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3
Code Design

The design of an IRA code involves several steps, which may be listed as:
establishing an appropriate design rate for the intended application, finding
an optimal degree distribution for this design rate, choosing an appropriate
block length (again, keeping in mind the requirements of the application),
and defining the graph construction method. The code symbol’s alphabet may
or may not be binary, but the use of a binary alphabet brings significant
advantages during decoding as shown in Section 2.2.3.

Once a degree distribution is chosen, a functioning TRA code can be
designed for any reasonably large block length. Although theoretical bounds
on the performance of a code can be established through density evolution
assuming a random code with infinite block length, an actual code is com-
pletely defined only after the Tanner graph is constructed. A Tanner graph for
a blocklength-k message and length-n codeword can be described by listing
the information-nodes joined with each check-node. Since the graph is right-
regular, this list can be conveniently represented as an m-by-a, matrix where
each row lists the indices to the a, information nodes joined with its corre-
sponding check-node. Some steps, however, should be taken before populating

this matrix.

3.1
Graph Construction

Good theoretical degree distributions for codes with infinite block-lengths
can be found by linear programming, but the degree distribution of the
information nodes in a code with finite block-length should be a relative
frequency with fractional values relative to the total number of nodes (i.e. a
normalized histogram) rather than a general discrete probability mass vector
with real values. Thus, once a valid degree distribution is obtained through
optimization techniques such as the one seen in [RSU2001, Sec. V], it should

be modified to ensure that

ANk eN, VieN; (a) (3.1)
ka; = ma, = F, (b)
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Figure 3.1: Graphical representation of an IRA graph: check-nodes are por-
trayed as black squares, variable-nodes as circles.

where a; is the average left-degree, a, is the average right-degree and
F is the total number of edges in the graph!. Condition (3-1.a) states that
the number of degree-i nodes must be an integer; condition (3-1.b), that the
number of edges leaving the information nodes equals the number of edges
arriving at the check-nodes.

After obtaining a distribution that satisfy the conditions in (3-1) the
edges can be randomly traced. The simplest way to do this would be to list
the indices of all information nodes and assign degrees to each node according
to the degree distribution A, then repeat the elements in the list so each of the
dmaz
i

kA; nodes of degree i are listed i times. This list now has > ;"/“ i - kA; = ma

elements which we will call sockets.

Definition 7 (socket) A socket is a pointer to a node. Each edge is numer-
ically represented by the association of two sockets. By definition, a degree i
variable-node has i incident edges, thus 1 sockets. A socket that has not been

associated with any other to form an edge is considered a free socket. o

The sockets go through a random permutation and the list is formatted
as an m-by-a matrix, which is only a compact representation of a sparse right-
regular graph. Each of the m rows stands for a check-node, and the a row
elements (or sockets) are the indices to the left-ends of the edges arriving
at the check-node. The edges joining check-nodes and parity variable-nodes
need not be explicitly defined, since they follow the staircase pattern shown
previously in Figure 2.1. If the rows of H are properly arranged, the H ) part

is taken to be an m-by-m staircase matrix.

ISee app. A for proof and details on the notation and expressions used in this section.
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For example, the graph in Figure 3.1 may be specified by the matrix

010111
qo_ |1 101001
101011
001111

or, using sparse matrix notation, as in Figure 3.2, where element S;; = 2 of

matrix S indicates that node check-node 1 is joined with information-node 2.

W = =N
=W N
Ot Ot = Ot
S O O O

Figure 3.2: The right-regular graph from Figure 3.1 represented by an m-by-a
matrix, using sparse matrix notation. Each row lists the connections from one
check-node, i.e. the positions of the 1’s in each row of the matrix H®). The
connections involving the parity variable-nodes to the right of the check-nodes
are implicitly given by the row order.

A random permutation of edges produces a random code, but a code
which has many unacceptable weaknesses. A simple random permutation does
not prevent one check-node from joining twice to the same information node,
which cancels out whatever the influence this information-node would have on
the check-node. Other problems that are overlooked by this procedure are: the
presence of short cycles in the graph; the graph’s minimum distance and rank
deficiency. These problems are all intimately related to the graph construction
method [TJV2003], therefore a few restrictions should be imposed when tracing
the edges.

3.1.1
Progressive Edge Growth

Progressive Edge-Growth (PEG) is a method for the construction of
Tanner Graphs proposed in [HEA2005|, which evolves by extending the graph’s
shortest cycle such that it is made as long as possible. The length of the shortest
cycle in a graph is termed the graph’s girth, while the length of the shortest
cycle among those that include one particular node is named its local girth.
The PEG algorithm proceeds along the variable-nodes, in order of increasing
degree, in such a manner that each new edge has an impact as small as possible

on the graph’s girth.
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Some definitions should be made before formally explaining how the PEG

algorithm works.

Definition 8 (Path) A path is an ordered list of nodes (variable and checks)
such that every two consecutive nodes are joined by an edge. The distance
between two nodes in a graph is the number of edges that separate them in the
shortest path. All the paths branching from the ending node on another path

are extensions of this path. o

Therefore, we say two nodes are connected when they belong in the same
path. Alternatively, we can say that a reaches b when there is at least one path

connecting a to b.

Definition 9 (Cycle) In a graph, a cycle is a path that begins and ends in

the same node. The cycle’s length is its total number of edges. o

Definition 10 (Tree) In the context of Tanner Graphs, a tree is a represen-

tation of a graph with a hierarchical structure. o

The nodes in a tree can be grouped according to their depths. One node
in the graph is chosen as the root. The tree starts on the root node, the root
and its neighbors are said to be in depth 0. All nodes in the tree, except the
root, have a parent node. Nodes without children are called leafs.

The root’s children are followed by their remaining neighbors, which are
collectively called the Tier 1. The nodes in Tier 1 and their children are in

Depth 1. The hierarchy in a tree can be observed in Figure 3.3.
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Figure 3.3: An example of a tree drawn to depth 2. The first variable-nodes in
the tree following the root make the Tier 1. The variable-nodes in Tier 1 and
the check-nodes immediately below them (where below means further from the
root) form Depthl, and so on.

We can observe all the paths that include one particular node by

expanding it as the root of a tree. Evidently, every element present in a tree
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reaches all others and a cycle is completed whenever the same node appears
more than once in the same tree.

We denote by Méj the set of check-nodes in the tree stemming from
information node c¢; up to depth . We denote the complement of this set by

—— 1 o . . .
./\/lcj. The set grows with increasing [ until one of the following cases occur:
1. |./\/lf:J] = \./\/lf:j1|, meaning all existing paths involving node ¢; form cycles;

2. |[M = m, i.e. all check-nodes in the graph are reached by c; in the
J

next depth.

When either case happens, a check-node in Mclj is randomly chosen. In
case 1 this new edge extends the tree without creating new cycles. In case
2 a new cycle is formed, but the node’s local girth remains the same. If,
additionally, the new edge is always attached to the check-node with the lowest
degree — the check-node’s degree is, in this case, the number of incoming edges
that have been drawn up to this point. A summarized description of the PEG
algorithm can be found in Algorithm 1.

Algorithm 1 Progressive Edge-Growth Algorithm for IRA Codes
for j=0to k—1do
for s =0tod,, —1do

if kK =0 then
E,, «— edge(2;, u;), where Fy is the first edge incident to u; and z;
is a check-node such that it has the lowest check-node degree under
the current graph setting Z:_S E,,.

else

expand a subgraph from information node u; up to depth [ under

the current graph setting such that ﬂij # 0 but ﬂifl = (), then

By — edge(z;, u;j), where Ly is the k™ edge incident to u; and 2;

is a check-node randomly picked from Mij having the lowest, check-
node degree.
end if
end for
end for

It is noteworthy to mention that special care should be taken in the case
we want to construct a graph for IRA codes, where not all edges are placed
through this method. The edges that join parity and check-nodes are drawn

in a pre-determined manner before all others (see figure 2.2), meaning:

if k=1, Zep1 € MU
Ve € Mg, qif k€ [2,m — 1], {241, 21} € MEL
if kK =m, k-1 € Mlcj_l
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Therefore, any two edges that are incident on the same information node
will form a cycle. What we attempt to do in this case is to maximize the
graph’s girth.

In a classic LDPC graph, the PEG algorithm would verify at each
iteration whether the cardinality of Mf:j has stopped growing (in other words,
if (JML | = [M{])). In an IRA code, however, the pre-arranged edges from
the parity nodes ensure that all check-nodes are connected, which means every
IRA graph is a connected graph and these verifications are not necessary. In
[SJR2005|, we are reminded that in a degree distribution where kAy > m — 1,
the search for an optimal graph would lead to an IRA graph.

3.1.2
Level-1 version

A simpler approach to graph construction which avoids length-4 cycles

but does not attempt to maximize the girth is described below in algorithm 2.

Algorithm 2 random method for IRA Codes (PEG-L1)
for j=1to k do
for n =0tod,, —1do

if K = 0 then
E,, < edge(z;,u;), where F is the first edge incident on u; and
z; 1s a randomly chosen check-node with a free socket.

else
Expand a tree u; up to depth 1 under the current graph setting. Then
Ly —— edge(z;, u;), where Ey is the k™ edge incident to u; and z;

is a check-node randomly picked from Mulj
end if
end for
end for

This method can eventually produce a random permutation that leads to
good codes. However, when the degree distribution allows for nodes of very high
degree — when compared to the total block length — randomly traced edges
tend to exhaust the nodes that will not lead to length-4 cycles. In other words,
Mij after tracing the edges for a large portion of the check-nodes. This means
that the last check-nodes will send less accurate messages throughout decoding.
In some cases (typically shorter block lengths and high maximum degrees) even
length-2 cycles become inevitable if the edges are drawn randomly and the
only solution is to truncate the code, leaving out the check-nodes that can’t
be traced to any information node without creating a cycle.

This truncation’s effects on the code rate are not impressive since

only a few among hundreds of check-nodes are truncated, but it does bring
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noticeable changes to the actual degree distribution. Since degree distributions
are carefully chosen in order to maximize performance, this method is sub-

optimal and may even lead to very bad codes.

3.1.3
Non-greedy version

The Non-Greedy version of the PEG algorithm expands the tree up to
a previously determined depth-level. It does not attempt to maximize the
length of the cycles that are completed by each additional edge in the graph, it
instead ensures all cycles will have length superior to 2(l,4, +1). The modified
algorithm is detailed in Algorithm 3. As in the standard PEG, the non-
greedy version chooses check-nodes with the lowest degree among the eligible
candidates, resulting in a graph that grows more regularly on the left-hand

side.

Algorithm 3 Non-Greedy Progressive Edge-Growth Algorithm for IRA Codes
for j=0to k—1do
for k =0to d,, —1do

if K =0 then
E,, «— edge(2;, u;), where Ey is the first edge incident to u; and z;
is a check-node such that it has the lowest check-node degree under
the current graph setting | J/Z) B,,.

else
Expand a subgraph from information node u; up to a previously
determined depth lyq,. Then Ef «— edge(z;, u;), where LY is the

k™ edge incident to u; and z; is a check-node randomly picked from
Wu’;"‘“” having the lowest check-node degree.
end if
end for
end for

3.14
Look-Ahead enhanced version

The Standard PEG Algorithm maximizes the local girth, but does not
anticipate the effects that the new edge will have on the graph because it
ignores the connections between each of the candidates in ﬂij and other
nodes in the graph.

The Look-Ahead enhanced version of the PEG algorithm includes an ad-
ditional loop through the eligible check-nodes in qunw before deciding which
should receive a new edge. The decision criterium, explained in Algorithm 4,
maximizes l,,,q,. In other words, it chooses the check-node that, if included in

the neighborhood of the current root node (u;), would lead to the deepest tree.
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Algorithm 4 Look-Ahead enhanced Progressive Edge-Growth Algorithm for
IRA Codes

1: for j=0to k—1do

2. fork=0tod, —1do

3: if K =0 then

4: E,, «— edge(z;, u;), where F is the first edge incident to u; and
z; is a check-node such that it has the lowest check-node degree
under the current graph setting UZ;& Ly,.

5: else
Expand a tree-like subgraph from information node u; up to depth {

under the current graph setting such that ﬂij £ () but M),

uj
7: A subset ZU) C Mij is composed exclusively of the check-nodes in
ﬂij_ with the lowest degree under the current graph setting.

8: for t = 1 to |Z2V)] do

9: Define E® = E, a hypothetical graph identical to the current
graph. 4

10: Eq(;;’“) — edge(z,gj),uj), where E&i’“) is the s edge incident to
u; in the hypothetical graph and z is t*" check-node in ZU).

11: do step 6 under E® and make /(t) = I, where £ is a vector

containing the maximum depth level of the hypothetical graphs.
12: end for
13: Er «—— edge(z
14: enduif el
15:  end for
16: end for

()

tmaz

u;), where ((t,q;) is the maximum value in £.

3.1.5
Look-Ahead Reverse version

As an alternative to the Look-Ahead enhanced algorithm (PEG-LA), we
present the Look-Ahead Reverse algorithm (PEG-LAR). The sole difference
between the former and the latter is that the reverse version of the Look-Ahead
algorithm tries to minimize the depth of the tree during graph construction.
By minimizing the tree’s depth we do not maximize the graph’s girth but we
attempt to build a graph where every node reaches all others in fewer steps (or
iterations of the BP decoder) than they do in the graphs constructed through
the Look-Ahead enhanced version of the PEG algorithm.

The motivation behind this variation of the PEG-LA algorithm comes
from the conclusion that the PEG-LA variation does not effectively maximize
the graph’s girth. The PEG-LA algorithm does maximize the length of every
new cycle that is closed by a new edge in the graph, which does not guarantee

a large girth.
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Algorithm 5 Look-Ahead Reverse Progressive Edge-Growth Algorithm for
IRA Codes

1: for j =0to k—1do

2:
3:
4:

10:

11:

12:
13:
14:
15:

for k =0tod,, —1do
if K =0 then
Egj «—— edge(z;, u;j), where Egj is the first edge incident to u; and
z; is a check-node such that it has the lowest check-node degree
under the current graph setting Uf;g E,,.
else
Expand a tree-like subgraph from information node u; up to depth [

under the current graph setting such that ﬂ;j £ () but .

U;

A subset ZU) C ij is composed exclusively of the check-nodes in

Mij with the lowest degree under the current graph setting.
for t = 1 to |ZY)| do
Define E®) = E, a hypothetical graph identical to the current
graph.
E&i’”) — edge(zt(j),uj), where Eq(t';’”) is the ™ edge incident to
u; in the hypothetical graph and z; is t* check-node in Z @),
do step 6 under E() and make ((t) = [, where £ is a vector
containing the maximum depth level of the hypothetical graphs.
end for }
By e— edge(z,gi)m,
end if

end for

u;), where ((t,,;,,) is the minimum value in £.

16: end for
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