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Abstract

Zhou, Cong; Saldanha, Nicolau Corc¢ao (Advisor). On the Ho-
mology of the Space of Curves Immersed in the Sphere
with Curvature Constrained to a Prescribed Interval. Rio
de Janeiro, 2017. 83p. Tese de doutorado — Departamento de Ma-
tematica, Pontificia Universidade Catoélica do Rio de Janeiro.

While the topology of the space of all smooth immersed curves in
2-sphere that start and end at given points in given direction is well known,
it is an open problem to understand the homotopy type of its subspaces
consisting of the curves whose geodesic curvatures are constrained to a
prescribed proper open interval. In this article we prove that, under certain
circumstances for endpoints and end directions, these subspaces are not
homotopically equivalent to the whole space. Moreover, we give an explicit
construction of exotic generators for some homotopy and cohomology
groups. It turns out that the dimensions of these generators depend on
endpoints and end directions. A version of the h-principle is used to prove

these results.

Keywords
space of immersed curves in the sphere;  curvature in a prescribed

interval; homotopy type; h principle.


DBD
PUC-Rio - Certificação Digital Nº 1312489/CA


PUC-Rio- CertificagaoDigital N° 1312489/CA

Resumo

Zhou, Cong; Saldanha, Nicolau Cor¢ao. Sobre a Homologia
do Espaco de Curvas Imersas na Esfera com Curvatura
Restrita a um Intervalo Prescrito. Rio de Janeiro, 2017. 83p.
Tese de Doutorado — Departamento de Matematica, Pontificia
Universidade Catélica do Rio de Janeiro.

Enquanto a topologia do espago de todas as curvas suaves imersas em
2-esfera comecando e terminando em pontos dados e dire¢oes dadas é bem
conhecido, é uma questao aberta entender o tipo de homotopia e dos seus
subespacos consistindo as curvas com a curvatura restrita a um intervalo
proprio aberto prescrito. Neste tese provamos que, sob certas circunstancias
para os pontos e as diregoes inicial e final, estes subespacos nao sao
homotopicamente equivalente ao espaco todo. Adicionalmente, fornecemos
uma construgdo explicita dos geradores exdticos para algum grupo de
homotopia e cohomologia. As dimensoes desses geradores dependem das
posicoes e das diregoes nas extremidades. Uma versao do principio h foi

usada na prova desses resultados.

Palavras-chave
espaco das curvas imersas na esfera; curvatura restrita a um intervalo

prescrito;  tipo homotdpico;  principio h.
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List of Abreviations

N

S2

e1, €2, €3

r,p

a, b, p1, p2; q1, G2
a, B,y

s, t

t,, n,

Sy

T, Y, 2

1, J, k, L, n, m
u, U, W

1

P, Q

Ro
Po

£P0 (Q)>
LE(Q)
L,(Q),
L72(Q)
I(I,Q), I(Q)

C, Cy
Ry(v)
Cor
O, O
I K

Non-negative integers

The unit sphere of center 0 in the Euclidean space R?
Canonical basis of R3

Positive numbers, used to denote radius

Points in S?

Curves in S?

Parameters of a curve

The tangent and the normal vectors of curve ~

Frenet frame

Real numbers

Usually represent an integer or a natural number
Vectors of R? or TS?

Identity matrix

Matrices in SO3(R)

ko € (0,400] represents the curvature constraint that
appears on the definition of £, (Q)

po € [O, g) represents the radius that appears on the
definition of £, (Q)

Space of curves with geodesic curvature in (—kqg, +ko)
with start frame I and end frame Q

Space of curves with geodesic curvature in [—kg, +£o]
with start frame I and end frame Q

Space of C' immersed curves in S? with start frame I
and end frame Q

Subsets of £,,(Q)

Rotation matrix of angle # with axis v

Circle on sphere with intrinsic radius r and center at p
Used to represent the orientation of a circle

Subsets of R, .J is often used to denote the domain of the

map vy
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*7 T? i

Applications between spaces

Open ball and closed ball in S? with intrinsic radius r
centered at v

Hemisphere of S? given by H, = {u € S% (u,v) > 0}
Parallel and meridian coordinates with axis in direction
of a vector v € S?

When p,q € S?, it denotes the distance from p to ¢
measured on S?

The matrix exponential on anti-symmetric matrices
so3(R) = TrSO3(R) or the Exponential map on the
sphere S?

Image of an application

Footnote marker symbols

curvature of a Means the geodesic curvature of the curve in S?

curve in $?
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1
Introduction

This section is an overview of the background and the history of the

problem which we study in this thesis. We also present some related topics.

1.1
Topology of the space of curves in 2-sphere

The topology of the space of curves on differential manifolds is a very
interesting topic for research. Here we introduce previous works for the case
of immersed regular curves on the two dimensional unit sphere S? in the 3-
dimensional Euclidean space R3. In 1956, S. Smale proved that the space of
C" (r > 1) immersions S' — §?, i.e., C" regular closed curves on S? has
only two connected components. Both of them are homotopically equivalent
to SO3(R) x QS3, where QS? denotes the space of all continuous closed curves
in S? with the C? topology. This result is a consequence of a much more general
theorem ([30], thm. A) by him. Later in 1970, J. A. Little proved the following

theorem.

Theorem 1.1 (J. A. Little [16]). There are exactly 6 second order non-
degenerate* regqular homotopy classes of closed curves on S?. Moreover, the
following 6 curves on the sphere, denoted by ~; : [0,1] — S?, for j €
{=3,-2,—1,1,2,3} are in different non-degenerate homotopy classes (see the
Figure 1.1):

~i(t) = ?(1, 0,0) + ‘f[sin(zjm) +(0,1,0) — cos(2jmt) - (0,0,1)].

In other words, there are a total of 6 connected components in the space
of non-degenerate curves in S?. Each one contains exactly one of the curves v,

given above. The components that contain v4; are known to be contractible.

*We call a closed curve in S? second order non-degenerate when its geodesic curvature
is continuous and different from 0. A regular homotopy of curves on S?, h : St x [0,1] — §?,
is called nondegenerate if each curve h; : St — S2, ¢ € [0, 1], is nondegenerate and if the
geodesic curvature is continuous on St x [0, 1].
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Figure 1.1: Figure above illustrates three different curves on a hemisphere of
S? with positive geodesic curvature. These three curves, from left to right, lie
in different connected components containing 1, 72 and -3, respectively.

By reflecting each curve in S? across a plane passing through the origin,
we see that it defines a homeomorphism from each component of the set of
curves with positive geodesic curvature into each component of the set of
curves with negative geodesic curvature. Thus the topologies of the connected
component that contains v; and the connected component that contains 7_;
are exactly the same for j = 1,2, 3. So, to fully understand the topology of the
set of non-degenerate curves, it is enough to understand the topology of the
set of curves with positive geodesic curvature.

In 1999, B. Z. Shapiro and B. A. Khesin [31] studied the topology of the
space of all smooth immersed curves (not necessarily closed) with positive
geodesic curvature on S? which start and end at given points and given
directions and found the number of connected components of this space. This
extends Theorem 1.1 by Little*.

Theorem 1.2 (B. Z. Shapiro, B. A. Khesin). The space of curves with positive
geodesic curvature on S* with given initial and final frames consists of 3
connected components if there exists a disconjugate curve connecting them.
Otherwise the space consists of 2 connected components.

Here a curve 7 : [0,1] — S? is called conjugate if there exists a great
circle on S* having at least 3 transversal intersections with . Otherwise it is

called disconjugate.

During 2009-2012, in [20], [21] and [22], N. C. Saldanha did several further
works compared to Theorems 1.1 and 1.2 on the higher homotopy properties
of the space of curves with positive geodesic curvature in S?. More precisely,

he proved the following result:

Theorem 1.3 (N. C. Saldanha). Under the same notations of Theorem

1.1, the component that contains the curve 7o is homotopically equivalent

*Because closed curves is a particular case in which initial and final points and directions
coincides
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to (2S3) v §2 Vv S®vVSY.... The component that contains the curve 7z is
homotopically equivalent to (QS3) v Stv S8 v St2....

Moreover in these papers N. C. Saldanha gave an explicit homotopy for space of
curves with prescribed initial and final Frenet frames which extends Theorem

1.2. More precisely,
Theorem 1.4 (N. C. Saldanha). The space of curves with positive geodesic

curvature on S* with prescribed initial and final frames consists of connected
components of the following types, which depend on its lifted Frenet frame
z € S* with basepoint 1*:

e (NS} VSOVSTVSEVSZY - if 2 s conver;
e (NS} VSPVSOVSIOVSHY .. if —2 is conve;

o OS3 if neither z nor —z is convex.

For the definition of convezity of z € S?, refer [22] p.3-4.

Despite the omission of an apparent complexity in the hypothesis,
Theorem 1.4 is a more general version of Theorem 1.3, since it holds not only
for the closed curves, but also for the non-periodic curves, i.e. whose initial
and final frames do not coincide.

In 2013, N. C. Saldanha and P. Ziihlke [26] also extended Little’s result

to closed curves with curvature constrained in an open interval:

Theorem 1.5. Let k1, ko be extended real numbers: —oo < k1 < kg < 400,

and let p; = arccot k; fori = 1,27, Let

77
n:{ J+1.
P1— P2

Then the space of closed curves on S* with geodesic curvature in the interval

(K1, k2) has exactly n connected components Ly, ... L,. Denote by vy, the circle

traversed j times described by the formula below:

2 2
v; = \é_(L 0,0) + \é_[sin(2j7rt)(0, 1,0) — cos(257t)(0, 0, 1)}
Foreachj € {1,2,...,n}, the component L; contains the curvey; : [0,1] — S

The component L,y also contains Yn—1)42or for all k € N, and L, also
contains Ynior for all k € N. Moreover, each of L1, ..., L,_o is homeomorphic
to the space SO3(R) x E, where E is the separable Hilbert space.

*Here we are viewing S as the subset of Quaternions, 1 denotes the identity of
multiplication of Quaternions.

fWe use the conventional function arccot : R — (0,7), we put arccot(+0o0) = 0 and
arccot(—oo) = m, extending it to [—oo0, +00].
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At the moment, not much is known about the higher homotopy structure
of the spaces £,,_1 and L£,, which appear in Theorem 1.5, except for the case in
which p; — po = 5 (see Theorem 1.3). In this case, the space is homeomorphic
to the space of curves with positive geodesic curvature, so its components
have homotopy types as described in Theorem 1.3. Based on this fact, they
conjectured the connected components £, ; and £, to be homotopically
equivalent to (Q2S3) v S™ v S22 v S®= V...

In 2014, N. C. Saldanha and P. Ziihlke solved the related problem for the
space R? in [27] for curves with prescribed initial and final Frenet frames. In
this thesis we obtain a result consistent with the original conjecture by proving
the existence of S™ and the value of n; for prescribed initial and final Frenet
frames. As in the plane case, it turned out that the existence of S™ and its
dimension n; is linked to the maximum number of arcs of angle 7w for each of
four types of “maximal” critical curves. However it is not clear how to adapt
the method of proof which is used for the plane case to the sphere case, so that
we use entirely different method in this thesis.

Here we give an intuitive and brief statement of the main theorem
(Theorem 2.6) proved in this thesis. Let £X%(I,Q) be the space of C?
immersed curves on S? with geodesic curvature constrained in the interval
(—Ko, +Ko), starting at Frenet frame I and ending at Frenet frame @ (In this

thesis we consider the case that kg > 1. Denote py = arccot kg € (0, 7F)).

Definition 1.6. We call a curvey € LT1(1, Q) critical if it is a concatenation
of a finite number of arcs of circles and satisfies the following properties. Let

ro, T1,--. , Tk be the radii and vy, Y1,... , Y& be the arcs of these circles.
1. The centers of all circles lie in a unique great circle.
2. Fach circle has radius in (po,g — po) U (g + po, ™ — po).
3. For eachi € {1,2,... k— 1}, v has length equal to 7sinr;.
4. Yo and 7y, have length < mwsinrgy and < wsinryg, respectively.

5. The signs of the geodesic curvature of each segment of arc of v are
alternating. In other words, for eachi € {0,1,...,k—1}, if the curvature

of i is positive then the curvature of ;11 is negative and vice-versa.
6. v does not have self-intersections.

Given a critical curve, we associate to it a string of alternating signs of type
“b—+—---Tor “—+ —4 -7 by the rule: We “walk” along the curve and
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measure the curvature of v from start to end. If the curvature jumps from

positive to negative we put a “+ 7 sign, for each jump from negative to positive

14

we put a “—7 sign.

Refer Figure 1.2 for a more geometric view of critical curves.

Figure 1.2: The curve on the left is critical of type + —+— and the curve on the
right is critical of type + — + — + (we are looking at the inclination of tangent
vectors). Meanwhile the dashed circles have radii greater than p, = arccot kg
and are aligned so that their centers are on the same geodesic.

Theorem 1.7 (informal statement of the main theorem). Given a matriz
Q < SO3(R), the following information about the topology of LI (I,Q) can

—Ko

be obtained by analyzing critical curves in LI1°(I, Q).

If there exist critical curves of type + —+ — ... and type — + —+ ...,
n+1 n+1
and there is neither a critical curve of type + — + — ... nor a critical curve of
n+2
J— J— y . +H’0
type — + — + ..., then there is an exotic generator of H, (E,,m (I, Q))
n+2

A formal and detailed statement of this theorem will be presented in Section

2.

Theorem 1.1 Theorem 1.2 Theorem 1.4
by J. A. Little by Khesin-Shapiro by N. C. Saldanha
Theorem 1.3

by N. C. Saldanha

Theorem 1.5
by Saldanha-Ziihlke

Main Theorem
(see page 25)

Figure 1.3: Diagram of the development of Theorems.
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1.2
The topology of curves in higher dimension spheres, plane and other
spaces

One may be curious whether there are similar properties for the space of
curves on spheres S™ of higher dimensions. Indeed there are some studies: [24],
[32], [23], [1], [2] and [14].

The research on the topological aspects of spaces of curves has not been
restricted exclusively to sphere S™. For curves on 2-dimensional Euclidean
plane, here we mention the articles: [34], [11], [12], [27], [28], [6], [5], [8], [9].
We also mention [3] for RP?, [29] for two dimensional hyperbolic space with
constant curvature —1, and [30] and [19] for general Riemannian manifolds,

respectively.
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2
Statement of the Main Theorem and the Conjecture

This section begins with introduction of some definitions which we will
use throughout the text. After that, we present our main result and the scheme

of proof.

2.1
Definition of immersed curves

For completeness, we present the definition for the space Z of immersed
curves in S%. We consider all C' applications of type v : J, — S?, +/(t) # 0,
for all t € J,, where J, C R is a closed non-degenerated interval. We say that
two applications:

a:J,—S* and 6:J5—>SQ.

are equivalent if there exists a C' strictly increasing bijection t : J, — Js,
t' > 0, such that:

oft) = (Bot) (b).

One may have noted that (3 is just a reparametrization of a. We use the notation
a ~ (. It can be easily verified that ~ is an equivalence relation. The space of

C immersed curves on S* denoted by Z is the following quotient space:

7 =1{v:J, = %yisa C" application and 7/(t) # 0, for all t € J,} / .

By abuse of notation, we will use «a to represent the equivalence class
[a] = {B;a ~ B} € Z, and call a a C' immersed curve on S?, or an immersed
curve for short. Now we recall the concept of arc-length. Given an immersed
curve v : [0, 1] = S?, define the arc-length of v by s : [0,1] — [0, L,] as follows:

sty = [ ol

where L, = [ |7/(t)|dt is the length of y. Since |y'| > 0, s is a strictly increasing
function. By re-parametrizing the curve by arc-length s we obtain a curve
v :[0,L,] — S* with |7/(s)| = 1. We will use the notation ¢.(t) to denote the
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unit tangent vector v'(s)|s=sc)-
Given any two immersed curves o and f3, let L, and Lg denote their

lengths. Reparametrize both curves proportionally to arc-length with:
/()] = Lo and |5(1)] = L,

so that a, 3 : [0,1] — S? with constant speeds. Define:

d(a, B) = max {d(a(t), 5 (1)) +d(ta (t) 5 (t) );t € [0,1]}.

In the equation above, d is the usual distance between two points in S?. It is
easy to check that d is well defined on Z, and a distance function. So the pair

(Z,d) is a metric space. We have the usual C' topology in Z, induced by the
metric d : Z x Z — [0, 00). We use this topology throughout the text.

2.2
Definition of spaces of curves with constrained curvature

Given a C! immersed curve v : J — S%, we define the unit normal vector
n, to v by
ny(t) = (1) X (1),

where x denotes the vector product in R3. If  also has the second derivative,

the geodesic curvature k. (s) at v(s) is given by

o (5) = (£(9):5(5)) 1)

where s is the arc-length of 7. Remember that we are working with C! curves,
so the geodesic curvature may not be well defined for these curves. Here we
establish a broader definition of the curvature for C'* regular curves (see Figure
2.1). Given a C! curve v : J; — S? and a circle ¢ : Jo — S?, we say that ( is
tangent to v at y(¢1), t1 € Ji, from the left if the next conditions are satisfied:

1. There exists a ty € Jo such that y(t1) = ((t2) and +'(¢1) = ('(t2).

2. Denote the center of ( by a so that { travels anti-clockwise with respect
to a and denote by r the radius (measured on sphere) of ¢ in relation to
a. There exists a 6 > 0 such that:

d(v(t),a) >r, Vte (t1—0,t1+9).

In the above inequality, d is the distance measured on S2.
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Figure 2.1: In the left hand side is a smooth curve. In the center is a piece-wise
C? curve. In the right hand side is the curve given by the spherical projection
of the plane curve t — (—t*,£3). Note that there does not exists a circle tangent
to this curve at (0,0) from the left. The second and the third curves are C!
regular curves, but not C?. Yet the concept of the left and the right curvature
are well defined for these curves. For the rightmost curve, the left and right
curvature at the projection of (0,0) are both +o0.

Figure 2.2: The graph of the spherical projection of the plane curve ¢t —
(—t5,t3). Note that there is neither a circle tangent to the curve at (0,0)
from the left nor from the right. The left and right curvature on the inflection
point are +00 and —oo, respectively.

In the same manner we say that ( is tangent to v at (1) from the right by
replacing Condition (2) with:

(2’) Denote the center of ¢ by a so that ( travels anti-clockwise with respect
to it and denote by r the radius (measured on sphere) of ( in relation to
a. There exists a 6 > 0 such that:

d(v(t),a) <r, Vte (t1—0,t1+9).

We define left curvature and right curvature, denoted by ij_ and


DBD
PUC-Rio - Certificação Digital Nº 1312489/CA


PUC-Rio- CertificagaoDigital N° 1312489/CA

Chapter 2. Statement of the Main Theorem and the Conjecture 20

respectively:
where 7 is the radius of
k1 (t) = inf S cot(r);
a circle tangent to v at y(t) from the left.
_ where r is the radius of
K, (t) =sup{cot(r); . :
a circle tangent to v at y(¢) from the right.

We follow the convention that inf() = +oo and supf) = —oo. Note that
k3 (t) > k7 (t) for all t € J. When the equality occurs for some ¢, we define

the curvature of v as ky(t) = kI (t) = k7 (t). For C* curves, the definition
of curvature coincides with the usual definition of the geodesic curvature (see

Equation (2-1)). We also define the Frenet frame of v by:

| | |
$o(0) = [ (1) t,(t) ma(t) | €SOs(R).
| | |

The space SO3(R) is homeomorphic to the unit tangent bundle of sphere
UTS? by mapping the matrix M € SO3(R) to the vector M(0,1,0) €
Tar,00S?. Now we define Z(P, Q), L2(P, Q) and [,_’;”f(P, Q):

Definition 2.1. Given P,Q € SO3(R), k1, ky € [—00, +00], with k1 < Ks.

o Let Z(P,Q) be the space of all C' immersed curves in S* with Frenet
frames §,(0) = P and §,(1) = Q. We will use the notation Z(Q), when
P=1.

e Let L12(P,Q) C Z(P,Q) be the subspace of curves that satisfies ki <

K1 (t) < KX(t) < Ky for allt € [0,1].

e Let ng(P,Q) C Z(P, Q) be the subspace of curves that satisfies k; <

k1 (t) < kX(t) < kg for all t € [0,1].

We will also adopt shorter notations when these spaces are symmetric in the
sense that —ky = ke = Ko, with ko € (0,+00]. Let py := arccot(ko), we will

mostly use L,,(Q) = LT(I,Q) and L,,(Q) = LI(I,Q).

There is no loss of generality in considering only the situation that P = I
because the space L£2(P, Q) is homeomorphic to L2 (I, P~'Q) via the map
v — P~y (the same is valid for £72(P, Q)). When we study spaces £2(I, Q)
and £72(I,Q), there is no loss of generality in assuming the intervals (1, £2)
and [k, k2] to be (—kKo, ko) and [—kg, ko], respectively. This is due to the

following result in [26].
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Theorem 2.2. Let Q € SO3(R), k1, ko, K1, ke € [—00, +00] such that K1 < Kq
and K1 < Kg. Define p; = arccot k; and p; = arccot k;, for i = 1,2. Suppose
that:

p1— P2 = p1— P2

Then there exists a homeomorphism between the spaces Li2(Q) and

E%(R,QQR(;), where 0 = py — py and

cos@ 0 —sinf
Ry = 0 1 0

sinf 0 cosf

is the rotation matriz around the azis (0,1,0) by the right-hand rule.

For the space E_Qf (I,Q) the conclusion and the proof of Theorem 2.2 are
analogous. Also, it turned out that the smoothness condition about the curve
does not change the topology of the space L, (Q), due to the following theorem
(proved also in [26]):

Theorem 2.3. Let py € {0, g), Ko = arccot pg, @ € SO3(R) and r € N with
r > 2. Define C,,(Q) to be the set of all C" regular curves v : [0,1] — S?
furnished with C" topology, with v such that:

1. §4(0) =1 and §,(1) = Q;
2. —ko < ky(t) < Ko for each t € [0, 1].

Then the set inclusion © : C,(Q) — L,,(Q) is a homotopy equivalence.
Therefore, the sets C,,(Q) and L,,(Q) are homeomorphic.

However, in contrast to the previous remarks, the above property is only valid
for £,,(Q). In fact, it is easy to find examples in which the spaces £,,(Q) and
C,,(Q) are not homotopic.

2.3
Statement of the main theorem

The space Z(Q) is weakly homotopically equivalent to the space Q2SO3(R)
(the space of loops in SO3(R)), refer [13] and [15] for more details. Moreover,
QSO3(R) ~ OS? U QS?, namely one of these connected component consists of
curves with even number of self-intersections, and the other one consists of
curves with odd number of self-intersections. For detailed description of the
topology of QS? refer [17]. In this book it is shown that the loop space QS?
has the homotopy type of a CW-complex with exactly one cell in each of the
dimensions 0, 2, 4, 6, ..., 2k, ..., for k € N.
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Observe that £,,(Q) C Z(Q). It is known from an analogous result of
[22] that the inclusion map ¢ : £,,(Q) — Z(Q) induces a surjetive map on
homology (refer Proposition 3.20):

Hi(4) : Hi(£,0(Q)) — Hi(Z(Q)). (2-2)

Our objective is to understand the topology of the space £,,(Q). In this thesis
we prove it differs from the topology of Z(Q). Our strategy is to construct
some specific non-trivial maps F' : S" — £,,(Q) and G : £, (Q) — S, for
some n = ng € N depending on @, such that F' and G satisfy the properties:

(GoF):S" —S" hasdegree 1 and (¢0 F) : S" — Z(Q) is a trivial map.

The existence of such maps implies Hn(z)([F ]) = 0, but [F] # 0 in
H, (EpO(Q)).* Hence the map Hn(z) is nmot injective, from (2-2) we deduce
that the inclusion map % is not a homotopic equivalence.

Denote by {e1, ey, €3} the basis in soz(R) = T;SO3(R) (the Lie algebra
of SO3(R), which is the set of 3 x 3 anti-symmetric matrices), given by:

00 O 0 01 0 -1 0
ee=10 0 -1 y €y = 0 0 0 and es =11 0 0
01 0 -1 0 0 0 0 O

Note that the exponentials of matrices above are rotations around z, y and z
axis respectively.

Let v € S%. We define R,(v) as the anti-clockwise rotation of angle p
around the axis generated by the direction from the origin to v, following the
right hand rule. This rotation is represented by a matrix in SO3(R), which is

given by the following formula:
R, (v) = exp (P ((e1,v) €1 + (e2,v) €2 + (e3,v) €3) )> (2-3)

where e; = (1,0,0), ea = (0,1,0) and e3 = (0,0,1). For M € SO3(R), we use

notations:
pi(M) = [R,,(Mey)| (Me;) and po(M) = [R_,,(Mey)] (Me).
In other words,

p1(M) = M (cos py, 0,sinpg) and pa(M) = M (cos po, 0, —sin py).

*[F] denotes the homotopy equivalence class of F.
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In the definition above, if one views the matrix M as the Frenet frame of a
curve v € L,,(Q) on 7(t), the point p; is the center of the circle of radius
po tangent to v at y(t) from the left. Analogously, the point py is the center
of the circle of radius py tangent to v at y(¢) from the right. For example,
pi(I) = (cos po, 0,sin pg) and pa(I) = (cos po, 0, —sin po).

Due to frequent appearance in the text, we will also use the shorter

notations:

p=piI), p2=p2(I), =m(Q) and ¢ =px(Q). (2-4)

Geometrically, p; and p, are the centers of the circles of radius py tangent to the
curves in £,,(Q) at the time ¢ = 0 from the left and right, respectively. On the
other hand, ¢; and ¢, are the centers of the circles of radius py tangent to the
curves in £,,(Q) at the end of the curves from the left and right, respectively.

Consider the following lengths measured on S? given by:

Dy :=d(p1,q), D2:=d(p2,q), Li:=d(pi,q), L2=d(p2 q),

so that D1, D, represent the lengths of two diagonals of quadrilateral Clp;q;qap2
and Ly, Ly represent the lengths of the sides p;q; and pagq, respectively (see
Figure 2.3).

Figure 2.3: These are critical curves of indices 3 and 4 respectively (from left
to right) which are contained in £,,(Q) (but not in £,,(Q)). Note that the
amount of hills and valleys that we are able to add on the critical curve
is directly related to the distance between points, which are L; and D,
respectively. To be able to construct a critical curve similar to the image on
the left on £,,(Q), we need L, > 8py, and for the image on the right, we need
D; > 10py. These examples motivate us to give the definition in Equation
(2—-5).

For ¢ = 1,2, define the truncated lengths which will be used to enunciate

the main theorem:

) L _ D, 1
Li::2{ Z}—S and Di::2{ Z—}—Q. (2-5)
4po

In the equation above, [z]| represents the least integer that is greater than
or equal to z. Note that L; is always an odd integer and D; is always an

even integer. These two numbers describe, intuitively, the index of a “maximal
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critical curve” of even or odd type (see Figure 2.3). See also Figure 2.4 for the
graphs of L; and D; as functions of L, and D;, respectively. The reason of this

definition will be further clarified in the subsequent sections.

8 x o—
7 1 — —

L;, D;
6 o——
5 Ol
4 o—— o
3 Ol
2 ———— o
1 Ol

. t t t t t r Ty DJ t |
2p0  4po 6po 8po  10po  12py 1dpy  16po  18py  20po

—3 e

Figure 2.4: Graph of L; as function of L; in red and Dj as function of D; in
blue.

Lemma 2.4. If L; > D; for all 4,5 € {1,2} then Ly = Ly. In the same
manner, if D; > L; for alli,j € {1,2} then Dy = Ds.

Proof. For the first part of the lemma, suppose, by contradiction, that Ly # L.
Without loss of generality, we assume that L; > L,. By the triangular

inequality:

|L1 — Lo| = |d(p1, 1) — d(p2, @2)| < d(p1,p2) + d(q1,q2) = 4po.

This implies Ly = L; — 2 (see Figure 2.4). On the other hand, again by the

triangular inequality:

|Ly — D1| = |d(p1, 1) — d(p1,q2)| < d(q1,q2) = 2po.
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This implies D; > L; — 1 (see Figure 2.4). Thus D; > L; — 2 = Ly which
contradicts the initial hypothesis that Ly > D;. The proof for the second part
of the lemma is analogous. [

With the lemma above, we introduce the definition of the index of @ and

the main theorem.

Definition 2.5 (index of Q). Define the index of Q, denoted by ng, as follows:
e If L; > Dj for alli,j € {1,2} then we define ng = Ly = Ls.
e If D; > Lj for alli,j € {1,2} then we define ng = Dy = Dy,

Note that if neither of both cases in Definition 2.5 occurs, ng is not defined.
Now we are ready to state our main theorem.

Denote by [p1qi1qaps the geodesic quadrilateral on the sphere with its
interior included, and define its p-neighborhood by:

Bp([]plqlqﬂ?z) ={pe SQ; d(p, Opr1q1qep2) < p}-

Denote the closure of B,(Op1q1q2p2) by Bp(Dplqlquz)
Theorem 2.6 (main theorem). Let Q € SO3(R) and py € (0, 7). Assume that

the following conditions are satisfied.
1. {q1,e2) > 0 and {go, €2) > 0.
2. min{ Dy, Dy} > 2py.
3. Up1qiqaps is a convex set.

4. There exists a d3 > 0 such that for all p € [po, po + 03), (q1,€2) > 0 and
(Ga, €2) > 0 and there exists a CSC curve (defined in Definition 3.1) in
E_ﬁ(I, Q) such that its image is contained in B;(0p1G1G2p2), where

ﬁl = (COSﬁ,O,SiHﬁ), }52 = (COSﬁ, O,—Sinﬁ),
G1 = Q(cos p,0,sinp) and G = Q(cos p,0, —sin p).

Compare the values L; and Dj, fori, j e {1,2}:

e IfL; > Dj fori,j € {1,2} then there is an application F : S"@ — L, (Q)
such that [F] € Hy, (Epo (Q)) is non-trivial, but [i o F'] € H,,, (I(Q)) is
trivial, where ng = Ly = Ly. In particular, the inclusion i : L£,,(Q) —

Z(Q) is not a homotopy equivalence.
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o IfD; > L; fori,j € {1,2} then there is an application F : S"@ — L, (Q)
such that [F] € Hy, (Cpo (Q)) is non-trivial, but [i o F'] € Hy, (I(Q)) is
trivial, where ng = Dy = Dy. In particular the inclusion i : L£,,(Q) —

Z(Q) is not a homotopy equivalence.

Example 2.3.1. Given 6 € (0,7), let

cosf) —sinf 0
Q=] sinf cosf 0 | €SO3(R).
0 0 1

For all py € (O, g), the set L,,(Q) satisfies the hypothesis of the main theo-
rem. In fact, the length-minimizing curve given by ~vo(t) = (cos(t),sin(t),0)
for t € [0,0] obviously lies inside the quadrilateral Opiqiqops. A di-
rect computation shows that g = (cos pgcosf,cosposinb,sinpy) and g =

(cos pg cos @, cos posin @, —sin py). Thus:
Ly = Ly = arccos(cos? py cos § + sin? py)

and

D, = D, = arccos(cos? pg cos § — sin? py).

Since these properties are invariant in a neighborhood of Q, the main theorem

is valid for an open set in SO3(R) containing Q given above.

A particular case of the main theorem follows from the example given

above:

Theorem 2.7 (a special case). Let pg € (0,%), 6 € (0,7) and Q € SO3(R)
given by
cosf) —sinf 0
Q= sinf cosf 0
0 0 1

Compare the values L; and Dj, fori, j e {1,2}:

e IfL; > Dj fori,j € {1,2} then there is an application F : S"@ — L, (Q)
such that [F] € Hy, (Epo (Q)) is non-trivial, but [i o F'] € H,,, (I(Q)) is
trivial, where ng = Ly = L. In particular, the inclusion i : L, (Q) —
Z(Q) is not a homotopy equivalence.

o IfD; > Lj fori,j € {1,2} then there is an application F : S"@ — L, (Q)
such that [F] € Hy, (Epo (Q)) is non-trivial, but [ o '] € Hy, (I(Q)) is
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trivial, where ng = Dy = Dy. In particular the inclusion i : L,,(Q) —

Z(Q) is not a homotopy equivalence.

The proof of Theorem 2.6 is divided into three parts, in Sections 3, 4 and
5. These sections are, definition of F', definition of G and the proof of essential

properties of GG o I, respectively.
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3
Defining the map F

In this section we will define the map F : S"@ — L, (Q). First we
introduce definitions and notations, then we construct a map F : R"@ —
L;(Q), for some p > py, and lastly we modify the map F into the desired F.
From now on, the parameter s will no longer be used to denote exclusively the

arc-length of the curve.

3.1
Preliminary definitions, notations and lemmas

Intuitively, the definition of F' : R"@ — L, (Q) may be thought as
continuously deforming a curve (“elastic band”) that is constrained in middle
of ng pairs of control circles (“reels”). By moving the position of these reels
(refer Figures 3.2 and 3.3), the elastic band will follow the movement of reels.
Here we will formalize this concept.

Recall that a basis {v1, v2,v3} of R? is positive when:

det | vy vy w3 | >0.

Given an a € S?, there are two (non-unique) vectors u(a), us(a) € S* such that
{a,ui(a),uz(a)} forms a positive orthonormal basis of R3. Denote an oriented

circle with center a € S? and radius p € (0,7) as
Cap(8) = (cosp) - a+ (sinp) - {COSS ~up(a) —sin s - Ug(@)}. (3-1)

We start defining two families of circles with the centers at p; or ps,
denoted by l;,r; : R — §* with i € {1,2,...,ng}, which describe the
positions of centers of “control circles” (reels). We fix an orientation on TS? by
setting {(0,1,0),(0,0,1)} as a positive basis in T(1,0,0)S?. Under the induced

orientation on S? C R3, the normal vector points outwards.

Definition 3.1. Let p € (O,g) and P,Q € SO3(R). Consider the space

L,(P,Q). We say that a curve v in L,(P, Q) is of type CSC in L,(P,Q), if
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v s concatenation of the following three curves:

’Yl(t), t e [O,tl]
v(E) = n(t), tE [t to]
'73(75)7 te [t?w 1]

where both v, and 73 are arcs of circles of radius equal to either p or m — p,
and 3 is a segment of geodesic. We say that a curve vy in EP(P, Q) is of type
CCC if v is a concatenation of three arcs of circles of radius equal to either p

or T — p.

The term CSC stands for “Curved-Straight-Curved”, meaning that the
referred curve is composed by concatenation of 3 curves, the first one is an
arc with constant geodesic curvature with modulus equal to kg, then comes
the second which is a Geodesic segment, finally the last curve is again an arc
with modulus equal to kq. Note that in the definition above, each of the three
segments is allowed to have zero length (degenerate). If 7, is degenerate, then
we also call the curve v of type SC. If both 7, and ~3 are degenerate, we call
v of type S, so on. This kind of nomenclature is commonly used on studies of
Dubins’ curves (see, for example, [9]).

For ng an even number, consider ¢ = min{D;, Dy} =
min{d(p1, ¢2), d(p2, q1)}. For ng an odd number, consider ¢ = min{L,, Ly} =
min{d(p1,q1),d(p2, ¢2)}. Then take

_ s~ (2nq +2)po

do
2ng +3

By the definition of ng, dp > 0. The purpose of the choice of dy is that,
for p € (po,po + o], it holds that (2ng + 2)p < <. This allows us to
construct critical curves of index ng by using arcs of circles with radius > p
in £;(1,Q) C L,,(Q).

The following theorem is an adapted version of a part of a theorem proved
by F. Monroy-Pérez (Theorem 6.1 in [18]). This theorem was proven for the
particular case in which the radius p = 7. The original proof can be adapted
to any p € (0, %)

Theorem 3.2. Let p € (O, g} and k = cot p. Every length-minimizing curve
mn E_p(I,Q) is a concatenation of at most three pieces of arcs with constant

curvature equal to +k, —k and 0. Moreover:

1. If the length-minimizing curve contains a geodesic arc, then it is of the

form CSC.
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2. If the length-minimizing curve is of the form CCC. Let o, A and [ be
angles of the first, the second and the third arc respectively. Then

(a) min{o, B} < 7sin p.
(b) A >m.

(c) max{a, f} < A

As a corollary of this theorem, we obtain:

Corollary 3.3. Let p1,p2,q1,q2 as defined previously. If ng > 1 then there
exists a 61 > 0 such that for every p € (po, po + 01], every length-minimizing
curve in L;(I,Q) is of type CSC.

Proof. Suppose by contradiction that for every d; > 0 there exists a p €
(po, po + 61] such that there exists a CCC curve in £;(I, Q). Suppose without
loss of generality that the first arc of this curve has positive curvature. Consider

the pOintS ﬁhﬁ% qvl, 62 S 82:

p1 = (cos p,0,sinp), pe = (cosp,0, —sin p),
q~1 = Q(COSﬁ,O,SiHﬁ) and 672 = Q(COSﬁ,O,—SiDﬁ).
Let ¢y be the center of the second arc of the CCC curve, note that the

centers of the first and third arcs of circles are p; and ¢y, respectively. This

and the triangular inequality implies:
d(p1,G1) < d(p1,ca) + d(c2, q1) = 4p.

In the equation above, take the limit p to py. Note that p; and ¢; converge to

p1 and ¢ respectively. Thus
Ly = d(p1,q1) < 4po. (3-2)

On the other hand, if ng > 1 is an odd number then ng = Ly > 1. This
implies Ly > 4p, (see graph of L, in Figure 2.4). For ng > 2 an even number,
then ng = Dy > 2, this and the triangular inequality imply

Ly =d(p1,q1) > | D1 — d(q1, g2)| > |6p0 — 2po| = 4po.

So in both cases we obtain L; > 4pg, contradicting Inequality (3-2). |

Corollary 3.4. Let Q € SO3(R) be such that {q1,e2) > 0, (g2,€2) > 0 and
ng = 0. Then there exists a 03 > 0 such that for every p € (po,po + 2] the
length-minimizing curve in L;(I,Q) is of type CSC.
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Proof. Note that ng = 0 implies that:

d(p1, ), d(p2, 1) > 2po- (3-3)

Suppose, by contradiction, that the length-minimizing curve is a CCC
curve. We will construct another curve whose length is less than the original
CCC curve. It is easy to check that a length-minimizing C'C'C curve satisfies

the following properties:

1. The first and the third arcs have the same curvature, while the second

arc has the opposite curvature.

2. It a Gy, Cy,Cyp, curve is length-minimizing then 6 > 7, where 6y, 6, and

03 denote the angles of the corresponding arcs of circles.

Denote the three arcs of CCC curve by 71, 72 and 3, respectively. Also denote
their correspondent circles by C7, Cy and Cj, and centers by ¢, ¢ and cs,
respectively. Suppose, without loss of generality, that ~; has positive curvature.
By Item (2), the center ¢y lies on one of the hemispheres delimited by the
geodesic passing through centers c¢; and c3.

We consider the other circle C’Q of the same radius also tangent to C
and C3 which the center lies on another hemisphere. By Equation (3-3), the
CCC curve formed by concatenation of an arc of C, followed by an arc of C,

and an arc of ('3 is well defined and strictly shorter than the original curve. It

is a contradiction. |
For ng = 0, define F': S® — £, (Q) as F(—1) = yp and F(+1) = ys#2]
where 7 : [0,1] — S? is the length-minimizing CSC curve and 7([)0'5#2] is the

curve 7y with two loops added at the instant ¢ = 0.5.

Fix 1, 05 from Corollaries 3.3 and 3.4. Also fix d3 from the hypothesis of
the main theorem. From now on, we fix a p € (po, po + min{dy, 61, da, (53}} and
assume ng > 1. As checked previously, for ng > 1, the hypothesis of Theorem
2.6 guarantees that the length-minimizing curve v € £;(I, Q) is of type CSC.
We fix a length-minimizing CSC curve and denote it by:

Y0,1(t), t€[0,t]
Y0(t) =3 Y02(t), te [t,ts]
VO,S(t)v S [t37 1]

where both 7y, and ~ 3 are arcs of circles of radius p and 72 is a segment of

geodesic.

A simpler construction choice for ng odd case: In this case, we construct
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F . S% — L, (P,Q) into the space of curves that start at the frame
P =35.,.,(t1) and end at the frame @ = §,,,(t2). Then afterwards concatenate
these curves with vy ; and vy 3 at the beginning and the end, respectively. From
this concatenation we obtain the desired map F' : S"@ — £, (Q). So for ng

an odd number, we may suppose, without loss of generality that @ is of form:

cosf@ —sinf 0
Q=] sinf cosf 0
0 0 1

In this case the length-minimizing curve vy is a geodesic segment. However if

ng is an even number, we follow the construction below.

General construction for ng > 1 (for both even and odd cases):
Consider vy the length-minimizing CSC curve in B;(p1q1g2p2). We define

the auxiliary curves:

Y0,1(8) = €XPoy(y) (ﬁn%(s)) and  o,.(s) = expyy) (‘ ﬁ"vo(s))-

In the above equation, exp denotes the exponential map exp : TS? — S2,

(p,v) + exp,(v). Consider the points py, P2, G1, G2 € S*:

p1 = (cosp,0,sinp), pg = (cosp,0,—sinp),
ql = Q(COS P~7 07 sin ﬁ) and @2 = Q(COS ﬁ, O, —sin ﬁ)

We will show two useful lemmas below:

Lemma 3.5. Let P1 = min{d(ﬁlaql)ad(ﬁlvq2)7d(ﬁ27ql)ud(ﬁ??dZ)}- ]f P1 > 4-167
then for any p € (2p,p1 —2p), i € {1,2} and j € {l,r}* there is a unique

number s,; ; € [0,2m) such that:

1. G p(Spij) € img(vo,5). We denote this intersection point as a,; ;.

2. {5 ,(5pij),70,5(8)} forms a positive basis of T,,, S”.

Proof. Suppose, without loss of generality, that the parametrization domains
for the curves is [0,1]. We denote by 7o the length-minimizing curve in
L;(I,Q), which is of the type CSC.

For the existence, note that v,(0) = p1, (1) = G1, 7.,(0) = P2
and 7,(1) = g2, so by continuity, the functions dy,(s) = d(70.(s),p1),
doa(s) = d(0i(s). 52), dip(s) = d(ror(s),d1) and doy(s) = d(r0,(5), &)

*land r in {l,r} denote letters.
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Cﬁhp

Cﬁh/)(s)

1
ﬁ??/o(s)

Cﬁzm CﬁQ,P

Figure 3.1: These are two reparametrizations mentioned in Lemma 3.6. The
left-hand side image represents the reparametrization CI%% , and the right-hand

. 2
side represents (3, .

always have the interval [2p, p1] in its image. Also, these functions are strictly
increasing for values of s satisfying 2p < d; j(s) < py foralli =1,2and j =1[,7.

This implies the uniqueness. [

Lemma 3.6. For every p € (2p,m — 2p), let C5,.p Goop - {—g, g} — S? be the

circles defined in Equation (3-1) by taking

Ul(ﬁl) = U1(]52) - (07 L, 0)?

uz(P1) = (—sinp,0,cosp) and ua(pz) = (sin g, 0, cos p).

Then there exist exactly 2 distinct reparametrizations of (s, ,, which we denote

b and 2 {—g, g] — S% (see Figure 3.1), such that:
: . T _
d (Cﬁhp(s), ﬁw(s)) =2p forallse [—2, 5 andi=1,2.
Moreover,

1. For G, , there are si,s5 € {—g ﬂ, such that si < s, (5 ,o(s1) €

img(gﬁzp) and C]%Q,p(85> S img(gﬁhp)'
2. In the same way, for ;M there are s%,s3 € [—g, g}, such that s3 < s,

Proof. For each point of type a = (3, ,(t) with t € (—g, g), we draw a circle of

radius 2 centered at a (measured in S?). We denote this circle by (,1;. Since
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the points py, P2, @ do not lie in the same geodesic, by triangular inequality, we
have d(a,p2) < d(a,p1) + d(p1,p2) = p+ 2p. So the circle (, o5 intercepts (s, ,

at 2 distinct points, namely:

a1 = G p(s1(t)) and  as = G5, (52(t)), with s1(t) < sa(t).

Since t € (—g, g) is arbitrary, we define the following reparametrizations:

Gho(5) = Grapl51(8)) 50 G, (5) = Grpsa(8)) for £ € (=5 7).

At the extremities t = £7, for 1 = 1,2, we set:

Pao <_72T> - (COS(P+ p),0, _Sin(p+ﬁ>>’

5o <72T> = (cos(p + p),0,sin(p + p)).

By construction, it is up to a direct computation to verify that the above

reparametrizations satisfy the properties of the lemma. [

3.2
Definition of curves in the image of F

To define F' we need to construct certain curves which will be in the image
of F. These curves are made from concatenation of several arcs of circles. Here
we describe the curves l; and r; which denote the positions of the centers of

these circles (see Figure 3.2 below). We use Lemmas 3.5 and 3.6 to define:

ll(s) = { 1%272ﬁ(8 - 82572”")7 lf s S O

D1, if s > 0.
7’1(8) — ﬁ?a lfSSO
Gorop(s — Sop10), i s>0.

In the definition above, the number sy;;, is given by Lemma 3.5 and the
curve (o5 comes from Lemma 3.6. It follows from the definitions that
d(ly(s),r1(s)) = 2p for all s € R.

Next, for each even number 2 < ¢ < ng , we use Lemmas 3.5 and 3.6 to

define:

li(S) = Cﬁ1,2iﬁ(5 - 32iﬁ,1,l)-

'r-(s) — 1%2,21',5(8 - 321'/7,2,1)7 s € Unez Jan-
[ —
132721‘;7(5 322'@2,1)7 s € Unez Jont1.
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Here Jn = [mr — g + 52ip,2,1, NT + g + Sgiﬁ’gjl] Finally, for 3 < 7 < ng an odd

number, we use Lemmas 3.5 and 3.6 to define:

2, 0ip(8 = S9jp2r) S €Ty

li(s) = ;%2,21-,3(8 — $2ip2s) 8 € Uneze Jon

2
;ﬁz,%ﬁ(s - 52%'/372,7") s € UnGZ J2n+1

ri(s) = Cﬁl,%ﬁ(s - S2iﬁ,1,r)-

Here J,, = [mr — 5+ S2ip2,nT+ 5 + 321@2,7«}. Again, from Lemma 3.6, the
spherical distance d (I;(s),7;(s)) = 2p for all s € R and ¢ € N. This means
that if we draw a circle with curvature +xg centered at I;(s) and another circle
with curvature —k centered at r;(s), these circles touch each other at a unique
point with common tangent vector, we denote the common Frenet frame at
that point by Q;(s), with s € R. Thus we have defined a family of continuous

applications:
Q;: R — SO3(R), withie {1,2,...,nq}.

We also define Qo, Qny+1 : R — SO3(R) with Qo = I and Q,,,+1 = Q, where
Q is the matrix in the definition of £,,(Q).
Also note that the following relation is an immediate consequence of the

definition.

Proposition 3.7. For eachi € {0,1,2,...,ng}, the following inequalities are
satisfied

d(li(tl),'f'prl(tg)) 2 Qﬁ and d(’r’i(tl),lprl(tg)) Z 2ﬁ ‘v’tl,tg € R.

Moreover, for each t; € R and k € 7, there exist unique ty and t3 €
{2]{371', 2(k’+ 1)7T) such that d(lz(tl), ’T’i+1(t2>) = 2ﬁ and d(’ri(tl), li+1(t3)) = 2,5

3.3
Definition of the first part of F

Summarizing this subsection, we shall define a map F : R"@ — £, (Q).
For each (ml,xg,...,a:nQ) € R"?, we associate it to ng + 1 curves in the

following spaces, respectively,

'Cpo (QO: Q1($1))7 'Cpo (Ql(x1)7 Q2($2)>7 ey 'Cpo (an (J:nQ)v QnQ—i-l)-
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Cﬁl ,8p

Figure 3.2: Illustration of application F' on S?. Each red circle represents the
trajectory of the center of a circle osculating the curve from the right and
each blue circle represents the trajectory of the center of a circle osculating
the curve from the left. The ten small dashed circles are control circles on left
in blue and on right in red. The two big dashed circles are (3, 195 (in blue) and
Gpr 105 (in red) which cannot be used as trajectory for control circles because
they are too close to ¢ and §; respectively. So, in this picture the index is
ng = 4, and there are four pairs of control circles which we can freely move
along the trajectories I; and r; described without interfering with each other.
The crucial point is that the distance from each blue circle to the red circle
with different radius is greater or equal to 2p.
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Then we concatenate these ng + 1 curves to obtain a curve in £, (I, Q) that
will be defined as F(zy, s, . .. ) Tng)-
For a € S*,r € (0, ), we denote (, - to be the circle of radius r centered

at a:
Cars(s) =cosr-a+ sinr(cos s-uy(a) —sins - u2(a)>. (3-4)

Analogously, we denote (3, ¢, as:
Caror(8) =cosr-a+ sinr( cos s - up(a) +sin s - u2(a)). (3-5)

Given k € N, we say that a curve traverses the circle (,, k times, if this
curve is one of reparametrizations of , . (s) with the domain s € [0, 2kx]. We
will use the same term for (,, .. Exclusively in this subsection, we will also
use the following notation, for each M € SO3(R):

Pp1(M) = M(cos p,0,sinp) and pa(M) = M(cos p,0, —sin p).

Lemma 3.8. For eachi € {0,1,2,...,nqg} consider (z;,z,+1) and Q;, Qis1 €
SO3(R) as defined above. There exists a unique continuous choice, depending
on (z;, z41), of CSC curve in the space L;(Qi, Qi+1), denoted by v ;(Qi, Qi+1)
satisfying the following property. If (x;, x;11) is such that

d(ﬁl(Qi(l’z‘))aﬁz(QHl(%H))) =2p or d(ﬁé(Qz‘(%‘))yﬁl(Qi+1($z‘+1))) = 2p,

then v 5(Qi, Qi+1) is of type CC. That is, v ;(Qi, Qi+1) is concatenation of
two arcs of circles of radius p.

Proof. From Theorem 3.2 and Proposition 3.7 for p = p, P = Q; and
Q = Q;;1, the length-minimizing curve is of type CSC. The continuity can be
proven by using the same argument as J. Ayala and H. Rubinstein’s argument
in [8] for the plane case. The idea is to define a region Q2 that depends
continuously on Q; and Q1. Q; and @, satisfy the condition D in their
article. The length-minimizing curve in £;(Q;, Qiy1) can be verified to lie in
2, is unique and continuous.

This argument is similar to the demonstration of Corollary 3.4. [

For each ¢« € {0,1,2,...,n9} we define a curve o;(z) €
L, (Q,-(xi), Qiﬂ(xi“)) by following the construction below

Lemma 3.9 (Definition of «;’s and its properties). For eachi € {0,1,...,ng}
and each (x1, 2, ..., Typ,) € R, there exist real functions Tj,,,77, : R = R,

continuous functions sg, s1, S» : R? X {0,1,...,ng} — R and a curve o;
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satisfying the following properties. When i is even *

Ci’2(Qi),ﬁ,O< )7 s € [O, 30]'

Ifrin <&, ai(s) =9 Gueinso(s), s € [sos1).
Gr(@is).0(8), 8 € [s1,8].

If jzl—&-l < Tigr < 9:"12+1; Y0,5(Qi; Qit1).
CPI(QZ 150(s), s €10, 50
Ifrin >0, ai(s) =9 Gyeionse(s), s € [sos1).

Cpa(Qisn) o0 (8), 8 € [51,59).

When i is odd:

Cﬁ2(Qi)n§»O(S)7 s € [Oa 30]-
Ifoi <&y, ai(s) =19 Griingo(s), s € [so,s1)-
Cﬁl(Qi+1)7ﬁ7©(S)? ERS [317 52]-
If i’ilﬂ < Tt < j?+1; Oy = o, ~(Qi7 Qi+1)-
Cpl(Ql 7P» (8)7 S G [O SO]
Faun = P ails) = Guoinpo(s), 5 € [s0,].

Cha(Qiy1)5, 0 (8), € [s1, 52].

Moreover, the parameter s in each case above is chosen such that a;(0) = Q;-eq,
a;(s2) = Qir1-€1. ;i(So) and a;(s1) are well defined and continuous with respect

to the pair (x;,x;11). In other words, the following function is continuous:

Fip1 : (@3, 2i1) €R* = a; € Ly, (Qi(%—), Qi+1($i+1)>~

Moreover, during the proof of the lemma above, we will also verify some

of properties listed on the construction below.

Construction 1 (A more detailed description of «;’s). For each ¢ €
{0,1,...,ng}, the application F;; defined in Lemma 3.9 satisfies the following

relation:
o Length (E+1<xi+1 + 2]{771')) = Length (F,;H(xiﬂ)) + 2k sin ((2@ + 1),5)
forall k € N, @iy € [#h,, 8y +27).
o Length (Fiﬂ(a:iﬂ — 2k7r)> = Length (Fiﬂ(xiﬂ)) + 2k sin ((22 + 1),5)
for all k € N, 2541 € (2%, — 2m,32,,].
Furthermore, we describe a; with more details. In the case that ¢ is even:

*For simplicity, we denote s;(x;,z;11,%) = s; for j = 1,2, 3, :ﬁfﬂ(azl) = :Eg_H fori=1,2,

Qz(xz) = Q; and Qz‘+1($i+1) = Qi1
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1. For ;41 < &7,,, a is concatenation of the following 3 curves:

a) Shortest arc on (4,0, that travels from @Q; - e; to the unique
pQ(Ql)vpvk)

point a1 in Gy (Q,),5 M Cpay(2i+1)5-

b) Arc on (3, (2i—1)5. that travels from a; to the unique point b; in

p27( )pao

Cpa,(2i4+1)5 N G1(Qy),5- This arc is concatenation of shortest arc from
a; to by and circle that traverses (s, (2i41)5,0 K times, where k € N
satisfy (x; 1 + 2km) € (a:f“ —2m, jfﬂ}.

(c) Shortest arc on (3,(Q,,1),5, that travels from by to Q41 - e1.
2. For i2,, < w1 <3l aisatype CSC curve in £; (Qi(xi), Qiﬂ(a:iﬂ)).
3. For z; 1 > fll 11, @ is concatenation of the following 3 curves:

(a) Shortest arc on (p (g, that travels from Q; - e; to the unique
point a; in Gs,(Q,),5 N Cpr,(2i+1)5-

(b) Arc on (p, (2i4+1)5,0 that travels from a; to the unique point b; in
Gpr,(2i+1)p N Cpa(Qip),5- This arc is concatenation of shortest arc from
a; to by and circle that traverses (s, (2i41)5,0 & times, where & € N
satisfy (x;41 — 2km) € [ir}ﬂ, T+ 27r).

(c) Shortest arc on (,(q,,.),50 that travels from by to Q41 - e1.
In the case that 7 is odd:
1. For x4y < 72 1, « is concatenation of the following 3 curves:

(a) Shortest arc on (p,(q,),50 that travels from Q; - e; to the unique
point ay in Csy(Q,),5 N Gpy,(2i+1)5-

(b) Arc on (p, (2i4+1)5,0 that travels from a; to the unique point b; in
Gpr,(2i4+1)p N Cp1(Qip),5- This arc is concatenation of shortest arc from
a; to by and circle that traverses (s, (2i41)5,0 k times, where k € N
satisfy (x;11 + 2km) € (igﬂ — 2%,5;?“]

(c) Shortest arc on (5,(Q,,),5, that travels from by to Q41 - e1.
2. For #2,, < w11 < &Ly, aisatype CSC curve in £; (Qi(a:i), Qi+1(xi+1)).
3. For x;11 > &},,, a is concatenation of the following 3 curves:

(a) Shortest arc on (p (g, that travels from Q; - e; to the unique

point a; in Ci;l(Qi),ﬁ N Cﬁg,(2i+1)ﬁ'
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Figure 3.3: These are examples of curves by map F for the case ng = 4. In each
figure, the thick dark curve is F (x), the marked points on curves are endpoints
of ay, 1 € {0,1,2,3,4}, the blue and red small dashed circles represent all 6
pairs of control circles.

(b) Arc on (p, (2i4+1)5, that travels from a; to the unique point b; in
Cpo,(2i4+1)p N Cpa(Qip1),5- Lhis arc is concatenation of shortest arc from
a; to by and circle that traverses (s, (2i41)5,0 k times, where k € N
satisfy (x;1 — 2km) € [i‘il“, T+ 27r).

(c) Shortest arc on (5, (q,,.),50 that travels from by to Q41 - e1.
Proof.[Lemma 3.9 and assertions on Construction 1] We shall prove that such

Fii1, @1y, and @7, exists by explicitly constructing them based on descriptions

given in Construction 1. If i = 0, we set 1 = 7} = 0, and

ai(s) = (s, 50(8), for s € [0,s0], if 0 <y < 2m.

a1(s) = (s p0(9), for s € [0,s0], if —2m <3 <0.

In the equations above, sq is the continuous real function such that for x; > 0,

Gorpo(S0) = Q1(x1) - eq, for 21 <0, G5,.5.0(50) = Q1(x1) - €1 and s¢(0) = 0. Also
we put s; = S = Sg, so the second and the third segment of a; on definition

listed above are degenerate. For each integer £ > 1, we also set

a1(s) = (5 5.0(8), for s € [0,2km + 5],  if 2km < xy < 2(k + 1)7.
ai1(s) = Gy po(8), for s € [0,2km + so], if =2(k+ 1)w < 2y < —2km.

For each i > 1, we use an inductive process, set:

IZ’?+1 = min {t > X, d(ll(t), ri—l—l(t)) = Qﬁ} s
‘i‘zl—l-l = Imax {t S X, d(’l”z(t>7 lz—l—l(t)) = Qﬁ} .
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Thus in particular, 7}, < z; < #7,,. We define o; as in the statement of
Proposition 1. To verify that the definition is valid, we separate the argument

into two cases.

Even Case with ¢ > 1: For each even integer ¢ > 2, from the definition, we

deduce:
d(P2, P2(Q:)) = d(p1, p1(Q:)) = 2ip
and
d(p2, p1(Qi+1)) = d(p1, P2(Qit1)) = (20 + 2)p.
So:

1. The following conclusion is obtained for the pair of curves
(Ch2(Q0).6.01 Spav(2i+1)p0)- The intersection Cpy(q,),5 M Cpy,(2i41),5 Consists
of exactly one point, namely a;. Furthermore, the tangent vector of

Gpa(Q1),5,00 coincides with the tangent vector of (s, (2i41)5,0) at ai.

2. The analogous conclusion is obtained for the following pairs of oriented

circles

(a) (Cﬁl(Qi)?ﬁa(D? <ﬁ1,(2"+1)ﬁ10>7
(b) (Qﬁl(QiH),ﬁ,Oa Cﬁz,(2i+l)ﬁ,0)a
(©) (C1(@i1)p.0 Gr(2i41)5,0)-

This makes the concatenation of segments in described on Items (1) and (3) of
Construction 1 possible, unique and from the concatenation we obtain indeed
a Ct curve in £,,(Q;, Qis1).

For the proof continuity of F;,; at iilﬂ, note that since a; = by,
the middle segment (4 (2i41)56, @ € {P1,P2}, ¢ € {O,0O} of concatenation
in Ttem (1)(b) Eﬁ(Qi(:%}H),QiH(i:?H)) is degenerate. So the curve formed
by concatenation of arcs constructed in Item (1) coincides with the length-
minimizing curve in L£;(Qi, Qiy1). For continuity at 2, ,, the argument is

analogous.

Odd Case with i > 1: For each odd integer ¢ > 1, the procedure is the same
as the Even Case. We note that:

d(pr, P2(Qs)) = d(p2, D1(Q:)) = 2ip

and
d(p1, 01(Qit1)) = d(P2, P2(Qit1)) = (20 + 2)p.
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Using the same arguments as in Even Case for pairs:

(Gha(@0),5.00> G, 2i41)5,00) s ($51(Q)5,0 > Con(2041)5,0)

(Ch1(Qizn) i Gonu2itn)po)  and (Cpy(Qisn) o0 Cpay(2i41)5,0)

we obtain that the concatenation of segments in Items 1 and 3 is possible and
is indeed a C* curve in £,,(Q;, Qi+1). The justifications for the continuity at
I}, and Z7 , are also the same as in Even Case.
This proves that F' is well defined and continuous. The relation about
the length in Construction 1 is an immediate consequence of its description. B
So by Lemma 3.9, for each vector (w1,s,...,7,,) We associate it to

ng + 1 curves namely:

o; € Eﬁ(Qi? Qi+1) - EPO(Qia Qi+1>7 L= 07 17 - nNQ-

Since the final frame of each «a; coincides with the initial frame of a;.q, the

concatenation of all a; results into a curve in £, (I, Q). We define this curve

as the image of (21, z, ..., 2pn,) under F:
nq
F(x1,2,...,Tnp) = @ai.
i=0

Now we have defined a continuous application F : R"@ — £, (Q), and

we will modify it into our desired F': S"@ — £, (Q) in the next subsection.

Remark 3.10. In general, the length-minimizing CSC curve 7, does not lie in
img(F). Only in very specific cases we have (0,0, ...,0) = 7. This happens

in the case in which
cosf) —sinf 0

Q= sinf cosf 0
0 0 1

This case is shown in Figure 3.2.

3.4
Adding loops

First we define the concept of geodesic loops added to a given curve

Y€ L_p(Iv Q)

Definition 3.11. Consider the space Z(I,Q). Given a curve v € Z(I,Q),
parametrized so that v : [0,1] — S* and ty € (0,1). Let n > 1 be an integer.
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We denote by ~L0#Cm)] the following curve:

~(t) t €10,to — 2¢]
v(to — 2€ + 2(t — to + 2€)) t € [to — 2¢,tg — €
Y FEIIE) = 1, (to)¢ (M) t€fto—€to+e
Y(to + 2(t —tg —€)) t € [to+ €, to + 2¢]
v(t) t € [to + 2¢,1]

In the equation above, € is taken sufficiently small so that (ty — 2€,ty + 2¢) C
[0,1]. The curve ¢ is given by (cos(t),sin(t),0). *
Forty =0 and k > 1 an integer, we define:

¢ (@) t€10,€
FO#E () = ¢ y(2(t—€)) t € [e,2€]
v(t) t € [2€,1].

Forty=1 and k > 1 an integer, we define:

~(t) t e 0,1 —2¢
IR = & (1 —2e+2(t—1+2¢)) tE[l—2e1—¢
¢ (Zerti=tize) te[l—el].

Figure 3.4: For a curve v € EP(I , @), if the curvature is small on a sufficiently
long piece of v, then ~ is homotopic to y*#2 in v ZP(I,Q). Under this
deformation, the curve remains unchanged outside of the dashed red circle
which has radius 8p. In Z(I, Q), since there is no restriction on the curvature,
this deformation can be done on an arbitrary small segment of ~.

Analogously, for integers n,m > 1, we may define yllo#2mt#2m a5 the

curve v with 2n loops attached at y(ty) and 2m loops attached at ~(t1).

Definition 3.12. Consider the space Z(I,Q). Given a curve v € Z(I,Q)
parametrized with constant speed v : [0,1] — S?. Given an integer n > 1, we
denote by v#2" the following curve:

7[#271] — ,y[to#lm#2;---;tn#1]7

*Two such curves with loops added by different choices of e satisfying (to — 2¢, g + 2¢) C
[0,1] are in fact the same curve via the equivalence ~ defined on page 17.
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where t, = £ for k € {0,1,...,n}.

For n sufficiently large, we define 4P?™! by modifying the curve #@»)],
Assume that the same e > 0 is used for each loop so that for all ¢ € [0, 1] such
that t —¢; < € we have:

AHFEI() = F. (15)¢ (t - tj) '

€
For each each j € {0,1,...,n}, let

ti+t 7
AL and tj,l = tj+1 — —E€.

8

7
—€, 1,

tj,O = tj + ] 33 92

We also consider the unique length-minimizing CSC curve f(; in
L;5(F(ti0),3,(tj1)). For convenience, parametrize its domain as (;
[tj70,tj71] — S2.

Definition 3.13. Given a curve v € Z(I,Q) and p € (O, g), take an m

sufficiently large. For all n > m, we define v by:

,y[b(2n)] (t) _ { 7[#(271)} (t), fOT’t S [O, 1] \ U?:O(tj,(]vtj,l): (3_6)

B](t) fO’f’ te [tj,Oatj,l]-

Below is Lemma 6.1 of [22], the proof is based on Figure 3.4.

Lemma 3.14. Let K be a compact set, Q € SO3(R) and n > 1 an integer.
Let f : K - Z(I,Q) and ty : K — (0,1) be continuous functions. Then f and
fo#20 qre homotopic in Z(I, Q).

Now we introduce a simple technical lemma:

Lemma 3.15. Let k € N. If v = (21,79, ...,7;) € RE, is such that:

max{|xi|;i € {1,2,...,k}} > 2 F;-‘ T,

then at least one of the following items is satisfied.
1. |xy| > 2.
2. There exists an i € {1,2,...,k — 1} such that |x; — x;41| > 2.
3. |xg| > 2m.

Proof. For k = 1,2, it is obvious. Now suppose that k& > 3. Let m € {1,2,...,k}
satisfy |z,,| = max{]xi|;i € {1,2,...,k}}. We first consider the case that
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m < [g-‘ By triangular inequality:

[5]-1

max{|ai]} < o]+ 30 Jo— i,
=1

Note that the left-hand side is greater or equal to 2 %W m, and the right-

hand side has exactly [gw non-negative terms. This implies |z1| > 27 or
|z; — xi41| > 27 for some i € {1, 2,..., [gw — 1}.
The case m > %W is analogous. This concludes that |zx| > 27 or
|xi—xi+1]f0rsomez’€ﬂﬂ+1,[§J+2,...,k—1}. [ |
In the previous subsection,
a=F(z) =P .
i=0

Then if x is such that max{|x;|} > 2 [%”1, applying Lemma 3.15 (with

k = ng), we obtain one of the following cases:

1. If |x1] > 27, then o has a segment of constant curvature with radius

equal to p and with length of that segment greater than 7 sin p.

2. If |z; — ;11| > 2w, then «; has a segment of constant curvature with

radius equal to (2¢ + 1)p and length greater than 7sin ((2i + 1)p).

3. If |zn,| > 27, then a,,, has a segment of constant curvature with radius
equal to (2k + 1)p and length greater than msin ((2ng + 1)p).

This follows directly from Construction 1. For each of 3 cases above
we will add a huge number of small loops on that part of the curve without
changing the other parts of the curve. Now we present a construction to explain

how these loops are added:

Construction 2. Given a real number r € [py, ™ — po], consider an arc of
circle of radius r with angle 0 > 7. If r € [/3, g], we add loops by following the

process described in Figure 3.5.
5
right, we pull the curve to the left as if it is a mirrored version of previous

Analogously, if r € ( m— ﬁ}, we just instead of pulling the curve to

case.

Remark 3.16. The construction above is just one of many choices that will
satisfy our future needs, one may come to several other ways to add loops that

will also work. After adding enough loops, in the next step for each curve, we
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Figure 3.5: This figure describes how loops were added. Dashed circles have
radius p. In the image of left side, start with an arc of circle of radius greater or
equal to p. Pull the curve by using an rotation in sphere so that the curve will
have sufficiently long arcs as in the image of center left. Then, in the center
image, small loops were added on long arcs by the deformation of Figure 3.4.
Finally, the curve is deformed back to the original position except for two loops
that we added. Additionally, we enlarge the radius these two loops transforming
them into great circles.

Figure 3.6: General behavior of map F': S"? — L, (Q).

spread the loops along the curve. So each curve would look like a phone wire,

and finally we construct a homotopy of these curves into a single curve.

The following results are adapted directly from [22] of N. C. Saldanha.

The following result corresponds to the Lemma 6.2 in this article.

Lemma 3.17. Let K be a compact set, Q € SO3(R) and n > 1 a integer. Let
to: K — (0,1) and f : K — L,,(Q) be continuous functions. Then flto#2n]
and flo#20+0] qre homotopic, i.e., there exists H : [0,1] x K — L, (Q) with
H(0,p) = flo#2n(p), H(1,p) = flor2mi(p).

Proof. For n = 1, we use the deformation described in Figure 3.5 on one of loops
on fl#2 This defines a homotopy between flo#2 and fllo#4 For general case,
consider g = (fto#2("=U1) By the previous case, g©#2 is homotopic to glto#4,
This implies that flo#27 and flo#2(+D] are homotopic. |

The following lemma is a direct adaptation of Lemma 6.3 in [22].
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Lemma 3.18. Let K be a compact set, f: K — L,,(Q) and ty : K — (0,1)

continuous maps. Then, for a sufficiently large n, the function fPE s
homotopic to flo#n)] e there exists an application H : [0,1]x K — L,,(Q)

such that H(0,-) = f[b@")] cmd H(1,:) = flto#(2m)],

Proof Notice that the functions flo#(m] and f#(%] are homotopic: the
homotopy consists of merely rolling loops along the curve. More precisely,
for £;(s) = 2 + (1 — s)to, this homotopy is defined by

Hy(s,p) = (f(p))PoI#HnO# it (I (021,

We next verify that, for sufficiently large n, the functions f#"! and
fP@] are homotopic. Let Q;(p) = (T sy (tjé))’l € SO3(R), where t;0,%; 1,15,
are as in the construction of fP?! We have

Q (D) (syreem (tio) = Qi(P)T sp) e (to)

Q (D) (pyreem (ti) = Qi(P)T pp)wem (1)

Thus, for sufficiently large n, the arcs

Q;(0)(F)PE Q) (fF ()™ [0, t51] — S*

are graphs, in the sense that the first coordinate x : [t;0,%;1] = [z_,z1] is an
increasing diffeomorphism (with z4 ~ i%), and y and z can be considered
functions of z. Since the space of increasing diffeomorphisms of an interval
is contractible, we may construct a homotopy from f#" to a suitable
reparametrization f; of f#))in each [t;0,;,] for which the function z above
is the same as for "] We may then join f; and fP@"! by performing a
convex combination followed by projection to S?. We observe that if the curves
f(p) are in £,,(Q), then both constructions above remain in £,,(Q). |

The following lemma, which is a direct adaptation of Lemma 6.6 in [22],

guarantees the continuity of the choice on Step 1:

Lemma 3.19. Let Q € SO3(R). Let K be a compact manifold and f :
K — L£,,(Q) a continuous map. Assume that the following three properties

are satisfied:

1.ty € (0,1) and ty,ta, ..., t, : K — (0,1) are continuous functions with
tg <t1 < -+ <ty

2. K = Ui<i<, Ui, where U; C K are open sets;
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3. there exist continuous functions g; : U; — L,,(Q) such that, for all
[t:(p)#2]
p € Ui, we have f(p) = (:(p)) -

Then there exists H : [0,1] x K — L,(Q) with H(0,p) = f(p), H(1,p) =
[to#2]
(f) "

Proof. We proceed by induction on n. For n = 1 we have U; = K and therefore
f= ggtl#Q]. The conclusion follows from the Lemma 3.17. Assume now that
n > 1. Let W C U, be an open set whose closure is contained in U,, and such
that K = W U U,<i<,—1 Ui. We now slide the loop in the position #, to the
position t,_1 in W, allowing for the loop to stop elsewhere for p € U,, ~ W.
More precisely, let u : K — [0, 1] be a continuous function with u(p) = 1 for
p € W and u(p) =0 for p ¢ U,,. Define H,, : [0,1] x K — L,,(Q) by

e gn(p)[((1—u(p)5)tn(p)+U(p)stnf1(p))#2}7 peU,

Let f(p) = H,(1,p), H, defines a homotopy between f and f. Let U; = U; for
i <n—1and U,_; = U,_; UW; the hypothesis of the Lemma apply to f with
a smaller value of n and therefore f is homotopic to flo#2. Therefore, so is f.
[ |

Here we give an explicit construction of F'.

Step 1: Consider the ball Bg(0) € R"@, with R = 2 [”TQ] 7, and take the
boundary ©; = 0Bg(0) of the ball which is a sphere of dimension ng — 1. By
the construction given in Lemma 3.9, every curve in ©; has at least one arc
of circle with radius r in the interval [ﬁ, (2k + 1) ﬁ} with length greater than
wsinr.

Define f : ©; — L,,(Q) as F with two loops added to each of its long
arcs. To preserve the continuity, for each arc that is very close to become a
long arc draw something intermediary as shown in the Figure 3.4. There is a

homotopy as below:
FQ 1O X [O, 1] — Epo(Q)v

where Fy(-,0) = F(-) and Fy(-,1) = f(-).

Step 2: We look more carefully into the construction of F' (see Figure 3.3).

There are:

1. ng+1opensets U; € ©1,1 € {0,1,...,nq} corresponding to curves that
have at least one arc of circle with radius 7 in the interval {,5, (2k+1) ,5]

with length greater than 7sinr at a;. As seen above, |J; U; = O1.
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2. ng + 1 continuous functions ¢; : ©; — (0,1), ¢ € {0,1,...,n0}
corresponding to the precise parameter of the curve v = F(p) in which
we add loops to each of long arcs of a; (when it is available). Since
arcs were added in «o; and ~ is concatenation of «;’s, it is clear that
to<ti <ty <...<tng.

3. Since ty : ©7 — (0,1) is continuous and ©; is compact, there exists a
constant t_; < to(p), for all p € Oy .

4. Define g; : U; — L,,(Q) as F|y,.

Applying Lemma 3.19 for K = ©; and f : ©; — L,,(Q) we obtain the
following homotopy. We obtain:

Fy: 01 x [1,2] = £,,(Q),

where F3(-,1) = f(-) = Fy(-, 1), and F3(-,2) = f(-)f-1#2 is the same curve
with at least two loops added at t_.

Step 3: Finally we prove and use the following proposition, which also is a

direct adaptation of Proposition 6.4 in [22] to obtain:
F4 : @1 X [2,3] — EPO(Q)’

where Fy(-,2) = F3(+,2), and Fy(ay,3) = Fy(as,3) = 7, for all a;,ay € 6.

Proposition 3.20. Let n be a positive integer. Let K be a compact set and
let f: K — L,(Q) CZI(I,Q) be a continuous function. Then f is homotopic

to a constant in T(I, Q) if and only if fIo#2" s homotopic to a constant in

Ly,(Q)-

Proof. (<=) It is trivial. In Z(I, Q), f and f#2" are homotopic.

(=) Let H : K x[0,1] — Z(I,Q) be a homotopy with H(-,0) = f and
H(-,1) is a constant function. The image of HP®™) is contained in £, (Q).
For a sufficiently large number m, HP@™! is also continuous. This implies that
fP#2m() = HPEI(. 0) is homotopic in L, (Q) to a constant. By Lemma
3.18, flo#(m)] is homotopic to fP#2™ in L,,(Q) and therefore the proposition

is proved for large n. The general case now follows from Lemma 3.17. |

Step 4: Now we concatenate F', Fy, Fy, F to obtain F': S"@ — £, (Q). First,
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we divide the sphere into S"@ = O, U O3 1O, LI O U {(0,0,...,1)}, where

@2:{(b17627..-7an7COS/6);/BE —71‘7_37-(-)}7
[ s

O3 = {(51752, ooy bng,cos B); B € s _2>}7

@42{(bl,bg,...,an,cosﬂ);ﬁe T }

T
2
[
05 = {(bl,bQ,...,bnq,cosB);ﬁ c _4,0)}_

Next, F'is defined as the following;:

Fop(a) ac®,
Fyop(a) ac O
F(a) =4 Fyop(a) ac By
Fyop(a) ac O
5 a=1(0,0,...,0,1)

where ¢ : S"@ — (0 x [0, 3]) is defined as ¢(0,0,...,0,1) = 0 and:

(b1, bay .. bng) 48
b

go(bl,bg,...,an,cosﬁ)_<|(b1 ; i )|R’7r+4> for 6 € [—7,0).
) VAR nQ

3.5
Triviality of F in the space of immersed curves

Note that, by the conditions on page 25 for @, each step may be
proceeded so that the final map F has the following property: there exists
an open ball Ug = B,(r) € S?, which depends on Q, satisfying:

img <F(p)> C Bu(r), VpeSre.

We consider the stereographic projection h : B,(r) — R? with center a. So
h(F (p)) :[0,1] — R? is a C' immersed curve with prescribed initial and final
frames for each p € S"@. Moreover this map defines a homeomorphism between
immersed curves in B,(r) and R2.

Each component of the space of immersed curves with prescribed initial
and final frames in R? is known to be contractible, refer to the introduction and
Theorem 4.1 of [28]. This result is proven by S. Smale in [30]. Thus h(F ()) is
homotopically trivial in the space of immersed curves in R2. This guarantees
the triviality of (¢ 0 F') : S"@ — Z(Q), where © : £,,(Q) — Z(Q) is the set

inclusion map.
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4
Definition of the map G

With the application F' : S"@ — L, (Q) in hand, we need another
application G : L£,,(Q) — S™@ such that G o F' : S"@ — §"@ has degree
1. To define G, we shall first define a very special contractible subset C, €
L,,(Q), which contains the length-minimizing curve vy, with the property
of uniqueness. The boundary 9JCy consists of curves that are simultaneously
“graft-able” and is homotopic to S"@~!. We first establish a map G : Cy —
B;(0) € R"@ which can be easily extended into G. To define such map G, we
need to carefully extract useful information for curves in Cy. This information
describes, roughly speaking, how many times the curve bends to left and right,
and how much the curve goes “up” and “down” inside a region. The precise

meaning of this information will be concretized in the subsequent text.

4.1
Preliminary definitions

We consider the points pi, ps, ¢1, g2 given by Equation (2-4). We recall
that v € £,,(Q) and v : J — S?, where J is a closed interval in R. Given a
curve v € L,,(Q), its unit tangent vector can be viewed as a map whose image
lies in S?, that is ¢, : J — S?. Let the set C C £,,(Q) be a subset containing all
curves whose unit tangent vector is contained in a closed half-space. In other

words,

there exists a v € S? such that (¢,(s),v) > 0 and
C={ve£m<Q>; (t:(5), v) }

(y(s),e3) > 0 forall s € J

We call the curves in the set C hemispheric curves. Throughout this section,
we assume that @ € SO3(R) is such that the length-minimizing curve g is
hemispheric, that is: 79 € C. We consider the following situation: @ € SO3(R)
and po in the definition of £, (Q) are such that the convex quadrilateral
Q.1 on sphere formed by points p1, q1, g2, p2 has the property that the length-
minimizing curve 7, lies inside this quadrilateral. We will show that for each
hemispheric curve v € C there is a unique vector v,, depending continuously

on v, satisfying Condition (4-1) below. We consider the quadrilateral on sphere
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Qo2 = {v € S% (v,p;) <0 and (v,q;) >0 for i =1,2}. For each v € Qg ., we

consider the value:
m, (v) = min{(t,(s), v); s € J}.

Now fix a v € C, we take v, € Qg2 as the vector such that:
my(vy) > my(v) forall v e Qgo. (4-1)

Intuitively speaking, v, is the nearest point in Qg to the set t,(.J) (in sense of
Hausdorff distance). The following proposition guarantees its uniqueness and

continuity.

Proposition 4.1. For each v € C, such v, satisfying Inequality (4-1) men-

tioned above is unique and depends continuously on 7.

Proof. We start verifying the uniqueness. Suppose by contradiction that there
exist v; and vy, such that both satisfy Inequality (4-1). First we consider the

case v; # tuvy, take:
Vo U1 + VU2

W, where vy = 7

V=

Then for all p € t.,(J)

V1 + U2
D

(0,p) >< 5

By taking minimum for p € t,(J) on both sides we get

= & ((00.0) + {w2.)).

m.,(0) > ;<m7(v1) + m'y<1}2))7

which contradicts the maximality of v;.

For the case v; = —wvy, since v € C, we obtain:
(t,(s),v1) >0 and (t,(s),ve) >0 Vse

This implies that ¢, (/) is contained in the great circle in the plane perpendic-
ular to v;. So we deduce that v is an arc of circle centered at +v, with radius
r € (po, ™ — po) and length greater or equal to 7sinr. Thus (y(s),es) < 0 for
some s € J. This contradicts the fact that v € C.

Now we discuss the continuous dependence of v., on «. Suppose that, by
contradiction, for a pair (v,v,), v € C there is a sequence of pairs (i, vy),

with £ € N, and an € > 0 such that v, € C, vy = v,,, limy_,oc % = 7 and
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d(vy,vg) > €. By compactness, we assume, without loss of generality, that the
sequence vy, converges to a limit o # v,. So

mind(t,,(s),vy) < mind(t,,, vy).

By taking £ — oo we obtain:

. < mi -
mind(t, (s), v,) < mind(t,, ),
which contradicts the uniqueness of v,. n

We consider these meridians with axis v, passing through the points
P1, P2, ¢1, g2 Tespectively. Let O, be the widest region containing -y, delimited

by two of these meridians. Now we declare Cy as the following set:
Co = {7 € L,,(Q);v(J) C B,,(01,) and 7 is Hemispheric.}.

We start by constructing a continuous map G : Cy — R"@, which will satisfy

G(v) > R for some R > 0 and all v € 9Cy. Then we put G : £,,(Q) — S"? as:

)

Gly) = poG(y) ify€Cyand G(vy) < R
77N (0,01) iG() = Rory e L,,(Q)~Co

where p is a homeomorphism map from the open ball Bg(0) C R™ to
S"e . {(0,0,1)}. Hence the following subsections are dedicated to define the
map G. We will use the notation: sign : R — {—1,0, +1} with sign(z) = —1 if
x <0, sign(z) =0if x =0 and sign(z) = +1 if 2 > 0.

For each € € (0, py), our first step is to define a map G. : £,,(Q) — R"<.
For suitable values of € we will be able to use the map G, to construct the

desired map G. Given a v € L,,(Q), define the following two sets in S*:
Zo(6,7) = Bﬂo(e)lﬂ) N Bpy—e(015) Ei(e,y) = B% (vy) N Bg—e(%)- (4-2)

Sometimes we omit € by using notations =y and =; for both sets in Equation
(4-2) above.

4.2
Extracting information from the curves

In this subsection we shall study the structure of intersections =y N (/)
and Z; Nt (/). From these intersections, for a suitable €, we shall construct a
sequence (yl, e ,ynQ> € R". This sequence will be used to construct the

application G. It follows from definition that the set Zy is symmetric by
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reflection in relation to a plane P passing through a v,-meridian and crosses
the curve vy. We denote the upper and the lower parts of =y in relation to P
by Z§ and Zj, respectively. Also, we denote Zf and Z] the upper and the
lower parts of Z; in relation to the plane P. Furthermore we take =5 and =
as both closed sets, by including the sections in the intersection of =y and =;
with the plane P. But later it will turn out this choice will not be important
for our needs, because both the curve and its tangent vector will get nowhere
close to 02§ N 0=, and d=] N J=; respectively.

We use the notation (]R*) to denote the space of sequences of non-
negative numbers (Z,)nen, ¥ > 0 for all £ € N. Pick an ¢ € [0,¢),
given a curve v € Cy, we want to “extract” from the pair (¢,7y) a sequence
(2p)nen € (RT)N by the following 5 steps:

Step 1: Consider two sets: S; == Zg(e,7) Ny and Sy = Z;(e,v) Nt,. Also
consider J; == {s € J;7(s) € Z¢} Jo = {s € J;t,(s) € =1 }.* Note that for e
sufficiently small, J; N.J, = () (taking € < £ is enough for that).

Step 2: If both sets §; and S, are empty, we set x, = 0 for all £ € N. So we

finished defining the sequence for this particular case.

Step 3: If §; or Sy is non-empty. We subdivide sets J; and J; into disjoint
unions J; = J; U J; and Jy = Jf U Jy by setting J;7 = {s € J;v(s) € Z{},
Jr={s € Jiv(s) €55}, Jf = {s € Jin(s) € St} and Jy = {5 € Ji(s) €
=

Step 4: Again, we subdivide these four sets into disjoint unions:

|_| 1,k 1= |_| Jf,ka JzJr = |_| J;fka 9 = |_| Jik-

keN keN keN keN

This subdivision may be done so that it satisfies the following 3 properties:
L Jsy < I < Jap < Jip < Sy forall k e N T
2. If for some k € N, k£ > 0, one of the following 4 cases occurs:

(a) Ji% Jog Jiy are all empty sets.
(b) Jogs Jigs Jopes are all empty sets.
(¢) Jigs Japir Jipps are all empty sets.
(d) JShs1s Jiki1s Jonys are all empty sets.
*Despite of use of Ji to represent the subsets of J here, J are not intervals in general.

tFor two disjoint subsets .JJ and K of R, we write J < K when a < b for all a € J and
be K.
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Then for all integers I such that [ > k, the sets J, Ji}, J5y, Ji; are all

empty sets.
3. If one of the following 3 cases occurs:

(a) Jog, Jig, Jo are all empty sets.
(b) Jig, Jo1, Jit) are all empty sets.

(¢) J51, Jiy, Ja, are all empty sets.

Then for all integers [ such that [ > 0, the sets J5;, Ji}, J;;, Ji, are all

empty sets.

Intuitively, the property in Item (1) means that these sets are ordered in a
strictly increasing fashion, and Items (2) and (3) say that the redundant empty

sets compressed together so that non-empty sets have smallest indexes possible.

Step 5: For each k € N, denote by A} the union of all closed regions delimited
by v(Ji) and 0= lying on the right of 7. Analogously, denote by A} the union
of all closed regions delimited by v(J; ) and 0=, lying on the left of ~. Lastly,

for th . and Ji, empty, we set Al = 0. We define the sequence (zy)ren:

x4, = Length (tv‘J;J , Tapr1 = Area (A;) , (4-3)

Zypyo = Length (thJ{J , Taprz = Area (.A,;) ) (4-4)

Keep in mind that the sequence (xy)gen depends on the value of pair (e, 7).
These formulas above will be crucial to define GG, but before that we need to
establish several properties. So we postpone the main construction to the next
subsection.

For such a sequence (xy)ren, we define a kind of index for curves 7 in Co,

we call it e-index of v. Denote e-index by index, : Cy — N, defined as follows:

k
{J , ifxy #20, 2, =0V [ >k and zy or x; are non-zero.

: — k
index.(v) = {2-‘_1’ ifaep#0, =0V 1>kand g =2, =0.

0, if z;, =0 for all kK € N.
(4-5)

A note about the second case in Equation (4-5), the condition “z and z; are
both equal to zero” together with Condition 2 of Step 4, implies that x5 or

x3 is not zero. So these three cases in the definition of e-index do include all
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Figure 4.1: Tllustration of an example of v (the curve in red on the left-hand
side) and its tangent vector ¢, in S? (the curve in red on the right-hand side).
In this example we have xg, x1,29 > 0, x3 = 0, x4, 25,26 > 0 and x; = 0 for
all k > 7. The e-index of v is 3.

possible scenarios for the sequence (x)ren. We note that index of a curve is

non-decreasing relative to e in proposition below:

Proposition 4.2. If there are two real values € and € such that 0 < € < € < €,
then index.(y) < indexg(y).

Proof. Given a curve v € Cp. The inequality ¢ < € and Formula (4-2)
imply that Zg(e,v) C Zo(€,7v) and Z1(e,7) C Zi(€,7). This subsequently
implies that Ji (¢,7) C Ji' (&%), Ji(6,7) C Ji (&%), J3(6,7) C J'(&7)
and Jy (€,7) C J; (€,7). Now we check the rules for subdivision in Step 4 and
Step 5, it is clear that implies index(y) < indexg(7) |

In the visual aspect, a curve v having an e-index indicates that ~
resembles a critical curve of index.(y). The exact meaning and reasons of
this similarity will be clarified in the next subsection. Now we shall prove the

following essential proposition about e-index:

Proposition 4.3. There ezists an € > 0 such that for all ¢ € (0,€1), the

function index, : Cy — N satisfies the following condition:

index.(y) < ng for all v € Cy.

To prove Proposition 4.3, we need the following result.

Lemma 4.4. Let (7;)ien be a sequence of C' curves in S? satisfying the

following properties.
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Figure 4.2: Another illustration of an example of v (the curve in red on the
left-hand side) and its tangent vector ¢, in S? (the curve in red on the right-
hand side). In this example we have 29 = 1 = 0, o > 0, z3 = 0, 24 > 0,
5 =0,26 >0, 27, =0, 28 >0, 29 =0 and z19g >0, x, =0 for all £ > 11. The
e-index of ~ is 4.

1. There exists a limited region R C S? such that ; C R for all i € N.
2. The k3 and the 7 lie inside an interval [—ko, +Ko|, with kg € RT.

3. There ezists a positive number Ly such that Length(~;) < Lo for all
1€ N.

Then (7;)ien admits a convergent subsequence, and the limit of this subsequence

satisfies all three conditions above.

Lemma 4.5. Given v € Z, /QL and Kk, are upper-semicontinuous and lower-

semicontinuous respectively.”

Proof.[Lemma 4.5] Let us prove that xf is upper-semicontinuous, which is
equivalent to prove that r* = arccot /fj is lower-semicontinous. Given an
so € J and an r < 77(sq), there exists a § > 0 and ag € S? such that

d(ag,7(sp)) = r and
d(ag,v(s)) >r, Vse& (so—0,50+0). (4-6)

Since t, is continuous, (4-6) implies that there exists a ¢; such that for all
s € (sg — 01,80 + 1), we can define the center a, of the left tangent circle of

radius r at y(s), with d(as,v(s)) = r and

d(as,v(5)) >r, Vsé€ (so— 01,80+ 61).

*A real function f : J — R is said to be upper-semicontinous if lim sup,_,  f(s) < f(so0)
for all sq € J; f is said to be lower-semicontinuous if — f is upper-semicontinous.
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That means x7(5) < cotr, for all 5 in a neighborhood of s. Since r < r* is
arbitrary, then

lim sup 17 (s) < K7 (s0).
5$—S0

For the case of x the procedure is analogous. [ ]
Proof.[Proof of Lemma 4.4] First, we unify the domains of all curves to [0, 1]
by writing ; : [0,1] — S? Take a dense sequence (s;);en in [0, 1]. Condition
(1) and the diagonal argument allow us to pick a subsequence (%;);en Which
converges for all s;, with j € N. Condition (3) implies that (%;);en has a limit
v such that v € R and Length(y) < L. Using Condition (2), we take a
subsequence for (7;);en such that the tangent vector, /—Qi and r_ converge for
all s;.

We need to verify if 4 also satisfies Condition (2). We take p =
cot (ch(s)) and a the center of the left tangent circle of radius p at ~(s).
Take 77 (s;) as the radius of the left tangent circle of v; at v;(s;) and 7 (s) as
the radius of the left tangent circle at v;(s). By Lemma 4.5 and py > r7 for
all 7, 7 € N we obtain:

po = lim 73(s;) = (s), VjeN.
Taking i — oo, we obtain:
po > 1 (s).

The equation above means ko > nj(s). The proof for another inequality

—ko < K (s) is analogous, and so we omit it. [
Now we are ready to prove Proposition 4.3.

Proof.Suppose, by contradiction, that no such €; exists. Then there exists a

decreasing sequence (¢;);en converging to 0 and a sequence (7;);en such that:
index,, (i) > ng + 1.

Since all these curves ~; lie in a hemisphere, and have an upper bound for their
length and Cy is closed, by Lemma 4.4, the sequence (;);en has a convergent
subsequence with limit v € Cy. To simplify notations, we now assume that the

sequence (7;);en converges to 4. So we have:
index,(7) > ng+1, forallieN.

We shall use the curve 7 to construct a critical curve of the same index, which

is greater than nq, contradicting the definition of ng on page 25.
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We first consider the case when z( or x; is not zero. Since ¥ € Cy, we take
the vector vy such that t5(J) € Bg (v5). For each xy # 0, denote by J, C J
the interval associated to x; as described in Step 4 above. Take a t, € Ji, we

consider the following circles described below:

1. If k =0 (mod 4), we draw circles ¢;" and (; of radius py (measured on

S?) tangent to 4 at Y(t;) from left and right respectively.

2. If k=1 (mod 4), we draw the circle (j of radius py tangent to ¥ at 7(tx)
from right.

3. If k =2 (mod 4), we draw the circle ¢;” and ¢, of radius p, tangent to
~ at y(tx) from left and right respectively.

4. If k =3 (mod 4), we draw the circle (; of radius py tangent to 4 at ()

from left.

We separate the next part into two cases. The first case is for ng even. In
addition to the circles that we have defined previously, we also consider circles
(-1 and (amg1)+1 of radius py tangent to 7, respectively, at 7(0) from left
and J(L) from left. Using polar coordinates with —uv5 as axis, so that the
(—v,)-parallel coordinate of the curve 7 is non-decreasing with respect to the
parameter of the curve. For each k such that ¢, or (i is defined, denote by
(0, 1) € [0,7] x (=7, 7) center of ¢, and (6, i) € [0, 7] x (—m, ) center of

C,;t For each j € Z, when a comparison is possible*, we have:

min{%fja P4j+1; ¢Zj+2} > maX{SOZLrj-Q—Za P45+3; @LH} (4-7)

maX{SOIjJrza P4j+3; %ij+4} < min{SOZj+47 P4j+55 %I]urﬁ}- (4-8)
Since the curve 7 is contained in a hemisphere, recall that the distance from

~ to center of (i is greater or equal to py, so equations above and the manner

that (; are constructed implies, for all j € Z:
min{0,; o, 0443, 0514} — max{0y;, 04541, 05,0} > 2po (4-9)
min{eél_j—f—m 94j+57 94_j+6} - maX{ng-{—Q? 04j+3> 94—1;4—4} > 2p0 (4_10)

Since we cannot have three consecutive zero values for z, for k£ €
{0,1,2,...,2-index(¥)}, using Equation (4-9) we have:

Ll = d(pl, Q1) = QQ(nQ—i—l)—‘rl — ... —9_1 2 (2p0) . (lﬂdeX(ﬁ/) + 1) Z (2p0> . (TZQ+2)

*Here we use convention that if the number a is undefined and the number b is defined
then min{a, b} = max{a,b} = b.
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Now we recall the definition of L; on Equation (2-5). This implies:

2po(nq +2)

Ly >2
L { 4po

+1J —1:nQ+1>nQ:D1:D2.
This contradicts with the definition of ng.

Now we analyze the second case: ng as an odd number. We consider
circles ¢; and (a(no+1)4+1 Of radius py tangent to 7, respectively, at 7(0) from
left and (L) from right. Again we use polar coordinates with axis —vs.
Equations (4-7) and (4-8) still hold. Thus this implies Equations (4-9) and
(4-10). Again using the fact that three consecutive zeroes cannot happen for
xy for k € {0,1,2,...,2---index(¥)}, we have:

Dy = d(p1,q2) = (2p0) - (ng + 2).
Recalling the definition of D; in Equation (2-5). This implies:

e L1

Contradicting the definition of ngq.

For the case xy and z; equals to zero, the procedure entirely is analogous;
We need to show Ly = ng + 1 for ng even, and Dy = ng + 1 for ng odd.
We follows exactly the same steps by drawing tangent circles (i at (tg).
Additionally we consider circles ¢; and (a(nq+1)4+1 of radius py tangent to
at 7(0) and y(L). The remaining argument is identical to previous case, so we

omit it here. [ |

Remark 4.6. As an additional information, one may have noted that by
doing the proof of Proposition 4.3 more carefully, it is possible to construct
a homotopy from 7 to the critical curve that we have constructed. In fact, if
v € Cp is a critical curve, indexy(y) is the index of critical curve as defined on
page 25. However it is unnecessary for the result we are going to prove. Now
with Proposition 4.3 in hand, we are ready to define the application G in the

next subsection.

4.3
Defining the map G

We follow Step 5 of the construction of G' on page 54. First from
Proposition 4.3, we take an e such that index.(y) < ng for all v € Cy. Now we

recall that the sequence (z)ren is given by the formulas in (4-3), and defined
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for this e. We call the sequence (z)ren a good subsequence of (zy)pen if it

satisfy the following three conditions:
1. There exists an increasing function k : N — N such that z = Ty, for
all i € N.
2. The function k also satisfy: k(i) mod 4 =4 mod 4.
3. For sequence (z)gen if, for some k € N, k> 0 and 2z, = 251 = 2512 =0
are satisfied, then, for all integer [ such that [ > k, it holds that 2z, = 0.
We define the length and the sign of a good subsequence as follows:
1. If z;, = 0 for all £ € N, we set Length ((zk)keN> = 0 and sign ((zk)keN) =
0.

2. If the sequence is not zero and zy # 0 or z; # 0, we set sign <(zk)k€N) =

+1 and:
max{k € N; z 0
Length ((Zk)keN) = { { 5 i }-‘ :
3. If the sequence is not zero and zy = z; = 0, we set sign ((zk)keN) =-1
and:

2

Length <(Zk)k6N) _ {max{k e N; 2z 7é 0}-‘ 1

From this definition, the sequence (x)ren is a good subsequence of itself
(because of Properties (2) and (3) on page 54). We use the notation Gy to
represent the set of all good subsequences of (z1)ren that have length k. Now

we define the sequence (y;);jen given by the formula below:

yi(r) = > (Sign ((Zk)keN) II Zk) , jeN. (4-11)

(Zk)ng zk7é0

The application G : Cy — R"@ is defined as:

Ge(y) = (111 9:(7); -+ Yng (7)), for all v € Co.

Lemma 4.7. The application G, is continuous and G(7y) # 0 for all v € 0Cy.

Proof. We start verifying the continuity. For this, it is sufficient to check that
each coordinate y;(7) defined by Formula (4-11) is a continuous function. We
will broaden the definition of the concept of good subsequence and use some

new notations. For each 57 € N, we consider the following set:

k; € N, (k;) is strictly increasing sequence and
gj: {(k()?kla '7kl); .

satisfies the properties below
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1. k; mod 4 # ki1 mod 4 forallie {1,2,...,(}

2. We write k; = 4q; + 1, with ¢; € N and r; € {0,1,2,3}. We define
o :{0,1,2,3} — {0,1}, with ¢(0) = 6(2) = 0, (1) = 6(3) = 1 and
0:40,1,2,3} x {0,1,2,3} — {0,1,2,3} by the table below:

o(a,b) [0 123
0 0]1(2]3
1 310112
2 213101
3 112]131]0

Each line of the table represents a value for a and each column is a value
for b. We define the length of a finite sequence (k;) by:

a(ro) + Xy o(ri, i)

Length((k:)) = 5

The second condition is that Length((k;)) = j. We also define sign(k;) =
+1if r; = 0 or 1, otherwise we define sign(k;) = —1

Also for any sequence (z;);en we may define its good subsequence using exactly
the same conditions as on page 61.

Consider two curves o and f in Cy such that d(«, ) < 6. This implies
that sets Zf (a), Zg(a), Z(a), =1 (a) and ZF(8), S5 (8), =F(8), =1 (8) are
close to each other, respectively, in sense that their exclusion is small. To be

precise about the last statement we can rewrite these sets into:

Zp(a) = |_| Agir1, Ef (@) = |_| Agi, Ey(a) = |_| Asiyz =7 () = |_| Agiya-

ieN ieN ieN ieN
=5 (8) = || Baiv1, EF(B) = || By, Z(8) = || Buirs Z1(8) = | | Buiso.
ieN ieN ieN ieN

So that the area of A; A B; is small for each i € N. Now we define sequences
(Zai)ien and (Zg,;)ien, With Z,; = Area(4;) and zg; = Area(B;). Note that
these sequences are the augmented version of the original sequences (z;(«));en
and (z;(8))ien, in the sense that we have the following 2 equations, for all
jeN:

> (sign ((zk)keN) 11 Zk) = (Sigﬂ ((Zk:>keN> IT =

(zk)€G; () 2, 7#0 (2)€Ga,j 2, 7#0

Z (sign ((Zk)keN) H Zk) = | (sign ((Zk)keN) H Zk) .

(21)€G;(B) 2170 (21)€G3, 270
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In the equations above, the sets G;(a), G;(f) stand for the set of good
subsequences of length j of (Z,;), (Zs,), respectively, the sets G, ;, Gs ; stand
for the set of good subsequences of length j of (z;(a)), (z;(3)), respectively.

So these equations imply:

yila) —y;(B) = Y (sign ((Zk)) 11 Zk) —( > (sign ((%)) 11 Zk)

(21)€G; () 2 #0 2,)€G;(B) 2,70
= 3" sign(ko) (M((k:), (7o) = (k). (254)) )

(k:)€g;
< X Mk, @a)) = AR, (250))]

(ki)eg;
< 0(5),

where O : (0,9;) — R is a function such that lims_,o O(d) = 0.
For the second part of assertion, note that if v € 9Cy then

t,NEF #0

YNZg#D or - .
0 {t7ﬂ51 £ 0

So the sequence (z;(7));en constructed is so that the index.(y) > 1 and by
Proposition 4.3 we have index.(y) < ng. We denote i, = index.(7y). By a direct
computation we obtain y;  # 0. This implies Ge(v) = (y1,-..,¥i,,0,...,0) # 0.
[

As an immediate consequence of Lemma 4.7, we have:

Corollary 4.8. There exists a Ry > 0 such that |G ()| > Ry for all v € 9Cy.

So take Ry from the lemma above, we define G : Cy — B1(0) C R"@ by
setting:
Let) 16 < R,

G(y) = .

|G

Ge(y) if |Ge(7)] > Ro.
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Consider the surjective map p : B;(0) — S"®, defined as:

p(al,ag,...,anq) =

1 . CBNNE:
T | sin(may), ..., sin(ra,,), [Z cos (ﬂai)]
(nq)> =1
if ZQ cos®(mwa;) > 0.
i=1
1
1 : : Q 2
- | sin(may), ... sin(ma,, ), — [— ) COS2(7T6Li)]
(nq)? =
nQ
if 3 cos?(ma;) < 0.
i=1

We put G : £,,(Q) — S" as:

G(y) = {

(poG) () if v € Co.
G(v) =(0,0,...,0,-1) if vy € L£,,(Q) \ Co.

This is the definition for G, which concludes the second part of the proof of

the main theorem.
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5
Non-triviality of maps F and G

This is the last part of the proof of the main theorem. We shall verify that
the composition G o F' : S"@ — S"@ has degree 1, with the applications F' and
G defined in Sections 3 and 4. Thus [F] € Hy, (,Cpo(Q)) is a non-zero element.
Since we saw in the end of the Section 3 that [¢ o F] is trivial in Hy, (I(Q)),
this implies that £,,(Q) is homotopically equivalent to QS* vV S"@ V E' (where

E is a space yet to be discovered).

5.1
Computing the degree of the composition

First we use some of notations as in the last two Sections. We recall
the definition of the application F' in Section 3. Take an a € R"?, a =
(a1,a,...,a5,). ¥ = F(a) is defined as a concatenation of (ng + 1) curves
;- - -, Qg - We also recall that in Section 4, for v € Cp, in order to obtain G(7),
we constructed sequences x = (xi(v))ieN and y = G’(F(a)) = (yi(y))neN.

Note that if a € R"@ is such that v € £, (Q) \ Co, then G(v) =
(0,0,...,0,—1). Thus we shall focus on a € R"@ such that v € Cy. From
now on, we will assume that v € Cy. We extract from F(a) a “non-reduced”
sequence w = (Wo, W1, ..., Wsnn—1) Such that its reduced version is z. The

sequence w is defined as follows.

Step 1: We consider the sets Zf, Z5, =7 and Z; defined for . For each
k € {0,...,ng}, we consider the following subsets of R, Jio, Jr1, Jr2, Jis,
jk,4 and Jk,5, defined by the following properties:

1. jk,() < ij < jk’g < jk,g < jk74 < jk’5.

2. ak<jk70> =Zn (img(tak)) or 0, ak(J 1) ==/ N (img(ak)) of 0,
ozk<jk,2) = El_ N (1mg(tak)), Oék<jk’3) = Ea N (1mg(ak)), ak(jk,4) =
=N (img(tak)) or () and ak(jk,g,) =ZinN <1mg ak)) or (.

3. If jk’g and jk’3 are both empty sets then jk74 and jk75 are both empty.

The existence of the sets with 3 properties above is due to the following

proposition:
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Proposition 5.1. For each k € {0,...,nq}, the following 2 cases cannot
happen for ay:

1. There exist numbers s; < Sy < sz such that the next 3 properties are
satisfied:
(a) ap(s1) € 2§ orta, (s1) € EF.
(b) ay(s2) € Eg orty, (s2) € Z7.
(c) ai(s3) € Z§ orta,(s3) € 2.

2. There exist numbers sy < sy < 83 such that the next 3 properties are
satisfied:

(a) ag(s1) € =
(b) ai(s2) € Z§ orta,(s2) € .

orta, (s1) € =1 .

1

(c) ag(ss) € Ey orty,(s3) € =1 .
This proposition may be directly verified by a careful examination on the

definition of «a}’s from the construction of F' on page 37.

Step 2: For each k € {0,...,nq} and i € {1,5}, we define A7,
if jk,i is empty. Otherwise we define it as the the region on S? delimited by

i as empty
Qg (j;”), O=¢ and the only two circles centered at v, passing through each
of the endpoints of ay|; . We also define, for each k € {0,...,ng}, the set
.Az[ks as empty if j;“g is empty. Otherwise we define it as the the region on

S? delimited by Clk(j]mg), 0=, and the only two circles centered at v, passing

through each of the two endpoints of ay|; .

Step 3: We set wp = Length (takljk,()), Wiy = Area (A:k71),
wiyo = Length (tak|jk72), wiy3 = Area (A;k,'g), w4 = Length (takljk’4),
wirs = Area (A;rk’5>, Wgrg = wryyr = 0. This defines a sequence
w = (W, W1, .., Weny-1). Let Gj(w) and G;(x) be the sets of good subse-

quences of w and x respectively (see definition on page 61), it is easy to check
that:

yi= (sign ((Zk>keN) I1 Zk) (5-1)

2,70

= > (sign ((Zk)kzeN) 11 Zk) . Jjed{l,....,ng}. (5-2)

(z1)€G;(w) 2,70

So to understand the behavior of y;’s, we will study the sequence w in the next

step.
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Step 4: For each k € {0,1,...,ng} we say that the curve ay is of type:

1.

4.

d.

+—if Wgk+0 > 0 or Wek+1 > O7 Wgk+2 > 0 or Wek+3 > 0 and Wek+i = 0 for
all i € {4,5,6,7}.

—+ if wggro > 0 or wgrr3 > 0, werrg > 0 or wgys > 0 and wgg,; = 0 for
all i € {0,1,6,7}.

+ if wggro > 0 or wegy1 > 0 and wgg; = 0 for all i € {2,3,4,5,6,7}.
— if Wegro > 0 or wgrr3 > 0 and wgg; =0 for all 1 € {0, 1,4,5,6, 7}

0 if wggy; = 0 for all 4 € {0,1,...,7}.

Now we observe the behavior of w based on the values of a. We have the

following relations:

1.

If a; > 0 then «y is of type —+, + or 0. Moreover, there exists a constant

C such that a; > C' implies «y is of type —+ or +.

. If a1 < 0 then qg is of type +—, — or 0. Moreover, there exists a constant

C such that a; < C implies «y is of type +— or —.

I, for ke {1,...,nq}, ax—1 > 0 and a;, > 0 then «y is of type + or 0.

Moreover, there exists a constant C' > 0 such that max(ag_1,ax) > C

implies «y, is of type +.

I for ke {1,...,ng}, ax—1 > 0 and a; < 0 then ay is of type +—, +, —

or 0. Moreover, there exists constants C; and Cy such that, if a,_; > C}

then «y is of type +— or + and if ap < C5 then a4 is of type +— or —.

I for ke {1,...,ng}, ax—1 <0 and a; > 0 then «y is of type —+, —, +

or 0. Moreover, there exists constants C; and C5 such that, if a,_; < C4

then oy, is of type —+ or — and if a; > C5 then «y, is of type —+ or +.

I for ke {1,...,ng}, ag—1 < 0 and ax < 0 then «y is of type — or

0. Moreover, there exists a constant C' < 0 such that min(ag_1,ax) < C

implies «y, is of type —.

If an, > 0 then ay,, is of type +—, + or 0. Moreover, there exists a

constant C' such that a,, > C implies a,,, is of type +— or +.

It ap, < 0 then ay, is of type —+, — or 0. Moreover, there exists a

constant C' such that a,, < C implies «,,, is of type —+ or —.
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Step 5: Given two finite sequences b = (bg, by, ...,b7) and ¢ = (co, c1, ..., c7).
If both b and ¢ are of type +—, we write b = ¢ if b; > ¢; for all ¢ € {0, 1,2, 3}.
Moreover, if b; > ¢; for some j € {0,1,2,3}, we write b > c.

If both b and ¢ are of type —+, we also write b = ¢ if b > ¢;
for all i € {2,3,4,5}. Moreover, if b; > ¢; for some j € {2,3,4,5}, we
write b < c¢. Given two numbers a,a € R"@, a = (al,ag,...,anQ) and
a = (dl,dQ, . ,ELnQ) such that F'(a) and F(a) are both of maximal index.

If for some i € {0,1,2,...,nq}, a; = a; for all j # i and a; > @; > 0 then:

(wsi-1)(@), -, wsa-1)a7(a)) < (ws-n)(@), ., wa-1)47(@)),
(wsi(a), .. wsise(a)) = (wsil@), ..., wsi7(@)),
(wsj(a), - wsjar(@)) 2 (wss(@),. - -, wsj7(a))
Vj # i, with the same parity as (i — 1),
(wsj(a), - wsjar(a)) = (ws;(@),. -, wsj7(a))

Vj # 1,7 with the same parity as 7.

On the other hand, if for some ¢ € {0,1,2,...,n¢}, a; = a; for all j # i and
a; < a; < 0 then:

(ws-1)(@), -, wsa-1)47(a)) = (ws-n)(@), .., ws-1)47(@)),
(w8i(a)’ e 7w8i+7(a)) < (wSi(EL)7 e ,w8i+7(&)),
(w&j(a)? e 7w8j+7(a)) = (wsj(fl), o ,w8j+7(&))

Vj # 1,7 with the same parity as (i — 1),
(wsj(a), -, wsjir(a)) < (ws(@), -, wsj47(a))

Vj # 1,7 with the same parity as 7.

Step 6: By Sard’s Theorem for Go F, we take a regular value y = (y1, . . . T
close to the axis generated by the vector (0,...,0,1) such that 0 < |y| < 1
(that implies v € Cy, see page 63) and y,, # 0. From Equation (4-11):

o= ¥ (sign (o) T ) o
(Zk)egnQ 2,70

This implies that the curve is of type + — 4+ —+ —--- or — + — 4+ — 4 ---

of maximal index, that is ng. We shall prove that there is only one a € R"®
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such that G o F(a) = y. We recall Equation (5-1), for each j € {1,2,...,ng}:

Yi = Z (sign ((Zk)keN) H Zk)

(2)€G;(w) 2,70

- 5 s () I ()

(ki)EG;

= % (0T fa)

(1;)eS;

- (e

(l)€S;

The third and fourth lines above are a homotopic equivalence, where g} is
the set of all good subsequences of length j of the sequence (0, 1,2,...,8ng—1)
and S; are strictly increasing subsequences of (1,2, ..., ng) that have length j.
fx, is a non-decreasing function and there exists a R > 0 such that f,(t) > R
for all ¢ sufficiently large and f,(t) < —R for all ¢ sufficiently small. The third

line follows from the properties in Step 5. Since there is only one G(F(a)) = ¥,
we deduce that G o F has degree 1, and thus G o F has degree 1.
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6
Appendix: related topics and hypothesis of the main theorem

We first present a criterion to determine for which @ € SO3(R), the
space L,,(Q) is homotopically equivalent to Z(I, Q). In the second subsection
we give an explicit method to calculate the length of a CSC curve in a space of
the type EP(I , Q). In the last subsection, we present a proof to show that the
length-minimizing curve in £,,(Q) is composed only by arc of circles of radius
po and geodesics. This is a property to Theorem 3.2 proven by F. Monroy-

Pérez.

6.1
When the space of immersed curves and the space of curves with
constraints are topological equivalents

Here we give a sufficient condition for the natural inclusion 2 : £,,(Q) —
Z(I,Q) to be a homotopical equivalence. More precisely, we show that for
some Q € SO3(R) there is an obvious way to add loops simultaneously and
continuously to all curves in £,,(Q) which is a sufficient condition for the
equivalence.

We reuse the notation for the rotation matrix defined in Equation (2-3).
For each 6 € (pg, ™ — po), ¥ € (po, ™ — po) and p € [0, 27) consider Q € SO3(R)
given by:

QU.9.p) = | [(R,)]() [(Rpes(0)](@) [(Ro(v)| () % [(Rprz(v)](a) |

(6-1)
where v = (—cosf,0,—sinf), p = (cos(d + 9),0,sin(6 + ¥J)) and ¢ =

(—sin@,0,cos@). Consider the subset of SO3(R) consisting of all matrices

above, that is:

¢ = {Q(Q,ﬂ,p) S SOS(R)70 € (,00,7r _p0)719 € (po,ﬂ' - pO)vIO € [07271-)}'

We view SO3(R) as the unit tangent bundle on the sphere. For each

Q(0,79,p) € € there is an obvious axis v = (—cos#,0, —sin#) in which the
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Figure 6.1: This is an illustration of matrices in € viewed as tangent vectors
with the base point on the sphere. In the images above, the red circles are left
and right tangent circles at I of radius p, the fan shaped pieces on the surface
of the sphere represents all possible tangent vectors that are in €.

unitary vector field V', defined in S? — {v, —v}, tangent to the anticlockwise

rotation around this axis satisfy the following three properties:
1. V(Gl) = —€9.

2. V(Qel) = Q@g.
3. p<dv,e),dv,Qe) <m—p.

This property guarantees that we can attach the same arcs of circles on

the endpoints of all curves in £,(Q) simultaneously. More details are in the

demonstration of the proposition below.

Proposition 6.1. If Q € € then the natural inclusion i : L,,(Q) — Z(I,Q)

is a homotopic equivalence.

Proof. Given a Q € €, there exists 8 € (po,m — po), ¥ € (po, ™ — po)
and p € [0,27m) such that Equation (6-1) holds. For each continuous map
[+ K — L£,(Q) and given a p € K, denote f(p) =~ : [0,1] — S? and
v € L,,(Q). Consider the family of curves given by ~,, where 7 € [0, +00)

defined in the equation below.

C,v,gﬁ(fﬁ') t e [O, 1]
7 (8) = ¢ [Re(=0)] (vt = 1)) te1,2]
Cvoro0((t—2)T)  t€[2,3]

The first and the last curve in the concatenation above are arc of circles, for

definitions, refer Equations (3-4) and (3-5). These circles are reparametrized so
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that the endpoint of (_, ¢, is [RT(—U)} (7(0)) and the start point of (_, g4,

is [R-(~0)] (+(1)).
Thus, for any integer n, we have a homotopy between f and flto#2n in

L,,(Q). This homotopy is defined by H,, : K x [0,2n7m + 1] = L,,(Q),

H(p,7) =

v T €]0,2nn]
Ane T E [2nm,2nm + 1]

where 7, ; is sliding the loops (_, ¢~ and (_,g19 to the position ¢y, then
transform them into loops of great circles.

By Proposition 3.20, if f : K — £,,(Q) is homotopic to a constant in
(I, Q), then there exists an n > 1 such that f%#27 is homotopic to a constant
in £,,(Q). Since ffo#2n and f are homotopics in £,,(@Q). This proves that f
is homotopic to a constant in £,,(Q).

Conversely, it is trivial that any f : K — £,,(Q) is homotopic to a
constant in £, (Q) imply that f is homotopic to a constant in Z(I, Q). So the
inclusion map 4 : £,,(Q) — Z(I, Q) is a homotopic equivalence. [ |

6.2
Oriented circles and some basic properties

In the hypothesis of the main theorem we considered a CSC curve. The
purpose of this subsection is to define concepts and basic properties to compute
the length of a CSC curve.

Definition 6.2 (Oriented circle). An oriented circle on S? is a curve given by
C(n) = M(sin&, cos € cosn,cosEsinn), with n € [0,27] and M € SO3(R).

Here £ € (0,7) is the radius of the circle (measured on sphere).

Provided an oriented circle of radius py, we look at the vector field gen-
erated by tangent vectors of geodesic segment of length 7 starting tangentially
at the circle. This vector field is defined in entire S? except the two open discs
of radius pg. We denote C;(v) the counter-clockwise oriented circle centered
at the point v € S* with radius pg, in the same manner, we use Co(v) to de-
note the clockwise oriented circle centered at v with radius py. The following

proposition is straightforward.

Proposition 6.3 (properties of oriented circles). Given two oriented circles

of the same radius 0 < r < 7 and the opposite orientation on sphere S2, Ci(p)

and Co(q), then:
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e Ifd(p,q) < 2r then there is no geodesic tangent to both Cy(p) and Cx(q)

with the same orientation as in both circles.

e Ifd(p,q) > 2r and q # —p then there are two geodesics tangent to both

Ci(p) and Cy(q) with the same orientation as in both circles.

e If g = —p then every geodesic tangent to C1(p) is also tangent to Ca(q).
In this case, C1(p) = —Ca(q).

Given two oriented circles of the same radius 0 < r < 7 and the same

orientation on S*, C1(p) and Cy(q), then:

e Ifd(p,—q) < 2r then there is no geodesic tangent to both C1(p) and Ci(q)

with the same orientation as in both circles.

e If d(p,—q) > 2r and q # p then there are two geodesics tangent to both

Ci(p) and Ci(q) with the same orientation as in both circles.

e If ¢ = p then every geodesic tangent to C1(p) is also tangent to C1(q). In
this case, C1(p) = C1(q).

We are interested in studying such vector field defined for the following
circles Ci(p1), Ca(p2), Ci(q1) and Cy(q2). Note that the first two circles are
tangent to each other at the point e; and have direction e, and the last two
circles are tangents at (Qe; with tangent direction (Qe;. For simplicity in the

next theorem and its proof we denote:

C1 = Cl(pl) CQ = Cg(pg)
Cs :=Ci(q1) Cy = Ca(q2)

6.3
Computing the length of candidates for the length-minimizing curve

We re-enunciate the adapted version of Theorem 3.2 by F. Monroy-Perez
in [18].

Theorem 6.4. Let p € (0, g] and k = cot p. Every length-minimizing curve
m Zp(I,Q) is a concatenation of at most three pieces of arcs with constant

curvature equal to +k, —k and 0. Moreover,

1. If the length-minimizing curve contains a geodesic arc, then it is of the

form CSC.

2. If the length-minimizing curve is of the form CCC. Let a, A and [ be
angles of the first, the second and the third arc respectively. Then
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(a) min{c, B} < msinp.
(b) A >m.
(c) max{a, f} < A

To determine whether a Dubins’ curve is unique, we need to compare
the length of each candidate. Here we assume that (qi,e2) > 0, (g2,€2) > 0
and ng > 1 (this implies C; N Cy = C2 N Cs = (). By Corollary 3.4, there
are essentially 8 candidates for the shortest curve which are of type CSC (see
Figure 6.2). For each of 4 cases below, there are two different choices for the

geodesic segment:

1. Concatenation of an arc of circle Cy, a geodesic segment and an arc of

circle Cs.

2. Concatenation of an arc of circle C;, a geodesic segment and an arc of

circle Cy.

3. Concatenation of an arc of circle Cy, a geodesic segment and an arc of

circle Cs.

4. Concatenation of an arc of circle Cy, a geodesic segment and an arc of

circle Cy.

To calculate the length of these candidates we need some elementary
formulas from spherical trigonometry. Denote a CSC curve by v, we denote
the angle of the first arc by «, the second arc by 6 and the third arc by f.

Then:
Length(y) = 0 + (a + () sin py. (6-2)

We shall explicit the relation between the numbers 6, o and 3, and the final
frame @ which appears in the definition of £,,(Q). We start with Case 1 (Case
4 is analogous).

- =

//‘\\ //‘\\ //‘\\ v \
/ C \ / C \ / C \ / C \
1 ! 3 1 ! 3
’ \ ’ \
N 3 ~ S 3 ~ S
’ AN / AN : ’ \
‘ Cy ) Co ) Co ) ( Cy )
' 4 ' 2 ' 2 ! 4
\ ’ \ 7 \ ’ \ ’
~ - N - N o - N -

Figure 6.2: These are example of curves for Cases 1-4 respectively, from left to
right.

Set a as the endpoint of the first arc of ~, b as the start point of the last
arc of 7. Draw two great circles. First one starts from a and passes through

p1 by the shortest arc. Second one starts from b and passes through ¢; by the
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~. C -
<
o~
NN
. N
e 9 N
7
7
/7 N
/ \
/ \

/ \
/ \
/ \
/ \
/ \

/ \

! \

1 \

! \
b1 - --._ \q1
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\1 1/\
a ' h
| 1

Figure 6.3: These are illustrations for Case 1. In the illustration, the circle

VR

containing arc ac and the circle containing arc bc represent geodesics on
sphere. On the right illustration, it shows tangent vectors of S? translated so
that its base point is at the origin. The thick curve is trajectory of ~/. All
curves in the image are segments of great circles on sphere.

shortest arc. These two great circles meet by first the time at a point which
we shall call it ¢ (see Figure 6.3).

Note that on the triangle Aabc we have the angle Zcab = § and bc = o
by Sine rule, we get Zbca = ab = . Also, observe that ¢p; = ¢a—pia = 5= Po,
TG = cb — b = 5 — po- Now applying Cosine rule on triangle Apiq;c, and
considering previous relations, we deduce the following equation for 6:

cosf = (1 ;QI> — tan® py. (6-3)
cos? po

Next, we need to write (a+ () in terms of known parameters. For this we
look at the +' translated into S? as shown on the right-hand side in Figure 6.3.
First we observe since 7 is concatenation of three arcs of circles, its derivative
~" may be split into three geodesic segments. With the first segment lies in the
great circle perpendicular to p; and the last segment lies in the great circle
perpendicular to ¢;. Obviously, these two great circles intersect each other at
points £p; X ¢; and the angle between them is / p@g. We denote f = p; X q;.
On the other hand, the middle segment de has length 6. Considering the

variation on radius of curvature of 7, we deduce that Zfde = 7 — po and
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Configuration 1 Configuration 3

D,

C—

Configuration 4

®,

Figure 6.4: This figure illustrates “railroads” of trajectories of tangent vector
for the all four configurations above. All curves in two images above are great
circles on sphere and marked angles measures exactly 5 — po.

Zdef = 5 + po. Denote by L the length of the shorter arc from f to e. By
applying Sine rule on triangle A fde, we obtain:

coS py - sin @

sin L = (6-4)

sin(Z prgy)

We also have relations:
a=L—ZLe(—f) and S=L—-2fQe; where f=p xq. (6-5)

Since the values of Z e3(—f) and £ fé\@ may be calculated directly in
terms of Q, so Equations (6-2), (6-3), (6-4) and (6-5) are complete formulas
that give the length of v for Case 1. Although they are technically calculable,
these formulas involve taking several times inverse of trigonometric functions.
It is not clear for the author whether these formulas may be simplified into
shorter expressions.

Cases 2 and 3 are also analogous. Here we present the demonstration for
Case 2. The procedure is similar to Case 1. Set a as the endpoint of the first

arc of v, b as the start point of the last arc of 4. Draw two great circles. First
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one starts from a, and passes through p; by the shortest arc. Second one, in
contrast with the previous case, starts from ¢;, and passes through b by the
shortest arc. These two great circles meet by the first time at a point which

we call ¢ (see Figure 6.5).

~L. C - S LT
~ - ~ -
~ ~
RSN PASAN
- N - S
s 0 N - TN
s N s 4 N
, N . pq -
’ \ ’

Figure 6.5: These are illustrations for Case 2. In the illustration, the circle

containing arc ac and the circle containing arc bc represent geodesics on
sphere. On the right illustration, it shows tangent vectors of S? translated so
that its base point is at the origin. The thick curve is trajectory of ~/. All
curves in the image are segments of great circles on sphere.

Note that on the triangle Aabc, Zcab = 7 and bc = 5, and by applying

the sine rule, we obtain Zbca = ab = . Also, observe that ¢p; = ¢a — pia =
5 — pPo, C@a = ch + @b = 5 + po. Now applying the cosine rule on the
triangle Ap;¢oc, and considering the previous relations, we deduce the following

equation for 6: (p1, o)
1, 42

cos? pg
Now we proceed to write (o + /) in terms of the known parameters. For

cosf = — tan? py. (6-6)

this we look at the ~' translated into S? as shown in Figure 6.5. Again the
derivative 4" may be split into three geodesic segments: the first segment lies
in the great circle perpendicular to py, the last segment lies in the great circle
perpendicular to g and the middle segment has length 6. Two great circles
intersect each other at points +p; X ¢o and the angle between them is £ p:g\lg.

We denote f := p; x ¢;. Considering the variation on radius of curvature of ~,
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we deduce that Z fde = Zdef = § — po. Let L the length of the short arc from

f to e. By applying the sine rule on the triangle A fde, we obtain:

cos pg - sin 6

sin L = — (6-7)
sin(Z p1¢2)
We also have relations:
a=/Lfes —L and B=/L fQey; —L where f=p; X q.. (6-8)

Since the values of Z fey and Z f(Qes may be calculated directly in terms
of @, these are formulas to obtain the length of v for Case 2.

Given a @ € SO3(R) such that C;NCy and C; NCy consist of, at most, one
point (i.e. circles are tangent). Formulas (6-2), (6-3), (6-4), (6-5), (6-6), (6-7)
and (6-8) permit us to obtain exact length of all possible CSC curves thus
to determine which curve is length-minimizing. It is unclear for the author if

those formulas may be simplified.

6.4
Curve shortening

We will use the following parallel-meridian coordinates on sphere. Let
v € §%, each vector u € S* may be written as (6(u), p(u)) € [0, 7] X [—7, +7)
with 6(u) = d(u,v). These values are unique if, and only if, u # {—v,v}. We
often refer the coordinate 6(u) as v-parallel coordinate of the vector w.

Let us v € S% we define a vector field in S* \ {v,—v}, given by
W, (w) == v x P(w) where X is the usual cross product of vectors in R* and P
is the normalized projection of w onto plane perpendicular to v.

This subsection is for the characterization of length-minimizing curves.
We use an idea similar and inspired by Birkhoff curve shortening (see [10]).
Similar ideas and related studies by others may be found in [18], [9], [8], [5],
[6] and [7]. Given a curve v € L,,(Q), let Ly be the length of 7, we construct
a new curve that is shorter than or has the same length as the original curve,
by the following process: we separate the curve in small sections, each section,
except the first and last (that have length <), have the fixed length [, with
| < 7sin py. Then we replace each section for another segment that minimizes
the length with the same starting and ending Frenet frames as before. The
resulting curve will be shorter or has the same length as . Moreover, both
curves are homotopical to each other.

It is enough to prove that each section is homotopic:
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Lemma 6.5. Let P,Q € SO3(R) and let a € LT (P, Q) be a curve of length
[, with | < 7sinpy, and suppose also that py < 5. Let ag be the shortest curve

in LI(P, Q). Then ag and o are homotopic within L7 (P, Q).

—ko —ko

Proof. Applying the transformation P to the curve o, we may assume without
loss of generality that P = I. Since Length(«) < 7sin pg, « lies inside a ball
of radius 7sin py centered at «(0) = (1,0,0). First, we show that there exists
a vector v € S2N (1,0,0)* such that (o/(t),v) > 0 for all ¢ € [0, 1].

Suppose there is no such v. Then there exists a u € S2 N (1,0, 0)* such
that we can find t1,ty € [0, 1], t; < ¢y satisfying following 3 properties:

1. (/(t;),u) =0, for i = 1,2.
2. (/(t1) x (1,0,0),u), {(&/(t2) x (1,0,0),u) have opposite signs.
3. (d/(t),u) > 0 for all t € [ty,1s].

Now we check that the length of segment «([t1,%s]) is greater or equal to
7sin pg. We suppose without loss of generality that («(t1),u) < (a(t2),u) and
(a(ty) x (1,0,0),u) > 0. We consider the circles C and Cy of radius py tangent
to «a at points a(t;) and «a(te) respectively, and that these circles lie on the
right side of the curve. The curve o cannot cross neither of two circles C
and Csy. Properties 1-3 imply that the length of a([t1,t3]) must be greater or
equal to half turn of either C'; or Cs. This implies that its length must be
greater than or equal to 7sinpg. Thus t; = 0, t5 = 1. So « is an arc of a
circle of radius pg which clearly has the direction (0, 1,0) satisfying the desired
(a/(t),(0,1,0)) > 0.

Since there exists a v € S2N (1,0,0)* for all ¢ € [0,1], we parametrize

both a and «ay by polar coordinates with v as axis:

a(t) = (6(1), ¢a(t))
ao(t) = (6(1), ¢, (1))

We define the homotopy from g to a as as(t) = (H(t), 5@ (t) + (1= 5)@a, (t))
It is easy to check that a, € £,,(I, Q) for all s € [0, 1]. |

Now given a curve v, we will construct a sequence of curves (7, )nen by the
following the method below. First we consider a sequence of numbers (Ix)ren
that is dense in the interval [0, 1] and whose set of accumulation points is the
entire [0, 1]:
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1
mi1 = 5 miyo = 1
1 2 3
mo1 = 1 Mmoo = Z mo 3 = 1 mo 4 = 1
1 2 3 4
ms1 = g mso = g mszs = g ms3y4 = g mag = 1
1 2 3 4
mg1 = 27 M2 = ? mgs3 = 27 M4 = ? <o Mg ok = 1

Define the sequence (lp)gen by setting Iy = myq, lo = mya, I3 = may,
ly = Mmoo, ls = mags, lsg = Mo, Il = mga, ls = ms2, so on. Set ny = ~, for
each n > 0 we define each curve 7,,1 as the curve 7, separated into sections of
length 1, 17 sin pg, 7sin pg, msin py, ..., 7sin pg, m, < wsin py, respectively,
where m,, is the remaining length at the end of the curve 7,. Then we replace

each section by a segment that minimizes the length. By Lemma 6.5, since each

+Ko

small segment is homotopical to its replacement within E__,m, we conclude that

Nne1 and 7, are homotopical in L_fﬁg(I Q).

Since £,,(Q) is closed, each 7, has limited curvature and the length of
7y, is non-increasing. Thus the sequence (7, ),en has a convergent subsequence,
denote by 7 € L,,(Q) the limit of this subsequence. The following proposition

is an immediate consequence of the construction.
Proposition 6.6. Let 7 be a limit obtained by the shortening process above.
Then v consists of concatenation of the following segments:

e The first segment has curvature £xg.

e The segments in the middle are either: geodesics or arcs of circle with

curvature kg length > sin pg.

o The last segment has curvature £rg.
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