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1
Introduction

Low-Density Parity-Check (LDPC) codes were discovered by Robert
G. Gallager in 1963, causing little impact in its contemporary communica-
tion systems due to unavailability of data processing technology capable of
performing real time decoding. After more than thirty years, the works of
MacKay [MKY1997] brought LDPC codes (also called Gallager Codes) to the
attention of the scientific community, yielding performance comparable to that
of the renowned Turbo Codes |CBG1996].

LPDC codes are described by parity-check matrices that are composed of
very few non null elements per row and have very large rank (typically on the
order of thousands). The matrices’ low density ensures linear time decoding,
i.e. the Hamming weight of each row does not grow with the block-length. It
has been found that a typical code where each bit influences at least three
parity checks has a minimum distance that increases linearly with the block
length [RGG1963, pg. 13 -17]. The encoding time, however, tends to grow faster
than linearly with the block length. Since generator matrices are obtained by
inverting part of the Parity-Check Matrices, they are generally not sparse and
cause the encoding times of increasingly large blocks to grow quadratically.
Repeat-Accumulate codes are a special case of LDPC codes that allow linear
time encoding, they are also called staircase codes [MKY2003| for the staircase
aspect of their parity-check matrix.

Another improvement on code performance comes from the study of
optimal degree distributions. It may seem awkward at first that irregular degree
distributions should perform better than regular ones, but it has been proved
that [LMS1997] irregular LDPC codes can achieve Channel Capacity, while
regular LDPC codes have their decoding threshold theoretically bounded away
from the Shannon limit. Irregular Repeat-Accumulate codes were created with
the goal of providing linear encoding times and communicating at rates close
to the channel capacity.

In this dissertation we apply different methods of graph construction that
have been developed for use with LDPC codes to generate practical TRA codes

and evaluate their performance through computer simulation on the AWGN
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channel using BPSK modulation.

Chapter 2 introduces IRA codes, their encoding and decoding algorithms.
Chapter 3 explains how a graph may be constructed from a given degree dis-
tribution. Chapter 4 presents the results of our simulations and comments on
how they may relate to the construction methods and the degree distributions.
Finally, Chapter 5 is an overall conclusion on the accomplishments and unan-
swered questions of this work. Several appendices provide useful information

for a better understanding of what is presented in the main chapters.

1.1
Channel Model

In this work we simulate digital transmission over the Additive White
Gaussian Noise channel (AWGN). An actual digital communication system
maps bits into symbols that modulate continuous waveforms. This continuous
waveform system is illustrated in Figure 1.1. Degradation of this analog
signal by addition of noise, fading and interference cause detection errors that
finally result in bit errors. These disturbing elements constitute a stationnary,
memoryless random process. The resulting bit errors can be fixed by forward
error correction (FEC) systems that apply channel coding to the message
before transmission.

This section describes how the transmitted signals can be modeled by

discrete vectors instead of continuous waves in all our simulations.

u; Sy (1) Sy(1) ;

"| Transmission Channel Reception [

Figure 1.1: Simplified channel model

We proceed to opening the Transmission box in Figure 1.1. The message
is assumed to be a memoryless sequence with a uniform a priori probability
for each bit. This can be accomplished either by source coding or by applying
a pseudo random mask to the input stream. The following step applies channel
coding to the message u; resulting in a valid codeword c;.

Now we must map the bit stream into an analog waveform that can
be transmitted through a physical medium. Nevertheless, our application of
LDPC codes is not concerned with this part of the physical layer and we
will solely demonstrate the equivalence of the vector channel and the AWGN
channel to prove consistency. From the perspective of the soft-decision decoder,

the communication system can be modeled as shown in Figure 1.2.
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Figure 1.2: Simplified vector channel model

1.2
Vector Channel and Waveform Detection

For each message u; there is an associated finite energy analog signal
si(t). We can relate the message’s average bit energy to the transmitted symbol

energy if we know the modulation (the set {s;(t)}4,) and the code rate R.

Definition 1 (Code Rate) The design rate of a code R = £ describes the

ratio of information — or message — bits to the totality of bits contained in
each encoded block [TKM2005, Ch. 15]. o

Since every non-binary modulation scheme transmits more than one bit
per modulation symbol, the first step is to divide the symbol’s energy by the

number of transmitted bits.

T
E; = / s (t)dt
0 (1-1)
= 10g2 M - Eb’;

where M is the cardinality of the set of symbols used by the modulation scheme
constellation, and FEj is the energy per transmitted bit. When we evaluate
code performance, however, we are often more interested in the average energy
per communicated bit Fy, which takes the the code into consideration and is
calculated by dividing the energy of the n transmitted bits by the k message

bits being communicated.

Eb X k= Eb’ xXn (1-2)
Eb/
Ey=— 1-3
b R’ ( )
which gives us
1
Fp=—"—. 1-4
*~ Rlog, M (1-4)

The waveform s;(t) is obtained through the sum of normalized orthogonal

signals (see Figure 1.3).
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Figure 1.3: Equivalence between the vector (Gaussian channel and the contin-
uous AWGN channel

In a QAM scheme we have N = 2, the orthonormal functions being
segments of sinusoidal waves in phase and quadrature and each element in the
transmitted vectors x; is assigned to one of v/M discrete values. Note that this
relation is not valid for 8-PSK, for instance.

From Figure 1.3, minding the orthogonality of the base signals, we can

define the symbol’s energy as

R=Y / (15 - 05(1)) .

and we can define this system as linear time invariant. The time domain

expression for the Gaussian channel is
sy(t) = s4(t) * c(t) + w(t),

where we assume the channel doesn’t introduce selective fading nor multi-path
interference and define ¢(t) = A - d(t), where {A € R | 0 < A < 1}, as the

impulse response of the channel.
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Now we must clarify how the effects of noise are represented in the vector
channel. The received signal goes through the matched filters. Each element in
the vector y represents the projection of s,(t) onto one of the base functions,

namely,

yj = sy(t) * hy(t)

t=T

= (sa(t) +w(t)) * hy;(t)

o (1-5)

= [t axttat + [wt)-oyte)a
= T + Zj,

where h;(t) = ¢;(T—7) is the matched filter’s impulse response. The projection
of the Gaussian noise onto each orthogonal base function gives the noise vector
Z. Since we know Z; is the response of a linear time-invariant system to W (t)
— a Gaussian stochastic process of zero mean and known variance — it can
be proven that Z is a zero mean Gaussian vector of known variance as well.

The variance of the discrete-time noise Z is
oy =E[Z] =E U/ W (t1)W (t) - h(T — t1)h(T — to)dt,dt,
_ // Ruv(by — o) - h(T — t))h(T — to)dt:dt

— %/qﬁ(tl)/&(tl — t9)P(to)dtadty
— %/Mt)%lt = Aé

where Ry (t; — ty) = E[W(t;)W(ty)] is the time correlation of W (t) in

instants t; and ty. Thus we verify that the variance of the noise in the real

valued channel output equals the intensity of the power spectral density of the
N

additive white noise =

1.3
Soft Decision and Hard Decision

1.3.1
Soft Decision

Proving the equivalence between the noise in the vector channel and the
noise in the waveform channel is important because the Gallager decoder is

a soft-decision decoder. This means that instead of feeding the decoder with
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nearest binary values based on the received vector, i.e. hard decision, we feed it
with the channel a posteriori probabilities and try to approximate with these

values the maximum a posteriori estimate. This means we want to find
x=argmax P (x|y).

Channel coding introduces a fundamental difference between P (x |y)
and [[, P (z; | y;). The first one can only be obtained by investigating the
code’s properties, while the latter is easily estimated given the received
vector, the alphabet of transmitted symbols and the properties of the channel.
In a transmission using BPSK modulation through a memoryless AWGN
channel with equiprobable input symbols the signal to noise ratio completely
characterizes the channel and the a posteriori probabilities can be found using
Bayes’ rule [TKM2005||Sec. 15.4].

P (yi | @) P(a:)
P(y;)
P (yi | v;)
C Pyil@)+ Py | T)

P (x| yi) =

(1-7)

where Z; means the complementary value to the logical variable x; and
P (y; | x;) is a short notation for P(Y; =y | X; = z).

From (1-7) and (1-5), with x; = 4a, we obtain a numeric expression for
the AWGN channel a posteriori probabilities.

P(yi ’ Xi= a)
P(Xi=al|y) =
Pyi| Xi=a)+ P(y; | Xi = —a) (1-8)
—2ay;
=(14e 7z )_1

Keeping real values for soft decision decoding can be specially burden-
some in systems that use bit interleaving, where many blocks must be kept
before they go through bit de-interleaving and decoding can start. It is also

possible though to reduce memory requirements using quantization.

1.3.2
Hard Decision: The BSC and the BEC

Besides the AWGN, we should mention two other important channel
models: the Binary Symmetric Channel (BSC) and the Binary Erasure Channel
(BEC). The first one arises directly from using hard decision on the AWGN
channel, while the latter can be found in communication networks that
experience packet loss and is essential to establishing the bounds on the

message-passing algorithm [JKM2000)].
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A hard decision decoder observes the channel output and chooses the
symbol that lies closer to the observed value. Therefore, hard decision decoders
lead to the BSC, which assumes the channel will cause a transition on
the received symbol with a known probability. The transition probability
is also independent of the input symbol, therefore symmetric. A transition
occurs when the additive noise takes the received value beyond the transition
threshold (defined as half of their Euclidean distance) towards the opposite
symbol. Using the same example as in (1-8), if the two symbols have a distance
of 2a the channel transition probability equals Q(a/o,). Since the Gallager
decoder uses the channel a posteriori probabilities (1-7) as an input, we can
use the same decoding algorithm for the BSC simply by limiting the channel

a posteriori probability values to p and 1 — p.
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Figure 1.4: Binary Symmetric Channel

The Binary Erasure Channel differs from the BSC by erasing bit values
instead of flipping them, as shown in Figure 1.5. This means the decoder
will try to find the correct values only for the erased bits while keeping all
others intact. The decoding of the erased bits will depend entirely on what is
commonly called the extrinsic information, i.e. the information carried by all
other nodes in the graph.

Although it may be unlikely that a physical medium will corrupt some
bits to the point of making their values completely ambiguous while main-
taining all others intact, many of today’s communication systems make use of
channel coding for the BEC. Communication networks that use reliable links
with negligible error rates still have to face the problem of packet loss during
routing and switching. Instead of waiting for retransmission of lost packets,
this problem can be solved by channel coding for the BEC.

A long stream of data can be grouped in blocks for FEC encoding and
then go through a bit interleaver that spreads the contents of each block
throughout many packets before transmission. If some of these packets are
lost in traffic, the missing bits from the lost packets will appear as spread

erasures in the original data blocks after de-interleaving.
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Although the Gallager decoder can be used to recover bit erasures, there
are codes that have been developed specially for this purpose |[LMS1997|

[ASH2006], with more appropriate implementations of the message passing

algorithm.
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Figure 1.5: BEC
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