durante uma frenagem, para as rodas dianteiras conforme mostra a Figura 40.

Figura 40 - Transferência de carga longitudinal (mazda.com, acessado em 2017)

4.2.1. Aceleração

Segundo Milliken (1995), a quantidade de carga transferida durante a aceleração é obtida através da Equação 4.1 com base no esquema da Figura 41:

Figura 41 - Esquema de transferência de carga longitudinal (Milliken, 1995)

$$\Delta W_X = \frac{h}{l} W A_X \tag{4.1}$$

Onde,

 $F \rightarrow$ Força gerada durante a aceleração (N)

 $W \rightarrow$ Peso total do veículo (kg)

 $A_X \rightarrow$ Aceleração longitudinal (g)

 $\Delta W_X \rightarrow$ Carga total que será transferida (kg)

 $CG \rightarrow$ Centro de gravidade do veículo (mm)

 $h \rightarrow$ Distância do CG até o chão (mm)

 $b \rightarrow$ Distância do CG até as rodas traseiras (mm)

 $a \rightarrow$ Distância do CG até as rodas dianteiras (mm)

A aceleração empregada para os cálculos foi obtida através do estudo realizado por Biancolini, no ano de 2007. Neste estudo foram realizados testes em pista com um kart e seus valores foram computados para análise posterior. Com os resultados foi gerado um gráfico que se encontra na Figura 42.

Figura 42 - Velocidade versus tempo (Bianclini, 2007)

Neste gráfico Biancolini destacou o momento em que o kart foi acelerado até atingir a sua velocidade máxima.

O valor do peso total, somatório do kart mais o piloto, e da altura do centro de massa foram obtidos através do estudo realizado por Chauhan, *et al.* em 2016. Neste estudo, o piloto considerado possui aproximadamente trinta e dois quilos.

Como todos os karts de competição são regulados e possuem o padrão determinado pela *FIA*, é possível utilizar estes valores no modelo feito neste trabalho.

Com isso, o valor da massa total que será transferida é de:

$$\Delta W_X = 4.2 \, kg \tag{4.2}$$

No SOLIDWORKS o peso total foi igualmente dividido e aplicado onde se concentra a maior parte do peso de um kart, nas juntas 11, 12, 13, 14, 15, 16, e 17.

2

Figura 43 - Deslocamento apenas com peso próprio

Na Figura 43 encontra-se o deslocamento resultante apenas do peso do veículo com o piloto. Nota-se que o deslocamento máximo foi de 0,5468 mm.

A carga transferida calculada acima foi aplicada nas juntas 13, 14, 15, 16, e 17 em adição ao peso total. Com isto foi realizada uma simulação novamente.

Figura 44 - Deslocamento do peso próprio mais carga da aceleração

Nesta nova simulação o deslocamento resultante não teve muitas alterações, contudo, o novo valor do deslocamento máximo foi de 0,5548 mm. Neste caso como a transferência de carga foi pequena a diferença entre os deslocamentos também foi pequena, porém foi possível comprovar a influência desta ao longo da estrutura.

4.2.2. Frenagem

Durante a frenagem, utiliza-se também a Equação 4.1 com o diferencial que neste caso o valor da aceleração será negativo. No estudo realizado por Chauhan, *et al.* também foi determinada a desaceleração resultante da frenagem de um kart com velocidade inicial de 12,5 m/s.

Desta vez, a carga transferida foi de:

$$\Delta W_X = 33,3 \, kg \tag{4.3}$$

55

Com este resultado foi realizada uma simulação com a carga transferida sendo aplicada nas juntas 1, 2, 3 e 4.

Figura 45 - Deslocamento do peso próprio mais carga da frenagem

Como esperado, o deslocamento máximo, localizado na parte traseira, diminuiu devido a carga transferida para a parte frontal do kart. Com isso o valor do deslocamento máximo é de 0,5370 mm.

4.3. Transferência de peso lateral

Quando o veículo realiza uma curva ocorre a rolagem, devido a carga que é transferida para as rodas internas referente a curva.

Figura 46 - Exemplo de rolagem (motoiq.com, acessado em 2017)

Segundo Milliken (1995), a quantidade de carga transferida durante a rolagem é obtida através da Equação 4.4 com base no esquema da Figura 47:

Figura 47 - Esquema de transferência de carga lateral (Milliken, 1995)

$$\Delta W = \frac{h}{t} W A_Y \tag{4.4}$$

Onde,

- $F \rightarrow$ Força gerada durante a curva (N)
- $W \rightarrow$ Peso total do veículo (kg)
- $W_L \rightarrow$ Peso do lado esquerdo do veículo (kg)
- $W_R \rightarrow$ Peso do lado direito do veículo (kg)

 $S_L \rightarrow$ Força realizada pela roda esquerda durante a curva (N)

 $S_R \rightarrow$ Força realizada pela roda direita durante a curva (N)

 $A_Y \rightarrow$ Aceleração centrípeta (g)

 $\Delta W \rightarrow$ Carga total que será transferida (kg)

 $CG \rightarrow$ Centro de gravidade do veículo (mm)

- $h \rightarrow$ Distância do CG até o chão (mm)
- $t \rightarrow$ Distância entre os centros das rodas (mm)

Segundo Beer, *et al.* em 2012 a aceleração centrípeta pode ser descrita conforme a Equação 4.5:

$$a_c = \frac{v^2}{r} \tag{4.5}$$

Onde,

 $a_c \rightarrow \text{Aceleração centrípeta } (m/s^2)$

 $v \rightarrow$ Velocidade com que o veículo faz a curva (m/s)

 $r \rightarrow \text{Raio} \text{ da curva (m)}$

De acordo com os modelos de pista desenvolvidos por jjamusements.com, acessado em 2017, o raio do centro da pista médio para circuitos de entretenimento de kart é de 10 metros. Utilizando a Figura 42 nota-se que a velocidade média para realização de curvas é de 15 m/s. Com isso tem-se:

$$a_c = 22,5 \, m/s^2 \tag{4.6}$$

E usando os valores da referência mencionada no tópico anterior com uma distância entre eixos de 1000 mm, tem-se:

$$\Delta W = 106,08 \, kg \tag{4.7}$$

Realizou-se uma nova simulação com este valor de transferência de carga sendo aplicada nas juntas 1, 3, 5, 7, 9, 11, 13, 15 e 17. Neste caso a curva estaria sendo realizada à esquerda. Na Figura 48 é possível notar que o deslocamento aumentou consideravelmente em comparação com seu valor anterior. Agora o deslocamento máximo foi de 0,9725 mm. Na Figura 49 observa-se a torção resultante que o chassi sofre durante uma curva.

Figura 48 - Deslocamento do peso próprio mais carga da curva à esquerda

Figura 49 - Torção resultante da realização da curva

t

Sabe-se que durante a curva a roda traseira do kart perde contato com o solo, conforme explicado no Capítulo 2. Considerando que setenta por cento do peso do kart encontra-se na parte traseira do mesmo, sendo esta carga dividida igualmente entre as duas rodas, cada roda traseira receberá uma força de – 635 N. Durante a simulação da curva em questão, com base na Figura 38, a junta referente à roda traseira esquerda deveria perder contato com o solo. Utilizando o *SOLIDWORKS* é possível obter a força resultante nesta junta conforme demonstrado na Figura 50.

Figura 50 - Forças resultantes na roda traseira esquerda

Nota-se que o valor da força na roda traseira esquerda durante a simulação é de 686 N, confirmando que a roda perde contato com o solo assim como visto anteriormente no Capítulo 2.

5. Conclusões e trabalhos futuros

5.1. Conclusões

Este trabalho propôs uma metodologia com o auxílio de dois softwares, SOLIDWORKS e MATLAB, para obter a matriz de rigidez do chassi através de simulações e testes. Com esta matriz foram determinados os deslocamentos resultantes de esforços aplicados em determinados pontos (juntas) da estrutura.

Este método foi validado a partir de comparações com a solução analítica de diversos problemas, como o de viga biengastada unidimensional, viga engastada bidimensional e tubo em L tridimensional. Assim, foi possível simular situações reais que ocorrem com o kart durante uma corrida como frenagem, aceleração e as deformações resultantes da realização de curvas.

Utilizou-se a matriz para aplicar esforços referentes à transferência de carga que ocorre com veículos durante seu movimento. Ao estudar o comportamento da estrutura, com a aplicação dos esforços de transferência de carga, durante uma curva, foram verificados alguns comportamentos típicos de situações de corrida, como por exemplo, a perda de contato da roda traseira com o solo.

5.2. Trabalhos futuros

Recomenda-se que sejam feitas validações experimentais com o kart desenvolvido na Oficina de Desenvolvimento de Protótipos (ODP/PUC-Rio), para que sejam comparados com os resultados encontrados neste trabalho. Este kart é feito com tubos de alumínio de 3/4" de diâmetro e 1/16" de espessura, soldados usando solda de alumínio de eletrodo revestido. Na Figura 51 encontra-se o protótipo após passar pelo dobrador de tubos e antes de ser soldado.

Figura 51 - Protótipo do chassi em alumínio

Uma análise estrutural dinâmica não é feita somente estudando a transferência de carga, mas também estudando as vibrações que ocorrem na estrutura durante a corrida.

Com o intuito de aprofundar este estudo sugere-se que, através da obtenção da matriz de massa da estrutura, utilize-se o método de Rayleigh (Equação 5.1) para que com este seja possível realizar uma análise estrutural com base na frequência que o kart sofre em pista durante a realização do percurso (Adhikari, *et al.* 2007).

$$C = \alpha_1 M + \alpha_2 K \tag{5.1}$$

O modelo de amortecimento proporcional, demonstrado acima, expressa a matriz de amortecimento como uma combinação linear da matriz de massa e de rigidez, onde α_1 e α_2 são reais escalares.

Este estudo analítico pode ser validado por um teste conforme mostra a Figura 52,que apresenta um método experimental usado para tal finalidade enquanto que na Figura 53 encontram-se os resultados do teste para os dois primeiros modos de vibração (Abdullah, *et al.* 2017).

Figura 52 - Experimento do método de Rayleigh (Abdullah, *et al.* 2017)

(Abdullah, *et al.* 2017)

REFERÊNCIAS BIBLIOGRÁFICAS

Abdullah, N. A. Z.; Sani, M. S. M.; Husain. N. A.; Rahman, M. M.; Zaman, I. **Dyanamics properties of a Go-kart chassis structure and its prediction improvement using model updating approach**. International Journal of Automotive and Mechanical Engineering ISSN: 2229-8649 (Print); ISSN: 2180-1606 (Online); Volume 14, Issue 1 pp. 3887-3897 Março 2017.

Adhikari, S.; Phani, A. S. **Rayleigh's Classical Damping Revisted**. University of Bristol. Department of Aerospace Engineering. B E College, India. Janeiro de 2007.

Basha, A. P. D. S.; Chandrakanth, P.; Chandra, J. S. **Design d Analysis of Go-Kart Chasis According to fsae Constrains**. International Research Journal of Engineering and Technology (IRJET). e-ISSN: 2395-0056, p-ISSN: 2395-0072, Volume: 04 Issue: 08, Agosto de 2017.

Bathe, K. Finite Element Procedures. Watertown, MA. 2º edição, 1º impressão, 2014.

Beer, F.P.; Jr., E. R. J.; Cornwell, P.J. **Mecânica vetorial para engenheiros**. 9° edição. Porto Alegre, 2012.

Berg, M. de; Cheong, O.; Kreveld, M. van; Overmars, M. **Computational Geometry: Algorithms and Applications**. Springer-Verlag Berlin Heidelberg. 3^o edição, 2008.

Biancolini, M. E. **The evaluation of aerodynamic drag of go-karts by means of coast down test and CFD analysis**. Unioversità degli Studi di Roma Tor Vergata. Corso di Laurea e Dipartimento di Ingegneria Meccanica. 2007.

Carros infoco. Coordenação de Anderson Dias. Apresenta textos sobre o funcionamento de automóveis. Disponível em: http://www.carrosinfoco.com.br. Acesso em: Março de 2017.

Chauhan, A.; Naagar, L.; Chawla, S. **Design and analysis of a go-kart**. International Journal of Aerospace and Mechanical Engineering. Volume $3 - N^{\circ} 5$, Setembro 2016. Chinnamaddaiah, K.; Lakshmipathi, Y.; Raju, P. R.; Subramanyam, B. **Modelling and structural analysis of a go-kart vehicle chassis frame**. International Journal of Mechanical Engineering and Technology (IJMET). Volume 8, Issue 6, Junho 2017, páginas 305-311.

CIK FIA – Commission Internationale de Karting Federation Internationale de l'Automobile. Karting Technical Regulations. 2014.

DASSAULT SYSTEMS. Desenvolvido pela SOLIDWORKS, 2009-2017. Apresenta textos da Ajuda dos produtos e suplementos SolidWorks. Disponível em: < http://help.solidworks.com/HelpProducts.aspx >. Acesso em: Março de 2017.

Engineering Simulation and Scientific Software (ESSS). Desenvolvido pela Universidade Federal de Santa Catarina (UFSC), 1995. Apresenta conteúdos técnicos na área de Simulação Computacional. Disponível em: < http://www.esss.com.br>. Acesso em: Março de 2017.

FlatOut. Coordenação de Juliano Barata. Apresenta textos sobre automóveis. Disponível em: https://www.flatout.com.br. Acesso em: Março de 2017.

J&J Amusements. Fun Parts Xpress. Oregon, USA. Apresenta modelos de pistas de karts. Disponível em: https://jjamusements.com/. Acessado em: Novembro de 2017.

Javelin. Canadá. Empresa no ramo de desenvolvimento de modelos em 3D. Disponível em:< https://www.javelin-tech.com>. Acesso em: Março de 2017.

Kelkar, K.; Gawai, S.; Suryawanshi, T.; Ubaid, S.; Kharat, R. **Static Analysis of Go-Kart Chassis**. International Journal of Research in Advent Technology (IJRAT). E-ISSN: 2321-9637. Special Issue National Conference "CONVERGENCE 2017", 9 de Abril de 2017.

Khan, S. A.; Danish, M. K.; Kathole, K.; Bhonde, G.; Ghevande, P. **Review on Design and Analysis of Structure of GO KART Vehicle**. International Journal of Research in Advent Technology (IJRAT). E-ISSN: 2321-9637. Special Issue National Conference "CONVERGENCE 2017", 9 de Abril de 2017. Mazda. Mazda Motor Corporation. Apresenta informações sobre seus produtos automotivos. Disponível em:< http://www.mazda.com>. Acessado em: Novembro de 2017.

Mechworks. Rio de Janeiro. Distribuidora oficial do *SOLIDWORKS* no Brasil. Disponível em: < http://www.mechworks.com.br>. Acesso em: Março de 2017.

Milliken, W. F.; Milliken, D. L. **Race Car Vehicle Dynamics**. Society of Automotive Engineers, Inc. Warrendale, Pa.1995.

MotolQ. Coordenação de Mike Kojima. Apresenta textos referentes a performace automotiva e corridas. Disponível em: ">http://www.motoiq.com/>. Acessado em: Novembro de 2017.

Patil, N. R.; Kulkarni, R. R.; Mane, B. R.; Malve, S. H. **Static analysis of Go-Kart Chassis frame by Analytical and SolidWorks Simulation**. Internationa Journal of Scientific Engineering and Technology. 2014. Volume N 3 Issue N^o 5, páginas: 661-663.

Ramini, S.; Rentala, M.; Mane, S. G. **Design and Structural Analysis of a Go-Kart Vehicle Chassis**. Internetional Journal & Magasine of Engineering, Technology, Management and Research. A peer reviewed open access international journal. ISSN: 2348-4845. Volume N°2(2015), Issue N°10 (Outubro), página 1373-1378, 2015.

Rebello, A. L. F. Modelagem e Simulação de um Veículo Automotivo Usando uma Metodologia de Sistemas Multicorpos Aproximada. 1999. 124 p. Dissertação (Mestrado) – Escola de Engenharia de São Carlos, Universidade de São Paulo. São Carlos.

Segerlind, L. J. **Applied finite element analysis**. Universidade de Michigan. Wiley, 2º edição, 1984.

Tecmundo. Grupo NZN. Apresenta notícias, artigos e conteúdos relacionados a tecnologia. Disponível em: < www.tecmundo.com.br>. Acesso em: Março de 2017.

Universidade de São Paulo (USP). Engenharia de Materiais Aeronáutica e Automobilística. **Frenagem**. São Paulo, 2015.

Vadgama, T. N.; Patel, A.; Thakkar, D.; Vala, J. **Structural Analysis of Formula One Racing Car**. International Journal of Advance Research in Engineering, Science & Technology(IJAREST). ISSN(O):2393-9877, ISSN(P): 2394-2444, Volume 2, Issue 5, Maio de 2015, Impact Factor: 2.125.

Vadgama, T.N.; Patel, A. Thakkar, D.; Vala, J. **Structural Analysis of Formula One Racing Car**. International Journal of Advance Research in Engineering, Science & Technology(IJAREST), ISSN(O):2393-9877, ISSN(P): 2394-2444, Volume 2, Issue 5, Maio de 2015, Impact Factor: 2.125.

ANEXO A – Matrizes de rigidez

A.1 Matriz de rigidez do quadro tubular

K =

6516,956	-1280,52	-2652,59	-1310,39	-2654,82	518,7748	518,1826	569,7427	568,4517	-1324,55	-1462,8	-1450,8	-1332,53
-1281,08	5421,272	-140,215	273,1919	-138,578	-3387,04	-3389,96	-179,954	-179,621	300,5299	-709,082	-690,657	300,9768
-2649,9	-137,969	8879,824	-188,352	929,181	74,20722	2901,242	3591,743	122,8903	130,4932	214,2935	-6634,82	-7048,06
-1316,1	272,2917	-187,032	5764,4	-185,623	-139,603	-139,735	-4000,4	-3998,35	-530,704	287,6301	288,9841	-542,716
-2698,27	-140,801	945,9932	-192,791	9042,596	2957,535	75,70834	125,0261	3656,72	-7158,94	-6750,04	216,6417	134,2342
541,3559	-3516,1	77,8786	-148,982	3038,475	8295,135	944,2181	81,42499	345,459	-952,935	-8657,32	637,5544	-96,1859
539,9466	-3508,43	3043,357	-148,816	76,97228	937,2837	8296,599	345,4907	81,17742	-95,7592	641,2575	-8693,49	-956,184
569,908	-177,511	3637,476	-4070,86	126,2801	74,42802	322,9359	12739,77	947,2809	804,3445	-92,4555	-1230,97	-12963,2
569,8845	-177,626	127,1796	-4075,88	3640,018	323,5108	74,52945	948,4738	12747,02	-12954,2	-1230,26	-92,0178	808,5613
-1305,28	291,5394	129,8244	-491,174	-6884,4	-881,302	-82,6769	775,8279	-12863	74292,04	2903,836	180,9093	-754,171
-1442,07	-717,212	208,7273	293,182	-6831,93	-8258,65	615,9581	-101,193	-1248,49	3039,749	69786,29	-572,173	197,9119
-1452,93	-717,12	-6916,06	296,8128	211,283	620,6389	-8338,18	-1261,76	-102,291	199,4714	-582,555	70558,55	3081,178
-1326,97	294,4463	-6962,8	-519,772	133,3456	-83,5062	-891,627	-13032,3	791,7354	-763,785	184,5137	2940,579	75309,01

A.2 Matriz de rigidez do kart

Colunas 1-11

345452,6	103632,3	-157187	-6585,35	-1598	13072,57	-164753	-233727	276525,7	40717,76	-8470,27
99040,75	34741,47	-46274,6	-660,233	-2489,52	4056,934	-49876,4	-75429	80426,24	10646,99	-880,882
-133159	-41251	198362,5	9727,603	2640,609	-127302	53751	84106,23	-133353	-31369,9	-1814,77
-3429,75	341,4233	8674,826	341656,6	97994,79	131358,2	-331,739	-8,94884	-280,623	-325812	-105431
437,9626	-1828,06	1675,028	98150,34	33246,55	39397,68	960,5985	4,606662	1664,534	-93587,2	-40471,7
-8332,59	-1962,31	-118979	131730,1	39267,26	188483,9	11436,36	8266,435	8304,639	-110415	-38989,1
-333387	-105533	158986,9	2657,354	568,1661	-25169,4	333635,3	222679,7	-202310	-71047,5	27803,45
-105499	-38833,3	34411,15	1460,444	2261,166	8871,983	7236,992	172447,7	-113398	6017,219	-8603,65
147097,2	42750,43	-77691,4	-1652,87	-1152,99	2411,404	-23345,9	-85643,6	1195773	-14101,6	13996,43
33429.87	2740.647	-2493.23	-209977	-61625.6	-90651.7	-21392	109874.1	48549.62	339115.5	39295.23
-17317,3	-977,696	-9585,65	-164858	-56764,3	-50858,7	-2192,34	-45025,8	-36361,2	123236,2	168476
-24883.3	-2492.98	-557.753	-235438	-70228.1	-100739	29596.82	-90004.3	-25013.9	177861	95500.1
2444.894	5631.891	-24174	2030.711	999.439	21652.64	-97110.9	3047.407	-58777.7	33846.68	-18793.4
4567.249	, 1570.566	7198.521	-843.652	-1025.67	-10638.3	32718.98	-17761.7	34697.34	-18592	10762.85
-5319,96	618,9887	-12313,2	1557,605	, 990,2474	17241,83	-33590,4	-11813,1	-52727,6	31458,56	-18007,9
-54402,7	1204,199	-35774,6	-228550	-64276	-37612,6	31760,24	-283544	-109751	400553,2	-31658,7
16932	1800,629	3491,552	65256,65	21236,01	18287,18	6732,17	40492,56	38764,19	-27668,8	-56627,7
24086.81	2488.438	8030.425	94212.96	28747.52	24142.08	-14437.1	76677.88	37010.48	-43258.5	-56971.7
1971,998	467,6961	-1176,13	-16,3876	24,65475	570,8391	4478,816	-4160,47	3165,796	2065,794	-975,119
-842.696	-719.672	414.9807	18.95744	118.3782	328,7036	2307.685	6258.586	2301.799	726.1396	-492.865
402.6914	494.7109	464.7868	-99.7612	-120.774	-1226.88	-11764.7	6177.334	-1532.59	-3314.7	1873.857
15225.95	-12725	42304.71	100645.3	29298.88	-1435.23	17694.37	257951.8	93227.34	-344562	98786.75
-1362.27	-1386.41	6133.582	-2539.69	-1040.04	-6731.08	-40425.8	30046.47	-32939.2	-7784.05	10447.76
-8338.83	-6710.56	15858.01	-20320.3	-5577.06	-18901.9	22462.22	54034.27	19963.13	30630.67	-1.96897
-2572.52	-793.958	636.5457	554.9791	190.657	749.3376	5398.202	-2065.68	-1377.17	-930.559	-134.415
133.7121	533.7377	-142.447	-19.0601	-110.603	119,2053	2087.145	-5135.65	-3175.55	299.7146	-27.3295
1481.318	489,9092	-750.465	-329.594	-129.641	45.58718	4353.031	-5894.81	2231.149	1797.444	-530.546
9729.164	8855.657	-21969.2	20714.18	4473.286	22998.36	-29974.7	-75817.1	-29230.4	-33199.7	3778.116
988.5679	1409.455	-6243.43	488.1381	270.6645	5667.791	41584.5	-32202.8	33387.11	9409.347	-5197.78
9897.633	6504.68	-14608.5	27608.84	7186.259	19761.33	-24671.5	-42188.9	-17192.1	-57563.2	9322.279
653,6482	246.21	-470.25	-361.677	-103.96	34.67581	-1184.94	-304,155	244.0721	1063.715	-217,258
155,9452	-4.84476	110.434	3.698957	25.00958	-166.366	-1004.8	1143.646	1431.833	-187,113	55.74916
-403.607	-144.754	304.0272	413.4227	118.0527	22.40725	110.5746	703.0349	-262.758	-1209.3	264.5428
-2289.03	-419.096	763,9529	-9679.72	-2606.91	-3719.45	2826.382	-5679.83	-1984.58	26599.49	-6536.26
-254.155	-470.993	2095.319	256.2349	158.3033	-1771.33	-13471.8	10718.83	-10752.2	-3185.79	644.2582
-2040.94	-188,917	-1058.89	-7505.11	-2054.71	-1118.54	2094.035	-7463.08	-2596.52	23518.05	-6398.35
-85.0634	-64,5918	272.0081	-139,815	-37,4633	-281,129	339,2872	193.615	121,108	0.886483	90,70279
13,91568	-0.31094	30.38142	-55,2632	-10,9407	-57.8324	-255.436	114,2923	-728.19	90.85717	17.03359
21.81817	3.286251	-11.9408	38.61512	11.70573	21.91307	32.50047	57.23852	112.8406	-77.5092	9.191244
176.9612	-38.2473	176.0472	792.1358	236.0048	101.0943	-22.6562	1405.261	553,486	-2039.39	399.1182
70.8431	74.66998	-340.838	-2.93092	-36,7897	323.8824	1985.712	-1579.92	1670.417	422.3218	-185.804
141,7043	7.96274	445,4673	58,6663	10.24874	-513.807	-139.346	529,6806	172.8132	-1086.77	494.6211
219 7799	93 91557	-220 361	99 18976	22 41727	157 645	-355 907	-194 547	16 85552	-35 3011	-38.68
24 40883	19 40723	26 98201	-38 3914	-7 78302	-36 7031	-57 6401	53 76415	-109 573	84 91855	-6 28734
-633 279	-210 642	-984 371	80.39989	128,9568	1439 221	-4489 04	2361 315	-4772 36	2615 743	-1480 61
-143 989	34,42797	-112 439	-671 172	-195 972	-128 543	-9.33551	-1214 8	-491 926	1796 348	-389 065
-12.6673	-23,9981	126.4479	4.609048	13.31126	-118 878	-826 776	640,4336	-696 339	-147 91	49.32824
35,80584	29,22881	-49,7331	-31.6631	-23,2124	12,47268	797 788	-614 164	703,4911	42.32922	23,99121
-96,0035	-14,1173	-41,7544	-241 858	-69,9135	-7.79289	647,6408	-810 592	-129 287	829,1867	-235 025
-33,4157	-38,2115	-163 785	104 582	11,48267	178,5807	446.4272	-407 667	919,3709	-144 577	-52,7839
0 01680	0.048735	-0 21726	-0.05508	-0 02775	0 173381	1 417208	-1 13161	1 105472	0 360367	-0 01233
0,01009	3,0-0733	0,21720	0,0000	0,02775	5,1,5501	1,71/200	1,10101	1,100472	5,500507	0,01200

Colunas 12-21

-32262,3	-643497	134640,6	-135567	-21784,6	5916,771	29384,08	887886	-88637,8	-400387
-9079,75	-200365	40097,88	-39115	-5971,89	988,9118	8043,575	296548,5	-25405,3	-132488
23729,13	229582,7	-51208,7	54170,43	7662,963	-2813,09	-13042,8	-319999	32505,99	143401,8
-148830	2152,448	40,8554	1191,554	571,6081	6516,355	8806,889	-1400,53	-1850,97	451,6655
-46228,2	-1255,54	690,7901	-1114,56	-245,738	5035,63	5262,742	-242,674	-678,924	89,09065
-88232,8	22944,45	-2681,6	1780,199	780,7896	6035,488	9541,022	-32843,2	1633,408	15024,68
58704,23	501409,8	-126550	77748,03	44110,91	-23733,2	-53231	-636323	153685,1	303372,8
-5292,01	463584,1	-60945,3	67590,6	-4951,79	7613,311	4069,61	-867259	-1469,69	374182,4
12901,54	-303656	51227,2	-105232	11600,09	-14168,6	-10401	493484,2	22022,12	-203060
78205,69	113011,3	-175200	-5537,69	-83835,3	12802,22	-6172,77	998526,9	447003,2	-323226
84279,06	-20872,4	77735,18	14629,21	45002,51	-34495,5	-14399,7	-544928	-220616	181417,7
1160961	-114503	139130	-6751,7	60389,76	-26751	-32773,2	-719719	-336192	229456,6
-28961,7	424103,8	-3945,91	50989,77	-22933,1	18056,18	24980,1	-539893	-66597,6	73782,86
15947,62	-84965,8	11172,72	-30842,7	12626,52	-10262,4	-13783,9	197039,2	27194,73	-76183,4
-26854,3	28801,87	6802,157	51299,52	-21269,5	17090,62	23193,96	-124809	-60657,7	31839,5
-104688	-364094	434196,3	5938,766	168720,4	112812,9	218838,4	-1623785	-1097738	490952
-48665,1	9088,354	-74068	-17432,3	-44992,4	26776,21	18349,02	552774	216515,5	-185701
-80389	72332,56	-124925	-5983,73	-61917,3	28870,43	41391,95	752392,7	322725,8	-245502
-1503,19	-336113	2498,872	1253,592	-957,925	886,9032	1180,655	752721,5	127,2409	-328238
-837,233	12324	-8251,46	-339,31	-490,655	521,3853	758,6867	-34223,5	21561,18	14379,47
2637,94	14443,72	-3941,66	-4591,74	2046,132	-1711,24	-2163,17	-335990	889,8572	327611,1
178420,6	409155,8	-371998	-6078,11	-95549,6	-135118	-230552	265785,5	947608,4	-15324,7
10731,95	101740,1	-28572,5	32850,23	7159,542	-9970,93	-8705,51	-111027	11074,96	49980,52
6154,213	109229	-71231,9	-3732,6	-826,788	4266,462	-1917,37	-353015	188296,2	140686,6
-85,6964	7572,442	2565,016	2883,987	-844,049	-9,69075	-12,4709	-407746	-4477,02	322843,3
-279,181	-12787,9	6812,411	-879,119	-253,241	107,5347	254,6953	22422,25	-24883,7	-10091,6
-704,237	-3586,14	5186,031	882,0475	-93,2399	535,7055	536,8784	334190	-6805,54	-319666
4945,991	-147859	101312,7	6031,555	29245,5	-10176,6	-19563,2	433117,2	-268725	-177243
-7941,87	-105779	31709,4	-33735,2	-6263,22	4967,533	6849,063	101575,7	-18208,3	-47253,1
12826,21	-90587,5	53911,42	4908,226	13940,23	-17205,7	-23786,8	402908,9	-146839	-157394
-466,811	-1685	337,0766	-688,722	286,4307	342,6421	570,5204	2442,023	-1018,22	11358,55
232,9908	3203,015	-1544,67	822,0641	168,5961	-108,593	-212,451	-4110,8	8489,66	1845,673
464,739	1172,272	-689,832	177,5867	-194,302	-390,2	-586,601	4348,279	1274,192	-1493,6
-11535,1	-5231,4	9335,165	-379,573	-19254,4	9840,1	17143,3	-76442,8	-22527	26312,25
2512,486	34594,87	-10758,1	10917,93	1798,731	-461,328	-2379,38	-30537,2	7365,251	14542,72
-11247,8	-8657,15	11726,41	-163,406	-14678,5	8982,731	14877,96	-63331,6	-28955,7	20327,02
253,2892	-1641,34	-219,692	-66,8156	76,42666	-65,9058	-133,028	2104,003	722,7575	-843,232
54,79168	509,8601	-99,0416	196,8155	53,23738	-30,7476	-41,3885	-1183,23	-613,735	441,6239
-10,8347	-200,46	-87,2456	-117,806	24,13536	-12,7537	15,31669	1360,034	312,3362	250,8216
805,1855	2241,429	-2085,35	-48,4306	-657,332	-673,727	-1157,71	2755,52	5330,898	-441,478
-578,759	-5265,43	1589,178	-1660,98	-281,28	304,6827	552,4732	5012,121	-1081,36	-2326,77
918,3566	607,1347	-839,976	-15,2579	595,6241	-546,468	-860,248	3270,376	2111,475	-660,455
-125,685	1096,752	142,617	42,74434	-5,70273	14,01002	41,11532	-1369,02	-408,41	227,5663
10,51969	206,8074	-155,276	155,2748	26,16542	-2,22603	1,528153	-827,125	228,4164	296,2762
-2198,27	11731,5	-1443,38	4227,698	-1699,52	1423,107	1916,618	-27230	-3923,65	10300,14
-748,383	-1926,13	1804,474	48,43304	633,8378	618,1582	1069,82	-2536,62	-4632,04	549,2028
189,8495	2181,978	-657,383	685,8201	109,1068	-78,8323	-183,779	-2140,03	419,0212	983,0092
-49,3233	-2177,88	603,4274	-685,818	-6,45487	6,927085	64,51414	2751,253	-284,825	-1193,12
-329,441	333,5398	894,3976	449,9626	-94,8957	290,7856	349,0777	-7586,95	-1777,27	-7189,22
-192,931	-1395,8	705,6759	-718,464	-115,545	133,9872	160,1976	3044,452	-432,031	-1136,08
-0,24022	-3,61479	1,139239	-1,13537	-0,1796	-0,0277	0,23896	3,020604	-0,77993	-1,46402

Coluna 22-31

-129265	38,45587	-62396,8	-1255583	88182,29	1056292	404903,1	10902,67	309187,1	843137,6
-36177,5	10,9017	-17303	-379389	25076,59	316339,8	111986,4	3854,932	86382,6	227242,2
46301,2	-13,7735	22752,66	448648,7	-31419,7	-376634	-143065	-5708,45	-110047	-287264
-3188,66	0,232161	-3228,96	15078,27	2356,472	-11605	-4966,52	-3291,37	-251,72	-4663,41
-1291,83	0,037395	-1383,98	-418,638	922,2447	519,164	3167,184	-2153,37	2188,498	10234,89
2402,393	-1,13844	-317,58	48732,63	-1594,82	-40570,9	-13620,5	-2697,7	-8911,08	-28090,6
232790,2	-66,1638	112868,6	1723419	-162736	-1502408	-785044	50368,5	-570901	-2006330
-17407,4	2,434355	-11299,3	406821,7	10328,4	-289213	76660,36	-33767,7	42294,9	382353,1
41644,02	-9,84244	20051,79	-27401	-32607,2	-24160,9	-183034	60178,61	-114058	-694322
710652,6	-220,922	518061,9	984665,6	-459317	-1235534	135655,9	-119131	-710637	236917,3
-350264	110,0697	-256477	-431745	225278,4	569115,9	-106371	78422,28	335505,1	-208979
-531013	166,8865	-378603	-884076	342267,9	1043731	-66999	108134,7	547246	-176632
-105676	28,5718	-51298	-490332	76093,32	490824,7	389676,7	-60032	268850,8	1179117
58719,87	-15,5825	28937,74	232770,4	-36966,7	-230418	-215057	34675,79	-147802	-676522
-97983,5	26,56547	-47176,5	-505794	71303,91	479540,6	361589,7	-57630	249598,4	1069384
-1703928	433,401	-1004665	-2056992	1132551	2507420	-307354	260801,3	1353892	-892142
343622,9	-108,034	251176,2	401752,6	-220743	-541419	113264,4	-79572,2	-324853	223398,6
512805	-162,195	364767,6	717588,2	-330656	-903459	98869,25	-94435,1	-512499	185045,7
-250,382	1,739269	3761,851	-460143	296,1989	349419,7	12730,46	-2825,08	11351,35	60328,13
-2261,08	0,478913	-1237,22	6145,844	-22583,8	-2259,12	8123,874	-3348,58	5285,603	48967,09
2436,563	-2,56041	-2312	392946,2	-2018,33	-367839	-29225,8	6072,207	-21578,9	-86717,4
1442537	-219,67	849296,8	1191845	-984540	-1360147	-149302	-184021	-970320	1255632
19122,72	-5,08408	6772,667	210042,7	-15223,5	-176340	-104904	29099,56	-63407,8	-230541
286554	13,37241	299202,8	11411,79	-197981	34893,3	-268093	-24559,2	-249025	438520,6
-6833,02	-0,36531	-8347,36	870341,3	5053,016	-611928	16102,11	-1670,66	4308,322	-408533
-1046,58	0,416975	-419,027	-29198,6	39082,23	23574,98	4387,535	-1636,1	3324,766	3818,133
3613,626	1,240422	6810,113	-652124	7405,068	722692,7	2200,401	-755,823	-157264	301031,4
-402443	-9,45362	-309976	-50609,2	281814	-443,676	377633,5	40114,62	265853,1	-607799
-28133,9	7,969216	-12719,1	-231476	20521,44	199195,5	105673,6	-16527,8	73457,8	231646,6
-235689	-28,383	-256984	53762,05	155172,6	-279039	291568,3	15752,09	363807,5	-390351
-1469,09	0,760714	-232,127	-423205	1062,238	287355,2	-387,114	360,9708	3756,182	687899,7
589,1257	-0,20899	260,6313	14945,73	-19988,8	-12285,6	-2749,81	1787,252	-1927,36	-12665,7
1923,918	-0,81382	-45,0736	299076,6	-1368,02	-242211	-107,277	-105,065	-3580,98	-300862
-37697,7	15,00551	-45748	-66688,3	23069,07	84184,79	-52854,9	5945,403	55294,92	5347,425
10881,67	-3,13317	5465,953	78732,32	-7378,32	-68560,5	-33604	-849,526	-25478,9	-69439,1
-46097,6	14,3551	-33702,3	-66282,4	29812,7	82125,21	-7220,74	6926,529	46940,04	-11006,8
1042,6	-0,15696	1072,222	2339,818	-779,486	-5527,13	-2612,39	96,20837	-1875,86	-287660
140,8892	0,051742	292,5867	-56257,1	4771,398	45369,47	-659,055	471,3677	-17,7966	55418,56
512,5829	-0,79384	-94,6366	3424,536	-351,281	4711,147	-72,6002	87,08443	-615,749	-1,84303
8095,307	-1,41676	4366,468	7208,059	-5508,76	-8475,22	-450,284	-1239,98	-5114,61	7760,232
-1347,79	0,398387	-614,488	-19737,7	850,926	16316,51	4781,045	1364,184	3496,901	2597,967
3487,595	-0,95536	1444,951	4852,984	-2182,15	-5406,01	-9595,78	-466,392	-5091,88	1315,599
-583,074	0,07547	-448,966	-1835,65	411,4852	1649,166	1069,448	10,83813	882,5874	3860,075
-130,621	0,061194	10,72694	-22240,4	-256,479	18042,88	-133,159	131,3583	201,9797	21971,55
-8321,51	2,182017	-4062,83	-32444,6	5262,075	31194,13	29223,68	-4701,79	20360,58	91963,93
-7007,06	1,223492	-3821,63	-5973,05	4789,217	7165,614	-899,727	1067,605	4078,752	-6702,84
568,2103	-0,16082	299,138	-2860,34	-232,109	2191,427	-1895,61	-1010,76	-1366,14	15412,7
-215,094	0,053258	-43,1583	3305,25	96,05183	-2793,8	-61,0448	976,1369	-539,28	-15522,9
-2749,74	0,570924	90,82916	-63323,5	1936,2	19199,11	1092,494	-204,219	2593,401	16812,27
-2,16968	-0,10243	-255,622	68092,65	-1971,57	-55100,5	1206,133	-1316,95	57,96341	-67550,2
-1,24211	0,789003	-0,64077	-8,17377	0,877421	7,197857	3,536246	-1,71724	2,77878	7,901563
· · ·									
Colunas de 32-41

-20831,4	-820257	-308853	67540,91	-81553,7	-522969	86350,73	74387878	1246977	-404567
-5837,36	-230250	-85235,9	17804,01	-22581,5	-123691	23943,5	21087228	352032,5	-111502
7497,082	291116	108887,3	-21761,9	28811,25	157744,7	-30487,2	-2,7E+07	-445612	142425,7
-1015,96	10759,12	5667,532	4476,462	1316,584	-25797,5	-2506,75	447182,7	2984,278	-7674,97
-307,6	-899,4	-3089,07	3616,921	-733,901	-24064,5	396,2991	72591,62	3166,429	-8654,5
116,648	30980,92	10597,2	922,3992	2760,002	3208,224	-3604,95	-2202643	-37577,5	5483,865
39559,57	1485460	608029,5	-210621	157995,7	2115370	-164771	-1,3E+08	-2193337	833979,3
-3566,86	-94049,5	-60209,5	51799,27	-14491	-771258	14020,32	4721980	104131,6	-97013,2
8302,663	277730,7	148789,8	-103090	36982,41	1168751	-36849,4	-1,9E+07	-362856	229116,5
160484,1	2331241	-676999	216854,9	-108204	-2511289	103762,6	-4,3E+08	-5569837	-599316
-79224,6	-1133081	375653,5	-135437	62918,46	1394641	-59832,2	2,13E+08	2749732	361926,2
-118165	-1859326	477955,5	-194814	73729,14	2187029	-60506	3,23E+08	4226748	525964
-18902,3	-684941	-307221	143614,8	-78499	-1599348	80585,7	55287520	975098,2	-438955
9728,58	377109,4	169005,1	-80597,3	43150,89	945639,3	-44199,5	-3E+07	-532586	242280,7
-17440,3	-636395	-285388	135418,7	-72972,1	-1413908	74876,91	51404395	906558,4	-409231
-393288	-4506408	1375036	-459756	223801,6	5821241	-208079	8,38E+08	10894227	1249393
77752,11	1101989	-378030	137021,4	-63991	-1384130	61219,43	-2,1E+08	-2692795	-364537
115527,8	1715819	-500832	168028,6	-80615,9	-1883839	76369,93	-3,1E+08	-4085506	-460003
263,1498	-36500,1	-14742,8	6847,362	-3912,95	-58621,4	4053,871	3359963	56839,55	-21637,3
7691,348	-14721,5	-6350,36	4329,175	-1583,09	-92178,6	912,7909	927297,3	17000,25	-9399,55
-30,632	61533,11	28768,41	-13579,4	7196,594	115119,2	-7341,83	-4952483	-87716,4	40415,89
339131	2124924	-804834	299924,4	-140534	-4530192	121932,9	-4,2E+08	-5446327	-780195
3961,334	150673,8	90801,92	-50904,1	22517,7	244239,1	-22705	-9842342	-197371	128799,1
67205,72	-230276	-37651	28667,63	-9280,32	-740610	3238,078	25858999	380987,2	-55538,1
-1455,54	290923,5	-7346,7	3634,121	-1716,79	-13611,7	1642,692	-708747	-4473,05	-9928,07
-19734,6	-15619	-3605,13	2599,137	-952,128	28451,51	5835,747	806785,6	13759,88	-5538,43
-2301,7	-258832	-7697,06	3026,788	-2003,22	-6909	2406,923	2405358	38025,72	-10877,2
-95873,5	221709,4	18924,88	-50001,8	17764,14	1109267	-9375,23	-1,8E+07	-301617	105521,2
-5011,42	-186520	-84317,5	39556,15	-21652,4	-205719	22255,29	15419119	271577,8	-121024
-52304,6	380079,8	-18769,1	-12180,2	828,7685	514198,7	4694,685	-5,5E+07	-756614	9790,382
-435,794	-304858	1018,817	-562,96	206,9304	-280766	-83,8616	1476381	19321,75	1230,183
15526,46	11621,22	2295,43	-1956,47	588,2407	1842,932	-8434,42	-404674	-7183,38	3556,558
482,7225	258474,2	-364,459	-7,24014	79,88502	8159,392	-174,075	-1585437	-21685,3	401,6079
-8102,94	-163126	296919,9	-11726,4	6246,08	129639	-6229,36	29003729	167543,2	33759,12
1767,743	67086,04	25377,21	-5600,04	6691,525	45112,16	-7081,88	-6061032	-101728	33227,21
-10397	-152751	42282,55	-12861,6	6624,115	155935,8	-6383,45	27745423	363075,9	36039,4
247,6707	11796,09	1360,613	-326,157	199,4419	697862,5	-224,776	-304872	-3560,37	1113,881
-7818,93	-48213,3	415,6883	-515,203	89,6063	2568,919	20289,26	102291,7	1104,446	1555,153
106,4787	-9893,6	12,82503	-235,573	132,6819	7061,48	-141,064	-105466	-21519,6	737,0514
1906,558	13504,8	-219360	2077,642	-973,538	-27443,1	881,8619	-2723194	815779,3	-5444,44
-123,794	-15751,9	-3853,32	-2725,55	-1007,84	31740,76	2052,523	771043,4	13411,99	6607,842
758,2855	8778,105	7047,659	839,5791	-429,961	-11270,5	406,6667	-1745970	-3525,35	-2324,26
-118,806	-2433,06	-515,142	97,34354	-93,3688	-381331	102,2775	142688,5	2287,387	-491,651
2203,651	-19461,9	163,4795	-31,9049	26,10592	1088,266	-1275,32	119200	1548,011	925,2094
-1399,69	-50086,6	-22832,8	10959,24	-5872,85	-137707	6019,434	4218957	52592,34	-32974,1
-1658,69	-11801,5	3903,41	-1790,87	839,4989	23993,79	-756,25	2365506	-602361	4692,581
150,0685	-2990,7	1475,036	2241,723	391,7558	-26584,6	1218,857	-310781	-5391,83	-6659,29
-103,805	4161,972	214,8506	-2168,81	1154,566	25829,18	-1169,35	102856,8	2631,082	6441,221
-604,726	-14302,5	-450,75	678,5817	-397,226	-35097,6	444,2102	1091549	11160,73	-2229,24
1907,337	59384,69	-1038,58	1254,184	-226,176	-3967,22	-13379,8	-200746	-2067,49	-3442,65
-0,24598	-7,2168	-2,59579	1,843063	-0,6926	-6,45919	0,709094	693,6527	11,44128	-3,99823

Colunas 42-51

5992351	-49550,8	-183774	-6308950	-536147	1321832	38665100	-708716	-91034,8	-8,1E+07
1704324	-27424,7	-50887,6	-1747329	-148112	365678,7	10706392	-202075	-25287,4	-2,3E+07
-2150372	33819,28	65078,28	2229318	189205,7	-466767	-1,4E+07	254985,3	31948,27	29099526
55177,03	12639,24	2016,232	101696,2	9582,039	-11090,4	-623015	-1861,58	3989,852	-488147
-1006,19	12760,63	-1919,42	-56405,7	-5357,62	15436,73	347540,2	-205,742	-30,2704	-79963
-173759	8376,355	5630,541	213507	18180,24	-38776,3	-1308290	21726,9	4653,703	2405595
-1E+07	-577634	354852,2	12202514	1049908	-2592735	-7,5E+07	1169209	172437,7	1,4E+08
283092,2	400028,2	-32052,1	-1109197	-101073	250852,3	6864143	-9332,41	-14229,4	-5169389
-1366581	-551390	82147,16	2843755	253402,9	-628453	-1,8E+07	139508,1	38101,99	20830570
-4E+07	3177939	-233347	-8173760	-1100673	1791239	50929142	3785589	-134788	4,66E+08
20258117	-1660118	137069,6	4765958	613964,8	-1051163	-3E+07	-1884516	74721,52	-2,3E+08
30487632	-2562152	165840,9	5552569	775549,7	-1305195	-3,5E+07	-2878467	72872,82	-3,5E+08
4266540	623774,6	-175711	-6052715	-527532	1303830	37205178	-474740	-83803,6	-6E+07
-2323493	-380135	96416,3	3326224	290039,2	-717332	-2E+07	256031,1	46418,42	32946409
3966955	539484,5	-163203	-5627541	-490350	1212780	34585653	-446613	-78170,1	-5,6E+07
79514540	-6722088	480613,8	16909549	2243659	-3710786	-1,1E+08	-7461777	280387,4	-9,1E+08
-2E+07	1637269	-139327	-4849970	-618756	1066571	30150056	1848332	-76170,1	2,28E+08
-3E+07	2355003	-174867	-6091469	-816912	1344329	37947447	2779597	-97647	3,42E+08
268225,7	16130,4	-8699,6	-302209	-25852,7	64839,39	1855054	-37758,5	-4412,25	-3669444
68816,68	46205,59	-3226,96	-121215	-10721,6	26542,96	750177,3	-4842,91	-2094,13	-1013758
-380107	-40350,3	15998,64	555166,3	48497,16	-119634	-3410846	37509,73	7968,109	5411338
-4,1E+07	4266552	-297650	-1,1E+07	-1334366	2325138	66236966	3838523	-181160	4,63E+08
-669368	-86970,1	50367,77	1737226	156010,7	-375680	-1,1E+07	95461,63	23374,35	10757930
2284375	293358,8	-18005,2	-714609	-48398,1	155455,8	4412267	-196302	-13363,9	-2,8E+07
-82612,1	9672,083	-3865,27	-132283	-13105,4	28710,47	812288,5	-50893,7	-1633,72	774783,5
64209,23	-19378,2	-2474,17	-74160,9	-6342,72	16030,7	451370,8	-9300,67	-2991,32	-880594
199268,4	-8310,11	-4545,67	-156001	-12613,5	33108,46	950208,9	-10489	-2237,32	-2620054
-1508945	-526063	35822,13	1361679	115323,3	-297710	-8418450	118290,5	23981,83	19984988
1192140	42151,96	-48462,1	-1672734	-145572	359602,5	10262457	-145576	-23159,8	-1,7E+07
-5048454	-47073,4	-48,3807	75460,57	-34579,4	-16371,9	-429591	456212,9	2526,869	59899826
137665,1	-5760,12	436,2256	15056,39	2775,886	-3467,52	-96900	-2552,89	192,7238	-1608996
-31043,7	964,5987	3550,17	45548,29	3970,075	-9800,81	-278796	3884,273	2508,651	441716,5
-144046	6022,296	202,0234	8761,818	-641,803	-1310,56	-38948,5	8360,227	95,48409	1717584
2747168	-193483	13464,74	470514,5	65880,29	-102838	-2941559	-255358	7923,515	-3,2E+07
-487763	2647,156	15080,02	517606,8	44017,73	-108476	-3172458	57243,46	7457,606	6620117
2625473	-202609	14220,81	499616,7	68541,01	-109192	-3116659	-246019	8422,052	-3E+07
-26757,2	-380581	453,2288	6135,308	445,8592	-3316,43	-94555,3	-29329,7	205,3269	338154,9
10141,51	-2545,38	-1056,22	6423,624	728,9373	112,3645	-42351,3	91,33053	-13504,9	-109046
-139213	5545,387	298,9832	-2004,04	89,8179	-2200,97	-64057,9	1278,711	138,5341	265035,4
-241783	26910,7	-2078,44	-73792,2	-641609	16143,42	459840,5	19952,78	-1227,51	2952116
60322,56	-20989	-1497,61	-78496,2	-6760,64	7917,072	477722,2	-8999,81	-3137,19	-841588
-15057,8	13106,98	-919,1	-33702,1	3466,996	7075,043	185645	-2649,2	-551,985	1776541
11878,41	453724,5	-211,856	-12733,6	1124,344	1534,476	44039,8	-42940,2	-96,3343	-149565
11165,95	-1377,85	24426,34	1794,952	276,4153	-3973,9	-12275,3	-667,732	-5314,23	-129097
327000,9	45579,16	-13125,7	292013,9	-16320,3	97629,77	2661382	-17721,7	-6310,89	-4623031
234580,1	-21479,8	1791,464	64138,26	666546,4	-13918,3	-403580	-23576,5	1057,699	-2581949
-24493,6	15869,79	-2652,27	30626,7	2629,205	19844,1	-185704	4447,626	-1339,75	339588,8
4904,021	-14578,1	2561,907	-33211,9	-3039,93	-19160,4	201944,9	-2606,25	1281,25	-112637
79310,13	-44802,4	-907,584	-12628,8	-3790,1	6610,382	187400,1	113827,3	-396,127	-1192727
-20597,1	3862,579	-5842,53	-16813,1	-1793,23	2061,371	106942,1	465,4061	16508,42	215848,7
56,59656	0,427944	-1,55197	-53,5691	-4,50755	11,56945	328,41	-6,43038	-0,71902	-757,618

ANEXO B – Desenhos técnicos

DESSIN TECHNIQUE Nº11

Châssis de Formule Monde

TECHNICAL DRAWING No. 11

World Formula chassis

CD Anexo