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Abstract

Zhou, Cong; Saldanha, Nicolau Corção (Advisor). On the Ho-
mology of the Space of Curves Immersed in the Sphere
with Curvature Constrained to a Prescribed Interval. Rio
de Janeiro, 2017. 83p. Tese de doutorado – Departamento de Ma-
temática, Pontifícia Universidade Católica do Rio de Janeiro.

While the topology of the space of all smooth immersed curves in
2-sphere that start and end at given points in given direction is well known,
it is an open problem to understand the homotopy type of its subspaces
consisting of the curves whose geodesic curvatures are constrained to a
prescribed proper open interval. In this article we prove that, under certain
circumstances for endpoints and end directions, these subspaces are not
homotopically equivalent to the whole space. Moreover, we give an explicit
construction of exotic generators for some homotopy and cohomology
groups. It turns out that the dimensions of these generators depend on
endpoints and end directions. A version of the h-principle is used to prove
these results.

Keywords
space of immersed curves in the sphere; curvature in a prescribed

interval; homotopy type; h principle.
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Resumo

Zhou, Cong; Saldanha, Nicolau Corção. Sobre a Homologia
do Espaço de Curvas Imersas na Esfera com Curvatura
Restrita a um Intervalo Prescrito. Rio de Janeiro, 2017. 83p.
Tese de Doutorado – Departamento de Matemática, Pontifícia
Universidade Católica do Rio de Janeiro.

Enquanto a topologia do espaço de todas as curvas suaves imersas em
2-esfera começando e terminando em pontos dados e direções dadas é bem
conhecido, é uma questão aberta entender o tipo de homotopia e dos seus
subespaços consistindo as curvas com a curvatura restrita a um intervalo
próprio aberto prescrito. Neste tese provamos que, sob certas circunstancias
para os pontos e as direções inicial e final, estes subespaços não são
homotopicamente equivalente ao espaço todo. Adicionalmente, fornecemos
uma construção explicita dos geradores exóticos para algum grupo de
homotopia e cohomologia. As dimensões desses geradores dependem das
posições e das direções nas extremidades. Uma versão do princípio h foi
usada na prova desses resultados.

Palavras-chave
espaço das curvas imersas na esfera; curvatura restrita a um intervalo

prescrito; tipo homotópico; princípio h.
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List of Abreviations

N Non-negative integers
S2 The unit sphere of center 0 in the Euclidean space R3

e1, e2, e3 Canonical basis of R3

r, ρ Positive numbers, used to denote radius
a, b, p1, p2, q1, q2 Points in S2

α, β, γ Curves in S2

s, t Parameters of a curve
tγ, nγ The tangent and the normal vectors of curve γ
Fγ Frenet frame
x, y, z Real numbers
i, j, k, l, n, m Usually represent an integer or a natural number
u, v, w Vectors of R3 or TS2

I Identity matrix
P , Q Matrices in SO3(R)
κ0 κ0 ∈ (0,+∞] represents the curvature constraint that

appears on the definition of Lρ0(Q)
ρ0 ρ0 ∈

[
0, π2

)
represents the radius that appears on the

definition of Lρ0(Q)
Lρ0(Q),
L+κ0
−κ0(Q)

Space of curves with geodesic curvature in (−κ0,+κ0)
with start frame I and end frame Q

L̄ρ0(Q),
L̄+κ0
−κ0(Q)

Space of curves with geodesic curvature in [−κ0,+κ0]
with start frame I and end frame Q

I(I,Q), I(Q) Space of C1 immersed curves in S2 with start frame I

and end frame Q

C, C0 Subsets of L̄ρ0(Q)
Rθ(v) Rotation matrix of angle θ with axis v
ζp,r Circle on sphere with intrinsic radius r and center at p
	, � Used to represent the orientation of a circle
J , K Subsets of R, J is often used to denote the domain of the

map γ
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f , g, F , G Applications between spaces
Br(v), B̄r(v) Open ball and closed ball in S2 with intrinsic radius r

centered at v
Hv Hemisphere of S2 given by Hv = {u ∈ S2; 〈u, v〉 > 0}
(θ, ϕ) Parallel and meridian coordinates with axis in direction

of a vector v ∈ S2

d(p, q) When p, q ∈ S2, it denotes the distance from p to q

measured on S2

exp The matrix exponential on anti-symmetric matrices
so3(R) = TISO3(R) or the Exponential map on the
sphere S2

img Image of an application
∗, †, ‡ Footnote marker symbols
curvature of a
curve in S2

Means the geodesic curvature of the curve in S2

DBD
PUC-Rio - Certificação Digital Nº 1312489/CA



1
Introduction

This section is an overview of the background and the history of the
problem which we study in this thesis. We also present some related topics.

1.1
Topology of the space of curves in 2-sphere

The topology of the space of curves on differential manifolds is a very
interesting topic for research. Here we introduce previous works for the case
of immersed regular curves on the two dimensional unit sphere S2 in the 3-
dimensional Euclidean space R3. In 1956, S. Smale proved that the space of
Cr (r ≥ 1) immersions S1 → S2, i.e., Cr regular closed curves on S2, has
only two connected components. Both of them are homotopically equivalent
to SO3(R)×ΩS3, where ΩS3 denotes the space of all continuous closed curves
in S3 with the C0 topology. This result is a consequence of a much more general
theorem ([30], thm. A) by him. Later in 1970, J. A. Little proved the following
theorem.

Theorem 1.1 (J. A. Little [16]). There are exactly 6 second order non-
degenerate∗ regular homotopy classes of closed curves on S2. Moreover, the
following 6 curves on the sphere, denoted by γj : [0, 1] → S2, for j ∈
{−3,−2,−1, 1, 2, 3} are in different non-degenerate homotopy classes (see the
Figure 1.1):

γj(t) :=
√

2
2 (1, 0, 0) +

√
2

2
[

sin(2jπt) · (0, 1, 0)− cos(2jπt) · (0, 0, 1)
]
.

In other words, there are a total of 6 connected components in the space
of non-degenerate curves in S2. Each one contains exactly one of the curves γj
given above. The components that contain γ±1 are known to be contractible.

∗We call a closed curve in S2 second order non-degenerate when its geodesic curvature
is continuous and different from 0. A regular homotopy of curves on S2, h : S1× [0, 1]→ S2,
is called nondegenerate if each curve ht : S1 → S2, t ∈ [0, 1], is nondegenerate and if the
geodesic curvature is continuous on S1 × [0, 1].
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Chapter 1. Introduction 12

Figure 1.1: Figure above illustrates three different curves on a hemisphere of
S2 with positive geodesic curvature. These three curves, from left to right, lie
in different connected components containing γ1, γ2 and γ3, respectively.

By reflecting each curve in S2 across a plane passing through the origin,
we see that it defines a homeomorphism from each component of the set of
curves with positive geodesic curvature into each component of the set of
curves with negative geodesic curvature. Thus the topologies of the connected
component that contains γj and the connected component that contains γ−j
are exactly the same for j = 1, 2, 3. So, to fully understand the topology of the
set of non-degenerate curves, it is enough to understand the topology of the
set of curves with positive geodesic curvature.

In 1999, B. Z. Shapiro and B. A. Khesin [31] studied the topology of the
space of all smooth immersed curves (not necessarily closed) with positive
geodesic curvature on S2 which start and end at given points and given
directions and found the number of connected components of this space. This
extends Theorem 1.1 by Little∗.

Theorem 1.2 (B. Z. Shapiro, B. A. Khesin). The space of curves with positive
geodesic curvature on S2 with given initial and final frames consists of 3
connected components if there exists a disconjugate curve connecting them.
Otherwise the space consists of 2 connected components.

Here a curve γ : [0, 1] → S2 is called conjugate if there exists a great
circle on S2 having at least 3 transversal intersections with γ. Otherwise it is
called disconjugate.

During 2009-2012, in [20], [21] and [22], N. C. Saldanha did several further
works compared to Theorems 1.1 and 1.2 on the higher homotopy properties
of the space of curves with positive geodesic curvature in S2. More precisely,
he proved the following result:

Theorem 1.3 (N. C. Saldanha). Under the same notations of Theorem
1.1, the component that contains the curve γ2 is homotopically equivalent

∗Because closed curves is a particular case in which initial and final points and directions
coincides
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Chapter 1. Introduction 13

to (ΩS3) ∨ S2 ∨ S6 ∨ S10 · · · . The component that contains the curve γ3 is
homotopically equivalent to (ΩS3) ∨ S4 ∨ S8 ∨ S12 · · · .

Moreover in these papers N. C. Saldanha gave an explicit homotopy for space of
curves with prescribed initial and final Frenet frames which extends Theorem
1.2. More precisely,
Theorem 1.4 (N. C. Saldanha). The space of curves with positive geodesic
curvature on S2 with prescribed initial and final frames consists of connected
components of the following types, which depend on its lifted Frenet frame
z ∈ S3 with basepoint 1∗:

• (ΩS3) ∨ S0 ∨ S4 ∨ S8 ∨ S12 ∨ · · · if z is convex;
• (ΩS3) ∨ S2 ∨ S6 ∨ S10 ∨ S14 ∨ · · · if −z is convex;
• ΩS3 if neither z nor −z is convex.

For the definition of convexity of z ∈ S3, refer [22] p.3-4.
Despite the omission of an apparent complexity in the hypothesis,

Theorem 1.4 is a more general version of Theorem 1.3, since it holds not only
for the closed curves, but also for the non-periodic curves, i.e. whose initial
and final frames do not coincide.

In 2013, N. C. Saldanha and P. Zühlke [26] also extended Little’s result
to closed curves with curvature constrained in an open interval:
Theorem 1.5. Let κ1, κ2 be extended real numbers: −∞ ≤ κ1 < κ2 ≤ +∞,
and let ρi = arccotκi for i = 1, 2†. Let

n =
⌊

π

ρ1 − ρ2

⌋
+ 1.

Then the space of closed curves on S2 with geodesic curvature in the interval
(κ1, κ2) has exactly n connected components L1, . . .Ln. Denote by γj the circle
traversed j times described by the formula below:

γj =
√

2
2 (1, 0, 0) +

√
2

2
[

sin(2jπt)(0, 1, 0)− cos(2jπt)(0, 0, 1)
]
.

For each j ∈ {1, 2, . . . , n}, the component Lj contains the curve γj : [0, 1]→ S2.
The component Ln−1 also contains γ(n−1)+2k for all k ∈ N, and Ln also

contains γn+2k for all k ∈ N. Moreover, each of L1, . . . ,Ln−2 is homeomorphic
to the space SO3(R)× E, where E is the separable Hilbert space.

∗Here we are viewing S3 as the subset of Quaternions, 1 denotes the identity of
multiplication of Quaternions.

†We use the conventional function arccot : R → (0, π), we put arccot(+∞) = 0 and
arccot(−∞) = π, extending it to [−∞,+∞].
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Chapter 1. Introduction 14

At the moment, not much is known about the higher homotopy structure
of the spaces Ln−1 and Ln which appear in Theorem 1.5, except for the case in
which ρ1− ρ2 = π

2 (see Theorem 1.3). In this case, the space is homeomorphic
to the space of curves with positive geodesic curvature, so its components
have homotopy types as described in Theorem 1.3. Based on this fact, they
conjectured the connected components Ln−1 and Ln to be homotopically
equivalent to (ΩS3) ∨ Sn1 ∨ Sn2 ∨ Sn3 ∨ · · · .

In 2014, N. C. Saldanha and P. Zühlke solved the related problem for the
space R2 in [27] for curves with prescribed initial and final Frenet frames. In
this thesis we obtain a result consistent with the original conjecture by proving
the existence of Sn1 and the value of n1 for prescribed initial and final Frenet
frames. As in the plane case, it turned out that the existence of Sn1 and its
dimension n1 is linked to the maximum number of arcs of angle π for each of
four types of “maximal” critical curves. However it is not clear how to adapt
the method of proof which is used for the plane case to the sphere case, so that
we use entirely different method in this thesis.

Here we give an intuitive and brief statement of the main theorem
(Theorem 2.6) proved in this thesis. Let L+κ0

−κ0(I,Q) be the space of C2

immersed curves on S2 with geodesic curvature constrained in the interval
(−κ0,+κ0), starting at Frenet frame I and ending at Frenet frame Q (In this
thesis we consider the case that κ0 > 1. Denote ρ0 = arccotκ0 ∈ (0, π4 )).

Definition 1.6. We call a curve γ ∈ L+κ0
−κ0(I,Q) critical if it is a concatenation

of a finite number of arcs of circles and satisfies the following properties. Let
r0, r1,. . . , rk be the radii and γ0, γ1,. . . , γk be the arcs of these circles.

1. The centers of all circles lie in a unique great circle.

2. Each circle has radius in
(
ρ0,

π
2 − ρ0

)
∪
(
π
2 + ρ0, π − ρ0

)
.

3. For each i ∈ {1, 2, . . . , k − 1}, γi has length equal to π sin ri.

4. γ0 and γk have length < π sin r0 and < π sin rk, respectively.

5. The signs of the geodesic curvature of each segment of arc of γ are
alternating. In other words, for each i ∈ {0, 1, . . . , k−1}, if the curvature
of γi is positive then the curvature of γi+1 is negative and vice-versa.

6. γ does not have self-intersections.

Given a critical curve, we associate to it a string of alternating signs of type
“+ − + − · · · ” or “− + − + · · · ” by the rule: We “walk” along the curve and
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Chapter 1. Introduction 15

measure the curvature of γ from start to end. If the curvature jumps from
positive to negative we put a “+” sign, for each jump from negative to positive
we put a “−” sign.

Refer Figure 1.2 for a more geometric view of critical curves.

+ − + −
+ − + − +

Figure 1.2: The curve on the left is critical of type +−+− and the curve on the
right is critical of type +−+−+ (we are looking at the inclination of tangent
vectors). Meanwhile the dashed circles have radii greater than ρ0 = arccotκ0
and are aligned so that their centers are on the same geodesic.

Theorem 1.7 (informal statement of the main theorem). Given a matrix
Q ∈ SO3(R), the following information about the topology of L+κ0

−κ0(I,Q) can
be obtained by analyzing critical curves in L+κ0

−κ0(I,Q).
If there exist critical curves of type +−+− . . .︸ ︷︷ ︸

n+1

and type −+−+ . . .︸ ︷︷ ︸
n+1

,

and there is neither a critical curve of type +−+− . . .︸ ︷︷ ︸
n+2

nor a critical curve of

type −+−+ . . .︸ ︷︷ ︸
n+2

, then there is an exotic generator of Hn

(
L+κ0
−κ0(I,Q)

)
.

A formal and detailed statement of this theorem will be presented in Section
2.

Theorem 1.1
by J. A. Little

Theorem 1.2
by Khesin-Shapiro

Theorem 1.3
by N. C. Saldanha

Theorem 1.4
by N. C. Saldanha

Theorem 1.5
by Saldanha-Zühlke

Main Theorem
(see page 25)

Figure 1.3: Diagram of the development of Theorems.
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Chapter 1. Introduction 16

1.2
The topology of curves in higher dimension spheres, plane and other
spaces

One may be curious whether there are similar properties for the space of
curves on spheres Sn of higher dimensions. Indeed there are some studies: [24],
[32], [23], [1], [2] and [14].

The research on the topological aspects of spaces of curves has not been
restricted exclusively to sphere Sn. For curves on 2-dimensional Euclidean
plane, here we mention the articles: [34], [11], [12], [27], [28], [6], [5], [8], [9].
We also mention [3] for RP2, [29] for two dimensional hyperbolic space with
constant curvature −1, and [30] and [19] for general Riemannian manifolds,
respectively.
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2
Statement of the Main Theorem and the Conjecture

This section begins with introduction of some definitions which we will
use throughout the text. After that, we present our main result and the scheme
of proof.

2.1
Definition of immersed curves

For completeness, we present the definition for the space I of immersed
curves in S2. We consider all C1 applications of type γ : Jγ → S2, γ′(t) 6= 0,
for all t ∈ Jγ, where Jγ ⊂ R is a closed non-degenerated interval. We say that
two applications:

α : Jα → S2 and β : Jβ → S2.

are equivalent if there exists a C1 strictly increasing bijection t̄ : Jα → Jβ,
t̄′ > 0, such that:

α(t) =
(
β ◦ t̄

)
(t).

One may have noted that β is just a reparametrization of α. We use the notation
α ∼ β. It can be easily verified that ∼ is an equivalence relation. The space of
C1 immersed curves on S2 denoted by I is the following quotient space:

I = {γ : Jγ → S2; γ is a C1 application and γ′(t) 6= 0, for all t ∈ Jγ} /∼ .

By abuse of notation, we will use α to represent the equivalence class
[α] = {β;α ∼ β} ∈ I, and call α a C1 immersed curve on S2, or an immersed
curve for short. Now we recall the concept of arc-length. Given an immersed
curve γ : [0, 1]→ S2, define the arc-length of γ by s : [0, 1]→ [0, Lγ] as follows:

s(t) :=
∫ t

0
|γ′(t)|dt,

where Lγ =
∫ 1

0 |γ′(t)|dt is the length of γ. Since |γ′| > 0, s is a strictly increasing
function. By re-parametrizing the curve by arc-length s we obtain a curve
γ : [0, Lγ] → S2 with |γ′(s)| ≡ 1. We will use the notation tγ(t) to denote the
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Chapter 2. Statement of the Main Theorem and the Conjecture 18

unit tangent vector γ′(s)|s=s(t).
Given any two immersed curves α and β, let Lα and Lβ denote their

lengths. Reparametrize both curves proportionally to arc-length with:

|α′(t)| = Lα and |β′(t)| = Lβ,

so that α, β : [0, 1]→ S2 with constant speeds. Define:

d̄(α, β) = max
{
d
(
α (t) , β (t)

)
+ d

(
tα (t) , tβ (t)

)
; t ∈ [0, 1]

}
.

In the equation above, d is the usual distance between two points in S2. It is
easy to check that d̄ is well defined on I, and a distance function. So the pair
(I, d̄) is a metric space. We have the usual C1 topology in I, induced by the
metric d̄ : I × I → [0,∞). We use this topology throughout the text.

2.2
Definition of spaces of curves with constrained curvature

Given a C1 immersed curve γ : J → S2, we define the unit normal vector
nγ to γ by

nγ(t) = γ(t)× tγ(t),

where × denotes the vector product in R3. If γ also has the second derivative,
the geodesic curvature κγ(s) at γ(s) is given by

κγ(s) =
〈
t′γ(s),nγ(s)

〉
, (2-1)

where s is the arc-length of γ. Remember that we are working with C1 curves,
so the geodesic curvature may not be well defined for these curves. Here we
establish a broader definition of the curvature for C1 regular curves (see Figure
2.1). Given a C1 curve γ : J1 → S2 and a circle ζ : J2 → S2, we say that ζ is
tangent to γ at γ(t1), t1 ∈ J1, from the left if the next conditions are satisfied:

1. There exists a t2 ∈ J2 such that γ(t1) = ζ(t2) and γ′(t1) = ζ ′(t2).

2. Denote the center of ζ by a so that ζ travels anti-clockwise with respect
to a and denote by r the radius (measured on sphere) of ζ in relation to
a. There exists a δ > 0 such that:

d(γ(t), a) ≥ r, ∀t ∈ (t1 − δ, t1 + δ).

In the above inequality, d is the distance measured on S2.
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Chapter 2. Statement of the Main Theorem and the Conjecture 19

Figure 2.1: In the left hand side is a smooth curve. In the center is a piece-wise
C2 curve. In the right hand side is the curve given by the spherical projection
of the plane curve t 7→ (−t4, t3). Note that there does not exists a circle tangent
to this curve at (0, 0) from the left. The second and the third curves are C1

regular curves, but not C2. Yet the concept of the left and the right curvature
are well defined for these curves. For the rightmost curve, the left and right
curvature at the projection of (0, 0) are both +∞.

Figure 2.2: The graph of the spherical projection of the plane curve t 7→
(−t5, t3). Note that there is neither a circle tangent to the curve at (0, 0)
from the left nor from the right. The left and right curvature on the inflection
point are +∞ and −∞, respectively.

In the same manner we say that ζ is tangent to γ at γ(t1) from the right by
replacing Condition (2) with:

(2’) Denote the center of ζ by a so that ζ travels anti-clockwise with respect
to it and denote by r the radius (measured on sphere) of ζ in relation to
a. There exists a δ > 0 such that:

d(γ(t), a) ≤ r, ∀t ∈ (t1 − δ, t1 + δ).

We define left curvature and right curvature, denoted by κ+
γ and κ−γ ,
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Chapter 2. Statement of the Main Theorem and the Conjecture 20

respectively:

κ+
γ (t) = inf

cot(r); where r is the radius of
a circle tangent to γ at γ(t) from the left.


κ−γ (t) = sup

cot(r); where r is the radius of
a circle tangent to γ at γ(t) from the right.

 .
We follow the convention that inf ∅ = +∞ and sup ∅ = −∞. Note that
κ+
γ (t) ≥ κ−γ (t) for all t ∈ J1. When the equality occurs for some t, we define

the curvature of γ as κγ(t) = κ+
γ (t) = κ−γ (t). For C2 curves, the definition

of curvature coincides with the usual definition of the geodesic curvature (see
Equation (2-1)). We also define the Frenet frame of γ by:

Fγ(t) =


| | |

γ(t) tγ(t) nγ(t)
| | |

 ∈ SO3(R).

The space SO3(R) is homeomorphic to the unit tangent bundle of sphere
UTS2 by mapping the matrix M ∈ SO3(R) to the vector M(0, 1, 0) ∈
TM(1,0,0)S2. Now we define I(P ,Q), Lκ2

κ1(P ,Q) and L̄κ2
κ1(P ,Q):

Definition 2.1. Given P ,Q ∈ SO3(R), κ1, κ2 ∈ [−∞,+∞], with κ1 ≤ κ2.

• Let I(P ,Q) be the space of all C1 immersed curves in S2 with Frenet
frames Fγ(0) = P and Fγ(1) = Q. We will use the notation I(Q), when
P = I.

• Let Lκ2
κ1(P ,Q) ⊂ I(P ,Q) be the subspace of curves that satisfies κ1 <

κ−γ (t) ≤ κ+
γ (t) < κ2 for all t ∈ [0, 1].

• Let L̄κ2
κ1(P ,Q) ⊂ I(P ,Q) be the subspace of curves that satisfies κ1 ≤

κ−γ (t) ≤ κ+
γ (t) ≤ κ2 for all t ∈ [0, 1].

We will also adopt shorter notations when these spaces are symmetric in the
sense that −κ1 = κ2 = κ0, with κ0 ∈ (0,+∞]. Let ρ0 := arccot(κ0), we will
mostly use Lρ0(Q) := L+κ0

−κ0(I,Q) and L̄ρ0(Q) := L̄+κ0
−κ0(I,Q).

There is no loss of generality in considering only the situation that P = I,
because the space Lκ2

κ1(P ,Q) is homeomorphic to Lκ2
κ1(I,P−1Q) via the map

γ 7→ P−1γ (the same is valid for L̄κ2
κ1(P ,Q)). When we study spaces Lκ2

κ1(I,Q)
and L̄κ2

κ1(I,Q), there is no loss of generality in assuming the intervals (κ1, κ2)
and [κ1, κ2] to be (−κ0, κ0) and [−κ0, κ0], respectively. This is due to the
following result in [26].
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Theorem 2.2. Let Q ∈ SO3(R), κ1, κ2, κ̄1, κ̄2 ∈ [−∞,+∞] such that κ1 < κ2

and κ̄1 < κ̄2. Define ρi = arccotκi and ρ̄i = arccot κ̄i, for i = 1, 2. Suppose
that:

ρ1 − ρ2 = ρ̄1 − ρ̄2.

Then there exists a homeomorphism between the spaces Lκ2
κ1(Q) and

Lκ̄2
κ̄1(R−θQRθ), where θ = ρ2 − ρ̄2 and

Rθ =


cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ


is the rotation matrix around the axis (0, 1, 0) by the right-hand rule.

For the space L̄κ2
κ1(I,Q) the conclusion and the proof of Theorem 2.2 are

analogous. Also, it turned out that the smoothness condition about the curve
does not change the topology of the space Lρ0(Q), due to the following theorem
(proved also in [26]):
Theorem 2.3. Let ρ0 ∈

[
0, π2

)
, κ0 = arccot ρ0, Q ∈ SO3(R) and r ∈ N with

r ≥ 2. Define Cρ0(Q) to be the set of all Cr regular curves γ : [0, 1] → S2

furnished with Cr topology, with γ such that:

1. Fγ(0) = I and Fγ(1) = Q;

2. −κ0 < κγ(t) < κ0 for each t ∈ [0, 1].

Then the set inclusion i : Cρ0(Q) ↪→ Lρ0(Q) is a homotopy equivalence.
Therefore, the sets Cρ0(Q) and Lρ0(Q) are homeomorphic.

However, in contrast to the previous remarks, the above property is only valid
for Lρ0(Q). In fact, it is easy to find examples in which the spaces L̄ρ0(Q) and
C̄ρ0(Q) are not homotopic.

2.3
Statement of the main theorem

The space I(Q) is weakly homotopically equivalent to the space ΩSO3(R)
(the space of loops in SO3(R)), refer [13] and [15] for more details. Moreover,
ΩSO3(R) ' ΩS3 t ΩS3, namely one of these connected component consists of
curves with even number of self-intersections, and the other one consists of
curves with odd number of self-intersections. For detailed description of the
topology of ΩS3 refer [17]. In this book it is shown that the loop space ΩS3

has the homotopy type of a CW-complex with exactly one cell in each of the
dimensions 0, 2, 4, 6, . . . , 2k, . . . , for k ∈ N.
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Observe that Lρ0(Q) ⊂ I(Q). It is known from an analogous result of
[22] that the inclusion map i : Lρ0(Q) → I(Q) induces a surjetive map on
homology (refer Proposition 3.20):

Hk

(
i
)

: Hk

(
Lρ0(Q)

)
→ Hk

(
I(Q)

)
. (2-2)

Our objective is to understand the topology of the space Lρ0(Q). In this thesis
we prove it differs from the topology of I(Q). Our strategy is to construct
some specific non-trivial maps F : Sn → Lρ0(Q) and G : Lρ0(Q) → Sn, for
some n = nQ ∈ N depending on Q, such that F and G satisfy the properties:

(G ◦ F ) : Sn → Sn has degree 1 and (i ◦ F ) : Sn → I(Q) is a trivial map.

The existence of such maps implies Hn(i)
(
[F ]

)
= 0, but [F ] 6= 0 in

Hn

(
Lρ0(Q)

)
.∗ Hence the map Hn

(
i
)
is not injective, from (2-2) we deduce

that the inclusion map i is not a homotopic equivalence.
Denote by {ē1, ē2, ē3} the basis in so3(R) = TISO3(R) (the Lie algebra

of SO3(R), which is the set of 3× 3 anti-symmetric matrices), given by:

ē1 =


0 0 0
0 0 −1
0 1 0

 , ē2 =


0 0 1
0 0 0
−1 0 0

 and ē3 =


0 −1 0
1 0 0
0 0 0

 .

Note that the exponentials of matrices above are rotations around x, y and z
axis respectively.

Let v ∈ S2. We define Rρ(v) as the anti-clockwise rotation of angle ρ
around the axis generated by the direction from the origin to v, following the
right hand rule. This rotation is represented by a matrix in SO3(R), which is
given by the following formula:

Rρ(v) = exp
(
ρ (〈e1,v〉 ē1 + 〈e2, v〉 ē2 + 〈e3, v〉 ē3)

)
, (2-3)

where e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1). For M ∈ SO3(R), we use
notations:

p1(M ) = [Rρ0(Me2)] (Me1) and p2(M ) = [R−ρ0(Me2)] (Me1).

In other words,

p1(M) = M (cos ρ0, 0, sin ρ0) and p2(M ) = M (cos ρ0, 0,− sin ρ0).
∗[F ] denotes the homotopy equivalence class of F .
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In the definition above, if one views the matrix M as the Frenet frame of a
curve γ ∈ Lρ0(Q) on γ(t), the point p1 is the center of the circle of radius
ρ0 tangent to γ at γ(t) from the left. Analogously, the point p2 is the center
of the circle of radius ρ0 tangent to γ at γ(t) from the right. For example,
p1(I) = (cos ρ0, 0, sin ρ0) and p2(I) = (cos ρ0, 0,− sin ρ0).

Due to frequent appearance in the text, we will also use the shorter
notations:

p1 = p1(I), p2 = p2(I), q1 = p1(Q) and q2 = p2(Q). (2-4)

Geometrically, p1 and p2 are the centers of the circles of radius ρ0 tangent to the
curves in Lρ0(Q) at the time t = 0 from the left and right, respectively. On the
other hand, q1 and q2 are the centers of the circles of radius ρ0 tangent to the
curves in Lρ0(Q) at the end of the curves from the left and right, respectively.

Consider the following lengths measured on S2 given by:

D1 := d(p1, q2), D2 := d(p2, q1), L1 := d(p1, q1), L2 := d(p2, q2),

so thatD1,D2 represent the lengths of two diagonals of quadrilateral�p1q1q2p2

and L1, L2 represent the lengths of the sides p1q1 and p2q2, respectively (see
Figure 2.3).

L1
p1

p2

q1

q2

D1p1

p2 q2

q1

Figure 2.3: These are critical curves of indices 3 and 4 respectively (from left
to right) which are contained in L̄ρ0(Q) (but not in Lρ0(Q)). Note that the
amount of hills and valleys that we are able to add on the critical curve
is directly related to the distance between points, which are L1 and D1
respectively. To be able to construct a critical curve similar to the image on
the left on Lρ0(Q), we need L1 > 8ρ0, and for the image on the right, we need
D1 > 10ρ0. These examples motivate us to give the definition in Equation
(2− 5).

For i = 1, 2, define the truncated lengths which will be used to enunciate
the main theorem:

L̄i := 2
⌈
Li
4ρ0

⌉
− 3 and D̄i := 2

⌈
Di

4ρ0
− 1

2

⌉
− 2. (2-5)

In the equation above, dxe represents the least integer that is greater than
or equal to x. Note that L̄i is always an odd integer and D̄i is always an
even integer. These two numbers describe, intuitively, the index of a “maximal
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critical curve” of even or odd type (see Figure 2.3). See also Figure 2.4 for the
graphs of L̄i and D̄i as functions of Li and Di, respectively. The reason of this
definition will be further clarified in the subsequent sections.

2ρ0 4ρ0 6ρ0 8ρ0 10ρ0 12ρ0 14ρ0 16ρ0 18ρ0 20ρ0

−3

−2

−1

1

2

3

4

5

6

7

8

Li, Dj

L̄i, D̄j

Figure 2.4: Graph of L̄i as function of Li in red and D̄j as function of Dj in
blue.

Lemma 2.4. If L̄i > D̄j for all i, j ∈ {1, 2} then L̄1 = L̄2. In the same
manner, if D̄i > L̄j for all i, j ∈ {1, 2} then D̄1 = D̄2.

Proof. For the first part of the lemma, suppose, by contradiction, that L̄1 6= L̄2.
Without loss of generality, we assume that L̄1 > L̄2. By the triangular
inequality:

|L1 − L2| = |d(p1, q1)− d(p2, q2)| ≤ d(p1, p2) + d(q1, q2) = 4ρ0.

This implies L̄2 = L̄1 − 2 (see Figure 2.4). On the other hand, again by the
triangular inequality:

|L1 −D1| = |d(p1, q1)− d(p1, q2)| ≤ d(q1, q2) = 2ρ0.
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This implies D̄1 ≥ L̄1 − 1 (see Figure 2.4). Thus D̄1 > L̄1 − 2 = L̄2 which
contradicts the initial hypothesis that L̄2 > D̄1. The proof for the second part
of the lemma is analogous. �

With the lemma above, we introduce the definition of the index of Q and
the main theorem.

Definition 2.5 (index of Q). Define the index of Q, denoted by nQ, as follows:

• If L̄i > D̄j for all i, j ∈ {1, 2} then we define nQ := L̄1 = L̄2.

• If D̄i > L̄j for all i, j ∈ {1, 2} then we define nQ := D̄1 = D̄2.

Note that if neither of both cases in Definition 2.5 occurs, nQ is not defined.
Now we are ready to state our main theorem.

Denote by �p1q1q2p2 the geodesic quadrilateral on the sphere with its
interior included, and define its ρ-neighborhood by:

Bρ(�p1q1q2p2) = {p ∈ S2; d(p,�p1q1q2p2) < ρ}.

Denote the closure of Bρ(�p1q1q2p2) by B̄ρ(�p1q1q2p2)

Theorem 2.6 (main theorem). Let Q ∈ SO3(R) and ρ0 ∈ (0, π4 ). Assume that
the following conditions are satisfied.

1. 〈q1, e2〉 > 0 and 〈q2, e2〉 > 0.

2. min{D1, D2} > 2ρ0.

3. �p1q1q2p2 is a convex set.

4. There exists a δ3 > 0 such that for all ρ̃ ∈ [ρ0, ρ0 + δ3), 〈q̃1, e2〉 > 0 and
〈q̃2, e2〉 > 0 and there exists a CSC curve (defined in Definition 3.1) in
L̄ρ̃(I,Q) such that its image is contained in Bρ̃(�p̃1q̃1q̃2p̃2), where

p̃1 = (cos ρ̃, 0, sin ρ̃), p̃2 = (cos ρ̃, 0,− sin ρ̃),
q̃1 = Q(cos ρ̃, 0, sin ρ̃) and q̃2 = Q(cos ρ̃, 0,− sin ρ̃).

Compare the values L̄i and D̄j, for i, j ∈ {1, 2}:

• If L̄i > D̄j for i, j ∈ {1, 2} then there is an application F : SnQ → Lρ0(Q)
such that [F ] ∈ HnQ

(
Lρ0(Q)

)
is non-trivial, but [i ◦ F ] ∈ HnQ

(
I(Q)

)
is

trivial, where nQ = L̄1 = L̄2. In particular, the inclusion i : Lρ0(Q) ↪→
I(Q) is not a homotopy equivalence.
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• If D̄i > L̄j for i, j ∈ {1, 2} then there is an application F : SnQ → Lρ0(Q)
such that [F ] ∈ HnQ

(
Lρ0(Q)

)
is non-trivial, but [i ◦ F ] ∈ HnQ

(
I(Q)

)
is

trivial, where nQ = D̄1 = D̄2. In particular the inclusion i : Lρ0(Q) ↪→
I(Q) is not a homotopy equivalence.

Example 2.3.1. Given θ ∈ (0, π), let

Q =


cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 ∈ SO3(R).

For all ρ0 ∈
(
0, π4

)
, the set Lρ0(Q) satisfies the hypothesis of the main theo-

rem. In fact, the length-minimizing curve given by γ0(t) = (cos(t), sin(t), 0)
for t ∈ [0, θ] obviously lies inside the quadrilateral �p1q1q2p2. A di-
rect computation shows that q1 = (cos ρ0 cos θ, cos ρ0 sin θ, sin ρ0) and q2 =
(cos ρ0 cos θ, cos ρ0 sin θ,− sin ρ0). Thus:

L1 = L2 = arccos(cos2 ρ0 cos θ + sin2 ρ0)

and
D1 = D2 = arccos(cos2 ρ0 cos θ − sin2 ρ0).

Since these properties are invariant in a neighborhood of Q, the main theorem
is valid for an open set in SO3(R) containing Q given above.

A particular case of the main theorem follows from the example given
above:

Theorem 2.7 (a special case). Let ρ0 ∈ (0, π4 ), θ ∈ (0, π) and Q ∈ SO3(R)
given by

Q =


cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .
Compare the values L̄i and D̄j, for i, j ∈ {1, 2}:

• If L̄i > D̄j for i, j ∈ {1, 2} then there is an application F : SnQ → Lρ0(Q)
such that [F ] ∈ HnQ

(
Lρ0(Q)

)
is non-trivial, but [i ◦ F ] ∈ HnQ

(
I(Q)

)
is

trivial, where nQ = L̄1 = L̄2. In particular, the inclusion i : Lρ0(Q) ↪→
I(Q) is not a homotopy equivalence.

• If D̄i > L̄j for i, j ∈ {1, 2} then there is an application F : SnQ → Lρ0(Q)
such that [F ] ∈ HnQ

(
Lρ0(Q)

)
is non-trivial, but [i ◦ F ] ∈ HnQ

(
I(Q)

)
is
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trivial, where nQ = D̄1 = D̄2. In particular the inclusion i : Lρ0(Q) ↪→
I(Q) is not a homotopy equivalence.

The proof of Theorem 2.6 is divided into three parts, in Sections 3, 4 and
5. These sections are, definition of F , definition of G and the proof of essential
properties of G ◦ F , respectively.
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3
Defining the map F

In this section we will define the map F : SnQ → Lρ0(Q). First we
introduce definitions and notations, then we construct a map F̄ : RnQ →
L̄ρ̃(Q), for some ρ̃ > ρ0, and lastly we modify the map F̄ into the desired F .
From now on, the parameter s will no longer be used to denote exclusively the
arc-length of the curve.

3.1
Preliminary definitions, notations and lemmas

Intuitively, the definition of F̄ : RnQ → Lρ0(Q) may be thought as
continuously deforming a curve (“elastic band”) that is constrained in middle
of nQ pairs of control circles (“reels”). By moving the position of these reels
(refer Figures 3.2 and 3.3), the elastic band will follow the movement of reels.
Here we will formalize this concept.

Recall that a basis {v1, v2, v3} of R3 is positive when:

det


| | |
v1 v2 v3

| | |

 > 0.

Given an a ∈ S2, there are two (non-unique) vectors u1(a), u2(a) ∈ S2 such that
{a, u1(a), u2(a)} forms a positive orthonormal basis of R3. Denote an oriented
circle with center a ∈ S2 and radius ρ ∈ (0, π) as

ζa,ρ(s) := (cos ρ) · a+ (sin ρ) ·
[

cos s · u1(a)− sin s · u2(a)
]
. (3-1)

We start defining two families of circles with the centers at p̃1 or p̃2,
denoted by li, ri : R → S2, with i ∈ {1, 2, . . . , nQ}, which describe the
positions of centers of “control circles” (reels). We fix an orientation on TS2 by
setting {(0, 1, 0), (0, 0, 1)} as a positive basis in T(1,0,0)S2. Under the induced
orientation on S2 ⊂ R3, the normal vector points outwards.

Definition 3.1. Let ρ ∈
(
0, π2

)
and P ,Q ∈ SO3(R). Consider the space

L̄ρ(P ,Q). We say that a curve γ in L̄ρ(P ,Q) is of type CSC in L̄ρ(P ,Q), if

DBD
PUC-Rio - Certificação Digital Nº 1312489/CA



Chapter 3. Defining the map F 29

γ is concatenation of the following three curves:

γ(t) =


γ1(t), t ∈ [0, t1]
γ2(t), t ∈ [t1, t2]
γ3(t), t ∈ [t3, 1]

where both γ1 and γ3 are arcs of circles of radius equal to either ρ or π − ρ,
and γ2 is a segment of geodesic. We say that a curve γ in L̄ρ(P ,Q) is of type
CCC if γ is a concatenation of three arcs of circles of radius equal to either ρ
or π − ρ.

The term CSC stands for “Curved-Straight-Curved”, meaning that the
referred curve is composed by concatenation of 3 curves, the first one is an
arc with constant geodesic curvature with modulus equal to κ0, then comes
the second which is a Geodesic segment, finally the last curve is again an arc
with modulus equal to κ0. Note that in the definition above, each of the three
segments is allowed to have zero length (degenerate). If γ1 is degenerate, then
we also call the curve γ of type SC. If both γ1 and γ3 are degenerate, we call
γ of type S, so on. This kind of nomenclature is commonly used on studies of
Dubins’ curves (see, for example, [9]).

For nQ an even number, consider ς = min{D1, D2} =
min{d(p1, q2), d(p2, q1)}. For nQ an odd number, consider ς = min{L1, L2} =
min{d(p1, q1), d(p2, q2)}. Then take

δ0 = ς − (2nQ + 2)ρ0

2nQ + 3 .

By the definition of nQ, δ0 > 0. The purpose of the choice of δ0 is that,
for ρ̃ ∈ (ρ0, ρ0 + δ0], it holds that (2nQ + 2)ρ̃ < ς. This allows us to
construct critical curves of index nQ by using arcs of circles with radius ≥ ρ̃

in L̄ρ̃(I,Q) ⊂ Lρ0(Q).
The following theorem is an adapted version of a part of a theorem proved

by F. Monroy-Pérez (Theorem 6.1 in [18]). This theorem was proven for the
particular case in which the radius ρ = π

4 . The original proof can be adapted
to any ρ ∈

(
0, π4

)
.

Theorem 3.2. Let ρ ∈
(
0, π2

]
and κ = cot ρ. Every length-minimizing curve

in L̄ρ(I,Q) is a concatenation of at most three pieces of arcs with constant
curvature equal to +κ, −κ and 0. Moreover:

1. If the length-minimizing curve contains a geodesic arc, then it is of the
form CSC.
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2. If the length-minimizing curve is of the form CCC. Let α, λ and β be
angles of the first, the second and the third arc respectively. Then

(a) min{α, β} < π sin ρ.

(b) λ > π.

(c) max{α, β} < λ.

As a corollary of this theorem, we obtain:

Corollary 3.3. Let p1, p2, q1, q2 as defined previously. If nQ ≥ 1 then there
exists a δ1 > 0 such that for every ρ̃ ∈ (ρ0, ρ0 + δ1], every length-minimizing
curve in L̄ρ̃(I,Q) is of type CSC.

Proof. Suppose by contradiction that for every δ1 > 0 there exists a ρ̃ ∈
(ρ0, ρ0 + δ1] such that there exists a CCC curve in L̄ρ̃(I,Q). Suppose without
loss of generality that the first arc of this curve has positive curvature. Consider
the points p̃1, p̃2, q̃1, q̃2 ∈ S2:

p̃1 = (cos ρ̃, 0, sin ρ̃), p̃2 = (cos ρ̃, 0,− sin ρ̃),
q̃1 = Q(cos ρ̃, 0, sin ρ̃) and q̃2 = Q(cos ρ̃, 0,− sin ρ̃).

Let c2 be the center of the second arc of the CCC curve, note that the
centers of the first and third arcs of circles are p̃1 and q̃1, respectively. This
and the triangular inequality implies:

d(p̃1, q̃1) ≤ d(p̃1, c2) + d(c2, q̃1) = 4ρ̃.

In the equation above, take the limit ρ̃ to ρ0. Note that p̃1 and q̃1 converge to
p1 and q1 respectively. Thus

L1 = d(p1, q1) ≤ 4ρ0. (3-2)

On the other hand, if nQ ≥ 1 is an odd number then nQ = L̄1 ≥ 1. This
implies L1 > 4ρ0 (see graph of L1 in Figure 2.4). For nQ ≥ 2 an even number,
then nQ = D̄1 ≥ 2, this and the triangular inequality imply

L1 = d(p1, q1) ≥ |D1 − d(q1, q2)| > |6ρ0 − 2ρ0| = 4ρ0.

So in both cases we obtain L1 > 4ρ0, contradicting Inequality (3-2). �

Corollary 3.4. Let Q ∈ SO3(R) be such that 〈q1, e2〉 > 0, 〈q2, e2〉 > 0 and
nQ = 0. Then there exists a δ2 > 0 such that for every ρ̃ ∈ (ρ0, ρ0 + δ2] the
length-minimizing curve in L̄ρ̃(I,Q) is of type CSC.
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Proof. Note that nQ = 0 implies that:

d(p1, q2), d(p2, q1) > 2ρ0. (3-3)

Suppose, by contradiction, that the length-minimizing curve is a CCC
curve. We will construct another curve whose length is less than the original
CCC curve. It is easy to check that a length-minimizing CCC curve satisfies
the following properties:

1. The first and the third arcs have the same curvature, while the second
arc has the opposite curvature.

2. If a Cθ1Cθ2Cθ3 curve is length-minimizing then θ2 > π, where θ1, θ2 and
θ3 denote the angles of the corresponding arcs of circles.

Denote the three arcs of CCC curve by γ1, γ2 and γ3, respectively. Also denote
their correspondent circles by C1, C2 and C3, and centers by c1, c2 and c3,
respectively. Suppose, without loss of generality, that γ1 has positive curvature.
By Item (2), the center c2 lies on one of the hemispheres delimited by the
geodesic passing through centers c1 and c3.

We consider the other circle C̃2 of the same radius also tangent to C1

and C3 which the center lies on another hemisphere. By Equation (3-3), the
CCC curve formed by concatenation of an arc of C1, followed by an arc of C̃2

and an arc of C3 is well defined and strictly shorter than the original curve. It
is a contradiction. �

For nQ = 0, define F : S0 → Lρ0(Q) as F (−1) = γ0 and F (+1) = γ
[0.5#2]
0 ,

where γ0 : [0, 1] → S2 is the length-minimizing CSC curve and γ[0.5#2]
0 is the

curve γ0 with two loops added at the instant t = 0.5.
Fix δ1, δ2 from Corollaries 3.3 and 3.4. Also fix δ3 from the hypothesis of

the main theorem. From now on, we fix a ρ̃ ∈
(
ρ0, ρ0 + min{δ0, δ1, δ2, δ3}

]
and

assume nQ ≥ 1. As checked previously, for nQ ≥ 1, the hypothesis of Theorem
2.6 guarantees that the length-minimizing curve γ0 ∈ L̄ρ̃(I,Q) is of type CSC.
We fix a length-minimizing CSC curve and denote it by:

γ0(t) =


γ0,1(t), t ∈ [0, t1]
γ0,2(t), t ∈ [t1, t2]
γ0,3(t), t ∈ [t3, 1]

where both γ0,1 and γ0,3 are arcs of circles of radius ρ̃ and γ0,2 is a segment of
geodesic.

A simpler construction choice for nQ odd case: In this case, we construct
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F̃ : SnQ → Lρ0(P̃ , Q̃) into the space of curves that start at the frame
P̃ = Fγ0,2(t1) and end at the frame Q̃ = Fγ0,2(t2). Then afterwards concatenate
these curves with γ0,1 and γ0,3 at the beginning and the end, respectively. From
this concatenation we obtain the desired map F : SnQ → Lρ0(Q). So for nQ

an odd number, we may suppose, without loss of generality that Q is of form:

Q =


cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .

In this case the length-minimizing curve γ0 is a geodesic segment. However if
nQ is an even number, we follow the construction below.

General construction for nQ ≥ 1 (for both even and odd cases):
Consider γ0 the length-minimizing CSC curve in Bρ̃(�p1q1q2p2). We define
the auxiliary curves:

γ0,l(s) = expγ(s)

(
ρ̃nγ0(s)

)
and γ0,r(s) = expγ(s)

(
− ρ̃nγ0(s)

)
.

In the above equation, exp denotes the exponential map exp : TS2 → S2,
(p, v) 7→ expp(v). Consider the points p̃1, p̃2, q̃1, q̃2 ∈ S2:

p̃1 = (cos ρ̃, 0, sin ρ̃), p̃2 = (cos ρ̃, 0,− sin ρ̃),
q̃1 = Q(cos ρ̃, 0, sin ρ̃) and q̃2 = Q(cos ρ̃, 0,− sin ρ̃).

We will show two useful lemmas below:

Lemma 3.5. Let ρ1 = min{d(p̃1, q̃1), d(p̃1, q̃2), d(p̃2, q̃1), d(p̃2, q̃2)}. If ρ1 > 4ρ̃,
then for any ρ ∈ (2ρ̃, ρ1 − 2ρ̃), i ∈ {1, 2} and j ∈ {l, r}∗ there is a unique
number sρ,i,j ∈ [0, 2π) such that:

1. ζp̃i,ρ(sρ,i,j) ∈ img(γ0,j). We denote this intersection point as aρ,i,j.

2. {ζ ′p̃i,ρ(sρ,i,j), γ
′
0,j(s)} forms a positive basis of Taρ,i,jS2.

Proof. Suppose, without loss of generality, that the parametrization domains
for the curves is [0, 1]. We denote by γ0 the length-minimizing curve in
L̄ρ̃(I,Q), which is of the type CSC.

For the existence, note that γ0,l(0) = p̃1, γ0,l(1) = q̃1, γ0,r(0) = p̃2

and γ0,r(1) = q̃2, so by continuity, the functions d1,l(s) := d(γ0,l(s), p̃1),
d2,l(s) := d(γ0,l(s), p̃2), d1,r(s) := d(γ0,r(s), q̃1) and d2,r(s) := d(γ0,r(s), q̃2)

∗l and r in {l, r} denote letters.
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p̃1

p̃2 ζp̃1,ρ(s)

ζ2
p̃2,ρ(s)

ζp̃1,ρ

ζp̃2,ρ

p̃1

p̃2

ζp̃1,ρ(s)

ζ1
p̃2,ρ(s)

ζp̃1,ρ

ζp̃2,ρ

Figure 3.1: These are two reparametrizations mentioned in Lemma 3.6. The
left-hand side image represents the reparametrization ζ1

p̃2,ρ and the right-hand
side represents ζ2

p̃2,ρ.

always have the interval [2ρ̃, ρ1] in its image. Also, these functions are strictly
increasing for values of s satisfying 2ρ̃ < di,j(s) < ρ1 for all i = 1, 2 and j = l, r.
This implies the uniqueness. �

Lemma 3.6. For every ρ ∈ (2ρ̃, π − 2ρ̃), let ζp̃1,ρ, ζp̃2,ρ :
[
−π

2 ,
π
2

]
→ S2 be the

circles defined in Equation (3-1) by taking

u1(p̃1) = u1(p̃2) = (0, 1, 0),

u2(p̃1) = (− sin ρ̃, 0, cos ρ̃) and u2(p̃2) = (sin ρ̃, 0, cos ρ̃).

Then there exist exactly 2 distinct reparametrizations of ζp̃2,ρ, which we denote
ζ1
p̃2,ρ and ζ2

p̃2,ρ :
[
−π

2 ,
π
2

]
→ S2 (see Figure 3.1), such that:

d
(
ζp̃1,ρ(s), ζ ip̃2,ρ(s)

)
= 2ρ̃ for all s ∈

[
−π2 ,

π

2

]
and i = 1, 2.

Moreover,

1. For ζ1
p̃2,ρ there are s1

1, s
2
2 ∈

[
−π

2 ,
π
2

]
, such that s1

1 < s1
2, ζp̃1,ρ(s1

1) ∈
img(ζp̃2,ρ) and ζ1

p̃2,ρ(s1
2) ∈ img(ζp̃1,ρ).

2. In the same way, for ζ2
p̃2,ρ there are s2

1, s
2
2 ∈

[
−π

2 ,
π
2

]
, such that s2

2 < s2
1,

ζ2
p̃2,ρ(s2

2) ∈ img(ζp̃1,ρ) and ζp̃1,ρ(s2
1) ∈ img(ζp̃2,ρ).

Proof. For each point of type a = ζp̃1,ρ(t) with t ∈
(
−π

2 ,
π
2

)
, we draw a circle of

radius 2ρ̃ centered at a (measured in S2). We denote this circle by ζa,2ρ̃. Since
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the points p̃1, p̃2, a do not lie in the same geodesic, by triangular inequality, we
have d(a, p̃2) < d(a, p̃1) + d(p̃1, p̃2) = ρ + 2ρ̃. So the circle ζa,2ρ̃ intercepts ζp̃2,ρ

at 2 distinct points, namely:

a1 = ζp̃2,ρ(s1(t)) and a2 = ζp̃2,ρ(s2(t)), with s1(t) < s2(t).

Since t ∈
(
−π

2 ,
π
2

)
is arbitrary, we define the following reparametrizations:

ζ1
p̃2,ρ(s) = ζp̃2,ρ(s1(t)) and ζ2

p̃2,ρ(s) = ζp̃2,ρ(s2(t)) for t ∈
(
−π2 ,

π

2

)
.

At the extremities t = ±π
2 , for i = 1, 2, we set:

ζ ip̃2,ρ

(
−π2

)
=
(

cos(ρ+ ρ̃), 0,− sin(ρ+ ρ̃)
)
,

ζ ip̃2,ρ

(
π

2

)
=
(

cos(ρ+ ρ̃), 0, sin(ρ+ ρ̃)
)
.

By construction, it is up to a direct computation to verify that the above
reparametrizations satisfy the properties of the lemma. �

3.2
Definition of curves in the image of F

To define F we need to construct certain curves which will be in the image
of F . These curves are made from concatenation of several arcs of circles. Here
we describe the curves li and ri which denote the positions of the centers of
these circles (see Figure 3.2 below). We use Lemmas 3.5 and 3.6 to define:

l1(s) :=
 ζ1

p̃2,2ρ̃(s− s2ρ̃,2,r), if s ≤ 0.
p̃1, if s ≥ 0.

r1(s) :=
 p̃2, if s ≤ 0.
ζp̃1,2ρ̃(s− s2ρ̃,1,r), if s ≥ 0.

In the definition above, the number s2ρ̃,1,r is given by Lemma 3.5 and the
curve ζ1

p̃2,2ρ̃ comes from Lemma 3.6. It follows from the definitions that
d (l1(s), r1(s)) = 2ρ̃ for all s ∈ R.

Next, for each even number 2 ≤ i ≤ nQ , we use Lemmas 3.5 and 3.6 to
define:

li(s) := ζp̃1,2iρ̃(s− s2iρ̃,1,l).

ri(s) :=
 ζ1

p̃2,2iρ̃(s− s2iρ̃,2,l), s ∈ ⋃n∈Z J2n.

ζ2
p̃2,2iρ̃(s− s2iρ̃,2,l), s ∈ ⋃n∈Z J2n+1.
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Here Jn =
[
nπ − π

2 + s2iρ̃,2,l, nπ + π
2 + s2iρ̃,2,l

]
. Finally, for 3 ≤ i ≤ nQ an odd

number, we use Lemmas 3.5 and 3.6 to define:

li(s) :=


ζ2
p̃2,2iρ̃(s− s2jρ̃,2,r) s ∈ J0

ζ1
p̃2,2iρ̃(s− s2iρ̃,2,r) s ∈ ⋃n∈Z∗ J2n

ζ2
p̃2,2iρ̃(s− s2iρ̃,2,r) s ∈ ⋃n∈Z J2n+1

ri(s) := ζp̃1,2iρ̃(s− s2iρ̃,1,r).

Here Jn =
[
nπ − π

2 + s2iρ̃,2,r, nπ + π
2 + s2iρ̃,2,r

]
. Again, from Lemma 3.6, the

spherical distance d (li(s), ri(s)) = 2ρ̃ for all s ∈ R and i ∈ N. This means
that if we draw a circle with curvature +κ0 centered at li(s) and another circle
with curvature −κ0 centered at ri(s), these circles touch each other at a unique
point with common tangent vector, we denote the common Frenet frame at
that point by Qi(s), with s ∈ R. Thus we have defined a family of continuous
applications:

Qi : R→ SO3(R), with i ∈ {1, 2, . . . , nQ}.

We also define Q0,QnQ+1 : R→ SO3(R) with Q0 ≡ I and QnQ+1 ≡ Q, where
Q is the matrix in the definition of Lρ0(Q).

Also note that the following relation is an immediate consequence of the
definition.

Proposition 3.7. For each i ∈ {0, 1, 2, . . . , nQ}, the following inequalities are
satisfied

d
(
li(t1), ri+1(t2)

)
≥ 2ρ̃ and d

(
ri(t1), li+1(t2)

)
≥ 2ρ̃ ∀t1, t2 ∈ R.

Moreover, for each t1 ∈ R and k ∈ Z, there exist unique t2 and t3 ∈[
2kπ, 2(k+ 1)π

)
such that d

(
li(t1), ri+1(t2)

)
= 2ρ̃ and d

(
ri(t1), li+1(t3)

)
= 2ρ̃.

3.3
Definition of the first part of F

Summarizing this subsection, we shall define a map F̄ : RnQ → Lρ0(Q).
For each (x1, x2, . . . , xnQ

) ∈ RnQ , we associate it to nQ + 1 curves in the
following spaces, respectively,

Lρ0

(
Q0,Q1(x1)

)
,Lρ0

(
Q1(x1),Q2(x2)

)
, . . . ,Lρ0

(
QnQ

(xnQ
),QnQ+1

)
.
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l1(0) = p̃1

r1(0) = p̃2

q̃1

q̃2

ζp̃2,4ρ̃

ζp̃1,4ρ̃

ζp̃1,2ρ̃

ζp̃2,2ρ̃

ζp̃2,6ρ̃

ζp̃1,6ρ̃

ζp̃2,8ρ̃

ζp̃1,8ρ̃

l2(0)

r2(0)

l3(0)

r3(0)

l4(0)

r4(0)

Figure 3.2: Illustration of application F̄ on S2. Each red circle represents the
trajectory of the center of a circle osculating the curve from the right and
each blue circle represents the trajectory of the center of a circle osculating
the curve from the left. The ten small dashed circles are control circles on left
in blue and on right in red. The two big dashed circles are ζp̃2,10ρ̃ (in blue) and
ζp̃1,10ρ̃ (in red) which cannot be used as trajectory for control circles because
they are too close to q̃2 and q̃1 respectively. So, in this picture the index is
nQ = 4, and there are four pairs of control circles which we can freely move
along the trajectories li and ri described without interfering with each other.
The crucial point is that the distance from each blue circle to the red circle
with different radius is greater or equal to 2ρ̃.
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Then we concatenate these nQ + 1 curves to obtain a curve in Lρ0(I,Q) that
will be defined as F̄ (x1, x2, . . . , xnQ

).
For a ∈ S2, r ∈ (0, π), we denote ζa,r,	 to be the circle of radius r centered

at a:
ζa,r,	(s) = cos r · a+ sin r

(
cos s · u1(a)− sin s · u2(a)

)
. (3-4)

Analogously, we denote ζp̃1,r,� as:

ζa,r,�(s) = cos r · a+ sin r
(

cos s · u1(a) + sin s · u2(a)
)
. (3-5)

Given k ∈ N, we say that a curve traverses the circle ζa,r,	 k times, if this
curve is one of reparametrizations of ζa,r,	(s) with the domain s ∈ [0, 2kπ]. We
will use the same term for ζa,r,�. Exclusively in this subsection, we will also
use the following notation, for each M ∈ SO3(R):

p̃1(M) = M(cos ρ̃, 0, sin ρ̃) and p̃2(M) = M(cos ρ̃, 0,− sin ρ̃).

Lemma 3.8. For each i ∈ {0, 1, 2, . . . , nQ} consider (xi, xi+1) and Qi,Qi+1 ∈
SO3(R) as defined above. There exists a unique continuous choice, depending
on (xi, xi+1), of CSC curve in the space Lρ̃(Qi,Qi+1), denoted by γ0,ρ̃(Qi,Qi+1)
satisfying the following property. If (xi, xi+1) is such that

d
(
p̃1(Qi(xi)), p̃2(Qi+1(xi+1))

)
= 2ρ̃ or d

(
p̃2(Qi(xi)), p̃1(Qi+1(xi+1))

)
= 2ρ̃,

then γ0,ρ̃(Qi,Qi+1) is of type CC. That is, γ0,ρ̃(Qi,Qi+1) is concatenation of
two arcs of circles of radius ρ̃.

Proof. From Theorem 3.2 and Proposition 3.7 for ρ = ρ̃, P = Qi and
Q = Qi+1, the length-minimizing curve is of type CSC. The continuity can be
proven by using the same argument as J. Ayala and H. Rubinstein’s argument
in [8] for the plane case. The idea is to define a region Ω that depends
continuously on Qi and Qi+1. Qi and Qi+1 satisfy the condition D in their
article. The length-minimizing curve in L̄ρ̃(Qi,Qi+1) can be verified to lie in
Ω, is unique and continuous.

This argument is similar to the demonstration of Corollary 3.4. �

For each i ∈ {0, 1, 2, . . . , nQ} we define a curve αi(x) ∈
Lρ0

(
Qi(xi),Qi+1(xi+1)

)
by following the construction below

Lemma 3.9 (Definition of αi’s and its properties). For each i ∈ {0, 1, . . . , nQ}
and each (x1, x2, . . . , xnQ

) ∈ RnQ, there exist real functions x̃1
i+1, x̃

2
i+1 : R→ R,

continuous functions s0, s1, s2 : R2 × {0, 1, . . . , nQ} → R and a curve αi
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satisfying the following properties. When i is even ∗:

If xi+1 ≤ x̃1
i+1, αi(s) =


ζp̃2(Qi),ρ̃,�(s), s ∈ [0, s0].
ζp̃2,(2i−1)ρ̃,�(s), s ∈ [s0, s1].
ζp̃1(Qi+1),ρ̃,	(s), s ∈ [s1, s2].

If x̃1
i+1 ≤ xi+1 ≤ x̃2

i+1, αi = γ0,ρ̃(Qi,Qi+1).

If xi+1 ≥ x̃2
i+1, αi(s) =


ζp̃1(Qi),ρ̃,	(s), s ∈ [0, s0].
ζp̃1,(2i−1)ρ̃,	(s), s ∈ [s0, s1].
ζp̃2(Qi+1),ρ̃,�(s), s ∈ [s1, s2].

When i is odd:

If xi+1 ≤ x̃1
i+1, αi(s) =


ζp̃2(Qi),ρ̃,�(s), s ∈ [0, s0].
ζp̃1,(2i−1)ρ̃,�(s), s ∈ [s0, s1].
ζp̃1(Qi+1),ρ̃,	(s), s ∈ [s1, s2].

If x̃1
i+1 ≤ xi+1 ≤ x̃2

i+1, αi = γ0,ρ̃(Qi,Qi+1).

If xi+1 ≥ x̃2
i+1. αi(s) =


ζp̃1(Qi),ρ̃,	(s), s ∈ [0, s0].
ζp̃2,(2i−1)ρ̃,	(s), s ∈ [s0, s1].
ζp̃2(Qi+1),ρ̃,�(s), s ∈ [s1, s2].

Moreover, the parameter s in each case above is chosen such that αi(0) = Qi·e1,
αi(s2) = Qi+1·e1. αi(s0) and αi(s1) are well defined and continuous with respect
to the pair (xi, xi+1). In other words, the following function is continuous:

Fi+1 : (xi, xi+1) ∈ R2 7→ αi ∈ Lρ0

(
Qi(xi),Qi+1(xi+1)

)
.

Moreover, during the proof of the lemma above, we will also verify some
of properties listed on the construction below.

Construction 1 (A more detailed description of αi’s). For each i ∈
{0, 1, . . . , nQ}, the application Fi+1 defined in Lemma 3.9 satisfies the following
relation:

• Length
(
Fi+1(xi+1 + 2kπ)

)
= Length

(
Fi+1(xi+1)

)
+ 2kπ sin

(
(2i + 1)ρ̃

)
for all k ∈ N, xi+1 ∈

[
x̃1
i+1, x̃

1
i+1 + 2π

)
.

• Length
(
Fi+1(xi+1 − 2kπ)

)
= Length

(
Fi+1(xi+1)

)
+ 2kπ sin

(
(2i + 1)ρ̃

)
for all k ∈ N, xi+1 ∈

(
x̃2
i+1 − 2π, x̃2

i+1

]
.

Furthermore, we describe αi with more details. In the case that i is even:
∗For simplicity, we denote sj(xi, xi+1, i) = sj for j = 1, 2, 3, x̃j

i+1(xi) = x̃j
i+1 for i = 1, 2,

Qi(xi) = Qi and Qi+1(xi+1) = Qi+1.
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1. For xi+1 ≤ x̃2
i+1, α is concatenation of the following 3 curves:

(a) Shortest arc on ζp̃2(Qi),ρ̃,� that travels from Qi · e1 to the unique
point a1 in ζp̃2(Qi),ρ̃ ∩ ζp̃2,(2i+1)ρ̃.

(b) Arc on ζp̃2,(2i−1)ρ̃,� that travels from a1 to the unique point b1 in
ζp̃2,(2i+1)ρ̃ ∩ ζp̃1(Qi),ρ̃. This arc is concatenation of shortest arc from
a1 to b1 and circle that traverses ζp̃2,(2i+1)ρ̃,� k times, where k ∈ N
satisfy (xi+1 + 2kπ) ∈

(
x̃2
i+1 − 2π, x̃2

i+1

]
.

(c) Shortest arc on ζp̃1(Qi+1),ρ̃,	 that travels from b1 to Qi+1 · e1.

2. For x̃2
i+1 ≤ xi+1 ≤ x̃1

i+1, α is a type CSC curve in L̄ρ̃
(
Qi(xi),Qi+1(xi+1)

)
.

3. For xi+1 ≥ x̃1
i+1, α is concatenation of the following 3 curves:

(a) Shortest arc on ζp̃1(Qi),ρ̃,	 that travels from Qi · e1 to the unique
point a1 in ζp̃1(Qi),ρ̃ ∩ ζp̃1,(2i+1)ρ̃.

(b) Arc on ζp̃1,(2i+1)ρ̃,	 that travels from a1 to the unique point b1 in
ζp̃1,(2i+1)ρ̃ ∩ ζp̃2(Qi+1),ρ̃. This arc is concatenation of shortest arc from
a1 to b1 and circle that traverses ζp̃1,(2i+1)ρ̃,	 k times, where k ∈ N
satisfy (xi+1 − 2kπ) ∈

[
x̃1
i+1, x̃

1
i+1 + 2π

)
.

(c) Shortest arc on ζp̃1(Qi+1),ρ̃,� that travels from b1 to Qi+1 · e1.

In the case that i is odd:

1. For xi+1 ≤ x̃2
i+1, α is concatenation of the following 3 curves:

(a) Shortest arc on ζp̃2(Qi),ρ̃,� that travels from Qi · e1 to the unique
point a1 in ζp̃2(Qi),ρ̃ ∩ ζp̃1,(2i+1)ρ̃.

(b) Arc on ζp̃1,(2i+1)ρ̃,� that travels from a1 to the unique point b1 in
ζp̃1,(2i+1)ρ̃ ∩ ζp̃1(Qi+1),ρ̃. This arc is concatenation of shortest arc from
a1 to b1 and circle that traverses ζp̃1,(2i+1)ρ̃,� k times, where k ∈ N
satisfy (xi+1 + 2kπ) ∈

(
x̃2
i+1 − 2π, x̃2

i+1

]
.

(c) Shortest arc on ζp̃1(Qi+1),ρ̃,	 that travels from b1 to Qi+1 · e1.

2. For x̃2
i+1 ≤ xi+1 ≤ x̃1

i+1, α is a type CSC curve in L̄ρ̃
(
Qi(xi),Qi+1(xi+1)

)
.

3. For xi+1 ≥ x̃1
i+1, α is concatenation of the following 3 curves:

(a) Shortest arc on ζp̃1(Qi),ρ̃,	 that travels from Qi · e1 to the unique
point a1 in ζp̃1(Qi),ρ̃ ∩ ζp̃2,(2i+1)ρ̃.
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Figure 3.3: These are examples of curves by map F̄ for the case nQ = 4. In each
figure, the thick dark curve is F̄ (x), the marked points on curves are endpoints
of αi, i ∈ {0, 1, 2, 3, 4}, the blue and red small dashed circles represent all 6
pairs of control circles.

(b) Arc on ζp̃2,(2i+1)ρ̃,	 that travels from a1 to the unique point b1 in
ζp̃2,(2i+1)ρ̃ ∩ ζp̃2(Qi+1),ρ̃. This arc is concatenation of shortest arc from
a1 to b1 and circle that traverses ζp̃2,(2i+1)ρ̃,	 k times, where k ∈ N
satisfy (xi+1 − 2kπ) ∈

[
x̃1
i+1, x̃

1
i+1 + 2π

)
.

(c) Shortest arc on ζp̃1(Qi+1),ρ̃,� that travels from b1 to Qi+1 · e1.

Proof.[Lemma 3.9 and assertions on Construction 1] We shall prove that such
Fi+1, x̃1

i+1 and x̃2
i+1 exists by explicitly constructing them based on descriptions

given in Construction 1. If i = 0, we set x̃1
1 = x̃2

1 = 0, and

α1(s) = ζp̃1,ρ̃,	(s), for s ∈ [0, s0], if 0 ≤ x1 < 2π.
α1(s) = ζp̃2,ρ̃,�(s), for s ∈ [0, s0], if −2π < x1 ≤ 0.

In the equations above, s0 is the continuous real function such that for x1 ≥ 0,
ζp̃1,ρ̃,	(s0) = Q1(x1) ·e1, for x1 ≤ 0, ζp̃1,ρ̃,�(s0) = Q1(x1) ·e1 and s0(0) = 0. Also
we put s1 ≡ s2 ≡ s0, so the second and the third segment of α1 on definition
listed above are degenerate. For each integer k ≥ 1, we also set

α1(s) = ζp̃1,ρ̃,	(s), for s ∈ [0, 2kπ + s0], if 2kπ ≤ x1 < 2(k + 1)π.
α1(s) = ζp̃2,ρ̃,�(s), for s ∈ [0, 2kπ + s0], if −2(k + 1)π < x1 ≤ −2kπ.

For each i ≥ 1, we use an inductive process, set:

x̃2
i+1 = min

{
t ≥ xi; d

(
li(t), ri+1(t)

)
= 2ρ̃

}
,

x̃1
i+1 = max

{
t ≤ xi; d

(
ri(t), li+1(t)

)
= 2ρ̃

}
.
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Thus in particular, x̃1
i+1 ≤ xi ≤ x̃2

i+1. We define αi as in the statement of
Proposition 1. To verify that the definition is valid, we separate the argument
into two cases.

Even Case with i ≥ 1: For each even integer i ≥ 2, from the definition, we
deduce:

d(p̃2, p̃2(Qi)) = d(p̃1, p̃1(Qi)) = 2iρ̃

and
d(p̃2, p̃1(Qi+1)) = d(p̃1, p̃2(Qi+1)) = (2i+ 2)ρ̃.

So:

1. The following conclusion is obtained for the pair of curves
(ζp̃2(Qi),ρ̃,�, ζp̃2,(2i+1)ρ̃,�). The intersection ζp̃2(Qi),ρ̃ ∩ ζp̃1,(2i+1),ρ̃ consists
of exactly one point, namely a1. Furthermore, the tangent vector of
ζp̃2(Qi),ρ̃,� coincides with the tangent vector of ζp̃2,(2i+1)ρ̃,� at a1.

2. The analogous conclusion is obtained for the following pairs of oriented
circles

(a) (ζp̃1(Qi),ρ̃,	, ζp̃1,(2i+1)ρ̃,	),

(b) (ζp̃1(Qi+1),ρ̃,	, ζp̃2,(2i+1)ρ̃,�),

(c) (ζp̃1(Qi+1),ρ̃,�, ζp̃1,(2i+1)ρ̃,	).

This makes the concatenation of segments in described on Items (1) and (3) of
Construction 1 possible, unique and from the concatenation we obtain indeed
a C1 curve in Lρ0(Qi,Qi+1).

For the proof continuity of Fi+1 at x̃1
i+1, note that since a1 = b1,

the middle segment ζa,(2i+1)ρ̃,c, a ∈ {p̃1, p̃2}, c ∈ {�,	} of concatenation
in Item (1)(b) Lρ̃

(
Qi(x̃1

i+1),Qi+1(x̃2
i+1)

)
is degenerate. So the curve formed

by concatenation of arcs constructed in Item (1) coincides with the length-
minimizing curve in L̄ρ̃(Qi,Qi+1). For continuity at x̃2

i+1, the argument is
analogous.

Odd Case with i ≥ 1: For each odd integer i ≥ 1, the procedure is the same
as the Even Case. We note that:

d(p̃1, p̃2(Qi)) = d(p̃2, p̃1(Qi)) = 2iρ̃

and
d(p̃1, p̃1(Qi+1)) = d(p̃2, p̃2(Qi+1)) = (2i+ 2)ρ̃.
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Using the same arguments as in Even Case for pairs:

(ζp̃2(Qi),ρ̃,�, ζp̃1,(2i+1)ρ̃,�), (ζp̃1(Qi),ρ̃,	, ζp̃2,(2i+1)ρ̃,	),
(ζp̃1(Qi+1),ρ̃,	, ζp̃1,(2i+1)ρ̃,�) and (ζp̃1(Qi+1),ρ̃,�, ζp̃2,(2i+1)ρ̃,	),

we obtain that the concatenation of segments in Items 1 and 3 is possible and
is indeed a C1 curve in Lρ0(Qi,Qi+1). The justifications for the continuity at
x̃1
i+1 and x̃2

i+1 are also the same as in Even Case.
This proves that F is well defined and continuous. The relation about

the length in Construction 1 is an immediate consequence of its description. �
So by Lemma 3.9, for each vector (x1, x2, . . . , xnQ

) we associate it to
nQ + 1 curves namely:

αi ∈ L̄ρ̃(Qi,Qi+1) ⊂ Lρ0(Qi,Qi+1), i = 0, 1, . . . , nQ.

Since the final frame of each αi coincides with the initial frame of αi+1, the
concatenation of all αi results into a curve in Lρ0(I,Q). We define this curve
as the image of (x1, x2, . . . , xnQ

) under F̄ :

F̄ (x1, x2, . . . , xnQ
) =

nQ⊕
i=0

αi.

Now we have defined a continuous application F̄ : RnQ → Lρ0(Q), and
we will modify it into our desired F : SnQ → Lρ0(Q) in the next subsection.

Remark 3.10. In general, the length-minimizing CSC curve γ0 does not lie in
img(F̄ ). Only in very specific cases we have F̄ (0, 0, . . . , 0) = γ0. This happens
in the case in which

Q =


cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .
This case is shown in Figure 3.2.

3.4
Adding loops

First we define the concept of geodesic loops added to a given curve
γ ∈ L̄ρ(I,Q).

Definition 3.11. Consider the space I(I,Q). Given a curve γ ∈ I(I,Q),
parametrized so that γ : [0, 1] → S2 and t0 ∈ (0, 1). Let n ≥ 1 be an integer.
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We denote by γ[t0#(2n)] the following curve:

γ[t0#(2n)](t) =



γ(t) t ∈ [0, t0 − 2ε]
γ(t0 − 2ε+ 2(t− t0 + 2ε)) t ∈ [t0 − 2ε, t0 − ε]
Fγ(t0)ζ

(
2nπ(t−t0+ε)

ε

)
t ∈ [t0 − ε, t0 + ε]

γ(t0 + 2(t− t0 − ε)) t ∈ [t0 + ε, t0 + 2ε]
γ(t) t ∈ [t0 + 2ε, 1]

In the equation above, ε is taken sufficiently small so that (t0 − 2ε, t0 + 2ε) ⊂
[0, 1]. The curve ζ is given by (cos(t), sin(t), 0). ∗

For t0 = 0 and k ≥ 1 an integer, we define:

γ[0#k](t) =


ζ
(

2kπt
ε

)
t ∈ [0, ε]

γ(2(t− ε)) t ∈ [ε, 2ε]
γ(t) t ∈ [2ε, 1].

For t0 = 1 and k ≥ 1 an integer, we define:

γ[1#k](t) =


γ(t) t ∈ [0, 1− 2ε]
γ(1− 2ε+ 2(t− 1 + 2ε)) t ∈ [1− 2ε, 1− ε]
ζ
(

2kπ(t−(1−ε))
ε

)
t ∈ [1− ε, 1] .

Figure 3.4: For a curve γ ∈ L̄ρ(I,Q), if the curvature is small on a sufficiently
long piece of γ, then γ is homotopic to γ[t0#2] in γ ∈ L̄ρ(I,Q). Under this
deformation, the curve remains unchanged outside of the dashed red circle
which has radius 8ρ. In I(I,Q), since there is no restriction on the curvature,
this deformation can be done on an arbitrary small segment of γ.

Analogously, for integers n,m ≥ 1, we may define γ[t0#2n;t1#2m] as the
curve γ with 2n loops attached at γ(t0) and 2m loops attached at γ(t1).

Definition 3.12. Consider the space I(I,Q). Given a curve γ ∈ I(I,Q)
parametrized with constant speed γ : [0, 1] → S2. Given an integer n ≥ 1, we
denote by γ[#2n] the following curve:

γ[#2n] = γ[t0#1;t1#2;...;tn#1],

∗Two such curves with loops added by different choices of ε satisfying (t0−2ε, t0 + 2ε) ⊂
[0, 1] are in fact the same curve via the equivalence ∼ defined on page 17.
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where tk = k
n
for k ∈ {0, 1, . . . , n}.

For n sufficiently large, we define γ[[(2n)] by modifying the curve γ[#(2n)].
Assume that the same ε > 0 is used for each loop so that for all t ∈ [0, 1] such
that t− tj ≤ ε we have:

γ[#(2n)](t) = Fγ(tj)ζ
(
t− tj
ε

)
.

For each each j ∈ {0, 1, . . . , n}, let

tj,0 = tj + 7
8ε, tj, 1

2
= tj + tj+1

2 and tj,1 = tj+1 −
7
8ε.

We also consider the unique length-minimizing CSC curve βj in
L̄ρ̃(Fγ(tj,0),Fγ(tj,1)). For convenience, parametrize its domain as βj :
[tj,0, tj,1]→ S2.

Definition 3.13. Given a curve γ ∈ I(I,Q) and ρ̃ ∈
(
0, π4

)
, take an m

sufficiently large. For all n ≥ m, we define γ[[(2n)] by:

γ[[(2n)](t) =
 γ[#(2n)](t), for t ∈ [0, 1] \ ⋃nj=0(tj,0, tj,1),
βj(t) for t ∈ [tj,0, tj,1].

(3-6)

Below is Lemma 6.1 of [22], the proof is based on Figure 3.4.

Lemma 3.14. Let K be a compact set, Q ∈ SO3(R) and n ≥ 1 an integer.
Let f : K → I(I,Q) and t0 : K → (0, 1) be continuous functions. Then f and
f [t0#2n] are homotopic in I(I,Q).

Now we introduce a simple technical lemma:

Lemma 3.15. Let k ∈ N. If x = (x1, x2, . . . , xk) ∈ Rk, is such that:

max
{
|xi|; i ∈ {1, 2, . . . , k}

}
≥ 2

⌈
k

2

⌉
π,

then at least one of the following items is satisfied.

1. |x1| ≥ 2π.

2. There exists an i ∈ {1, 2, . . . , k − 1} such that |xi − xi+1| ≥ 2π.

3. |xk| ≥ 2π.

Proof. For k = 1, 2, it is obvious. Now suppose that k ≥ 3. Letm ∈ {1, 2, . . . , k}
satisfy |xm| = max

{
|xi|; i ∈ {1, 2, . . . , k}

}
. We first consider the case that
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m ≤
⌈
k
2

⌉
. By triangular inequality:

max{|xi|} ≤ |x1|+
d k2e−1∑
i=1
|xi − xi+1|.

Note that the left-hand side is greater or equal to 2
⌈
k
2

⌉
π, and the right-

hand side has exactly
⌈
k
2

⌉
non-negative terms. This implies |x1| ≥ 2π or

|xi − xi+1| ≥ 2π for some i ∈
{

1, 2, . . . ,
⌈
k
2

⌉
− 1

}
.

The case m ≥
⌈
k
2

⌉
is analogous. This concludes that |xk| ≥ 2π or

|xi − xi+1| for some i ∈
{⌊

k
2

⌋
+ 1,

⌊
k
2

⌋
+ 2, . . . , k − 1

}
. �

In the previous subsection,

α = F̄ (x) =
nQ⊕
i=0

αi.

Then if x is such that max{|xi|} ≥ 2
⌈
nQ

2

⌉
, applying Lemma 3.15 (with

k = nQ), we obtain one of the following cases:

1. If |x1| ≥ 2π, then α0 has a segment of constant curvature with radius
equal to ρ̃ and with length of that segment greater than π sin ρ̃.

2. If |xi − xi+1| ≥ 2π, then αi has a segment of constant curvature with
radius equal to (2i+ 1)ρ̃ and length greater than π sin ((2i+ 1)ρ̃).

3. If |xnQ
| ≥ 2π, then αnQ

has a segment of constant curvature with radius
equal to (2k + 1)ρ̃ and length greater than π sin ((2nQ + 1)ρ̃).

This follows directly from Construction 1. For each of 3 cases above
we will add a huge number of small loops on that part of the curve without
changing the other parts of the curve. Now we present a construction to explain
how these loops are added:

Construction 2. Given a real number r ∈ [ρ0, π − ρ0], consider an arc of
circle of radius r with angle θ ≥ π. If r ∈

[
ρ̃, π2

]
, we add loops by following the

process described in Figure 3.5.
Analogously, if r ∈

(
π
2 , π − ρ̃

]
, we just instead of pulling the curve to

right, we pull the curve to the left as if it is a mirrored version of previous
case.

Remark 3.16. The construction above is just one of many choices that will
satisfy our future needs, one may come to several other ways to add loops that
will also work. After adding enough loops, in the next step for each curve, we
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Figure 3.5: This figure describes how loops were added. Dashed circles have
radius ρ̃. In the image of left side, start with an arc of circle of radius greater or
equal to ρ̃. Pull the curve by using an rotation in sphere so that the curve will
have sufficiently long arcs as in the image of center left. Then, in the center
image, small loops were added on long arcs by the deformation of Figure 3.4.
Finally, the curve is deformed back to the original position except for two loops
that we added. Additionally, we enlarge the radius these two loops transforming
them into great circles.

F̃ (U)

Adding Loops

Spreading Loops

Homotopy into a point

Figure 3.6: General behavior of map F : SnQ → Lρ0(Q).

spread the loops along the curve. So each curve would look like a phone wire,
and finally we construct a homotopy of these curves into a single curve.

The following results are adapted directly from [22] of N. C. Saldanha.
The following result corresponds to the Lemma 6.2 in this article.

Lemma 3.17. Let K be a compact set, Q ∈ SO3(R) and n ≥ 1 a integer. Let
t0 : K → (0, 1) and f : K → Lρ0(Q) be continuous functions. Then f [t0#2n]

and f [t0#2(n+1)] are homotopic, i.e., there exists H : [0, 1]×K → Lρ0(Q) with
H(0, p) = f [t0#2n](p), H(1, p) = f [t0#2(n+1)](p).

Proof. For n = 1, we use the deformation described in Figure 3.5 on one of loops
on f [t0#2]. This defines a homotopy between f [t0#2] and f [t0#4]. For general case,
consider g = (f [t0#2(n−1)]). By the previous case, g[t0#2] is homotopic to g[t0#4].
This implies that f [t0#2n] and f [t0#2(n+1)] are homotopic. �

The following lemma is a direct adaptation of Lemma 6.3 in [22].
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Lemma 3.18. Let K be a compact set, f : K → Lρ0(Q) and t0 : K → (0, 1)
continuous maps. Then, for a sufficiently large n, the function f [[(2n)] is
homotopic to f [t0#(2n)], i.e., there exists an application H : [0, 1]×K → Lρ0(Q)
such that H(0, ·) = f [[(2n)] and H(1, ·) = f [t0#(2n)].

Proof. Notice that the functions f [t0#(2n)] and f [#(2n)] are homotopic: the
homotopy consists of merely rolling loops along the curve. More precisely,
for t̃j(s) = sj

n
+ (1− s)t0, this homotopy is defined by

H1(s, p) = (f(p))[t̃0(s)#1;t̃1(s)#2;...;t̃n−1(s)#2;t̃n(s)#1].

We next verify that, for sufficiently large n, the functions f [#(2n)] and
f [[(2n)] are homotopic. Let Q̃j(p) = (Ff(p)(tj, 1

2
))−1 ∈ SO3(R), where tj,0, tj, 1

2
, tj,1

are as in the construction of f [[(2n)]. We have

Q̃j(p)F(f(p))[[(2n)](tj,0) = Q̃j(p)F(f(p))[#(2n)](tj,0)
Q̃j(p)F(f(p))[[(2n)](tj,1) = Q̃j(p)F(f(p))[#(2n)](tj,1)

Thus, for sufficiently large n, the arcs

Q̃j(p)(f(p))[[(2n)], Q̃j(p)(f(p))[#(2n)] : [tj,0, tj,1]→ S2

are graphs, in the sense that the first coordinate x : [tj,0, tj,1] → [x−, x+] is an
increasing diffeomorphism (with x± ≈ ±1

2), and y and z can be considered
functions of x. Since the space of increasing diffeomorphisms of an interval
is contractible, we may construct a homotopy from f [#(2n)] to a suitable
reparametrization f1 of f [#(2n)] in each [tj,0, tj,1] for which the function x above
is the same as for f [[(2n)]. We may then join f1 and f [[(2n)] by performing a
convex combination followed by projection to S2. We observe that if the curves
f(p) are in Lρ0(Q), then both constructions above remain in Lρ0(Q). �

The following lemma, which is a direct adaptation of Lemma 6.6 in [22],
guarantees the continuity of the choice on Step 1:

Lemma 3.19. Let Q ∈ SO3(R). Let K be a compact manifold and f :
K → Lρ0(Q) a continuous map. Assume that the following three properties
are satisfied:

1. t0 ∈ (0, 1) and t1, t2, . . . , tn : K → (0, 1) are continuous functions with
t0 < t1 < · · · < tn;

2. K = ⋃
1≤i≤n Ui, where Ui ⊂ K are open sets;
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3. there exist continuous functions gi : Ui → Lρ0(Q) such that, for all
p ∈ Ui, we have f(p) =

(
gi(p)

)[ti(p)#2]
.

Then there exists H : [0, 1] × K → Lρ0(Q) with H(0, p) = f(p), H(1, p) =(
f(p)

)[t0#2]
.

Proof. We proceed by induction on n. For n = 1 we have U1 = K and therefore
f = g

[t1#2]
1 . The conclusion follows from the Lemma 3.17. Assume now that

n > 1. Let W ⊂ Un be an open set whose closure is contained in Un and such
that K = W ∪ ⋃1≤i≤n−1 Ui. We now slide the loop in the position tn to the
position tn−1 in W , allowing for the loop to stop elsewhere for p ∈ Un rW .
More precisely, let u : K → [0, 1] be a continuous function with u(p) = 1 for
p ∈ W and u(p) = 0 for p 6∈ Un. Define Hn : [0, 1]×K → Lρ0(Q) by

Hn(s, p) =
 f(p), p 6∈ Un
gn(p)[((1−u(p)s)tn(p)+u(p)stn−1(p))#2], p ∈ Un

Let f̄(p) = Hn(1, p), Hn defines a homotopy between f̄ and f . Let Ūi = Ui for
i < n− 1 and Ūn−1 = Un−1∪W ; the hypothesis of the Lemma apply to f̄ with
a smaller value of n and therefore f̄ is homotopic to f̄ [t0#2]. Therefore, so is f .
�

Here we give an explicit construction of F .

Step 1: Consider the ball BR(0) ∈ RnQ , with R = 2
⌈
nQ

2

⌉
π, and take the

boundary Θ1 = ∂BR(0) of the ball which is a sphere of dimension nQ − 1. By
the construction given in Lemma 3.9, every curve in Θ1 has at least one arc
of circle with radius r in the interval

[
ρ̃, (2k + 1)ρ̃

]
with length greater than

π sin r.
Define f : Θ1 → Lρ0(Q) as F̄ with two loops added to each of its long

arcs. To preserve the continuity, for each arc that is very close to become a
long arc draw something intermediary as shown in the Figure 3.4. There is a
homotopy as below:

F̄2 : Θ1 × [0, 1]→ Lρ0(Q),

where F̄2(·, 0) = F̄ (·) and F̄2(·, 1) = f(·).

Step 2: We look more carefully into the construction of F̄ (see Figure 3.3).
There are:

1. nQ +1 open sets Ui ∈ Θ1, i ∈ {0, 1, . . . , nQ} corresponding to curves that
have at least one arc of circle with radius r in the interval

[
ρ̃, (2k + 1)ρ̃

]
with length greater than π sin r at αi. As seen above, ⋃i Ui = Θ1.
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2. nQ + 1 continuous functions ti : Θ1 → (0, 1), i ∈ {0, 1, . . . , nQ}
corresponding to the precise parameter of the curve γ = F̄ (p) in which
we add loops to each of long arcs of αi (when it is available). Since
arcs were added in αi and γ is concatenation of αi’s, it is clear that
t0 < t1 < t2 < . . . < tnQ

.

3. Since t0 : Θ1 → (0, 1) is continuous and Θ1 is compact, there exists a
constant t−1 < t0(p), for all p ∈ Θ1 .

4. Define gi : Ui → Lρ0(Q) as F̄ |Ui .

Applying Lemma 3.19 for K = Θ1 and f : Θ1 → Lρ0(Q) we obtain the
following homotopy. We obtain:

F̄3 : Θ1 × [1, 2]→ Lρ0(Q),

where F̄3(·, 1) = f(·) = F̄2(·, 1), and F̄3(·, 2) = f(·)[t−1#2] is the same curve
with at least two loops added at t−1.

Step 3: Finally we prove and use the following proposition, which also is a
direct adaptation of Proposition 6.4 in [22] to obtain:

F̄4 : Θ1 × [2, 3]→ Lρ0(Q),

where F̄4(·, 2) = F̄3(·, 2), and F̄4(a1, 3) = F̄4(a2, 3) = γ̃, for all a1, a2 ∈ Θ1.

Proposition 3.20. Let n be a positive integer. Let K be a compact set and
let f : K → Lρ0(Q) ⊂ I(I,Q) be a continuous function. Then f is homotopic
to a constant in I(I,Q) if and only if f [t0#2n] is homotopic to a constant in
Lρ0(Q).

Proof. (⇐) It is trivial. In I(I,Q), f and f [t0#2n] are homotopic.
(⇒) Let H : K × [0, 1] → I(I,Q) be a homotopy with H(·, 0) = f and
H(·, 1) is a constant function. The image of H [[(2m)] is contained in Lρ0(Q).
For a sufficiently large number m, H [[(2m)] is also continuous. This implies that
f [[#2m](·) = H [[(2m)](·, 0) is homotopic in Lρ0(Q) to a constant. By Lemma
3.18, f [t0#(2m)] is homotopic to f [[#2m] in Lρ0(Q) and therefore the proposition
is proved for large n. The general case now follows from Lemma 3.17. �

Step 4: Now we concatenate F̄ , F̄2, F̄3, F̄4 to obtain F : SnQ → Lρ0(Q). First,
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we divide the sphere into SnQ = Θ2 tΘ3 tΘ4 tΘ5 t {(0, 0, . . . , 1)}, where

Θ2 =
{

(b1, b2, . . . , bnQ
, cos β); β ∈

[
−π,−3π

4

)}
,

Θ3 =
{

(b1, b2, . . . , bnQ
, cos β); β ∈

[
−3π

4 ,−π2

)}
,

Θ4 =
{

(b1, b2, . . . , bnQ
, cos β); β ∈

[
−π2 ,−

π

4

)}
,

Θ5 =
{

(b1, b2, . . . , bnQ
, cos β); β ∈

[
−π4 , 0

)}
.

Next, F is defined as the following:

F (a) =



F̄ ◦ ϕ(a) a ∈ Θ2

F̄2 ◦ ϕ(a) a ∈ Θ3

F̄3 ◦ ϕ(a) a ∈ Θ4

F̄4 ◦ ϕ(a) a ∈ Θ5

γ̃ a = (0, 0, . . . , 0, 1)

where ϕ : SnQ → (Θ1 × [0, 3]) is defined as ϕ(0, 0, . . . , 0, 1) = 0 and:

ϕ(b1, b2, . . . , bnQ
, cos β) =

(
(b1, b2, . . . , bnQ

)
|(b1, b2, . . . , bnQ

)|R,
4β
π

+ 4
)

for β ∈ [−π, 0).

3.5
Triviality of F in the space of immersed curves

Note that, by the conditions on page 25 for Q, each step may be
proceeded so that the final map F has the following property: there exists
an open ball UQ = Ba(r) ( S2, which depends on Q, satisfying:

img
(
F (p)

)
⊂ Ba(r), ∀p ∈ SnQ .

We consider the stereographic projection h : Ba(r) → R2 with center a. So
h
(
F (p)

)
: [0, 1]→ R2 is a C1 immersed curve with prescribed initial and final

frames for each p ∈ SnQ . Moreover this map defines a homeomorphism between
immersed curves in Ba(r) and R2.

Each component of the space of immersed curves with prescribed initial
and final frames in R2 is known to be contractible, refer to the introduction and
Theorem 4.1 of [28]. This result is proven by S. Smale in [30]. Thus h

(
F (·)

)
is

homotopically trivial in the space of immersed curves in R2. This guarantees
the triviality of (i ◦ F ) : SnQ → I(Q), where i : Lρ0(Q) → I(Q) is the set
inclusion map.
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4
Definition of the map G

With the application F : SnQ → Lρ0(Q) in hand, we need another
application G : Lρ0(Q) → SnQ such that G ◦ F : SnQ → SnQ has degree
1. To define G, we shall first define a very special contractible subset C0 ∈
L̄ρ0(Q), which contains the length-minimizing curve γ0, with the property
of uniqueness. The boundary ∂C0 consists of curves that are simultaneously
“graft-able” and is homotopic to SnQ−1. We first establish a map Ḡ : C0 →
B̄1(0) ∈ RnQ which can be easily extended into G. To define such map Ḡ, we
need to carefully extract useful information for curves in C0. This information
describes, roughly speaking, how many times the curve bends to left and right,
and how much the curve goes “up” and “down” inside a region. The precise
meaning of this information will be concretized in the subsequent text.

4.1
Preliminary definitions

We consider the points p1, p2, q1, q2 given by Equation (2-4). We recall
that γ ∈ Lρ0(Q) and γ : J → S2, where J is a closed interval in R. Given a
curve γ ∈ Lρ0(Q), its unit tangent vector can be viewed as a map whose image
lies in S2, that is tγ : J → S2. Let the set C ⊂ Lρ0(Q) be a subset containing all
curves whose unit tangent vector is contained in a closed half-space. In other
words,

C =
γ ∈ Lρ0(Q); there exists a v ∈ S2 such that 〈tγ(s), v〉 ≥ 0 and

〈γ(s), e2〉 > 0 for all s ∈ J

 .
We call the curves in the set C hemispheric curves. Throughout this section,
we assume that Q ∈ SO3(R) is such that the length-minimizing curve γ0 is
hemispheric, that is: γ0 ∈ C. We consider the following situation: Q ∈ SO3(R)
and ρ0 in the definition of Lρ0(Q) are such that the convex quadrilateral
QQ,1 on sphere formed by points p1, q1, q2, p2 has the property that the length-
minimizing curve γ0 lies inside this quadrilateral. We will show that for each
hemispheric curve γ ∈ C there is a unique vector vγ, depending continuously
on γ, satisfying Condition (4-1) below. We consider the quadrilateral on sphere
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QQ,2 = {v ∈ S2; 〈v, pi〉 ≤ 0 and 〈v, qi〉 ≥ 0 for i = 1, 2}. For each v ∈ QQ,2, we
consider the value:

mγ(v) = min{〈tγ(s), v〉; s ∈ J}.

Now fix a γ ∈ C, we take vγ ∈ QQ,2 as the vector such that:

mγ(vγ) ≥ mγ(v) for all v ∈ QQ,2. (4-1)

Intuitively speaking, vγ is the nearest point in QQ,2 to the set tγ(J) (in sense of
Hausdorff distance). The following proposition guarantees its uniqueness and
continuity.

Proposition 4.1. For each γ ∈ C, such vγ satisfying Inequality (4-1) men-
tioned above is unique and depends continuously on γ.

Proof. We start verifying the uniqueness. Suppose by contradiction that there
exist v1 and v2, such that both satisfy Inequality (4-1). First we consider the
case v1 6= ±v2, take:

ṽ = v0

|v0|
, where v0 = v1 + v2

2 .

Then for all p ∈ tγ(J)

〈ṽ, p〉 >
〈
v1 + v2

2 , p
〉

= 1
2
(
〈v1, p〉+ 〈v2, p〉

)
.

By taking minimum for p ∈ tγ(J) on both sides we get

mγ(ṽ) > 1
2
(
mγ(v1) +mγ(v2)

)
,

which contradicts the maximality of v1.
For the case v1 = −v2, since γ ∈ C, we obtain:

〈tγ(s), v1〉 ≥ 0 and 〈tγ(s), v2〉 ≥ 0 ∀s ∈ J.

This implies that tγ(J) is contained in the great circle in the plane perpendic-
ular to v1. So we deduce that γ is an arc of circle centered at ±v1, with radius
r ∈ (ρ0, π − ρ0) and length greater or equal to π sin r. Thus 〈γ(s), e2〉 < 0 for
some s ∈ J . This contradicts the fact that γ ∈ C.

Now we discuss the continuous dependence of vγ on γ. Suppose that, by
contradiction, for a pair (γ, vγ), γ ∈ C there is a sequence of pairs (γk, vk),
with k ∈ N, and an ε > 0 such that γk ∈ C, vk = vγk , limk→∞ γk = γ and
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d(vγ, vk) > ε. By compactness, we assume, without loss of generality, that the
sequence vk converges to a limit ṽ 6= vγ. So

min
s∈J

d(tγk(s), vγ) ≤ min
s∈J

d(tγk , vk).

By taking k →∞ we obtain:

min
s∈J

d(tγ(s), vγ) ≤ min
s∈J

d(tγ, ṽ),

which contradicts the uniqueness of vγ. �

We consider these meridians with axis vγ passing through the points
p1, p2, q1, q2 respectively. Let Θ1,γ be the widest region containing γ0 delimited
by two of these meridians. Now we declare C0 as the following set:

C0 := {γ ∈ Lρ0(Q); γ(J) ⊂ B̄ρ0(Θ1,γ) and γ is Hemispheric.}.

We start by constructing a continuous map Ḡ : C0 → RnQ , which will satisfy
Ḡ(γ) ≥ R for some R > 0 and all γ ∈ ∂C0. Then we put G : Lρ0(Q)→ SnQ as:

G(γ) =
 p ◦ Ḡ(γ) if γ ∈ C0 and Ḡ(γ) < R

(0, 0, 1) if Ḡ(γ) ≥ R or γ ∈ Lρ0(Q) r C0
,

where p is a homeomorphism map from the open ball BR(0) ⊂ RnQ to
SnQ r {(0, 0, 1)}. Hence the following subsections are dedicated to define the
map Ḡ. We will use the notation: sign : R→ {−1, 0,+1} with sign(x) = −1 if
x < 0, sign(x) = 0 if x = 0 and sign(x) = +1 if x > 0.

For each ε ∈ (0, ρ0), our first step is to define a map Gε : Lρ0(Q)→ RnQ .
For suitable values of ε we will be able to use the map Gε to construct the
desired map G. Given a γ ∈ Lρ0(Q), define the following two sets in S2:

Ξ0(ε, γ) := B̄ρ0(Θ1,γ) rBρ0−ε(Θ1,γ) Ξ1(ε, γ) := B̄π
2
(vγ) rBπ

2−ε(vγ). (4-2)

Sometimes we omit ε by using notations Ξ0 and Ξ1 for both sets in Equation
(4-2) above.

4.2
Extracting information from the curves

In this subsection we shall study the structure of intersections Ξ0 ∩ γ(I)
and Ξ1 ∩ tγ(I). From these intersections, for a suitable ε, we shall construct a
sequence

(
y1, . . . , ynQ

)
∈ RnQ . This sequence will be used to construct the

application G. It follows from definition that the set Ξ0 is symmetric by
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reflection in relation to a plane P passing through a vγ-meridian and crosses
the curve γ0. We denote the upper and the lower parts of Ξ0 in relation to P
by Ξ+

0 and Ξ−0 , respectively. Also, we denote Ξ+
1 and Ξ−1 the upper and the

lower parts of Ξ1 in relation to the plane P . Furthermore we take Ξ+
0 and Ξ+

1

as both closed sets, by including the sections in the intersection of Ξ0 and Ξ1

with the plane P . But later it will turn out this choice will not be important
for our needs, because both the curve and its tangent vector will get nowhere
close to ∂Ξ+

0 ∩ ∂Ξ−0 and ∂Ξ+
1 ∩ ∂Ξ−1 respectively.

We use the notation (R+)N to denote the space of sequences of non-
negative numbers (xn)n∈N, xk ≥ 0 for all k ∈ N. Pick an ε ∈ [0, ε0),
given a curve γ ∈ C0, we want to “extract” from the pair (ε, γ) a sequence
(xn)n∈N ∈ (R+)N by the following 5 steps:

Step 1: Consider two sets: S1 := Ξ0(ε, γ) ∩ γ and S2 := Ξ1(ε, γ) ∩ tγ. Also
consider J1 := {s ∈ J ; γ(s) ∈ Ξ0} J2 := {s ∈ J ; tγ(s) ∈ Ξ1}.∗ Note that for ε
sufficiently small, J1 ∩ J2 = ∅ (taking ε < ρ0

8 is enough for that).

Step 2: If both sets S1 and S2 are empty, we set xk = 0 for all k ∈ N. So we
finished defining the sequence for this particular case.

Step 3: If S1 or S2 is non-empty. We subdivide sets J1 and J2 into disjoint
unions J1 = J+

1 t J−1 and J2 = J+
2 t J−2 by setting J+

1 = {s ∈ J ; γ(s) ∈ Ξ+
0 },

J−1 = {s ∈ J ; γ(s) ∈ Ξ−0 }, J+
2 = {s ∈ J ; γ(s) ∈ Ξ+

1 } and J−2 = {s ∈ J ; γ(s) ∈
Ξ−1 }.

Step 4: Again, we subdivide these four sets into disjoint unions:

J+
1 =

⊔
k∈N

J+
1,k, J−1 =

⊔
k∈N

J−1,k, J+
2 =

⊔
k∈N

J+
2,k, J−2 =

⊔
k∈N

J−2,k.

This subdivision may be done so that it satisfies the following 3 properties:

1. J+
2,k < J+

1,k < J−2,k < J−1,k < J+
2,k+1 for all k ∈ N. †

2. If for some k ∈ N, k > 0, one of the following 4 cases occurs:

(a) J+
1,k, J−2,k, J−1,k are all empty sets.

(b) J−2,k, J−1,k, J+
2,k+1 are all empty sets.

(c) J−1,k, J+
2,k+1, J+

1,k+1 are all empty sets.

(d) J+
2,k+1, J+

1,k+1, J−2,k+1 are all empty sets.
∗Despite of use of Jk to represent the subsets of J here, Jk are not intervals in general.
†For two disjoint subsets J and K of R, we write J < K when a < b for all a ∈ J and

b ∈ K.
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Then for all integers l such that l > k, the sets J+
2,l, J+

1,l, J−2,l, J−1,l are all
empty sets.

3. If one of the following 3 cases occurs:

(a) J−2,0, J−1,0, J+
2,1 are all empty sets.

(b) J−1,0, J+
2,1, J+

1,1 are all empty sets.

(c) J+
2,1, J+

1,1, J−2,1 are all empty sets.

Then for all integers l such that l > 0, the sets J+
2,l, J+

1,l, J−2,l, J−1,l are all
empty sets.

Intuitively, the property in Item (1) means that these sets are ordered in a
strictly increasing fashion, and Items (2) and (3) say that the redundant empty
sets compressed together so that non-empty sets have smallest indexes possible.

Step 5: For each k ∈ N, denote by A+
k the union of all closed regions delimited

by γ(J+
1,k) and ∂Ξ+

0 lying on the right of γ. Analogously, denote byA−k the union
of all closed regions delimited by γ(J−1,k) and ∂Ξ−0 lying on the left of γ. Lastly,
for J+

1,k and J−1,k empty, we set A+
k = ∅. We define the sequence (xk)k∈N:

x4k = Length
(

tγ|J+
2,k

)
, x4k+1 = Area

(
A+
k

)
, (4-3)

x4k+2 = Length
(

tγ|J−
2,k

)
, x4k+3 = Area

(
A−k

)
. (4-4)

Keep in mind that the sequence (xk)k∈N depends on the value of pair (ε, γ).
These formulas above will be crucial to define G, but before that we need to
establish several properties. So we postpone the main construction to the next
subsection.

For such a sequence (xk)k∈N, we define a kind of index for curves γ in C0,
we call it ε-index of γ. Denote ε-index by indexε : C0 → N, defined as follows:

indexε(γ) =



⌈
k

2

⌉
, if xk 6= 0, xl = 0 ∀ l > k and x0 or x1 are non-zero.

⌈
k

2

⌉
− 1, if xk 6= 0, xl = 0 ∀ l > k and x0 = x1 = 0.

0, if xk = 0 for all k ∈ N.
(4-5)

A note about the second case in Equation (4-5), the condition “x0 and x1 are
both equal to zero” together with Condition 2 of Step 4, implies that x2 or
x3 is not zero. So these three cases in the definition of ε-index do include all
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vγ vγ

Ξ+
0

Ξ−0

Ξ+
1

Ξ−1

Figure 4.1: Illustration of an example of γ (the curve in red on the left-hand
side) and its tangent vector tγ in S2 (the curve in red on the right-hand side).
In this example we have x0, x1, x2 > 0, x3 = 0, x4, x5, x6 > 0 and xk = 0 for
all k ≥ 7. The ε-index of γ is 3.

possible scenarios for the sequence (xk)k∈N. We note that index of a curve is
non-decreasing relative to ε in proposition below:

Proposition 4.2. If there are two real values ε and ε̄ such that 0 < ε ≤ ε̄ < ε0,
then indexε(γ) ≤ indexε̄(γ).

Proof. Given a curve γ ∈ C0. The inequality ε ≤ ε̄ and Formula (4-2)
imply that Ξ0(ε, γ) ⊂ Ξ0(ε̄, γ) and Ξ1(ε, γ) ⊂ Ξ1(ε̄, γ). This subsequently
implies that J+

1 (ε, γ) ⊂ J+
1 (ε̄, γ), J−1 (ε, γ) ⊂ J−1 (ε̄, γ), J+

2 (ε, γ) ⊂ J+
2 (ε̄, γ)

and J−2 (ε, γ) ⊂ J−2 (ε̄, γ). Now we check the rules for subdivision in Step 4 and
Step 5, it is clear that implies indexε(γ) ≤ indexε̄(γ) �

In the visual aspect, a curve γ having an ε-index indicates that γ

resembles a critical curve of indexε(γ). The exact meaning and reasons of
this similarity will be clarified in the next subsection. Now we shall prove the
following essential proposition about ε-index:

Proposition 4.3. There exists an ε1 > 0 such that for all ε ∈ (0, ε1), the
function indexε : C0 → N satisfies the following condition:

indexε(γ) ≤ nQ for all γ ∈ C0.

To prove Proposition 4.3, we need the following result.

Lemma 4.4. Let (γi)i∈N be a sequence of C1 curves in S2 satisfying the
following properties.
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vγ
vγ

Ξ+
0

Ξ−0

Ξ+
1

Ξ−1

Figure 4.2: Another illustration of an example of γ (the curve in red on the
left-hand side) and its tangent vector tγ in S2 (the curve in red on the right-
hand side). In this example we have x0 = x1 = 0, x2 > 0, x3 = 0, x4 > 0,
x5 = 0, x6 > 0, x7 = 0, x8 > 0, x9 = 0 and x10 > 0, xk = 0 for all k ≥ 11. The
ε-index of γ is 4.

1. There exists a limited region R ⊂ S2 such that γi ⊂ R for all i ∈ N.

2. The κ−γ and the κ+
γ lie inside an interval [−κ0,+κ0], with κ0 ∈ R+.

3. There exists a positive number L0 such that Length(γi) ≤ L0 for all
i ∈ N.

Then (γi)i∈N admits a convergent subsequence, and the limit of this subsequence
satisfies all three conditions above.

Lemma 4.5. Given γ ∈ I, κ+
γ and κ−γ are upper-semicontinuous and lower-

semicontinuous respectively.∗

Proof.[Lemma 4.5] Let us prove that κ+
γ is upper-semicontinuous, which is

equivalent to prove that r+ = arccotκ+
γ is lower-semicontinous. Given an

s0 ∈ J and an r < r+(s0), there exists a δ > 0 and a0 ∈ S2 such that
d(a0, γ(s0)) = r and

d(a0, γ(s)) ≥ r, ∀s ∈ (s0 − δ, s0 + δ). (4-6)

Since tγ is continuous, (4-6) implies that there exists a δ1 such that for all
s ∈ (s0 − δ1, s0 + δ1), we can define the center as of the left tangent circle of
radius r at γ(s), with d(as, γ(s)) = r and

d(as, γ(s̄)) ≥ r, ∀s̄ ∈ (s0 − δ1, s0 + δ1).
∗A real function f : J → R is said to be upper-semicontinous if lim sups→s0 f(s) ≤ f(s0)

for all s0 ∈ J ; f is said to be lower-semicontinuous if −f is upper-semicontinous.
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That means κ+
γ (s̄) < cot r, for all s̄ in a neighborhood of s0. Since r ≤ r+ is

arbitrary, then
lim sup
s→s0

κ+
γ (s) ≤ κ+

γ (s0).

For the case of κ−γ the procedure is analogous. �

Proof.[Proof of Lemma 4.4] First, we unify the domains of all curves to [0, 1]
by writing γi : [0, 1] → S2. Take a dense sequence (sj)j∈N in [0, 1]. Condition
(1) and the diagonal argument allow us to pick a subsequence (γ̃i)i∈N which
converges for all sj, with j ∈ N. Condition (3) implies that (γ̃i)i∈N has a limit
γ such that γ ∈ R and Length(γ) ≤ L0. Using Condition (2), we take a
subsequence for (γ̃i)i∈N such that the tangent vector, κ+

γi
and κ−γi converge for

all sj.
We need to verify if γ also satisfies Condition (2). We take ρ =

cot
(
κ+
γ (s)

)
and a the center of the left tangent circle of radius ρ at γ(s).

Take r+
γi

(sj) as the radius of the left tangent circle of γi at γi(sj) and r+
γi

(s) as
the radius of the left tangent circle at γi(s). By Lemma 4.5 and ρ0 ≥ r+

γi
for

all i, j ∈ N we obtain:

ρ0 ≥ lim
j→∞

r+
γi

(sj) = r+
γi

(s), ∀j ∈ N.

Taking i→∞, we obtain:
ρ0 ≥ r+

γ (s).

The equation above means κ0 ≥ κ+
γ (s). The proof for another inequality

−κ0 ≤ κ−γ (s) is analogous, and so we omit it. �

Now we are ready to prove Proposition 4.3.
Proof.Suppose, by contradiction, that no such ε1 exists. Then there exists a
decreasing sequence (εi)i∈N converging to 0 and a sequence (γi)i∈N such that:

indexεi(γi) ≥ nQ + 1.

Since all these curves γi lie in a hemisphere, and have an upper bound for their
length and C0 is closed, by Lemma 4.4, the sequence (γi)i∈N has a convergent
subsequence with limit γ̄ ∈ C0. To simplify notations, we now assume that the
sequence (γi)i∈N converges to γ̄. So we have:

indexεi(γ̄) ≥ nQ + 1, for all i ∈ N.

We shall use the curve γ̄ to construct a critical curve of the same index, which
is greater than nQ, contradicting the definition of nQ on page 25.

DBD
PUC-Rio - Certificação Digital Nº 1312489/CA



Chapter 4. Definition of the map G 59

We first consider the case when x0 or x1 is not zero. Since γ̄ ∈ C0, we take
the vector vγ̄ such that tγ̄(J) ∈ B̄π

2
(vγ̄). For each xk 6= 0, denote by J̄k ⊂ J

the interval associated to xk as described in Step 4 above. Take a tk ∈ Jk, we
consider the following circles described below:

1. If k ≡ 0 (mod 4), we draw circles ζ+
k and ζ−k of radius ρ0 (measured on

S2) tangent to γ̄ at γ̄(tk) from left and right respectively.

2. If k ≡ 1 (mod 4), we draw the circle ζk of radius ρ0 tangent to γ̄ at γ̄(tk)
from right.

3. If k ≡ 2 (mod 4), we draw the circle ζ+
k and ζ−k of radius ρ0 tangent to

γ̄ at γ̄(tk) from left and right respectively.

4. If k ≡ 3 (mod 4), we draw the circle ζk of radius ρ0 tangent to γ̄ at γ̄(tk)
from left.

We separate the next part into two cases. The first case is for nQ even. In
addition to the circles that we have defined previously, we also consider circles
ζ−1 and ζ2(nQ+1)+1 of radius ρ0 tangent to γ̄, respectively, at γ̄(0) from left
and γ̄(L) from left. Using polar coordinates with −vγ̄ as axis, so that the
(−vγ)-parallel coordinate of the curve γ̄ is non-decreasing with respect to the
parameter of the curve. For each k such that ζk or ζ±k is defined, denote by
(θk, ϕk) ∈ [0, π]× (−π, π) center of ζk and (θ±k , ϕ±k ) ∈ [0, π]× (−π, π) center of
ζ±k . For each j ∈ Z, when a comparison is possible∗, we have:

min{ϕ−4j, ϕ4j+1, ϕ
−
4j+2} ≥ max{ϕ+

4j+2, ϕ4j+3, ϕ
+
4j+4} (4-7)

max{ϕ+
4j+2, ϕ4j+3, ϕ

+
4j+4} ≤ min{ϕ−4j+4, ϕ4j+5, ϕ

−
4j+6}. (4-8)

Since the curve γ̄ is contained in a hemisphere, recall that the distance from
γ̄ to center of ζk is greater or equal to ρ0, so equations above and the manner
that ζk are constructed implies, for all j ∈ Z:

min{θ+
4j+2, θ4j+3, θ

+
4j+4} −max{θ−4j, θ4j+1, θ

−
4j+2} ≥ 2ρ0 (4-9)

min{θ−4j+4, θ4j+5, θ
−
4j+6} −max{θ+

4j+2, θ4j+3, θ
+
4j+4} ≥ 2ρ0. (4-10)

Since we cannot have three consecutive zero values for xk for k ∈
{0, 1, 2, . . . , 2 · index(γ̄)}, using Equation (4-9) we have:

L1 = d(p1, q1) = θ2(nQ+1)+1− . . .−θ−1 ≥ (2ρ0) ·(index(γ̄)+1) ≥ (2ρ0) ·(nQ +2).
∗Here we use convention that if the number a is undefined and the number b is defined

then min{a, b} = max{a, b} = b.
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Now we recall the definition of L̄1 on Equation (2-5). This implies:

L̄1 ≥ 2
⌊

2ρ0(nQ + 2)
4ρ0

+ 1
⌋
− 1 = nQ + 1 > nQ = D̄1 = D̄2.

This contradicts with the definition of nQ.
Now we analyze the second case: nQ as an odd number. We consider

circles ζ1 and ζ2(nQ+1)+1 of radius ρ0 tangent to γ̄, respectively, at γ̄(0) from
left and γ̄(L) from right. Again we use polar coordinates with axis −vγ̄.
Equations (4-7) and (4-8) still hold. Thus this implies Equations (4-9) and
(4-10). Again using the fact that three consecutive zeroes cannot happen for
xk for k ∈ {0, 1, 2, . . . , 2 · · · index(γ̄)}, we have:

D1 = d(p1, q2) ≥ (2ρ0) · (nq + 2).

Recalling the definition of D̄1 in Equation (2-5). This implies:

D̄1 ≥ 2
2ρ0

(
2
⌊
nQ

2

⌋
+ 3

)
4ρ0

− 1
2

 = nQ + 1 > nQ = L̄1 = L̄2.

Contradicting the definition of nQ.
For the case x0 and x1 equals to zero, the procedure entirely is analogous;

We need to show L̄2 = nQ + 1 for nQ even, and D̄2 = nQ + 1 for nQ odd.
We follows exactly the same steps by drawing tangent circles ζk at γ̄(tk).
Additionally we consider circles ζ1 and ζ2(nQ+1)+1 of radius ρ0 tangent to γ̄

at γ̄(0) and γ̄(L). The remaining argument is identical to previous case, so we
omit it here. �

Remark 4.6. As an additional information, one may have noted that by
doing the proof of Proposition 4.3 more carefully, it is possible to construct
a homotopy from γ̄ to the critical curve that we have constructed. In fact, if
γ ∈ C0 is a critical curve, index0(γ) is the index of critical curve as defined on
page 25. However it is unnecessary for the result we are going to prove. Now
with Proposition 4.3 in hand, we are ready to define the application Ḡ in the
next subsection.

4.3
Defining the map G

We follow Step 5 of the construction of G on page 54. First from
Proposition 4.3, we take an ε such that indexε(γ) ≤ nQ for all γ ∈ C0. Now we
recall that the sequence (xk)k∈N is given by the formulas in (4-3), and defined
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for this ε. We call the sequence (zk)k∈N a good subsequence of (xk)k∈N if it
satisfy the following three conditions:

1. There exists an increasing function k̄ : N → N such that zi = xk̄(i), for
all i ∈ N.

2. The function k̄ also satisfy: k̄(i) mod 4 = i mod 4.

3. For sequence (zk)k∈N if, for some k ∈ N, k > 0 and zk = zk+1 = zk+2 = 0
are satisfied, then, for all integer l such that l > k, it holds that zl = 0.

We define the length and the sign of a good subsequence as follows:

1. If zk = 0 for all k ∈ N, we set Length
(
(zk)k∈N

)
= 0 and sign

(
(zk)k∈N

)
=

0.

2. If the sequence is not zero and z0 6= 0 or z1 6= 0, we set sign
(
(zk)k∈N

)
=

+1 and:
Length

(
(zk)k∈N

)
=
⌈

max{k ∈ N; zk 6= 0}
2

⌉
.

3. If the sequence is not zero and z0 = z1 = 0, we set sign
(
(zk)k∈N

)
= −1

and:
Length

(
(zk)k∈N

)
=
⌈

max{k ∈ N; zk 6= 0}
2

⌉
− 1.

From this definition, the sequence (xk)k∈N is a good subsequence of itself
(because of Properties (2) and (3) on page 54). We use the notation Gk to
represent the set of all good subsequences of (xk)k∈N that have length k. Now
we define the sequence (yj)j∈N given by the formula below:

yj(γ) =
∑

(zk)∈Gj

sign
(
(zk)k∈N

) ∏
zk 6=0

zk

 , j ∈ N. (4-11)

The application Gε : C0 → RnQ is defined as:

Gε(γ) =
(
y1(γ), y2(γ), . . . , ynQ

(γ)
)
, for all γ ∈ C0.

Lemma 4.7. The application Gε is continuous and Gε(γ) 6= 0 for all γ ∈ ∂C0.

Proof. We start verifying the continuity. For this, it is sufficient to check that
each coordinate yj(γ) defined by Formula (4-11) is a continuous function. We
will broaden the definition of the concept of good subsequence and use some
new notations. For each j ∈ N, we consider the following set:

Gj =
(k0, k1, . . . , kl);

ki ∈ N, (ki) is strictly increasing sequence and
satisfies the properties below

 .
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1. ki mod 4 6= ki+1 mod 4 for all i ∈ {1, 2, . . . , l}

2. We write ki = 4qi + ri, with qi ∈ N and ri ∈ {0, 1, 2, 3}. We define
σ̄ : {0, 1, 2, 3} → {0, 1}, with σ̄(0) = σ̄(2) = 0, σ̄(1) = σ̄(3) = 1 and
σ : {0, 1, 2, 3} × {0, 1, 2, 3} → {0, 1, 2, 3} by the table below:

σ(a, b) 0 1 2 3
0 0 1 2 3
1 3 0 1 2
2 2 3 0 1
3 1 2 3 0

Each line of the table represents a value for a and each column is a value
for b. We define the length of a finite sequence (ki) by:

Length((ki)) =
⌈
σ̄(r0) +∑l−1

i=0 σ(ri, ri+1)
2

⌉
.

The second condition is that Length((ki)) = j. We also define sign(ki) =
+1 if ri = 0 or 1, otherwise we define sign(ki) = −1

Also for any sequence (xi)i∈N we may define its good subsequence using exactly
the same conditions as on page 61.

Consider two curves α and β in C0 such that d(α, β) < δ. This implies
that sets Ξ+

0 (α), Ξ−0 (α), Ξ+
1 (α), Ξ−1 (α) and Ξ+

0 (β), Ξ−0 (β), Ξ+
1 (β), Ξ−1 (β) are

close to each other, respectively, in sense that their exclusion is small. To be
precise about the last statement we can rewrite these sets into:

Ξ+
0 (α) =

⊔
i∈N

A4i+1, Ξ+
1 (α) =

⊔
i∈N

A4i, Ξ−0 (α) =
⊔
i∈N

A4i+3 Ξ−1 (α) =
⊔
i∈N

A4i+2.

Ξ+
0 (β) =

⊔
i∈N

B4i+1, Ξ+
1 (β) =

⊔
i∈N

B4i, Ξ−0 (β) =
⊔
i∈N

B4i+3 Ξ−1 (β) =
⊔
i∈N

B4i+2.

So that the area of Ai 4 Bi is small for each i ∈ N. Now we define sequences
(x̄α,i)i∈N and (x̄β,i)i∈N, with x̄α,i = Area(Ai) and x̄β,i = Area(Bi). Note that
these sequences are the augmented version of the original sequences (xi(α))i∈N
and (xi(β))i∈N, in the sense that we have the following 2 equations, for all
j ∈ N:

∑
(zk)∈Gj(α)

sign
(
(zk)k∈N

) ∏
zk 6=0

zk

 =
∑

(zk)∈Gα,j

sign
(
(zk)k∈N

) ∏
zk 6=0

zk

 .
∑

(zk)∈Gj(β)

sign
(
(zk)k∈N

) ∏
zk 6=0

zk

 =
∑

(zk)∈Gβ,j

sign
(
(zk)k∈N

) ∏
zk 6=0

zk

 .
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In the equations above, the sets Gj(α), Gj(β) stand for the set of good
subsequences of length j of (x̄α,i), (x̄β,i), respectively, the sets Gα,j, Gβ,j stand
for the set of good subsequences of length j of (xi(α)), (xi(β)), respectively.

So these equations imply:

yj(α)− yj(β) =
∑

(zk)∈Gj(α)

sign
(
(zk)

) ∏
zk 6=0

zk

− ∑
(zk)∈Gj(β)

sign
(
(zk)

) ∏
zk 6=0

zk


=

∑
(ki)∈Ḡj

sign(k0)
(
λ
(
(ki), (x̄α,i)

)
− λ

(
(ki), (x̄β,i)

))
≤

∑
(ki)∈Ḡj

∣∣∣λ((ki), (x̄α,i))− λ((ki), (x̄β,i))∣∣∣
≤ O(δ),

where O : (0, δ1)→ R is a function such that limδ→0O(δ) = 0.
For the second part of assertion, note that if γ ∈ ∂C0 then

γ ∩ Ξ0 6= ∅ or
 tγ ∩ Ξ+

1 6= ∅
tγ ∩ Ξ−1 6= ∅

.

So the sequence (xj(γ))j∈N constructed is so that the indexε(γ) ≥ 1 and by
Proposition 4.3 we have indexε(γ) ≤ nQ. We denote iγ = indexε(γ). By a direct
computation we obtain yiγ 6= 0. This implies Gε(γ) = (y1, . . . , yiγ , 0, . . . , 0) 6= 0.
�

As an immediate consequence of Lemma 4.7, we have:

Corollary 4.8. There exists a R0 > 0 such that |Gε(γ)| > R0 for all γ ∈ ∂C0.

So take R0 from the lemma above, we define Ḡ : C0 → B̄1(0) ⊂ RnQ by
setting:

Ḡ(γ) =


1
R0
Gε(γ) if |Gε(γ)| ≤ R0.

1
|Gε(γ)|Gε(γ) if |Gε(γ)| > R0.
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Consider the surjective map p : B̄1(0)→ SnQ , defined as:

p
(
a1, a2, . . . , anQ

)
=



1
(nQ) 1

2

sin(πa1), . . . , sin(πanQ
),
[nQ∑
i=1

cos2(πai)
] 1

2


if

nQ∑
i=1

cos2(πai) ≥ 0.

1
(nQ) 1

2

sin(πa1), . . . , sin(πanQ
),−

[
−

nQ∑
i=1

cos2(πai)
] 1

2


if

nQ∑
i=1

cos2(πai) < 0.

We put G : Lρ0(Q)→ SnQ as:

G(γ) =

(
p ◦ Ḡ

)
(γ) if γ ∈ C0.

G(γ) = (0, 0, . . . , 0,−1) if γ ∈ Lρ0(Q) r C0.

This is the definition for G, which concludes the second part of the proof of
the main theorem.
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5
Non-triviality of maps F and G

This is the last part of the proof of the main theorem. We shall verify that
the composition G ◦ F : SnQ → SnQ has degree 1, with the applications F and
G defined in Sections 3 and 4. Thus [F ] ∈ HnQ

(
Lρ0(Q)

)
is a non-zero element.

Since we saw in the end of the Section 3 that [i ◦ F ] is trivial in Hk

(
I(Q)

)
,

this implies that Lρ0(Q) is homotopically equivalent to ΩS3 ∨ SnQ ∨E (where
E is a space yet to be discovered).

5.1
Computing the degree of the composition

First we use some of notations as in the last two Sections. We recall
the definition of the application F in Section 3. Take an a ∈ RnQ , a =
(a1, a2, . . . , anQ

). γ = F̄ (a) is defined as a concatenation of (nQ + 1) curves
α0, . . . , αnQ

. We also recall that in Section 4, for γ ∈ C0, in order to obtainG(γ),
we constructed sequences x =

(
xi(γ)

)
i∈N

and y = Ḡ
(
F̄ (a)

)
=
(
yi(γ)

)
n∈N

.
Note that if a ∈ RnQ is such that γ ∈ Lρ0(Q) r C0, then G(γ) =

(0, 0, . . . , 0,−1). Thus we shall focus on a ∈ RnQ such that γ ∈ C0. From
now on, we will assume that γ ∈ C0. We extract from F (a) a “non-reduced”
sequence w = (w0, w1, . . . , w8nQ−1) such that its reduced version is z. The
sequence w is defined as follows.

Step 1: We consider the sets Ξ+
0 , Ξ−0 , Ξ+

1 and Ξ−1 defined for γ. For each
k ∈ {0, . . . , nQ}, we consider the following subsets of R, J̃k,0, J̃k,1, J̃k,2, J̃k,3,
J̃k,4 and J̃k,5, defined by the following properties:

1. J̃k,0 < J̃k,1 < J̃k,2 < J̃k,3 < J̃k,4 < J̃k,5.

2. αk
(
J̃k,0

)
= Ξ+

1 ∩
(

img(tαk)
)
or ∅, αk

(
J̃k,1

)
= Ξ+

0 ∩
(

img(αk)
)
of ∅,

αk
(
J̃k,2

)
= Ξ−1 ∩

(
img(tαk)

)
, αk

(
J̃k,3

)
= Ξ−0 ∩

(
img(αk)

)
, αk

(
J̃k,4

)
=

Ξ+
1 ∩

(
img(tαk)

)
or ∅ and αk

(
J̃k,5

)
= Ξ+

0 ∩
(

img(αk)
)
or ∅.

3. If J̃k,2 and J̃k,3 are both empty sets then J̃k,4 and J̃k,5 are both empty.

The existence of the sets with 3 properties above is due to the following
proposition:
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Proposition 5.1. For each k ∈ {0, . . . , nQ}, the following 2 cases cannot
happen for αk:

1. There exist numbers s1 < s2 < s3 such that the next 3 properties are
satisfied:

(a) αk(s1) ∈ Ξ+
0 or tαk(s1) ∈ Ξ+

1 .

(b) αk(s2) ∈ Ξ−0 or tαk(s2) ∈ Ξ−1 .

(c) αk(s3) ∈ Ξ+
0 or tαk(s3) ∈ Ξ+

1 .

2. There exist numbers s1 < s2 < s3 such that the next 3 properties are
satisfied:

(a) αk(s1) ∈ Ξ−0 or tαk(s1) ∈ Ξ−1 .

(b) αk(s2) ∈ Ξ+
0 or tαk(s2) ∈ Ξ+

1 .

(c) αk(s3) ∈ Ξ−0 or tαk(s3) ∈ Ξ−1 .

This proposition may be directly verified by a careful examination on the
definition of αk’s from the construction of F on page 37.

Step 2: For each k ∈ {0, . . . , nQ} and i ∈ {1, 5}, we define A+
αk,i

as empty
if J̃k,i is empty. Otherwise we define it as the the region on S2 delimited by
αk
(
J̃k,i

)
, ∂Ξ+

0 and the only two circles centered at vγ passing through each
of the endpoints of αk|J̃k,i . We also define, for each k ∈ {0, . . . , nQ}, the set
A+
αk,3 as empty if J̃k,3 is empty. Otherwise we define it as the the region on

S2 delimited by αk
(
J̃k,3

)
, ∂Ξ−0 and the only two circles centered at vγ passing

through each of the two endpoints of αk|J̃k,3 .

Step 3: We set wk = Length
(
tαk |J̃k,0

)
, wk+1 = Area

(
A+
αk,1

)
,

wk+2 = Length
(
tαk |J̃k,2

)
, wk+3 = Area

(
A−αk,3

)
, wk+4 = Length

(
tαk |J̃k,4

)
,

wk+5 = Area
(
A+
αk,5

)
, wk+6 = wk+7 = 0. This defines a sequence

w = (w0, w1, . . . , w8nQ−1). Let Gj(w) and Gj(x) be the sets of good subse-
quences of w and x respectively (see definition on page 61), it is easy to check
that:

yj =
∑

(zk)∈Gj(x)

sign
(
(zk)k∈N

) ∏
zk 6=0

zk

 (5-1)

=
∑

(zk)∈Gj(w)

sign
(
(zk)k∈N

) ∏
zk 6=0

zk

 , j ∈ {1, . . . , nQ}. (5-2)

So to understand the behavior of yj’s, we will study the sequence w in the next
step.
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Step 4: For each k ∈ {0, 1, . . . , nQ} we say that the curve αk is of type:

1. +− if w8k+0 > 0 or w8k+1 > 0, w8k+2 > 0 or w8k+3 > 0 and w8k+i = 0 for
all i ∈ {4, 5, 6, 7}.

2. −+ if w8k+2 > 0 or w8k+3 > 0, w8k+4 > 0 or w8k+5 > 0 and w8k+i = 0 for
all i ∈ {0, 1, 6, 7}.

3. + if w8k+0 > 0 or w8k+1 > 0 and w8k+i = 0 for all i ∈ {2, 3, 4, 5, 6, 7}.

4. − if w8k+2 > 0 or w8k+3 > 0 and w8k+i = 0 for all i ∈ {0, 1, 4, 5, 6, 7}.

5. 0 if w8k+i = 0 for all i ∈ {0, 1, . . . , 7}.

Now we observe the behavior of w based on the values of a. We have the
following relations:

1. If a1 ≥ 0 then α0 is of type −+, + or 0. Moreover, there exists a constant
C such that a1 > C implies α0 is of type −+ or +.

2. If a1 ≤ 0 then α0 is of type +−, − or 0. Moreover, there exists a constant
C such that a1 < C implies α0 is of type +− or −.

3. If, for k ∈ {1, . . . , nQ}, ak−1 ≥ 0 and ak ≥ 0 then αk is of type + or 0.
Moreover, there exists a constant C > 0 such that max(ak−1, ak) > C

implies αk is of type +.

4. If, for k ∈ {1, . . . , nQ}, ak−1 ≥ 0 and ak ≤ 0 then αk is of type +−, +, −
or 0. Moreover, there exists constants C1 and C2 such that, if ak−1 > C1

then αk is of type +− or + and if ak < C2 then αk is of type +− or −.

5. If, for k ∈ {1, . . . , nQ}, ak−1 ≤ 0 and ak ≥ 0 then αk is of type −+, −, +
or 0. Moreover, there exists constants C1 and C2 such that, if ak−1 < C1

then αk is of type −+ or − and if ak > C2 then αk is of type −+ or +.

6. If, for k ∈ {1, . . . , nQ}, ak−1 ≤ 0 and ak ≤ 0 then αk is of type − or
0. Moreover, there exists a constant C < 0 such that min(ak−1, ak) < C

implies αk is of type −.

7. If anQ
≥ 0 then αnQ

is of type +−, + or 0. Moreover, there exists a
constant C such that anQ

> C implies αnQ
is of type +− or +.

8. If anQ
≤ 0 then αnQ

is of type −+, − or 0. Moreover, there exists a
constant C such that anQ

< C implies αnQ
is of type −+ or −.
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Step 5: Given two finite sequences b = (b0, b1, . . . , b7) and c = (c0, c1, . . . , c7).
If both b and c are of type +−, we write b � c if bi ≥ ci for all i ∈ {0, 1, 2, 3}.
Moreover, if bj > cj for some j ∈ {0, 1, 2, 3}, we write b � c.

If both b and c are of type −+, we also write b � c if bi ≥ ci

for all i ∈ {2, 3, 4, 5}. Moreover, if bj > cj for some j ∈ {2, 3, 4, 5}, we
write b ≺ c. Given two numbers a, ā ∈ RnQ , a =

(
a1, a2, . . . , anQ

)
and

ā =
(
ā1, ā2, . . . , ānQ

)
such that F (a) and F (ā) are both of maximal index.

If for some i ∈ {0, 1, 2, . . . , nQ}, aj = āj for all j 6= i and ai > āi > 0 then:

(
w8(i−1)(a), . . . , w8(i−1)+7(a)

)
≺

(
w8(i−1)(ā), . . . , w8(i−1)+7(ā)

)
,(

w8i(a), . . . , w8i+7(a)
)
�

(
w8i(ā), . . . , w8i+7(ā)

)
,(

w8j(a), . . . , w8j+7(a)
)
�

(
w8j(ā), . . . , w8j+7(ā)

)
∀j 6= i, j with the same parity as (i− 1),(

w8j(a), . . . , w8j+7(a)
)
�

(
w8j(ā), . . . , w8j+7(ā)

)
∀j 6= i, j with the same parity as i.

On the other hand, if for some i ∈ {0, 1, 2, . . . , nQ}, aj = āj for all j 6= i and
ai < āi < 0 then:

(
w8(i−1)(a), . . . , w8(i−1)+7(a)

)
�

(
w8(i−1)(ā), . . . , w8(i−1)+7(ā)

)
,(

w8i(a), . . . , w8i+7(a)
)
≺

(
w8i(ā), . . . , w8i+7(ā)

)
,(

w8j(a), . . . , w8j+7(a)
)
�

(
w8j(ā), . . . , w8j+7(ā)

)
∀j 6= i, j with the same parity as (i− 1),(

w8j(a), . . . , w8j+7(a)
)
�

(
w8j(ā), . . . , w8j+7(ā)

)
∀j 6= i, j with the same parity as i.

Step 6: By Sard’s Theorem for Ḡ◦F , we take a regular value y = (y1, . . . , ynQ
)

close to the axis generated by the vector (0, . . . , 0, 1) such that 0 < |y| < 1
(that implies γ ∈ C0, see page 63) and ynQ

6= 0. From Equation (4-11):

ynQ
=

∑
(zk)∈GnQ

sign
(
(zk)k∈N

) ∏
zk 6=0

zk

 6= 0.

This implies that the curve is of type + − + − + − · · · or − + − + − + · · ·
of maximal index, that is nQ. We shall prove that there is only one a ∈ RnQ
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such that Ḡ ◦ F (a) = y. We recall Equation (5-1), for each j ∈ {1, 2, . . . , nQ}:

yj =
∑

(zk)∈Gj(w)

sign
(
(zk)k∈N

) ∏
zk 6=0

zk


=

∑
(ki)∈G̃j

(
sign

(
(ki)

)∏
i

wki
(
a
))

'
∑

(li)∈Sj

(
(−1)l1

∏
i

fli
(
ali
))

'
∑

(li)∈Sj

(
(−1)l1

∏
i

ali

)

The third and fourth lines above are a homotopic equivalence, where G̃j is
the set of all good subsequences of length j of the sequence (0, 1, 2, . . . , 8nQ−1)
and Sj are strictly increasing subsequences of (1, 2, . . . , nQ) that have length j.
fki is a non-decreasing function and there exists a R > 0 such that fki(t) > R

for all t sufficiently large and fki(t) < −R for all t sufficiently small. The third
line follows from the properties in Step 5. Since there is only one Ḡ(F (a)) = y,
we deduce that Ḡ ◦ F has degree 1, and thus G ◦ F has degree 1.
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6
Appendix: related topics and hypothesis of the main theorem

We first present a criterion to determine for which Q ∈ SO3(R), the
space Lρ0(Q) is homotopically equivalent to I(I,Q). In the second subsection
we give an explicit method to calculate the length of a CSC curve in a space of
the type L̄ρ(I,Q). In the last subsection, we present a proof to show that the
length-minimizing curve in L̄ρ0(Q) is composed only by arc of circles of radius
ρ0 and geodesics. This is a property to Theorem 3.2 proven by F. Monroy-
Pérez.

6.1
When the space of immersed curves and the space of curves with
constraints are topological equivalents

Here we give a sufficient condition for the natural inclusion i : Lρ0(Q) ↪→
I(I,Q) to be a homotopical equivalence. More precisely, we show that for
some Q ∈ SO3(R) there is an obvious way to add loops simultaneously and
continuously to all curves in Lρ0(Q) which is a sufficient condition for the
equivalence.

We reuse the notation for the rotation matrix defined in Equation (2-3).
For each θ ∈ (ρ0, π−ρ0), ϑ ∈ (ρ0, π−ρ0) and ρ ∈ [0, 2π) consider Q̃ ∈ SO3(R)
given by:

Q̃(θ, ϑ, ρ) =


| | |[

(Rρ(v)
]
(p)

[
(Rρ+π

2
(v)
]
(q)

[
(Rρ(v)

]
(p)×

[
(Rρ+π

2
(v)
]
(q)

| | |

 ,
(6-1)

where v = (− cos θ, 0,− sin θ), p = (cos(θ + ϑ), 0, sin(θ + ϑ)) and q =
(− sin θ, 0, cos θ). Consider the subset of SO3(R) consisting of all matrices
above, that is:

C =
{
Q̃(θ, ϑ, ρ) ∈ SO3(R); θ ∈ (ρ0, π − ρ0), ϑ ∈ (ρ0, π − ρ0), ρ ∈ [0, 2π)

}
.

We view SO3(R) as the unit tangent bundle on the sphere. For each
Q̃(θ, ϑ, ρ) ∈ C there is an obvious axis v = (− cos θ, 0,− sin θ) in which the
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Figure 6.1: This is an illustration of matrices in C viewed as tangent vectors
with the base point on the sphere. In the images above, the red circles are left
and right tangent circles at I of radius ρ, the fan shaped pieces on the surface
of the sphere represents all possible tangent vectors that are in C.

unitary vector field V , defined in S2 − {v,−v}, tangent to the anticlockwise
rotation around this axis satisfy the following three properties:

1. V (e1) = −e2.

2. V (Q̃e1) = Q̃e2.

3. ρ < d(v, e1), d(v, Q̃e1) < π − ρ.

This property guarantees that we can attach the same arcs of circles on
the endpoints of all curves in Lρ(Q̃) simultaneously. More details are in the
demonstration of the proposition below.

Proposition 6.1. If Q ∈ C then the natural inclusion i : Lρ0(Q) ↪→ I(I,Q)
is a homotopic equivalence.

Proof. Given a Q ∈ C, there exists θ ∈ (ρ0, π − ρ0), ϑ ∈ (ρ0, π − ρ0)
and ρ ∈ [0, 2π) such that Equation (6-1) holds. For each continuous map
f : K → Lρ0(Q) and given a p ∈ K, denote f(p) = γ : [0, 1] → S2 and
γ ∈ Lρ0(Q). Consider the family of curves given by γτ , where τ ∈ [0,+∞)
defined in the equation below.

γτ (t) =


ζ−v,θ,	(tτ) t ∈ [0, 1][
Rτ (−v)

]
(γ(t− 1)) t ∈ [1, 2]

ζ−v,θ+ϑ,�((t− 2)τ) t ∈ [2, 3]

The first and the last curve in the concatenation above are arc of circles, for
definitions, refer Equations (3-4) and (3-5). These circles are reparametrized so
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that the endpoint of ζ−v,θ,	 is
[
Rτ (−v)

]
(γ(0)) and the start point of ζ−v,θ+ϑ,�

is
[
Rτ (−v)

]
(γ(1)).

Thus, for any integer n, we have a homotopy between f and f [t0#2n] in
Lρ0(Q). This homotopy is defined by Hn : K × [0, 2nπ + 1]→ Lρ0(Q),

H(p, τ) =
 γτ τ ∈ [0, 2nπ]
γ̃n,τ τ ∈ [2nπ, 2nπ + 1]

where γ̃n,τ is sliding the loops ζ−v,θ,	 and ζ−v,θ+ϑ,� to the position t0 then
transform them into loops of great circles.

By Proposition 3.20, if f : K → Lρ0(Q) is homotopic to a constant in
I(I,Q), then there exists an n ≥ 1 such that f [t0#2n] is homotopic to a constant
in Lρ0(Q). Since f [t0#2n] and f are homotopics in Lρ0(Q). This proves that f
is homotopic to a constant in Lρ0(Q).

Conversely, it is trivial that any f : K → Lρ0(Q) is homotopic to a
constant in Lρ0(Q) imply that f is homotopic to a constant in I(I,Q). So the
inclusion map i : Lρ0(Q) ↪→ I(I,Q) is a homotopic equivalence. �

6.2
Oriented circles and some basic properties

In the hypothesis of the main theorem we considered a CSC curve. The
purpose of this subsection is to define concepts and basic properties to compute
the length of a CSC curve.

Definition 6.2 (Oriented circle). An oriented circle on S2 is a curve given by

C(η) = M(sin ξ, cos ξ cos η, cos ξ sin η), with η ∈ [0, 2π] and M ∈ SO3(R).

Here ξ ∈ (0, π) is the radius of the circle (measured on sphere).

Provided an oriented circle of radius ρ0, we look at the vector field gen-
erated by tangent vectors of geodesic segment of length π starting tangentially
at the circle. This vector field is defined in entire S2 except the two open discs
of radius ρ0. We denote C1(v) the counter-clockwise oriented circle centered
at the point v ∈ S2 with radius ρ0, in the same manner, we use C2(v) to de-
note the clockwise oriented circle centered at v with radius ρ0. The following
proposition is straightforward.

Proposition 6.3 (properties of oriented circles). Given two oriented circles
of the same radius 0 < r < π

2 and the opposite orientation on sphere S2, C1(p)
and C2(q), then:
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• If d (p, q) < 2r then there is no geodesic tangent to both C1(p) and C2(q)
with the same orientation as in both circles.

• If d (p, q) ≥ 2r and q 6= −p then there are two geodesics tangent to both
C1(p) and C2(q) with the same orientation as in both circles.

• If q = −p then every geodesic tangent to C1(p) is also tangent to C2(q).
In this case, C1(p) = −C2(q).

Given two oriented circles of the same radius 0 < r < π
2 and the same

orientation on S2, C1(p) and C1(q), then:

• If d (p,−q) < 2r then there is no geodesic tangent to both C1(p) and C1(q)
with the same orientation as in both circles.

• If d (p,−q) ≥ 2r and q 6= p then there are two geodesics tangent to both
C1(p) and C1(q) with the same orientation as in both circles.

• If q = p then every geodesic tangent to C1(p) is also tangent to C1(q). In
this case, C1(p) = C1(q).

We are interested in studying such vector field defined for the following
circles C1(p1), C2(p2), C1(q1) and C2(q2). Note that the first two circles are
tangent to each other at the point e1 and have direction e2, and the last two
circles are tangents at Qe1 with tangent direction Qe2. For simplicity in the
next theorem and its proof we denote:

C1 := C1(p1) C2 := C2(p2)
C3 := C1(q1) C4 := C2(q2)

6.3
Computing the length of candidates for the length-minimizing curve

We re-enunciate the adapted version of Theorem 3.2 by F. Monroy-Perez
in [18].

Theorem 6.4. Let ρ ∈
(
0, π2

]
and κ = cot ρ. Every length-minimizing curve

in L̄ρ(I,Q) is a concatenation of at most three pieces of arcs with constant
curvature equal to +κ, −κ and 0. Moreover,

1. If the length-minimizing curve contains a geodesic arc, then it is of the
form CSC.

2. If the length-minimizing curve is of the form CCC. Let α, λ and β be
angles of the first, the second and the third arc respectively. Then
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(a) min{α, β} < π sin ρ.

(b) λ > π.

(c) max{α, β} < λ.

To determine whether a Dubins’ curve is unique, we need to compare
the length of each candidate. Here we assume that 〈q1, e2〉 > 0, 〈q2, e2〉 > 0
and nQ ≥ 1 (this implies C1 ∩ C4 = C2 ∩ C3 = ∅). By Corollary 3.4, there
are essentially 8 candidates for the shortest curve which are of type CSC (see
Figure 6.2). For each of 4 cases below, there are two different choices for the
geodesic segment:

1. Concatenation of an arc of circle C1, a geodesic segment and an arc of
circle C3.

2. Concatenation of an arc of circle C1, a geodesic segment and an arc of
circle C4.

3. Concatenation of an arc of circle C2, a geodesic segment and an arc of
circle C3.

4. Concatenation of an arc of circle C2, a geodesic segment and an arc of
circle C4.

To calculate the length of these candidates we need some elementary
formulas from spherical trigonometry. Denote a CSC curve by γ, we denote
the angle of the first arc by α, the second arc by θ and the third arc by β.
Then:

Length(γ) = θ + (α + β) sin ρ0. (6-2)
We shall explicit the relation between the numbers θ, α and β, and the final
frame Q which appears in the definition of L̄ρ0(Q). We start with Case 1 (Case
4 is analogous).

C1 C3 C1

C4 C2

C3

C2 C4

Figure 6.2: These are example of curves for Cases 1-4 respectively, from left to
right.

Set a as the endpoint of the first arc of γ, b as the start point of the last
arc of γ. Draw two great circles. First one starts from a and passes through
p1 by the shortest arc. Second one starts from b and passes through q1 by the
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a b

c

p1 q1

θ

e2

d

Qe2

e

f := p1 × q1

θ

∠
_
pq

π
2 − ρ0

π
2 − ρ0

Figure 6.3: These are illustrations for Case 1. In the illustration, the circle
containing arc _ac and the circle containing arc

_
bc represent geodesics on

sphere. On the right illustration, it shows tangent vectors of S2 translated so
that its base point is at the origin. The thick curve is trajectory of γ′. All
curves in the image are segments of great circles on sphere.

shortest arc. These two great circles meet by first the time at a point which
we shall call it c (see Figure 6.3).

Note that on the triangle 4abc we have the angle ∠cab = π
2 and bc = π

2 ,
by Sine rule, we get ∠bca = ab = θ. Also, observe that cp1 = ca−p1a = π

2 −ρ0,
cq1 = cb − q1b = π

2 − ρ0. Now applying Cosine rule on triangle 4p1q1c, and
considering previous relations, we deduce the following equation for θ:

cos θ = 〈p1, q1〉
cos2 ρ0

− tan2 ρ0. (6-3)

Next, we need to write (α+β) in terms of known parameters. For this we
look at the γ′ translated into S2 as shown on the right-hand side in Figure 6.3.
First we observe since γ is concatenation of three arcs of circles, its derivative
γ′ may be split into three geodesic segments. With the first segment lies in the
great circle perpendicular to p1 and the last segment lies in the great circle
perpendicular to q1. Obviously, these two great circles intersect each other at
points ±p1× q1 and the angle between them is ∠ _

p1q2. We denote f := p1× q1.
On the other hand, the middle segment de has length θ. Considering the
variation on radius of curvature of γ, we deduce that ∠fde = π

2 − ρ0 and
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Configuration 1

Configuration 2

Configuration 3

Configuration 4

Figure 6.4: This figure illustrates “railroads” of trajectories of tangent vector
for the all four configurations above. All curves in two images above are great
circles on sphere and marked angles measures exactly π

2 − ρ0.

∠def = π
2 + ρ0. Denote by L the length of the shorter arc from f to e. By

applying Sine rule on triangle 4fde, we obtain:

sinL = cos ρ0 · sin θ
sin(∠ _

p1q1)
. (6-4)

We also have relations:

α = L− ∠
_

e2(−f) and β = L− ∠
_
fQe2 where f = p1 × q1. (6-5)

Since the values of ∠
_

e2(−f) and ∠
_
fQe2 may be calculated directly in

terms of Q, so Equations (6-2), (6-3), (6-4) and (6-5) are complete formulas
that give the length of γ for Case 1. Although they are technically calculable,
these formulas involve taking several times inverse of trigonometric functions.
It is not clear for the author whether these formulas may be simplified into
shorter expressions.

Cases 2 and 3 are also analogous. Here we present the demonstration for
Case 2. The procedure is similar to Case 1. Set a as the endpoint of the first
arc of γ, b as the start point of the last arc of γ. Draw two great circles. First
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one starts from a, and passes through p1 by the shortest arc. Second one, in
contrast with the previous case, starts from q1, and passes through b by the
shortest arc. These two great circles meet by the first time at a point which
we call c (see Figure 6.5).

a b

c

p1

q2

θ

e2

d

Qe2

e
θ

f := p1 × q1

θ

∠
_
pq

π
2 − ρ0

π
2 − ρ0

Figure 6.5: These are illustrations for Case 2. In the illustration, the circle
containing arc _ac and the circle containing arc

_
bc represent geodesics on

sphere. On the right illustration, it shows tangent vectors of S2 translated so
that its base point is at the origin. The thick curve is trajectory of γ′. All
curves in the image are segments of great circles on sphere.

Note that on the triangle 4abc, ∠cab = π
2 and bc = π

2 , and by applying
the sine rule, we obtain ∠bca = ab = θ. Also, observe that cp1 = ca − p1a =
π
2 − ρ0, cq2 = cb + q2b = π

2 + ρ0. Now applying the cosine rule on the
triangle4p1q2c, and considering the previous relations, we deduce the following
equation for θ:

cos θ = 〈p1, q2〉
cos2 ρ0

− tan2 ρ0. (6-6)

Now we proceed to write (α+ β) in terms of the known parameters. For
this we look at the γ′ translated into S2 as shown in Figure 6.5. Again the
derivative γ′ may be split into three geodesic segments: the first segment lies
in the great circle perpendicular to p1, the last segment lies in the great circle
perpendicular to q2 and the middle segment has length θ. Two great circles
intersect each other at points ±p1 × q2 and the angle between them is ∠ _

p1q2.
We denote f := p1× q1. Considering the variation on radius of curvature of γ,
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we deduce that ∠fde = ∠def = π
2 − ρ0. Let L the length of the short arc from

f to e. By applying the sine rule on the triangle 4fde, we obtain:

sinL = cos ρ0 · sin θ
sin(∠ _

p1q2)
. (6-7)

We also have relations:

α = ∠
_
fe2 −L and β = ∠

_
fQe2 −L where f = p1 × q1.. (6-8)

Since the values of ∠
_
fe2 and ∠

_
fQe2 may be calculated directly in terms

of Q, these are formulas to obtain the length of γ for Case 2.
Given a Q ∈ SO3(R) such that C1∩C4 and C1∩C4 consist of, at most, one

point (i.e. circles are tangent). Formulas (6-2), (6-3), (6-4), (6-5), (6-6), (6-7)
and (6-8) permit us to obtain exact length of all possible CSC curves thus
to determine which curve is length-minimizing. It is unclear for the author if
those formulas may be simplified.

6.4
Curve shortening

We will use the following parallel-meridian coordinates on sphere. Let
v ∈ S2, each vector u ∈ S2 may be written as (θ(u), ϕ(u)) ∈ [0, π] × [−π,+π)
with θ(u) = d(u, v). These values are unique if, and only if, u 6= {−v, v}. We
often refer the coordinate θ(u) as v-parallel coordinate of the vector u.

Let us v ∈ S2, we define a vector field in S2 r {v,−v}, given by
Wv(w) := v×P (w) where × is the usual cross product of vectors in R3 and P

is the normalized projection of w onto plane perpendicular to v.
This subsection is for the characterization of length-minimizing curves.

We use an idea similar and inspired by Birkhoff curve shortening (see [10]).
Similar ideas and related studies by others may be found in [18], [9], [8], [5],
[6] and [7]. Given a curve γ ∈ L̄ρ0(Q), let L0 be the length of γ, we construct
a new curve that is shorter than or has the same length as the original curve,
by the following process: we separate the curve in small sections, each section,
except the first and last (that have length ≤ l), have the fixed length l, with
l ≤ π sin ρ0. Then we replace each section for another segment that minimizes
the length with the same starting and ending Frenet frames as before. The
resulting curve will be shorter or has the same length as γ. Moreover, both
curves are homotopical to each other.

It is enough to prove that each section is homotopic:
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Lemma 6.5. Let P ,Q ∈ SO3(R) and let α ∈ L̄+κ0
−κ0(P ,Q) be a curve of length

l, with l ≤ π sin ρ0, and suppose also that ρ0 ≤ π
4 . Let α0 be the shortest curve

in L̄+κ0
−κ0(P ,Q). Then α0 and α are homotopic within L̄+κ0

−κ0(P ,Q).

Proof. Applying the transformation P T to the curve α, we may assume without
loss of generality that P = I. Since Length(α) ≤ π sin ρ0, α lies inside a ball
of radius π sin ρ0 centered at α(0) = (1, 0, 0). First, we show that there exists
a vector v ∈ S2 ∩ (1, 0, 0)⊥ such that 〈α′(t), v〉 ≥ 0 for all t ∈ [0, 1].

Suppose there is no such v. Then there exists a u ∈ S2 ∩ (1, 0, 0)⊥ such
that we can find t1, t2 ∈ [0, 1], t1 < t2 satisfying following 3 properties:

1. 〈α′(ti), u〉 = 0, for i = 1, 2.

2. 〈α′(t1)× (1, 0, 0), u〉, 〈α′(t2)× (1, 0, 0), u〉 have opposite signs.

3. 〈α′(t), u〉 > 0 for all t ∈ [t1, t2].

Now we check that the length of segment α([t1, t2]) is greater or equal to
π sin ρ0. We suppose without loss of generality that 〈α(t1), u〉 < 〈α(t2), u〉 and
〈α(t1)×(1, 0, 0), u〉 > 0. We consider the circles C1 and C2 of radius ρ0 tangent
to α at points α(t1) and α(t2) respectively, and that these circles lie on the
right side of the curve. The curve α cannot cross neither of two circles C1

and C2. Properties 1-3 imply that the length of α([t1, t2]) must be greater or
equal to half turn of either C1 or C2. This implies that its length must be
greater than or equal to π sin ρ0. Thus t1 = 0, t2 = 1. So α is an arc of a
circle of radius ρ0 which clearly has the direction (0, 1, 0) satisfying the desired
〈α′(t), (0, 1, 0)〉 ≥ 0.

Since there exists a v ∈ S2 ∩ (1, 0, 0)⊥ for all t ∈ [0, 1], we parametrize
both α and α0 by polar coordinates with v as axis:

α(t) =
(
θ(t), ϕα(t)

)
α0(t) =

(
θ(t), ϕα0(t)

)
We define the homotopy from α0 to α as αs(t) =

(
θ(t), sϕα(t)+(1−s)ϕα0(t)

)
.

It is easy to check that αs ∈ Lρ0(I,Q) for all s ∈ [0, 1]. �

Now given a curve γ, we will construct a sequence of curves (ηn)n∈N by the
following the method below. First we consider a sequence of numbers (lk)k∈N
that is dense in the interval [0, 1] and whose set of accumulation points is the
entire [0, 1]:
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m1,1 = 1
2 m1,2 = 1

m2,1 = 1
4 m2,2 = 2

4 m2,3 = 3
4 m2,4 = 1

m3,1 = 1
8 m3,2 = 2

8 m3,3 = 3
8 m3,4 = 4

8 . . . m3,8 = 1
... ... ... ... ...

mk,1 = 1
2k mk,2 = 2

2k mk,3 = 3
2k mk,4 = 4

2k . . . mk,2k = 1
... ... ... ... ...

Define the sequence (lk)k∈N by setting l1 = m1,1, l2 = m1,2, l3 = m2,1,
l4 = m2,2, l5 = m2,3, l6 = m2,4, l7 = m3,1, l8 = m3,2, so on. Set η0 := γ, for
each n ≥ 0 we define each curve ηn+1 as the curve ηn separated into sections of
length ln+1π sin ρ0, π sin ρ0, π sin ρ0, . . . , π sin ρ0, mn ≤ π sin ρ0, respectively,
where mn is the remaining length at the end of the curve ηn. Then we replace
each section by a segment that minimizes the length. By Lemma 6.5, since each
small segment is homotopical to its replacement within L̄+κ0

−κ0 , we conclude that
ηn+1 and ηn are homotopical in L̄+κ0

−κ0(I,Q).
Since L̄ρ0(Q) is closed, each ηn has limited curvature and the length of

ηn is non-increasing. Thus the sequence (ηn)n∈N has a convergent subsequence,
denote by γ̃ ∈ L̄ρ0(Q) the limit of this subsequence. The following proposition
is an immediate consequence of the construction.

Proposition 6.6. Let γ̃ be a limit obtained by the shortening process above.
Then γ̃ consists of concatenation of the following segments:

• The first segment has curvature ±κ0.

• The segments in the middle are either: geodesics or arcs of circle with
curvature ±κ0 length ≥ π sin ρ0.

• The last segment has curvature ±κ0.
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