As Descontinuidades e a sua Influencia na Estabilidade de um Talude Rochoso

As descontinuidades são o fator mais importante na estabilidade de um maciço rochoso fraturado. Como foi referido anteriormente, as estruturas geológicas condicionam a resistência e deformabilidade do maciço, além de controlar em grande medida o comportamento hidráulico deste. As estruturas geológicas que podem estar contidas dentro de um maciço rochoso podem ser de vários tipos, mas todas elas são definidas como descontinuidades. Este termo é usado para se referir a qualquer estrutura geológica que denota uma separação na rocha contínua, com uma resistência à tração efetiva igual a zero (Hudson & Harrison, 1997). As descontinuidades são introduzidas no maciço rochoso por processos geológicos ao longo do tempo.

2.1 Tinos do F

2

Tipos de Descontinuidades e a suas Propriedades

Em termos geológicos, as descontinuidades são definidas segundo sua origem de formação, sendo as seguintes as mais comuns (Wyllie & Mah, 2005):

- Falha, que é uma descontinuidade na qual são observados deslocamentos relativos dos blocos, ocorrendo geralmente associados a sistemas de fraturas paralelas ou sub-paralelas ao plano de cisalhamento;
- Estratificação, que são superficies sub-paralelas à deposição dos sedimentos;
- Foliação, que é a orientação preferencial de minerais ou bandas de minerais em uma rocha metamórfica;
- Juntas, são fraturas na rocha que não evidenciam algum tipo de movimento; de forma geral, elas interceptam a estratificação, a clivagem e a xistosidade;
- Clivagem, que são descontinuidades paralelas, formadas em planos incompetentes em uma serie de camadas; e a
- Xistosidade, que é uma foliação em xistos ou outras rochas cristalinas de grão grosso, que ocorre devido ao arranjo dos grãos minerais, produto do metamorfismo.

Capítulo 2. As Descontinuidades e a sua Influencia na Estabilidade de um Talude Rochoso

Estas definições podem ser um pouco melhor entendidas. Assim, as **falhas** podem ser de três tipos segundo o movimento dos blocos associados a ela. Este movimento de blocos também pode ser relacionado às direções das tensões principais. Zoback (Zoback *et al*, 1994) propõe as seguintes relações entre as tensões principais segundo o tipo de falhamento:

$$\sigma_{v} \gg \sigma_{Hmax} \gg \sigma_{hmin}, \quad \text{(Falha Normal)}$$

$$\sigma_{Hmax} \gg \sigma_{hmin} \gg \sigma_{v}, \quad \text{(Falha Reversa)} \quad (2-1)$$

$$\sigma_{Hmax} \gg \sigma_{v} \gg \sigma_{hmin}, \quad \text{(Falha de Transcorrente)}$$

É muito comum encontrar sistemas de **juntas** associados às **falhas** que se apresentam de forma paralela ou sub-paralela a esta. A **estratificação** é apresentada em rochas sedimentares, sendo formada no momento da deposição dos sedimentos. Este tipo de descontinuidades é muito persistentes e pode adotar diferentes formas segundo a deformação à que foi submetida a camada sedimentar. As dobras são reconhecidas pela observação e medição deste tipo de descontinuidades. Em rochas vulcânicas, podem se apresentar descontinuidades com aparência de estratos, com grande persistência e que são formadas pela superposição de derrames de lava. Este tipo de descontinuidade e chamado de **pseudo-estrato**. A **foliação**, como foi definida, é uma orientação preferencial de minerais ou bandas de minerais e esta estrutura é constituinte da **xistosidade**, sendo esta última um elemento estrutural formado por vários planos paralelos, resultante da recristalização dos cristais pre-existentes. Uma rocha que apresenta a **xistosidade** é uma rocha que apresenta lâminas finas, paralelas, de minerais.

2.1.1

Propriedades das Descontinuidades

As descontinuidades apresentam propriedades geométricas, que são importantes de se identificar para caracterizar um maciço rochoso. Estas propriedades são definidas como:

- Espaçamento, que é a distância entre duas descontinuidades ao longo de uma linha de referência (*scanline*). Assim, três tipos de espaçamento podem ser definidos: o espaçamento total, que é a distância entre uma descontinuidade e outra imediatamente adjacente; o espaçamento de uma família de descontinuidades, que é a distância entre uma descontinuidade e outra imediatamente adjacente que pertence à mesma família; e o espaçamento normal, que é a menor distância entre duas descontinuidades da mesma família. O termo freqüência de descontinuidades (λ) está relacionado à sua quantidade por unidade de comprimento. Priest (Priest, 1993) e Hudson (Hudson & Harrison, 1997) sugerem que, ao utilizar histogramas de um número finito de valores de espaçamento com intervalos de classe pequenos, o histograma tende a uma curva contínua que pode ser expressada pela função de densidade de probabilidade seguinte:

$$f(x) = \lambda e^{-\lambda x} \tag{2-2}$$

em que a média da distribuição é $1/\lambda$. A figura 2.1 mostra este tipo de distribuição.

Figura 2.1: Distribuição exponencial negativa de valores de espaçamento de descontinuidades (Hudson & Harrison, 1997)

- Mergulho e direção de mergulho, onde o mergulho é o ângulo de inclinação da descontinuidade com referência ao plano horizontal e, a direção de mergulho é o azimute da linha de máxima inclinação da mesma. Considera-se a descontinuidade como um plano.
- Persistência, tamanho e forma, que se referem à extensão da descontinuidade. A sua forma é de difícil determinação. Priest (Priest, 1993) descreve que as descontinuidades que terminam em outras descontinuidades planares podem adquirir formas poligonais complexas. Usualmente é usada a forma de discos circulares nas análises 3D.
- Rugosidade, é a forma que apresenta a superfície da descontinuidade.
 Este é um parâmetro muito importante, que está relacionado diretamente com a resistência ao cisalhamento da descontinuidade.
- Abertura, que é a distância entre os planos que formam uma descontinuidade. Considerando-se duas superfícies planares, esta distância seria constante, mas, pelo efeito da rugosidade dos planos, o valor da abertura é variável.

 Família de descontinuidades, refere-se àquelas descontinuidades que são paralelas ou sub-paralelas. O número de famílias caracteriza um maciço rochoso particular.

23

– Tamanho de bloco, refere-se ao tamanho de bloco formado pelas descontinuidades. Isto é representado na figura 2.2, que, por sua vez, tem a representação das outras propriedades descritas anteriormente.

Figura 2.2: Descrição das principais propriedades geométricas de um maciço rochoso (Hudson & Harrison, 1997)

Estas propriedades geométricas são importantes de se determinar porque delas depende a estabilidade da escavação. Elas podem ser obtidas através de trabalhos de campo (mapeamento, coleta de dados de descontinuidades em afloramentos rochosos, etc) e furos de sondagem. A figura 2.3 mostra o efeito das propriedades das fraturas na estabilidade de um talude. Maciços rochosos com descontinuidades de alta persistência e mergulho no sentido do talude, pode condicionar o deslizamento de um bloco de rocha pela sua superfície (figura 2.3a). Se estas descontinuidades são de pequena persistência, a ruptura do talude teria que envolver a ruptura no material rochoso, sendo a superfície de ruptura formada por descontinuidades pre-existentes e novas fraturas geradas na rocha intacta (figura 2.3b). As fraturas determinam a forma e o tamanho dos blocos. Quando as descontinuidade apresentam um mergulho alto e no sentido contrário ao talude, podem condicionar o tombamento de blocos se a altura é muito maior que a base (figura 2.3c)

Capítulo 2. As Descontinuidades e a sua Influencia na Estabilidade de um Talude Rochoso

Figura 2.3: Efeito das propriedades das fraturas na estabilidade de um talude rochoso fraturado: (a) J1 com persistência suficiente para formar um bloco com J2, mergulhando no sentido do talude, o deslizamento deste bloco esta condicionado à rugosidade do plano J1; (b) descontinuidades de persistência pequena em relação à altura do talude; formação de blocos pequenos isolados que podem gerar uma ruptura tipo *Step-path*; (c) J2 mergulhando no sentido contrario do talude; potencial formação de ruptura por tombamento. Adaptado (Wyllie & Mah, 2005)

2.1.2 Grau de Fraturamento de um Maciço Rochoso

O grau de fraturamento de um maciço rochoso é uma medida do número de descontinuidades contidas dentro de uma região e que está relacionado com o número de familias de descontinuidades e com o espaçamento delas. Um parâmetro que mede este grau de fraturamento foi proposto por Deere (Deere, 1964), como uma medida da qualidade da rocha extraída de uma sondagem, é definido como a divisão da soma de todos as trechos recuperados maiores do que 0.1m e o comprimento total amostrado. O resultado desta divisão é expressa em %. A figura 2.4 mostra o procedimento para a determinação do RQD em uma sondagem. Observar que os trechos são formados pelas descontinuidades, não sendo consideradas as fraturas mecânicas que podem se formar no momento de extrair o testemunho de sondagem, assim como as descontinuidades paralelas ao eixo da sondagem.

Figura 2.4: Procedimento para a determinação do *RQD* (Palmstrom, 2005)

Palmstrom (Palmstrom, 2005) define o parâmetro J_v como o número de descontinuidades contidas em um volume de rocha de $1m^3$. Considerando que elas ocorrem em famílias ou sistemas de descontinuidades com espaçamento S_n , o valor de J_v seria:

$$J_v = 1/S_1 + 1/S_2 + 1/S_3 + \dots + 1/S_n$$
(2-3)

O valor de J_v pode ser correlacionado com o RQD. Embora o valor de RQD seja unidimensional e baseado só em trechos maiores que 0.1m, é possível relacionar estes parâmetros usando a expressão seguinte:

$$RQD = 115 - 3.3J_v \tag{2-4}$$

com RQD = 0 para valores de $J_v > 35$ e RQD = 100 para valores de $J_v < 4.5$. A equação 2-4 tem sido usada em sistemas de classificação geomecânica. Embora exista esta relação entre o RQD e o J_v , é possível

encontrar dificuldades no momento de determinar um parâmetro do grau de fraturamento. A causa principal é que o RQD apresenta algumas limitações, sendo as duas principais mostradas na figura 2.5. Valores mínimos e máximos de RQD podem ser obtidos em sondagens mesmo tendo diferentes densidades de fraturamento. Além disso, o fato do RQD ser unidimensional faz com que seja muito sensível à orientação da perfuração no mesmo maciço rochoso.

Figura 2.5: a) valores mínimos e máximos de RQD em sondagens com diferentes espaçamentos, b) Três sondagens penetrando uma amostra de rocha em diferentes direções; o RQD varia de 0 a 100 (Palmstrom, 2005)

Apesar destas limitações, o RQD ainda é uma referência muito importante do fraturamento de um maciço rochoso, sendo utilizado nos principais sistemas de classificação geomecânica.

2.2

Resistência do Maciço Rochoso

A resistência do maciço rochoso é uma função da resistência da rocha intacta e das descontinuidades. Esta resistência pode variar, dependendo das tensões naturais, condições geoambientais e hidrológicas. A presença de diferentes unidades litológicas ou zonas de falha, indicam regiões de debilidade e anisotropia, com comportamentos diferentes e distintas características resistentes (De Vallejo *et al*, 2004). As descontinuidades, segundo a sua distribuição em um maciço rochoso, pode dar a ele uma característica anisotrópica, influindo na sua resistência, porque estas podem definir superfícies de deslizamento preferenciais. Segundo o grau de fraturamento, o comportamento e propriedades resistentes de um maciço rochoso podem ser definidas pela (De Vallejo *et al*, 2004):

- resistência da rocha intacta (isótropa ou anisotrópica);
- resistência ao cisalhamento de uma familia de descontinuidades ou familias, segundo a escala do problema (estas familias tem que ser representativas do maciço rochoso);
- resistência global de um sistema de blocos rochosos com comportamento isótropo.

2.2.1 A Resistência da Rocha Intacta e a Influência da Anisotropia do Material

A resistência da rocha intacta é definida como a tensão que pode suportar para determinados níveis de deformação. A resistência de pico atingida quando o confinamento é nulo é chamada de resistência à compressão uniaxial. Diferentes valores de resistência de pico determinados para diferentes tensões de confinamento formam uma envoltória de resistência. Esta envoltória define os níveis de tensão maxima a que pode uma amostra de rocha resistir até a sua ruptura. A figura 2.6 mostra a definição da envoltória de resistência no caso bidimensional.

Figura 2.6: Critério de ruptura geral em duas dimensões (De Vallejo *et al*, 2004)

A resistência da rocha intacta pode ser avaliada usando diferentes critérios de ruptura, sendo os principais o Critério de Mohr-Coulomb, que considera uma envoltória linear, e o critério de ruptura de Hoek-Brown, que considera uma envoltória não linear.

O critério de **Mohr-Coulomb** assume que a ruptura acontece por um plano, sendo a resistência ao cisalhamento função de uma coesão constante e do atrito, dependente da tensão normal (Brady, 1993). Assim, a resistência ao cisalhamento é dada pela expressão:

$$\tau = c + \sigma_n \tan \phi \tag{2-5}$$

A equação 2-5 pode ser expressa também em termos de tensões principais:

$$\sigma_1 = \frac{2c\cos\phi}{1-\sin\phi} + \sigma_3 \frac{1+\sin\phi}{1-\sin\phi} \tag{2-6}$$

onde c é a coesão e ϕ o atrito do material. Os valores de σ_1 e σ_3 referem-se aos valores das tensões atuantes no momento da ruptura.

O critério de ruptura de **Hoek e Brown** (Hoek & Brown, 1980); (Hoek *et al*, 2002); (Hoek, 2007) é provavelmente o mais aceito e usado na prática. Este critério empírico descreve que, para uma ampla gama de materiais rochosos isotrópicos, a envoltória dos valores pico de resistência em ensaios triaxiais pode ser definida como:

$$\sigma_1' = \sigma_3' + \sigma_{ci} \left(m \frac{\sigma_3'}{\sigma_{ci}} + s \right)^{0.5} \tag{2-7}$$

onde m é uma variável que depende do tipo de rocha e s tem o valor de 1 para rocha intacta. Segundo Hoek e Marinos (Hoek & Marinos, 2002), o parâmetro m depende das características friccionais dos componentes minerais da rocha intacta, tendo uma grande influência na resistência da rocha.

A resistência de pico da rocha intacta é afetada pela **anisotropia do material**. Este tipo de comportamento deve-se a uma orientação preferencial da fábrica ou da micro-estrutura, ou à presença de camadas ou planos de clivagem (Brady, 1993). A resistência de pico de um material transversalmente isotrópico varia com a orientação do plano de isotropia, plano de foliação ou plano de fraqueza em relação à direção da tensão principal maior (figura 2.7).

Figura 2.7: a) Amostra transversalmente isotrópica em compressão triaxial, b) variação da resistência de pico com a direção da tensão principal máxima, segundo o ângulo que a normal faz com o plano de cisalhamento

Jaeger (1960) (apud Hoek & Brown, 1980) introduziu uma análise para materiais transversalmente isotrópicos com planos de fraqueza bem definidos. Cada plano de fraqueza é controlado pela resistência ao cisalhamento definida pelo Critério de Mohr-Coulomb:

$$\tau = c + \sigma \tan \phi \tag{2-8}$$

29

sendo c a coesão e ϕ o atrito da superfície de deslizamento. As equações de transformação de tensões para esta superfície são:

$$\sigma_n = \frac{1}{2}(\sigma_1 + \sigma_3) + \frac{1}{2}(\sigma_1 - \sigma_3)\cos 2\beta$$
(2-9)

е

$$\tau = \frac{1}{2}(\sigma_1 - \sigma_3)\sin 2\beta \tag{2-10}$$

A substituir as equações 2-9 e 2-10 na equação 2-8, obtém-se a equação para este tipo de ruptura:

$$\sigma_1 \ge \sigma_3 + \frac{2(c + \sigma_3 \tan \phi)}{(1 - \tan \phi \tan \beta) \sin 2\beta}$$
(2-11)

2.2.2 Resistência ao Cisalhamento em Descontinuidades

Quando um maciço rochoso falha, a probabilidade de ruptura na rocha intacta é menor, sendo o comportamento do maciço rochoso controlado pelas descontinuidades. A resistência ao deslocamento relativo das paredes de uma descontinuidade depende de vários parâmetros, sendo os mais importantes dentre eles a coesão e a rugosidade. No caso de uma descontinuidade plana, a equação de Mohr-Coulomb é aplicável, sendo da forma seguinte:

$$\tau_p = c + \sigma_n \tan \phi \tag{2-12}$$

onde c é a coesão e ϕ o ângulo de atrito da superfície da descontinuidade. Este critério pode ser aplicado também às resistências residuais, sendo neste caso o valor da coesão igual a zero:

$$\tau_r = \sigma_n \tan \phi_r \tag{2-13}$$

O problema ou limitação deste critério é que na natureza, as descontinuidades não apresentam superfícies lisas e planas. Estas superfícies apresentam irregularidades que aumentam a resistência ao cisalhamento. Nesta condição, o deslizamento cisalhante gera um aumento de volume que é denominado dilatação. Patton (1960) (apud Hoek, 2007) modificou o critério de Mohr-Coulomb para estabelecer uma relação que inclua o efeito da rugosidade. Assumindo uma superfície em forma de serra, com pontas de forma triangular de inclinação constante, a resistência cisalhante é representada pela equação:

$$\tau = \sigma_n \tan(\phi_b + i) \tag{2-14}$$

sendo ϕ_b o ângulo de atrito básico da superfície e *i* o ângulo de inclinação das pontas que conformam a superfície em forma de "serra" ou "dentada". A figura 2.8 esquematiza o critério. No caso de altos valores de tensão normal, as pontas dentadas são cisalhadas, tendo a envoltória de resistência um comportamento bilinear.

Figura 2.8: Critério de ruptura de Patton (Hoek, 2007)

O critério de Patton tem o mérito que, de uma forma simples, envolve a influência da geometria da superfície da descontinuidade. Mas, na realidade, a forma geométrica que ele propôs para o seu critério não acontece na natureza. O valor do ângulo *i* depende da escala de trabalho e a definição da ondulação mínima que represente este valor. Mesmo assim, sendo adotado um valor para o ângulo i, este não poderia ser constante. O aumento da tensão normal pode quebrar estas irregularidades, diminuindo a resistência ao cisalhamento da descontinuidade. Barton (1973) propõe um outro critério que envolve as observações anteriormente descritas, modificando o valor de i da equação 2.8, e a reescrevendo como:

$$\tau = \sigma_n \tan\left(\phi_b + JRC \log_{10}\left(\frac{JCS}{\sigma_n}\right)\right) \tag{2-15}$$

31

sendo oJRC o coeficiente de rugosidade
eJCSa resistência à compressão da parede da descontinuidade. O valor d
eJRC é determinado por observações de campo mediante a utilização de uma tabela de perfís
 de descontinuidades (figura 2.9) , as quais tem que ser comparadas com o perfil
 real. OJCS é obtido através do martelo de Schmidt.

Figura 2.9: Perfis de rugosidade e o correspondente valor de JRC. Os perfis tem comprimento de 100mm. (Hoek, 2007)

Os valores do JRC e JCS podem ser corrigidos pelo fator de escala. Sendo estes parâmetros definidos para um comprimento de 100mm, a correção dos mesmos para comprimentos maiores será definida pelas seguintes equações:

$$JRC_n = JRC_o \left(\frac{L_n}{L_o}\right)^{-0.02JRC_o}$$
(2-16)

$$JCS_n = JCS_o \left(\frac{L_n}{L_o}\right)^{-0.03JRC_o}$$
(2-17)

sendo JRC_o e JCS_o os valores de rugosidade e resistência da parede da descontinuidade referidos a um comprimento L_o de 100mm; e os valores JRC_n e JCS_n equivalem aos parâmetros corrigidos para o comprimento real L_n de campo.

2.2.3 Efeito de Escala

A figura 2.10 mostra a transição da rocha intacta para um maciço rochoso fraturado. Na escala pequena, o comportamento estaria controlado unicamente pela resistência da rocha intacta (se não houver descontinuidades). Se aumentar a escala, a potencial superfície de deslizamento poderia acontecer por uma descontinuidade e se continuar aumentando, a superfície de deslizamento poderia se tornar mais complexa, compreendendo tanto as descontinuidades como a rocha intacta.

Figura 2.10: Transição da rocha intacta para um maciço rochoso fraturado (Wyllie & Mah, 2005)

Assim, a determinação de um apropriado valor para a resistência de um maciço rochoso depende em grande medida, da escala relativa entre a superfície de deslizamento e as estruturas geológicas contidas nela (Wyllie & Mah, 2005). Estabelecidos os elementos que controlam a resistência do maciço, a sua determinação pode efetuar-se mediante os seguintes procedimentos:

- Métodos Empíricos, baseados em experiência de campo e ensaios de laboratório;
- Métodos Indiretos, baseados em classificações geomecânicas;

- Modelos matemáticos e retro-análises;
- Modelos Físicos, que são feitos em escala reduzida e com materiais naturais ou artificiais submetidos a cargas.

2.2.4 Resistência do Maciço Rochoso Fraturado

A resistência do maciço rochoso é um parâmetro difícil de determinar. Como foi abordado nos item anteriores, a resistência da rocha intacta é diminuída quando apresentar uma descontinuidade. Jaeger constatou experimentalmente que a resistência da rocha intacta varia com relação ao mergulho da descontinuidade. Baseado no efeito escala, a ruptura da massa rochosa pode acontecer pela rocha intacta, pelas descontinuidades ou a combinação destas, sendo a resistência das duas primeiras discutidas em items anteriores. Quando a massa rochosa envolve vários sistemas de fraturas que podem ou não ter propriedades diferentes entre elas, a determinação da resistência da massa rochosa pode ser feita usando os seguintes procedimentos: modelamento matemático, uso de índices geomecânicos, realizando ensaios com amostras de grande tamanho e retro-análise de rupturas que aconteceram no maciço rochoso (Sjöberg, 1996). Dentro destes métodos, o uso dos índices geomecânicos é usado com maior freqüência.

O Critério Generalizado de Hoek e Brown, modifica o critério de Hoek e Brown para a rocha intacta (equação 2-7), utilizando o sistema de classificação geomecânica GSI (Geological Strength Index) proposto inicialmente por Hoek, Kaiser e Bawden (1995) (Hoek et al, 1995) e cuja modificação, proposta por Hoek e Marinos (Hoek & Marinos, 2002), é mostrada na figura 2.11. O GSI é uma avaliação do maciço rochoso em relação às suas características geológicas estruturais e às condições das superfícies de deslocamento. Hoek, Carranza-Torres e Corkum (Hoek et al, 2002) propuseram a ultima modificação ao critério generalizado, sendo expresso pela seguinte relação:

$$\sigma_1' = \sigma_3' + \sigma_{ci} \left(m_b \frac{\sigma_3'}{\sigma_{ci}} + s \right)^a \tag{2-18}$$

onde m_b é um valor reduzido da constante m_i utilizado para a rocha intacta. O valor de m_b é dado pela seguinte expressão:

$$m_b = m_i \exp\left(\frac{GSI - 100}{28 - 14D}\right) \tag{2-19}$$

O valor de a e de s também podem ser determinados a partir do valor do GSI do maciço rochoso, sendo calculados da seguinte forma:

Capítulo 2. As Descontinuidades e a sua Influencia na Estabilidade de um Talude Rochoso

$$s = \exp\left(\frac{GSI - 100}{9 - 3D}\right) \tag{2-20}$$

$$a = \frac{1}{2} + \frac{1}{6} \left(e^{-GSI/15} - e^{-20/3} \right)$$
(2-21)

GEOLOGIC PARA ROCH 2000)	AL STRENGTH INDEX (GSI) HAS FRATURADAS (Hoek & Marinos	ERFÍCIE DA DESCONTINUIDADE	sa, inalterada	emente alterada, s de oxido.	Jeradamente intemperizadas, superfícies	ided, altamente intemperizada, fraturas srial compacto ou fragmentos angulosos.	ided, altamente intemperizada, fraturas arial argiloso.
		CONDIÇÃO DA SUP	MUITO BOA superfície muito rugo	BOA superfície rugosa, lev presença de mancha	REGULAR superfícies lisas, moo alterada.	POBRE presença de slickens preenchidas por mat	MUITO POBRE presença de slíckens preenchidas por mat
ESTRUTURA			,				
	ROCHA INTACTA OU MASSIVA - sem descontinuidades ou poucas descontinuidades com grandes espaçamentos.		90 80			N/A	N/A
	ROCHA FRATURADA - formação de blocos travados, não disturbado. Blocos cúbicos formados pela interseção de três sistemas de descontinuidades			70 60			
	ROCHA MUITO FRATURADA - formação de muitos blocos travados, parcialmente disturbado. Blocos angulares formados pela interseção de quatro ou mais sistemas de descontinuidades				50 40		
	ROCHA INTENSAMENTE FRATURADA/DISTURBADA - dobrado com blocos angulares formados pela interseção de muitos sistemas de fraturas. Persistência de planos de acamamento oi xistosidade.					30	
	DESINTEGRADO OU TRITURADO - pobremente travado, massa rochosa altamente quebrada com mistura de peças angulares e arredondadas.					20	
	LAMINADO - carência de blocos devido a um espaçamento fechado como planos de xistosidade ou planos de cisalhamento.		N/A	N/A			10

Figura 2.11: Índice Geomecânico GSI (tradução própria) (Hoek & Marinos, 2002)

Capítulo 2. As Descontinuidades e a sua Influencia na Estabilidade de um Talude Rochoso

A constante D é chamada de fator de dano e depende do grau de transtorno que acontece na massa rochosa como conseqüência do tipo de escavação e uso de explosivos. O valor de D varia de 0 (não perturbada) até 1 (perturbada).

O valor do Módulo de Deformação do maciço rochoso também pode ser determinado. Hoek e Diederichs (Hoek & Diederichs, 2006) propõem a relação seguinte para a obtenção deste parâmetro:

$$E_{rm} = E_i \left(0.02 + \frac{1 - D/2}{1 + e^{((60 + 15D - GSI)/11)}} \right)$$
(2-22)

É possível utilizar outros índices de classificação geomecânica, como o índice Q proposto por Barton ou o índice RMR proposto por Bieniawski. Existem correlações empíricas de ambos com o índice de classificação geomecânica GSI.

2.3 Tipos e Mecanismos de Ruptura em Taludes Rochosos Fraturados

Quando um talude é escavado, a redistribuição de tensões pode levar à ruptura do maciço rochoso. Dependendo da resistência da rocha e da distribuição das descontinuidades, diferentes tipos de ruptura podem acontecer. Além disso, no caso de taludes de grande altura, como os taludes de mineração, fatores como a alta concentração de tensões no pé do talude, métodos de escavação deficientes e as cargas aplicadas nas cristas que conformam as rampas devem ser considerados quando se avaliar a potencial ruptura. Segundo Sjöberg (Sjöberg, 1996), os tipos de ruptura em taludes podem ser agrupados em: rupturas planares por cisalhamento, rupturas rotacionais e deslizamento de blocos e tombamentos.

2.3.1 Ruptura por Cisalhamento Planar

Este tipo de ruptura acontece quando o maciço rochoso falha aproveitando uma ou várias descontinuidades, em diferentes configurações geométricas, formando blocos ou cunhas que podem deslizar livremente. Este tipo de ruptura depende das propriedades resistentes das descontinuidades e da rocha. A figura 2.12 mostra as diferentes combinações de descontinuidades que a conformam.

Figura 2.12: Combinação de descontinuidades formando uma superfície de falha

Pode-se apreciar que a superfície de falha pode acontecer ao longo de uma descontinuidade como no caso da ruptura *Planar* ou pela conexão ou combinação de várias descontinuidades. Quando esta combinação envolve só duas descontinuidades cuja linha de intersecção mergulha no sentido do talude, o tipo de ruptura a acontecer é em *Cunha*. O aumento de descontinuidades conectadas leva a ocorrência de outros tipos de ruptura como o *Step-Path* ou ruptura tipo *Slab*.

Hoek e Bray (Hoek & Bray, 1996) propuseram diferentes métodos de avaliação de estabilidade para rupturas dos tipo planar e cunha que continuam sendo utilizados na atualidade. Mas, estes tipos de ruptura ficam restritos a taludes de pequena altura ou com fraturas persistentes. No caso de taludes de grande altura ou com descontinuidades pouco persistentes, os mecanismos mais comuns são o *step-path* e o *slab*, como conseqüência de um aumento da combinação de descontinuidades envolvidas na ruptura. O mecanismo tipo

37

step-path acontece pela interligação de descontinuidades através da rocha intacta. Estas descontinuidades são unidas uma com outra por *coalescência*, formando uma superfície irregular de ruptura. O mecanismo tipo *slab* acontece por rupturas por cisalhamento na base do talude, através de descontinuidades conectadas com uma estrutura principal maior.

Destes tipos de ruptura, Sjöberg (Sjöberg, 1996) estabelece que o tipo *step-path* é aquele que representa de forma mais realista a ruptura de um talude em três dimensões. Esta afirmação tem sentido, considerando que, em geral, as análises de estabilidade por deslizamento planar são feitas em duas dimensões, onde a fratura é representada como uma linha. Em análises tridimensionais, as fraturas são representadas como planos, sendo a configuração estrutural diferente para cada seção bidimensional, podendo-se gerar uma superfície de ruptura avaliando diferentes seções. No entanto, o *step-path* continua sendo de difícil avaliação, devido aos diferentes tipos de *coalescência* que podem acontecer na interligação das descontinuidade, assim como à incerteza da combinação destas na geração da superfície potencial de ruptura.

2.3.2 Durature new Circline

Ruptura por Cisalhamento Rotacional

A Ruptura por Cisalhamento Rotacional é geralmente referida como rupturas circulares. Este tipo de ruptura acontece em taludes com descontinuidades ou planos de fraqueza criticamente orientados (Sjöberg, 1996) e é um tipo de ruptura típico de um solo. Hoek & Bray (Hoek & Bray, 1996) sugerem que esta condição poderia ocorrer quando as partículas individuais de solo ou rocha são muito pequenas e sem travamento como resultado de suas formas. No caso de maciços rochosos, esta condição acontece quando o fraturamento é tão intenso que não é possível reconhecer um padrão estrutural predominante. A figura 2.13 ilustra os tipos de ruptura por cisalhamento rotacional.

Figura 2.13: Ruptura por cisalhamento rotacional e rupturas por combinação de cisalhamento rotacional e planos de cisalhamento

Em taludes de grande altura, a citação mencionada por Hoek e Bray é importante, porque, segundo a condição estrutural do maciço rochoso, quanto maior é a altura, menor será o tamanho do bloco unitário em relação ao tamanho do talude, tendo a ruptura por cisalhamento rotacional uma maior probabilidade de acontecer. Sjöberg (Sjöberg, 1996) menciona que a ruptura por cisalhamento rotacional poderia acontecer primeiramente envolvendo rupturas ao longo de descontinuidades pré-existentes com algumas porções de ruptura na rocha intacta, sendo o movimento translacional e rotacional destes blocos individuais o que ajudaria na formação da superfície de ruptura. O resultado seria um *step-path* curvo.

2.3.3 Deslizamento de Blocos e Tombamento

O deslizamento de blocos é caracterizado pela desagregação do material rochoso do talude. A ocorrência deste tipo de ruptura é comumente iniciado por rupturas no pé do talude. Esta ruptura pode acontecer por um aumento de tensões, como no caso dos taludes de grande altura (figura 2.14). O Sjöberg (Sjöberg, 1996) refere que a presença de descontinuidades em um maciço rochoso pode formar outros modos de ruptura secundários. Grandes blocos e cunhas ou ensambles de muitos blocos pequenos pode combinar o deslizamento de blocos com rupturas por cisalhamento planar.

Figura 2.14: Deslizamento de blocos e Ruptura tipo Tombamento (Sjöberg, 1996)

A ruptura por **Tombamento** (figura 2.14) apresenta vários tipos. Segundo Goodman e Bray (apud Hoek & Bray, 1996) a ruptura por Tombamento pode ser de tipo flexural, em blocos e por flexão de blocos. Todos estes tipos de tombamentos são definidos principalmente pela configuração estrutural. Em princípio, a condição estrutural para este tipo de ruptura é que o sistema de estruturas principal tenha um mergulho alto e em sentido contrario ao talude, sendo o tombamento flexural um exemplo típico. Quando além deste sistema principal de descontinuidades, tem-se um outro sistema secundário mergul-

Capítulo 2. As Descontinuidades e a sua Influencia na Estabilidade de um Talude Rochoso 40

hando no sentido do talude, condiciona-se uma combinação entre tombamento e deslizamento. Esta combinação de rupturas dependem do espaçamento, o que define o tamanho e a forma dos blocos a se formar. Assim, blocos retangulares com alturas maiores ao comprimento da base têm tendência a tombar-se, diferentemente dos blocos com comprimento da base maior, onde o bloco tende a se deslizar.