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Sample Average Approximation

We have seen in Chapter 2 that chance constrained problems are usually

hard to solve and explicit solutions are only available in very particular cases.

The main idea of SAA is to replace the original problem by an approximate

problem obtained via sampling from the distribution of the original problem.

We claim that good candidate solutions and bounds on the true optimal

value can be obtained by solving such approximations. We start with the

theoretical background for the method, stating and proving consistency results.

The discussion follows [PAS].

3.1

Theoretical background for SAA

As stated in Chapter 1, we consider chance constrained problems

Min
x∈X

f(x)

s.t. Prob
{

G(x, ξ) ≤ 0
}

≥ 1 − ε.
(3-1)

In order to simplify the presentation we assume in this section that the

constraint function G : R
n × Ξ → R is real valued. Of course, a number

of constraints Gi(x, ξ) ≤ 0, i = 1, . . . , m, can be equivalently replaced by one

constraint with the max-function as discussed in (2-6). We assume that the

set X is closed, the function f(x) is continuous and the function G(x, ξ) is a

Carathéodory function, i.e., G(x, ·) is measurable for every x ∈ R
n and G(·, ξ)

continuous for a.e. ξ ∈ Ξ.

Problem (3-1) can be written in the following equivalent form

Min
x∈X

f(x) s.t. p(x) ≤ ε, (3-2)

where

p(x) := P{G(x, ξ) > 0}.

Now let ξ1, . . . , ξN be an independent identically distributed (iid) sample of N

realizations of random vector ξ and PN := N−1
∑N

j=1 ∆(ξj) be the respective

empirical measure. Here ∆(ξ) denotes measure of mass one at point ξ, and

hence PN is a discrete measure assigning probability 1/N to each point ξj,
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j = 1, . . . , N . The sample average approximation p̂N(x) of function p(x) is

obtained by replacing the ‘true’ distribution P by the empirical measure PN .

That is, p̂N(x) := PN{G(x, ξ) > 0}. Let 1l(0,∞) : R → R be the indicator

function of (0,∞), i.e.,

1l(0,∞)(t) :=

{

1, if t > 0,

0, if t ≤ 0.

Then we can write that p(x) = EP [1l(0,∞)(G(x, ξ))] and

p̂N(x) = EPN
[1l(0,∞)(G(x, ξ))] =

1

N

N
∑

j=1

1l(0,∞)

(

G(x, ξj)
)

.

That is, p̂N(x) is equal to the proportion of times that G(x, ξj) > 0. The

problem, associated with the generated sample ξ1, . . . , ξN , is

Min
x∈X

f(x) s.t. p̂N(x) ≤ γ. (3-3)

We refer to problems (3-2) and (3-3) as the true and SAA problems, respec-

tively, at the respective significance levels ε and γ. Note that, following [LA]

and [PAS], we allow the significance level γ ≥ 0 of the approximate problem to

be different from the significance level ε of the true problem. Next we discuss

the convergence of a solution of the SAA problem (3-3) to that of the true

problem (3-2) with respect to the sample size N and the significance level γ. A

convergence analysis of problem (3-3) has been given in [LA]. Here we present

complementary results under slightly different assumptions.

Recall that a sequence fk(x) of extended real valued functions is said to

epiconverge to a function f(x), written fk
e
→ f , if for any point x the following

two conditions hold: (i) for any sequence xk converging to x one has

lim inf
k→∞

fk(xk) ≥ f(x), (3-4)

(ii) there exists a sequence xk converging to x such that

lim sup
k→∞

fk(xk) ≤ f(x). (3-5)

Note that by the (strong) Law of Large Numbers (LLN) we have that for any

x, p̂N(x) converges w.p.1 to p(x).

Proposition 5 Let G(x, ξ) be a Carathéodory function. Then the functions

p(x) and p̂N(x) are lower semicontinuous, and p̂N
e
→ p w.p.1. Moreover,

suppose that for every x̄ ∈ X the set {ξ ∈ Ξ : G(x̄, ξ) = 0} has P -measure zero,

i.e., G(x̄, ξ) 6= 0 w.p.1. Then the function p(x) is continuous at every x ∈ X

and p̂N(x) converges to p(x) w.p.1 uniformly on any compact set C ⊂ X, i.e.,
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sup
x∈C

|p̂N(x) − p(x)| → 0 w.p.1 as N → ∞. (3-6)

Proof. Consider function ψ(x, ξ) := 1l(0,∞)

(

G(x, ξ)
)

. Recall that p(x) =

EP [ψ(x, ξ)] and p̂N(x) = EPN
[ψ(x, ξ)]. Since the function 1l(0,∞)(·) is lower

semicontinuous and G(·, ξ) is a Carathéodory function, it follows that the

function ψ(x, ξ) is random lower semicontinuous1 (see, e.g., [RW, Proposition

14.45]). Then by Fatou’s lemma we have for any x̄ ∈ R
n,

lim infx→x̄ p(x) = lim infx→x̄

∫

Ξ
ψ(x, ξ)dP (ξ)

≥
∫

Ξ
lim infx→x̄ ψ(x, ξ)dP (ξ) ≥

∫

Ξ
ψ(x̄, ξ)dP (ξ) = p(x̄).

This shows lower semicontinuity of p(x). Lower semicontinuity of p̂N (x) can

be shown in the same way.

The epiconvergence p̂N
e
→ p w.p.1 is a direct implication of Artstein and

Wets [AW, Theorem 2.3]. Note that, of course, |ψ(x, ξ)| is dominated by an

integrable function since |ψ(x, ξ)| ≤ 1.

Suppose, further, that for every x̄ ∈ X, G(x̄, ξ) 6= 0 w.p.1, which

implies that ψ(·, ξ) is continuous at x̄ w.p.1. Then by the Lebesgue Dominated

Convergence Theorem we have for any x̄ ∈ X,

limx→x̄ p(x) = limx→x̄

∫

Ξ
ψ(x, ξ)dP (ξ)

=
∫

Ξ
limx→x̄ ψ(x, ξ)dP (ξ) =

∫

Ξ
ψ(x̄, ξ)dP (ξ) = p(x̄).

This shows that p(x) is continuous at x = x̄. Finally, the uniform convergence

(3-6) follows by a version of the uniform Law of Large Numbers (see, e.g.,

[SHA, Proposition 7, p.363]).

By lower semicontinuity of p(x) and p̂N(x) we have that the feasible

sets of the ‘true’ problem (3-2) and its SAA counterpart (3-3) are closed sets.

Therefore, if the set X is bounded (i.e., compact), then problems (3-2) and (3-

3) have nonempty sets of optimal solutions denoted, respectively, as S and ŜN ,

provided that these problems have nonempty feasible sets. We also denote by

ϑ∗ and ϑ̂N the optimal values of the true and the SAA problems, respectively.

The following result shows that for γ = ε, under mild regularity conditions,

ϑ̂N and ŜN converge w.p.1 to their counterparts of the true problem.

We make the following assumption.

(A) There is an optimal solution x̄ of the true problem (3-2) such that for

any ε > 0 there is x ∈ X with ‖x− x̄‖ ≤ ε and p(x) < ε.

1Random lower semicontinuous functions are called normal integrands in [RW].
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In other words the above condition (A) assumes existence of a sequence

{xk} ⊂ X converging to an optimal solution x̄ ∈ S such that p(xk) < ε

for all k, i.e., x̄ is an accumulation point of the set {x ∈ X : p(x) < ε}.

Proposition 6 Suppose that the significance levels of the true and SAA

problems are the same, i.e., γ = ε, the set X is compact, the function f(x) is

continuous, G(x, ξ) is a Carathéodory function, and condition (A) holds. Then

ϑ̂N → ϑ∗ and D(ŜN , S) → 0 w.p.1 as N → ∞.

Proof. By the condition (A), the set S is nonempty and there is x ∈ X

such that p(x) < ε. We have that p̂N(x) converges to p(x) w.p.1. Consequently

p̂N(x) < ε, and hence the SAA problem has a feasible solution, w.p.1 for N

large enough. Since p̂N(·) is lower semicontinuous, the feasible set of the SAA

problem is compact, and hence ŜN is nonempty w.p.1 for N large enough. Of

course, if x is a feasible solution of an SAA problem, then f(x) ≥ ϑ̂N . Since

we can take such point x arbitrary close to x̄ and f(·) is continuous, we obtain

that
lim sup

N→∞

ϑ̂N ≤ f(x̄) = ϑ∗ w.p.1. (3-7)

Now let x̂N ∈ ŜN , i.e., x̂N ∈ X, p̂N(x̂N ) ≤ ε and ϑ̂N = f(x̂N). Since the

set X is compact, we can assume by passing to a subsequence if necessary that

x̂N converges to a point x̄ ∈ X w.p.1. Also we have that p̂N
e
→ p w.p.1, and

hence

lim inf
N→∞

p̂N(x̂N ) ≥ p(x̄) w.p.1.

It follows that p(x̄) ≤ ε and hence x̄ is a feasible point of the true problem,

and thus f(x̄) ≥ ϑ∗. Also f(x̂N ) → f(x̄) w.p.1, and hence

lim inf
N→∞

ϑ̂N ≥ ϑ∗ w.p.1. (3-8)

It follows from (3-7) and (3-8) that ϑ̂N → ϑ∗ w.p.1. It also follows that the

point x̄ is an optimal solution of the true problem and consequently we obtain

that D(ŜN , S) → 0 w.p.1.

Condition (A) is essential for the consistency of ϑ̂N and ŜN . Think, for

example, about a situation where the constraint p(x) ≤ ε defines just one

feasible point x̄ such that p(x̄) = ε. Then arbitrary small changes in the

constraint p̂N(x) ≤ ε may result in that the feasible set of the corresponding

SAA problem becomes empty. Note also that condition (A) was not used in

the proof of inequality (3-8). Verification of condition (A) can be done by ad

hoc methods.

Suppose now that γ > ε. Then by Proposition 6 we may expect that with

increase of the sample size N , an optimal solution of the SAA problem will
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approach an optimal solution of the true problem with the significance level

γ rather than ε. Of course, increasing the significance level leads to enlarging

the feasible set of the true problem, which in turn may result in decreasing

of the optimal value of the true problem. For a point x̄ ∈ X we have that

p̂N(x̄) ≤ γ, i.e., x̄ is a feasible point of the SAA problem, iff no more than γN

times the event “G(x̄, ξj) > 0” happens in N trials. Since probability of the

event “G(x̄, ξj) > 0” is p(x̄), it follows that

Prob
{

p̂N(x̄) ≤ γ
}

= B
(

⌊γN⌋; p(x̄), N
)

. (3-9)

Recall that by Chernoff inequality [CHE], for k > Np,

B(k; p,N) ≥ 1 − exp
{

−N(k/N − p)2/(2p)
}

.

It follows that if p(x̄) ≤ ε and γ > ε, then 1 − Prob
{

p̂N (x̄) ≤ γ
}

approaches

zero at a rate of exp(−κN), where κ := (γ − ε)2/(2ε). Of course, if x̄ is an

optimal solution of the true problem and x̄ is a feasible point of the SAA

problem, then ϑ̂N ≤ ϑ∗. That is, if γ > ε, then the probability of the event

“ϑ̂N ≤ ϑ∗” approaches one exponentially fast. By similar analysis we have

that if p(x̄) = ε and γ < ε, then probability that x̄ is a feasible point of the

corresponding SAA problem approaches zero exponentially fast (cf., [LA]).

The above is a qualitative analysis. For a given candidate point x̄ ∈ X,

say obtained as a solution of a SAA problem, we would like to validate its

quality as a solution of the true problem. This involves two questions, namely

whether x̄ is a feasible point of the true problem, and if so, then what is the

optimality gap f(x̄)−ϑ∗. Of course, if x̄ is a feasible point of the true problem,

then f(x̄) − ϑ∗ is nonnegative and is zero iff x̄ is an optimal solution of the

true problem.

Let us start with verification of feasibility of x̄. For that we need to

estimate the probability p(x̄). We proceed by employing again the Monte Carlo

sampling techniques. Generate an iid sample ξ1, ..., ξN and estimate p(x̄) by

p̂N(x̄). Note that this random sample should be generated independently of

a random procedure which produced the candidate solution x̄, and that we

can use a very large sample since we do not need to solve any optimization

problem here. The estimator p̂N(x̄) of p(x̄) is unbiased and for large N and

not “too small” p(x̄) its distribution can be approximated reasonably well by

the normal distribution with mean p(x̄) and variance p(x̄)(1 − p(x̄))/N . This

leads to the following approximate (1 − β)-confidence upper bound on p(x̄):

Uβ,N(x̄) := p̂N(x̄) + zβ

√

p̂N(x̄)(1 − p̂N(x̄))/N. (3-10)
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A more accurate (1 − β)-confidence upper bound is given by (cf., [NS]):

U∗

β,N(x̄) := sup
ρ∈[0,1]

{ρ : B(k; ρ,N) ≥ β} , (3-11)

where k := Np̂N (x̄) =
∑N

j=1 1l(0,∞) (G(x̄, ξj)).

In order to get a lower bound for the optimal value ϑ∗ we proceed as

follows. Let us choose two positive integers M and N , and let

θN := B
(

⌊γN⌋; ε,N
)

and L be the largest integer such that

B(L− 1; θN ,M) ≤ β. (3-12)

Next generate M independent samples ξ1,m, . . . , ξN,m, m = 1, . . . ,M , each of

size N , of random vector ξ. For each sample solve the associated optimization

problem
Min
x∈X

f(x)

s.t.
∑N

j=1 1l(0,∞) (G(x, ξj,m)) ≤ γN,
(3-13)

and hence calculate its optimal value ϑ̂m
N ,m = 1, . . . ,M . That is, solve M times

the corresponding SAA problem at the significance level γ. It may happen

that problem (3-13) is either infeasible or unbounded from below, in which

case we assign its optimal value as +∞ or −∞, respectively. We can view

ϑ̂m
N , m = 1, . . . ,M , as an iid sample of the random variable ϑ̂N , where ϑ̂N

is the optimal value of the respective SAA problem at significance level γ.

Next we rearrange the calculated optimal values in the nondecreasing order as

follows ϑ̂
(1)
N ≤ · · · ≤ ϑ̂

(M)
N , i.e., ϑ̂

(1)
N is the smallest, ϑ̂

(2)
N is the second smallest

etc, among the values ϑ̂m
N , m = 1, . . . ,M . We use the random quantity ϑ̂

(L)
N

as a lower bound of the true optimal value ϑ∗. It is possible to show that

with probability at least 1 − β, the random quantity ϑ̂
(L)
N is below the true

optimal value ϑ∗, i.e., ϑ̂
(L)
N is indeed a lower bound of the true optimal value

with confidence at least 1− β (see2 [NS]). We will discuss later how to choose

the constants M,N and γ based on numerical experiments.

2In [NS] this lower bound was derived for γ = 0. It is straightforward to extend the
derivations to the case of γ > 0.
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