
```

Alexander Chávez López

How does refactoring affect internal quality
attributes? A multi-project study

Dissertação de Mestrado

Dissertation presented to the Programa de Pós–graduação em
Informática, of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática.

Advisor: Prof. Alessandro Fabricio Garcia

Rio de Janeiro
September 2017

Alexander
Rectangle

Alexander
Rectangle

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Alexander Chávez López

How does refactoring affect internal quality
attributes? A multi-project study

Dissertation presented to the Programa de Pós–graduação em
Informática, of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática. Approved by the
Undersigned Examination Committee.

Prof. Alessandro Fabricio Garcia
Advisor

Departamento de Informática – PUC-Rio

Prof. Arndt von Staa
Departamento de Informática – PUC-Rio

Prof. Gleison dos Santos Souza
– UNIRIO

Prof. Márcio da Silveira Carvalho
Vice Dean of Graduate Studies

Centro Técnico Científico – PUC-Rio

Rio de Janeiro, September the 23rd, 2017

Alexander
Rectangle

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



All rights reserved.

Alexander Chávez López
Alexander is a bachelor in Computer Engineering at Matanzas
University “Camilo Cienfuegos” of Cuba (2012). He has wor-
ked on research projects in software engineering, information
systems, and higher education in computing. Relevant venues
have been accepting his work for publication, such as Confe-
rence on Foundations of Software Engineering (FSE’17), Bra-
zilian Symposium on Software Engineerings (SBES’17), In-
ternational Workshop on Semantic Evaluation (SemEval’14),
and Joint Conference on Lexical and Computational Seman-
tics (SEM’12 and ’13). Alexander is a research scholar in soft-
ware engineering for Opus Research Group at PUC-Rio.

Ficha Catalográfica
Chávez López, Alexander

How does refactoring affect internal quality attributes?
A multi-project study / Alexander Chávez López; advisor:
Alessandro Fabricio Garcia. 2017.

80 f. : il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Informática, 2017.

Inclui bibliografia

1. Informática – Teses. 2. Refatoração;. 3. Re-
refatoração;. 4. Qualidade Estrutural de Código-Fonte;. 5.
Atributos Internos de Qualidade;. 6. Métricas de Software..
I. Garcia, Alessandro Fabricio. II. Pontifícia Universidade Ca-
tólica do Rio de Janeiro. Departamento de Informática. III.
Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



To my dad. There is nothing I would not do,
to hear your voice again.

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Acknowledgments

To my Lord for being so special and always guiding me. To my parents, for
the support in both sunny and stormy days. To my mother for being my guide
and co-author of my victories. To my dad for his support and love until his
last days. To my wife for always being ready to help me in every moment. I
love you now and forever.

To the advisor of this dissertation, for the support and for being an essential
part of my professional progress. I have never seen such a qualified educator
like him. To my friend Eduardo for all the help. I never met someone who
radiates so much positive energy as Eduardo. To all my colleagues and friends
from the OPUS research group, especially Diego for allowing me to be part of
the “refactoring team.”

To my niece and nephew, Lindsay and Anthony, who filled me with inspiration.
To my brothers and sister Ruben, Orlandito, and Elizabeth. To my friends
Otoniel, Hector, Armando, Jalal, Alain, and Adriel.

Finally, to the Informatics Department (DI), as well as the Coordination for
the Improvement of Higher Education Personnel (CAPES). I appreciate every
opportunity that I had, including the financial support. Thank you very much.

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Abstract

Chávez López, Alexander; Garcia, Alessandro Fabricio (Advisor).
How does refactoring affect internal quality attributes? A
multi-project study. Rio de Janeiro, 2017. 80p. Dissertação de
mestrado – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.
Developers often apply code refactoring to improve the internal qua-

lity attributes of a program, such as coupling and size. Given the structural
decay of certain program elements, developers may need to apply multiple
refactorings to these elements to achieve quality attribute improvements.
We call re-refactoring when developers refactor again a previously refacto-
red element in a program, such as a method or a class. There is limited
empirical knowledge on to what extent developers successfully improve in-
ternal quality attributes through (re-)refactoring in their actual software
projects. This dissertation addresses this limitation by investigating the
impact of (re-)refactoring on five well-known internal quality attributes:
cohesion, complexity, coupling, inheritance, and size. We also rely on the
version history of 23 open source projects, which have 29,303 refactoring
operations and 49.55% of re-refactoring operations. Our analysis revealed
relevant findings. First, developers apply more than 93.45% of refactoring
and re-refactoring operations to code elements with at least one critical
internal quality attribute, as oppositely found in previous work. Second,
65% of the operations actually improve the relevant attributes, i.e. those
attributes that are actually related to the refactoring type being applied;
the remaining 35% operations keep the relevant quality attributes unaffec-
ted. Third, whenever refactoring operations are applied without additional
changes, which we call root-canal refactoring, the internal quality attributes
are either frequently improved or at least not worsened. Contrarily, 55% of
the refactoring operations with additional changes, such as bug fixes, sur-
prisingly improve internal quality attributes, with only 10% of the quality
decline. This finding is also valid for re-refactoring. Finally, we also sum-
marize our findings as concrete recommendations for both practitioners and
researchers.

Keywords
Refactoring; Re-refactoring; Code Structural Quality; Internal Qua-

lity Attributes; Software Metrics.

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Resumo

Chávez López, Alexander; Garcia, Alessandro Fabricio. Como a
refatoração afeta os atributos de qualidade interna? Um
estudo multi-projeto. Rio de Janeiro, 2017. 80p. Dissertação de
Mestrado – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.
Desenvolvedores frequentemente aplicam refatoração para melhorar os

atributos internos de qualidade em projetos de software, tais como aco-
plamento e tamanho. Chamamos de rerrefatoração quando desenvolvedores
refatoram um elemento de código-fonte previamente refatorado. O conheci-
mento empírico é limitado acerca de até que ponto refatoração e rerrefatora-
ção de fato melhoram os atributos internos de qualidade. Nesta dissertação,
nós investigamos a limitação supracitada com base em cinco atributos inter-
nos de qualidade conhecidos: acoplamento, coesão, complexidade, herança
e tamanho. Também nos baseamos no histórico de versionamento de 23
projetos de software de código-fonte aberto, os quais possuem 29,303 ope-
rações de refatoração e 49.55% de rerrefatorações. Nossa análise revelou
descobertas interessantes apresentadas como segue. Primeiro, desenvolve-
dores aplicam mais de 93.45% de operações de refatoração e rerrefatoração
sobre elementos de código-fonte com ao menos um atributo interno de qua-
lidade crítico, contrariando trabalhos anteriores. Segundo, para 65% das
operações, os atributos internos de qualidade relacionados melhoram, en-
quanto que os demais 35% permanecem não-afetados. Terceiro, sempre que
operações de refatoração são aplicadas sem mudanças adicionais no código-
fonte, o que chamamos de operação de refatoração root-canal, os atributos
internos de qualidade frequentemente melhoram, ou ao menos, não pioram.
Ao contrário, 55% das operações de refatoração aplicadas com mudanças
adicionais, tais como correção de bugs, surpreendentemente melhoram os
atributos internos de qualidade, com somente 10% de piora, o que também
é válido para rerrefatoração. Nós sumarizamos nossas descobertas na forma
de recomendações para desenvolvedores e pesquisadores.

Palavras-chave
Refatoração; Re-refatoração; Qualidade Estrutural de Código-Fonte;

Atributos Internos de Qualidade; Métricas de Software.

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Table of contents

1 Introduction 13
1.1 (Re-)Refactoring and Critical Internal Quality Attributes 15
1.2 Effects of Refactoring on Internal Quality Attributes 16
1.3 Effects of Re-refactoring on Internal Quality attributes 17
1.4 Contributions 18
1.5 Dissertation Outline 20

2 Background and Related Work 21
2.1 Refactoring 21
2.2 Internal Quality Attributes 25
2.3 Software Quality Metrics 26
2.4 Previous Work on Refactoring and Software Quality 27
2.5 Previous Work on Refactoring and Internal Quality 29
2.6 Previous Work on Re-Refactoring and Software Quality 30
2.7 Final Remarks 30

3 Study Design 32
3.1 Goal and Research Questions 32
3.2 Selection of Software Projects 37
3.3 Refactoring Detection and Classification 38
3.4 Mapping Refactoring to Internal Quality Attributes 39
3.5 Measuring Internal Quality Attributes 39
3.6 Selected Tools 41
3.7 Threats to validity 42
3.8 Final Remarks 44

4 (Re-)Refactoring Affecting Critical Elements 45
4.1 Overall Results 45
4.2 Contradicting Findings and Implications: Discussion 49
4.3 Final Remarks 52

5 Effects of Refactorings on Internal Quality Attributes 53
5.1 Answering RQ2 with Two Approaches 53
5.2 The Most Metrics Approach 54
5.3 The At Least One Metric Approach 56
5.4 Refactoring Recommendations 57
5.5 Root-canal versus Floss Refactoring 60
5.6 Example 62
5.7 Final Remarks 64

6 Re-Refactoring Impact on Internal Attributes 65
6.1 Answering RQ3 with Two Approaches 65
6.2 The Most Metrics Approach 65
6.3 The At Least One Metric Approach 67

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



6.4 Root-canal versus Floss Re-Refactoring 68
6.5 Final Remarks 70

7 Conclusion and Future Work 71

Bibliography 73

A Published paper 80

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



List of figures

Figure 2.1 Root-canal refactoring and Floss refactoring 24

Figure 3.1 Study Design 33

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



List of tables

Table 2.1 Analyzed refactoring types, extracted from (1) 22

Table 3.1 Software Projects Analyzed in this Study 38
Table 3.2 Expected effect on internal quality attributes 40
Table 3.3 Quality metrics used in this study 41

Table 4.1 (Re-)Refactoring and elements with critical attributes 46
Table 4.2 Refactoring types and elements with critical attributes 49
Table 4.3 Comparison with the study design (17) 50
Table 4.4 Quality metrics grouping of Bavota et al. (17) study 51

Table 5.1 Notation of Software Metric Behavior 53
Table 5.2 Refactoring Effect Using the Most Metrics Approach 54
Table 5.3 Refactoring Effect Using the At Least One Metric Approach 56
Table 5.4 Refactoring recommendations based on attributes. 59
Table 5.5 Most Metrics approach by refactoring tactic 61
Table 5.6 At Least One Metric approach by refactoring tactic 61
Table 5.7 Effects on internal attributes caused by Move Method 63

Table 6.1 Re-refactoring impact using the Most Metrics approach 66
Table 6.2 Re-refactoring impact with At Least One Metric approach 67
Table 6.3 Refactoring tactics and Most Metrics approach 68
Table 6.4 Refactoring tactics and At Least One Metric approach 69

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



You never fail until you stop trying.

Albert Einstein, (1879-1955).

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



1
Introduction

Developers apply refactoring operations to improve the code structural
quality (1). These operations may affect multiple code elements together (2, 3).
For instance, Move Method moves a method from one class to another aimed at
improving the class cohesion. In turn, Extract Superclass (1) extracts a super-
class and moves the functionalities shared by multiple classes to the superclass,
which affects both size and inheritance of the classes converted into subclasses.
Thus, one could expect that different refactoring types affect specific internal
quality attributes. Consequently, by analyzing internal quality attributes, such
as cohesion and size, could reveal the code structural improvements caused by
refactoring operations. However, we have limited empirical evidence on the
effects of refactoring operations on internal quality attributes.

Studies often assume that internal quality attributes help assess the code
structural quality (4, 5). For instance, the coupling attribute is measured by
the number of dependencies that one code element has with others (6). In
fact, assuring code structural quality often concerns developers, who intend to
foster the longevity of their software projects (7, 2). Thus, there is a need for
measuring the code structural quality and drawing strategies for improving it.
Software metrics serve as indicators of the degree of satisfaction for certain
internal quality attributes. Several studies (8, 9, 10) propose and evaluate
metrics for internal quality attributes like coupling (how much two code
elements inter-depend), size (the length of the code elements), and complexity
(how difficult is to read and understand a code element).

Developers usually apply two refactoring tactics (11): root-canal refactor-
ing and floss refactoring. They apply root-canal refactoring when they aim at
exclusively improving the code structural quality. In contrast, developers ap-
ply floss refactoring aimed at reaching a particular goal rather than improving
the code structural quality, such as adding a new functionality or fixing a bug.
During root-canal refactoring, developers improve the code structural quality
without further changes in the source code. However, during floss refactoring,
developer applies refactoring operations and additional changes to the source
code. Because of the differences between refactoring tactics, one could analyze
them separately. However, we lack studies that address this topic.

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 1. Introduction 14

Previous studies (12, 13) assess refactoring operations from the viewpoint
of developers, aimed at investigating how often developers apply these oper-
ations (11), or what motivates developers when refactoring code (13). Other
studies (14, 15, 16) assess the effect of refactoring operations applied by devel-
opers on external quality attributes of software projects, such as the reuse of
refactored elements (16), or the reduction of software maintenance effort (15).
Recent studies (17, 18, 19) focus on the effects of refactoring operations on
poor code structures, which are characterized by multiple internal quality at-
tributes. They observe that developers are often concerned on refactoring to
improve the code structural quality. They also assume that a single refactor-
ing operation improves different internal quality attributes together. However,
they do not assess such effects on each internal quality attribute in isolation.

We illustrate how relevant is assessing the effect of refactoring operations
on each internal quality attribute as follows. Let us consider a class that
centralizes most of the functionalities in a software project, which leads to
a high complexity. In addition, the centralized functionalities address varied
concerns of the project, which leads to a low class cohesion. Finally, the class
has several dependencies with other classes, which characterizes high coupling.
Previous work (17, 18) limits to observe whether refactoring operations affect
a poor code structure only when such operations affect all three attributes
together, namely complexity, cohesion, and coupling. Their results suggest
that refactoring operations do not positively affect such poor code structures,
though each operation aims at improving the code structural quality. However,
it may be the case that each refactoring operation does not suffice to improve
the whole poor code structure. In fact, they may improve certain internal
quality attributes in isolation. Thus, by assessing the effect of refactoring
operations on each attribute, we may reveal such effects.

Besides refactoring, the literature introduces re-refactoring (20, 21, 22)
as a sequence of refactoring operations applied to a single code element.
Similarly to refactoring, re-refactoring aims at improving the code structural
quality (22). To investigate the effects of re-refactoring on internal quality
attributes is relevant due to the following reasons. First, since re-refactoring
occurs when developers apply several refactoring operations to a single code
element, it may suggest that the developers are mostly concerned about
problems in the code structural quality which are difficult to eliminate. Second,
by applying several refactoring operations to a single code element, developers
may affect differently the code structural quality when compared to refactoring
operations applied in isolation. Again, there is still limited empirical knowledge
on the effects of re-refactoring on internal quality attributes.

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 1. Introduction 15

In a previous work (23), we partially address the aforementioned limita-
tions. Our goal was empirically assessing the effects of refactoring operations
on internal quality attributes. We rely on the version history of 23 Java open
source software projects of GitHub with 113,306 commits and 29,303 refac-
toring operations. We consider 11 of the refactoring types most applied by
developers (2, 12). We also consider five internal quality attributes often men-
tioned in the well-known Fowler’s book (1): cohesion, complexity, coupling,
inheritance, and size. Surprisingly, we observe that developers very often ap-
ply refactoring operations on code elements with critical internal quality at-
tributes. These operations mostly improve or keep unaffected the internal qual-
ity attributes, which contradicts previous work (17, 18).

This dissertation presents an empirical studies aimed at understanding
the relationship of refactoring and re-refactoring operations with internal
quality attributes. Our results were partially reported in a recent conference
paper (23). We overview our studies as follows. First, we assess whether
refactoring and re-refactoring operations often affects code elements with
critical internal quality attributes. For this purpose, we assess both refactoring
operations, which have been limitedly explored by previous work (17, 18),
in addition to re-refactoring, which no previous work have explored. Second,
we deeply assess the effects of refactoring and re-refactoring operations on
internal quality attributes in general and per refactoring type. We rely the five
aforementioned internal quality attributes. We also aim at understanding what
internal quality attributes mostly improve when the developers apply certain
refactoring types. Third, we present several recommendations for developers
and researchers on the application of both refactoring and re-refactoring
operations, based on the internal quality attribute which could improve, remain
unaffected, or worsen depending on the applied refactoring type. We discuss
our empirical study, findings, and implications as follows.

1.1
(Re-)Refactoring and Critical Internal Quality Attributes

We conducted an empirical study aimed at assessing how often devel-
opers apply refactoring and re-refactoring operations on code elements with
critical internal quality attributes. We define critical internal quality attribute
as an attribute which has a critical value for at least one metric used to quan-
tify it. We also define a critical metric value as a metric value which extrap-
olates a reference value (24). Our goal is revealing whether refactoring and
re-refactoring operations often target on poor code structures indicated by
the critical internal quality attributes. In case these operations actually affect

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 1. Introduction 16

critical attributes, developers may use both refactoring and re-refactoring op-
erations as useful hints of parts in the source code which require improvements
of the code structural quality.

Our results suggest that developers very often apply refactoring and
re-refactoring operations on code elements with critical internal quality at-
tributes. In fact, 94.64% and 99.87% of the refactoring and re-refactoring op-
erations affect poor code structures, regardless the refactoring tactic. Moreover,
79.43% and 99.64% of the refactoring and re-refactoring operations affect code
elements with multiple critical attributes. Overall, our findings have several im-
plications. For instance, since most operations affect multiple internal quality
attributes together, developers should carefully apply those operations. In ad-
dition, since each refactoring operation may contribute to the decay of the code
structural quality, and 10% more re-refactoring operations affect poor code
structures than refactoring operations, re-refactoring also requires a careful
usage. Finally, regarding refactoring operations only, 72.82% are floss refactor-
ing, i.e., mostly developers are not exactly concerned about improving the code
structural quality. Thus, developers should carefully change the source after
refactoring it, because these changes may negatively affect the code structural
quality.

1.2
Effects of Refactoring on Internal Quality Attributes

Our empirical study also aimed at understanding the consequential effects
of refactoring operations on internal quality attributes. In a first moment,
we focus on refactoring operations only. We then investigate whether the
internal quality attributes tend to improve, worsen, or remain unaffected
as a consequence of refactoring operations applied by developers. Our goal
is to confirm or refute whether developers improve at least one internal
quality attribute after refactoring code elements, as previously speculated
by the literature (1). For instance, we may surprisingly observe that certain
refactoring types tend to worsen specific internal quality attributes.

The emphasis on code structural quality varies depending on the tactic
used by developers to apply refactoring operations. Thus, in order to better
understand the effects of refactoring operations on internal quality attributes,
we consider two refactoring tactics: root-canal refactoring, in which developers
are explicitly concerned with improving the code structural quality, and floss
refactoring, in which developers use refactoring operations as means to reach
other goals rather than only improving the code structural quality, such as
adding new functionalities or fixing bugs. Overall, there is limited knowledge

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 1. Introduction 17

regarding the differences of both tactics. Thus, we aim at observing possible
varied effects for different refactoring tactics applied by developers, regarding
the internal quality attributes.

As a result, we observe that refactoring operations often improve or
keep unaffected the internal quality attributes, regardless the refactoring tactic
(root-canal refactoring and floss refactoring). Our findings confirm the assump-
tions of previous work (25, 26) which state that internal quality attributes like
cohesion and coupling actually provide hints of poor code structures. On the
other hand, our findings contradict observations of previous work (17, 18),
which state that refactoring operations often worsen the code structural qual-
ity. There are several implications of our findings. For instance, because several
refactoring types often improve the code structural quality, developers should
strongly consider applying them to improve the internal quality of their soft-
ware projects. These refactoring types should also be recommended by tools
aimed at supporting the quality improvement of software projects. However,
specific refactoring types which tend to worsen the code structural quality
should be carefully used by developers. In addition, tool aimed at supporting
the quality improvement of projects should warn developers when applying
such refactoring types.

1.3
Effects of Re-refactoring on Internal Quality attributes

Finally, our study aimed at understanding the effects of re-refactoring
operations on the internal quality attributes. Similarly to the study with
refactoring operations, we investigate whether re-refactoring operations tend
to improve, worsen, or keep unaffected the internal quality attributes. Inspired
by previous work (27), we refer to re-refactoring operation as any refactoring
operation applied on a code element anytime after other refactoring operations
being applied on the same code element. The re-refactoring operations may
occur in two situations: exactly in the same commit affected by the previous
refactoring operation; or in a different commit, which is either the next or a
more distant commit in the evolution of the project.

Previous work (2) provide evidence that developers eventually apply re-
refactoring operations on certain code elements, aimed at improving their code
structural quality. However, there is still empirical knowledge on the possible
effects of re-refactoring operations on the code structural quality. In fact, by
relying on Fowler’s definition of refactoring operation (1), one could expect
that multiple refactoring operations applied to a single code element, one after
the other, also improves the code structural quality. Thus, this dissertation

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 1. Introduction 18

addresses the aforementioned limitation by investigating how re-refactoring
operations actually affect the five aforementioned internal quality attributes:
cohesion, complexity, coupling, inheritance, and size.

Due to the lack of empirical evidence of the effects of re-refactoring
operations on internal quality attributes, it could be interesting the study these
operations, which previous work suggest to have a potential to support the
maintenance of software projects (28). In fact, recent studies (29, 27) assume
that re-refactoring could provide several benefits, such as the improve the code
structural quality and prevent the decay of the project quality as a whole. Our
goal is to confirm or refute these assumptions. We expect to provide findings
with relevant implications for both industry and academia.

Similarly to the study with refactoring operations, for some refactoring
types, the internal quality attributes tend to improve or remain unaffected
when developers refactor code that was refactored in the past (re-refactoring).
Finally, there is no difference between the results of refactorings and re-
refactorings operations regarding the effect on the internal quality attributes.

1.4
Contributions

This dissertation summarizes several contributions on the investigation
of refactoring and re-refactoring operations, which provide insights for both
researchers and practitioners. In fact, the observed effects of refactoring and re-
refactoring operations on internal quality attributes could support novel tech-
niques for recommending refactoring operations to developers. By knowing the
refactoring types which improve the code structural quality, these techniques
could suggest operations which fit the expectation of developers regarding the
code structural quality. Moreover, techniques could warn developers when ap-
plying operations which potentially cause the decay of the code structural
quality. We discuss each contribution as follows.

– This dissertation investigates how refactoring and re-refactoring opera-
tions affect internal quality attributes. We observe that developers often
apply these operations on code elements with critical internal quality at-
tributes, regardless their purpose when refactoring code. Moreover, these
operations mostly improve or keep unaffected the code structural qual-
ity. Our results suggest that developers should strongly consider apply-
ing refactoring and re-refactoring to improve the code structural quality.
However, they should be careful when applying certain refactoring types,
which could worsen the code structural quality.

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 1. Introduction 19

– The dissertation also compares our empirical study with previous stud-
ies (17, 18). Surprisingly, our study findings partially contradict the find-
ings of these studies. In fact, they suggest the lack of a clear relationship
between refactoring operations and software metrics for internal quality
attributes (17), or that refactoring operations rarely improve the code
structural quality (18). However, our findings suggest that most refactor-
ing operations are applied on poor code structures, by positively affecting
it and improving the code structural quality.

– Moreover, the dissertation investigates the effects of re-refactoring op-
erations on internal quality attributes, which is barely unexplored by
previous work. Similarly to the analysis of refactoring operations, we ob-
serve that re-refactoring operations tend to improve or remain unaffected
the internal quality attributes for some refactoring types. In addition, our
results suggest that developers tend to apply refactoring operations to
the same code elements in multiple times along the maintenance and
evolution of software projects. This observations is reinforced by the fact
that a half of the refactoring operations analyzed in this dissertation are
also re-refactoring operations.

– By relying on our study with refactoring operations, we provide several
recommendations for applying these operations aimed at improving the
code structural quality. That is, we present what refactoring operations
developers should apply when are concerned about improving certain in-
ternal quality attributes. These recommendations are directly related to
the refactoring types which improve, remain unaffected, or worsen spe-
cific internal quality attributes. Thus, we could help developers in real
development settings during the maintenance of software systems. These
recommendations could support the proposal of refactoring recommenda-
tion tools based on the internal quality attributes which mostly concern
developers and organizations.

– Finally, the dissertation provides a mapping of several refactoring types
from the literature (1) with five well-known internal quality attributes.
Additionally, the dissertation provides a mapping of these five internal
quality attributes with software metrics which are commonly used to
quantify them (30, 31). Although previous work (32) provide similar
mappings, we cover a larger set of refactoring operations, internal quality
attributes, and software metrics. Both mappings may support further
investigations on the code structural quality.

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 1. Introduction 20

1.5
Dissertation Outline

The remainder of this dissertation is organized as follows. Chapter 2
provides background information aimed at help understanding the dissertation
and discusses related work. Chapter 3 describes the study design, including the
study goal and research questions. The chapter also discusses some threats to
the study validity. Chapter 4 presents the findings on how often refactoring
and re-refactoring operations affect code elements with critical internal quality
attributes. Chapter 5 discusses the findings on the effects of refactoring
operations on internal quality attributes. Chapter 6 presents findings with
respect to the effects of re-refactoring operations on internal quality attributes.
Finally, Chapter 7 concludes the dissertation and outlines future directions.

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



2
Background and Related Work

This chapter provides background information. Section 2.1 discusses
refactoring. Section 2.2 discusses internal quality attributes, and Section 2.3
discusses the quality metrics used to quantify each internal quality attribute.
Additionally, we discuss previous work that conduct similar investigations.
Section 2.4 discusses studies that assess the impact of refactoring operations
on software quality from different perspectives. Section 2.5 discusses previous
work that are closely related to ours. Finally, Section 2.6 discusses studies
related to re-refactoring operations.

2.1
Refactoring

Code refactoring means changing the source code without changing the
external behavior of a program but improving its internal code structure (1).
Each refactoring operation is a micro-transformation that affects multiple
elements in the source code. An example of refactoring operation is when
the developer moves a method from one class to another, for example, to
remove excessive dependencies between classes. This refactoring type is called
Move Method. There are several other refactoring types with different purposes,
such as extracting new code elements from excessively complex elements and
managing class inheritances.

We selected 11 refactoring types from the Fowler’s catalog (33). These
refactoring types have been largely investigated in the literature (12). Table 2.1
summarizes the 11 refactoring types analyzed in our study. The first column
presents the refactoring type. The second column informs the problem that
each refactoring type addresses. The third column describes the solution aimed
by applying each refactoring type. For instance, when a class provides a set of
resources to other classes, one may apply a Extract Interface to provide only
the resources of interest to the client classes.

As illustrated in Table 2.1, each refactoring operation is a potential
solution for a structural problem in the source code. Therefore, before select-
ing and applying a refactoring type, developers need to identify what form
of structural problem is occurring. In order to perform this identification,

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 2. Background and Related Work 22

Table 2.1: Analyzed refactoring types, extracted from (1)
Refactoring
Type Problem Solution

Extract
Method

A code fragment can be
grouped together

Turn the fragment into a method
whose name explains the purpose
of the method

Extract
Interface

Several clients use the same
subset of a class’s interface,
or two classes have part of
their interfaces in common

Extract the subset into an
interface

Extract
Superclass

There are two classes with
similar features

Create a superclass and move
the common features to the
superclass

Inline
Method

When a method body is more
obvious than the method itself,
use this technique

Replace calls to the method with
the method’s content and delete
the method itself

Move
Field

A field is, or will be, used by
another class more than the
class on which it is defined

Create a new field in the target
class, and change all its users

Move
Method

A method is, or will be, using
or used by more features of
another class than the class in
which it is deffined

Create a new method with a similar
body in the class it uses most. Either
turn the old method into a simple
delegation, or remove it altogether

Rename
Method

The name of a method does
not reveal its purpose Change the name of the method

Pull up
Field

Two subclasses have the
same field Move the field to the superclass

Pull up
Method

There are methods with
identical results on subclasses Move them to the superclass

Push down
Field

A field is used only by some
subclasses Move the field to those subclasses

Push down
Method

The behavior on a superclass is
relevant only for some of its
subclasses

Move it to those subclasses

developers can rely on the analysis of code smells (1). Code smells are recur-
rent structures in the source code often considered key indicators of software
quality degradation (1, 34, 35). Examples of code smell types vary from
method-level smells, such as Long Method and Feature Envy, to class-level
smells, such as God Class and Shotgun Surgery (36, 1).

Refactored elements. As aforementioned, a single refactoring operation may
affect multiple code elements. Thus, we consider as refactored elements the
set of elements directly involved in the refactoring operation. For instance, let
us consider the Move Method refactoring. In this refactoring type, a method
m is moved from class A to class B. Hence, the set of refactored elements is
{m, A, B}.

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 2. Background and Related Work 23

Refactoring tactics. According to Murphy-Hill (11), there are two ways
of refactoring, namely root-canal refactoring and floss refactoring. In our
study, we investigate these two refactoring tactics. Developers apply root-
canal refactoring when they aim to exclusively improve the code structural
quality. In contrast, developers apply floss refactoring as means to reach
another particular goal rather than only improving the code structural quality,
such as adding a new feature or fixing a bug. In other words, during root-
canal refactoring, developers solely intend to improve the code structural
quality without further alteration to the source code. In contrast, during
floss refactoring, the programmer apply refactoring operations interleaved with
other code editing activities, such as adding a feature or fixing a bug.

Figure 2.1 shows the history of changes of two classes through three
project versions, represented by commits 15, 18 and 26. The DeliveryManager
class is responsible for managing product deliveries and the Client class
has information and responsibilities of each client. The getPriority method,
located in DeliveryManager class, computes the priority of delivery based on
customer data and other criteria related to deliveries, such as the number
of late deliveries (represented by the comment // Other responsibilities). This
method contains too many lines of code and responsibilities, making it difficult
to understand and maintain it. To reduce the length of a method body,
developers apply an Extract Method refactoring operation. In Commit 18,
developers move the code responsible for computing the priority related to
client data for a new method (getClientPriority). In summary, the changes
made in Commit 18 were: (i) creation of a new method (getClientPriority); (ii)
moving part of the body of the long method (getPriority) for the new method;
and (iii) introduction of a call to the new method from which its content was
extracted (body of getPriority). In Commit 18, a root-canal refactoring tactic
was applied, since all changes were related to the refactoring operation.

In Commit 18 of Figure 2.1, we can see that class DeliveryManager is
computing the priority based on the client data (method getClientPriority);
this is a responsibility that corresponds to the class Client. In addition, the
method getClientPriority used data from the Client class more than the class
where it is implemented (class DeliveryManager). To solve this problem,
developers applied in Commit 26 a Move Method refactoring operation type.
The method getClientPriority is moved from DeliveryManager class to the
Client class. In addition, the developer added a new method (getPrice) in
DeliveryManager that is not related to the refactoring operation. In other
words, the developer used refactoring as a means to reach another specific
end, such as adding a new method. This tactic for performing a refactoring

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 2. Background and Related Work 24

operation (Commit 26 ) is called floss refactoring. The analysis of both refac-
toring tactics may help understanding if there is a relationship between the
refactoring tactics and the behavior of internal quality attributes (Section 6.4).

Figure 2.1: Root-canal refactoring and Floss refactoring

Re-refactoring. Developers often need to apply more than one refactoring to
improve various internal quality attributes. For instance, a developer can apply
a refactoring operation in order to improve the coupling attribute. In another
subsequently refactoring operation, the cohesion attribute can be improved.
That is, developers need to re-refactor the code element in order to improve
both coupling and cohesion attributes.

We define re-refactoring as the action of applying another refactoring in
a code element that was refactored before. For instance, in the Figure 2.1,
the getClientPriority method was created by applying an Extract Method
refactoring operation in Commit 18. Then, in Commit 26, the developers
applied a Move Method refactoring operation, moving the getClientPriority
method from DeliveryManager class to Client class. In other words, another
refactoring operation was applied in the same method that was refactored in
Commit 18 (getClientPriority). The refactoring operation applied in Commit

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 2. Background and Related Work 25

26 is a re-refactoring operation, since it was applied to a code element that
was refactored in the past.

2.2
Internal Quality Attributes

Each refactoring operations is often supposed to improve multiple struc-
tural attributes. Internal quality attributes are key indicators of code struc-
tural quality (37). Previous work apply different software quality metrics for
computing internal quality attributes (3). In this dissertation, we analyze five
internal quality attributes, namely cohesion, coupling, complexity, inheritance,
and size. We selected these internal quality attributes because they are closely
related to the 11 refactoring types that we aim to analyze (Section 3.4). We
describe each internal quality attributes as follows.

– Cohesion: Refers to the degree to which class components belong
together, i.e., the degree to which the internal elements of a class are
related to each other (38). Existing techniques can measure cohesion
from different levels of the source code. In the context of our study, we
use techniques to measure cohesion in classes (5, 39) and are explained
in detail in Section 3.5.

– Coupling: Measure of the degree of interdependence between
classes (40). More recent, 30 defined coupling as: “Two classes are
coupled when methods declared in one class use methods or instance
variables of the other classes.". In other words, any evidence of a class
component (method or field) using components of another class consti-
tutes coupling. Since a change in a class component may involve changes
in the classes coupled to it, code elements with low coupling are easier
to maintain (41).

– Complexity: Is the measure of the complexity of a program’s decision
structure and is used to indicate the complexity of a method or module.
In other words, complexity is the measure of the overload of responsi-
bilities and decision of a code element. Cyclomatic complexity (42) is a
typical measure of complexity in method or function. Methods must be
developed with low complexity, since that simple code elements are easy
to understand and maintain (41).

– Inheritance: Represents parent–child relationships and is measured in
terms of number of subclasses, base classes, and depth of inheritance
hierarchy. Inheritance enables software reusability, but large hierarchies
may complicate software maintainance (43, 44).

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 2. Background and Related Work 26

– Size: Is measured in terms of number of Lines of Code (LOC), number
of files, methods, classes, modules. In other words, size measures the
length of a code element. According to 41, small classes are easy to
maintain (41).

It is expected that each refactoring operation affects the internal quality
attributes. The refactoring operations in Figure 2.1 show the relation between
refactoring and internal quality attributes. The getPriority method, located
in DeliveryManager class of Commit 15, contains too many lines of code and
responsibilities, making it difficult to understand and maintain it. Develop-
ers applied an Extract Method refactoring operation. This refactoring opera-
tion has a direct impact on size. Because part of the code extracted from the
method getPriority can be implemented in other places in the code. Therefore,
the developer can replace duplicates with calls to the new method (getClient-
Priority), reducing the size of the project.

After applying the Extract Method refactoring operation, we have the
class DeliveryManager that compute the priority based on the client infor-
mation (method getClientPriority in Commit 18 ). We can observe that get-
ClientPriority method accesses more data of Client class than the own class
DeliveryManager. This causes a high coupling between both classes. To re-
duce this coupling, the developer moves the method getClientPriority to the
class that uses the method the most. We can observe a direct effect on the
coupling internal quality attribute because was reduces the excessive external
accesses to data of the Client class. In summary, we can perceive that factoring
operations have a direct effect on internal quality attributes.

2.3
Software Quality Metrics

Existing literature has been using software quality metrics to quantify the
internal quality attributes (3, 19). For instance, the Lines of Code (LOC) (31)
metric quantifies the size of elements in the source code and Cyclomatic
Complexity (CC) (42) quantify the complexity of a method. Each internal
quality attribute must be quantified by several quality metrics in order
to capture all its properties. For instance, coupling measure the degree of
interdependence between classes. This degree of independence depends on two
properties of the coupling attribute: (i) the number of times that a class X uses
methods and fields of another class, and (ii) the number of times that other
classes use methods and fields of the class X. In other words, input and output
dependencies. Therefore, we selected a set composed by 25 quality metrics by
applying the following criteria. First, we selected well-known metrics from the

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 2. Background and Related Work 27

literature (6, 31, 39, 45, 46). Second, we selected metrics that assess different
properties of each internal quality attribute (30, 37, 42, 47). Third, we selected
metrics with evidence of accuracy in capturing and predicting problems in
structural code quality. Section 3.5 describes in details the software quality
metrics used in this study to quantify each internal quality attribute.

2.4
Previous Work on Refactoring and Software Quality

Bavota et al. (17) investigate three software systems aimed at under-
standing whether refactoring operations are applied on code elements with
certain characteristics that suggest an opportunity of refactoring. These char-
acteristics include quality metrics. According to their results, quality metrics
do not have a clear relationship with refactoring. In contrast with their study,
we investigate a much larger set of software systems. Also, we have considered
25 quality metrics, 10 metrics more than those analyzed by Bavota et al. (17).
In addition, they did not explicitly analyze internal quality attributes as they
focus on individual quality metrics. Our results contradict their findings as we
observed that refactoring operations are frequently applied on code elements
with at least one critical internal quality attribute.

Other studies (17, 18) classify refactoring operations according to the
occurrence, addition or removal of poor code structures. However, the im-
provement of code structural quality may not be perceived whether only poor
code structures are considered. Full removal of these poor code structures may
require the simultaneous improvement of more than one internal attribute. De-
velopers may need several refactoring operations to fully remove these struc-
tures. To address this literature gap, we investigate the effect of refactoring
operations in a finer-grained level, i.e., we analyze the impact of refactoring
operations directly on internal quality attributes.

Silva et al. (13) present an empirical study on the motivation of devel-
opers when applying refactoring operations. They conclude that refactoring
operations are mostly driven by changes in software requirements rather than
poor code structures. Even though the authors have not analyzed the relation-
ship between refactoring and internal quality attributes, some of their findings
suggest that there might be a relationship between certain motivations and
internal quality attributes. For instance, they mention that developers are con-
cerned about removing duplicated code, which is associated with two specific
internal quality attributes: size and inheritance. The same reasoning applies
to other types of motivation, such as maintainability and testability. There-
fore, the impact of refactoring operations on internal quality attributes may

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 2. Background and Related Work 28

be related to different high-level goals of developers who apply refactoring.
Furthermore, the authors (13) mention that developers are seriously

concerned about avoiding code duplication. For that, they apply the Extract
Method refactoring type to remove it. This finding suggests that, despite of
the aim of developers when refactoring code (not explicitly mentioned by the
authors), developers are concerned on improving the code structural quality
(i.e., they apply root-canal refactoring).

Sokol et al. (48) present a study focused in measuring the effect of
refactoring only in terms of code complexity, which is only one attribute of
code quality. To measure this attribute they used Cyclomatic Complexity
metric (42). The authors randomly selected the fifty refactoring methods. Their
studies show that refactoring does not necessarily decrease the cyclomatic
complexity but increases the maintainability and readability of the program.

Several studies evaluated refactoring effects on external quality at-
tributes, such as maintainability, flexibility, portability, reusability, readability,
testability, and understandability. Geppert et al. (15) empirically studied the
impact of refactoring on changeability. They studied three factors for change-
ability, such as effort, customer reported defect rates and scope of changes.
Wilking et al. (49) investigated the effect of refactoring on modifiability and
maintainability. None of these researches investigated the effects of refactoring
operations on internal quality attributes.

On the other hand, Moser et al. (16) proposed a methodology to evaluate
whether or not refactoring improves reusability and reuse in an XP-like
development environment. They focused on quality metrics that are considered
to be relevant to reusability. They conducted a case study on a software
project developed using XP-like methodology and investigated the impact of
refactoring on quality metrics. Their results indicated that refactoring has a
positive effect on reusability and thus and reuse in XP-like environments. This
work and its results are limited to software systems developed in the context
of XP-like methodology.

Kim et al. (2) assessed the refactoring benefits and challenges at Microsoft
through three complementary study methods: a survey, semi-structured inter-
views with professional software engineers, and quantitative analysis of version
history data of Windows 7. Their survey finds that the refactoring definition
in practice is not confined to a rigorous definition of behavior preserving code
transformations and that developers perceive that refactoring involves substan-
tial cost and risks. Their quantitative analysis of Windows 7 version history
finds the top 5 percent of preferentially refactored modules experience higher
reduction in the number of inter-module dependencies and several complexity

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 2. Background and Related Work 29

measures but increase size more than the bottom 95 percent. This indicates
that measuring the impact of refactoring requires multidimensional assessment.
We decided to focus on open source projects due it is difficult to have access
to the proprietary code for analysis.

2.5
Previous Work on Refactoring and Internal Quality

Previous work (41, 50, 51) investigate whether refactoring operations
improve the code structural quality. Du Bois and Mens (50) measure the
relationship between only five quality metrics and three refactoring types:
Extract Method, Encapsulate Field, and Pull up Method. They proposed a
formalism based on abstract syntax tree representation of the source code,
extended with cross-references to describe the impact of refactoring on only five
metrics. The results of their work showed both positive and negative impacts
on the studied metrics.

On the other hand, Kataoka et al. (41) focused only on the coupling
metrics to evaluate the refactoring effect, comparing the metrics before and
after refactoring operations. They analyzed only a single C++ program for
Extract Method and Extract Class refactoring types, which were performed by
a single developer. All these limitations pose threats to the validity of their
findings.

Stroggylos and Spinellis (51) analyzed three open source projects and
studied the effect of refactorings in different quality metrics. They used
source code version control system logs in order to detect the refactoring
operations. The authors search through the log entries for mentions of words
refactor, refactorng, refactored in order to detect a refactoring operation. They
concluded that refactoring does not always improve the software quality. This
study is limited in the technique used to detect refactoring. Because developers
commonly do not mark commit logs with words derived of refactoring (52).

We have noticed that these studies were limited to only a few internal
quality attributes, a few number of projects or/and a few number of refactoring
types. In our study, we try to analyze more internal quality attributes to
get a more precise indication of whether or not refactoring affects internal
quality attributes. Also, we analyze more projects to capture different software
development contexts, and we study 11 types of refactoring, which according
to Murphy-Hill et al. (12), are the most common refactoring types. Finally, we
analyze the impact of refactoring on internal attributes both before and after
each refactoring operation.

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 2. Background and Related Work 30

2.6
Previous Work on Re-Refactoring and Software Quality

Several studies analyze refactorings in the source code that are executed
in mass, in sequence, in repetition or in batch (20, 21, 22). Arcelli et al. (22)
introduced refactoring actions among three EPSILON languages. They identi-
fied different alternative kinds of antipattern-based model refactoring support.
The authors called batch refactoring to the sequentially execution of a pre-
defined antipattern set detection rules and refactorings. The process can be
repeated once (i.e., standard mode) or until no more antipattern occurrences
are found (i.e, iterative mode). In the iterative mode, the process is repeated
until no more antipattern occurrences have been found or until the specified
maximum number of iterations has been reached (21). In summary, the author
used batch refactoring to automatically remove the antipattern occurrences.

Jiau et al. (20) proposed a new methodology OBEY for optimal batch
refactoring plan at three levels. The work revealed Middle Man Refactoring
in three open source software systems JDTCore, HSQLDB and JEdit. OBEY
analyzes a batched refactoring plan, identifies Middle Man symptoms that
cause sub optimal execution, and renovates the plan for optimal execution.
In addition, OBEY automatically executes a batched refactoring plan as an
atomic code transformation and uses metric abstractions to identify Middle
Man symptoms. As a result, the authors concluded that the use of OBEY
eliminated the efforts required for fixing the sub optimal refactoring results.

The effects of a simple refactoring on the code structural quality have
been a subject of several investigations. But the effects of re-refactorings on
code structural quality and internal quality attributes is limitedly explored.

2.7
Final Remarks

This chapter presented the basic concepts of code refactoring and internal
quality attributes. Our main goal with this chapter was to provide sufficient
information to support the comprehension of the study proposed in this
dissertation. First, we presented the concept of refactoring and the refactoring
types analyzed in this dissertation. On the other hand, we show two tactics
to perform refactoring (root-canal refactoring and floss refactoring), and we
discuss the concept of re-refactoring. Second, we discuss the internal quality
attributes used in this study.

On the other hand, this chapter discussed studies related to the scope
of this dissertation. Our discussion was divided into two research topics as
follows. First, we presented previous work that study the effects of refactoring

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 2. Background and Related Work 31

on different aspects of structural quality, such as, code smells, poor code
structures and external quality attributes. Second, we discussed studies aimed
at investigating the effects of refactoring on internal quality attributes. Finally,
we discuss works that address re-refactorings from different approaches. None
of the works explore the impact of re-refactorings on internal quality attributes.

We noticed that discussed works were limited to only a few number
of software projects, few number of refactoring types or few number of
internal quality attributes. In this research, we try to consider more internal
quality attributes, software project and refactoring types to get a more precise
indication of refactoring effects on internal quality attributes.

In the next chapter, we present the study design. First, we introduce
our research questions. Following, we present the steps for collecting the
necessary data to answer the research questions. The steps include (i) selection
of software projects, (ii) detect refactoring operations, (iii) map refactoring
types with internal quality attributes, (iv) select the quality metrics to quantify
each internal quality attribute, and (v) select the tools to compute the quality
metrics.

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



3
Study Design

This chapter presents the study design. Figure 3.1 summarizes the study
design phases, which correspond to the topics of the sections in this chapter.
First, we present our goals and our research questions; they were designed in a
way that enables us to understand the effect of refactoring and re-refactoring
operations on internal quality attributes (Phase 1). Second, we select a set
of 23 open source project of GitHub repositories (Phase 2). Third, we used
the Refactoring Miner tool to detect refactoring operations and conducted
a manual validation of the refactoring types identified by the Refactoring
Miner tool with a median precision of 88.36% (Phase 3). Fourth, we mapped
refactoring types with internal quality attributes in order to understand how
refactoring operations affect each related internal quality attribute. Fifth, after
mapping each refactoring type to its related internal quality attributes, we
investigated the quality metrics for quantifying each internal quality attribute.
Sixth, we investigate the necessary tools to compute the selected metrics.
Finally, we analyzed the data and answered our research questions.

Thus, the remainder of this chapter is organized according to Figure 3.1
as follows. Section 3.1 introduces the goals and research questions. Section 3.2
presents the selection of software projects. Section 3.3 shows how we detected
refactoring operations and the procedure to classify refactoring operations in
root-canal refactoring and floss refactoring. Section 3.4 presents the protocol
for mapping refactoring operations to internal quality attributes. Section 3.5
illustrates how we measure internal quality attributes. Section 3.6 presents
the tools used to collect quality metrics and to detect refactoring operations.
Finally, Section 3.7 discusses threats to the study validity, with respective
treatments.

3.1
Goal and Research Questions

Our study aims at assessing how refactoring affects internal quality at-
tributes. We study the effect of both refactoring and re-refactoring operations.
By achieving this aim, we expect our study results contribute to both re-
searchers and practitioners for two main reasons. First, the knowledge that

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 3. Study Design 33

Figure 3.1: Study Design

refactoring operations often target code elements with critical internal quality
attributes (or otherwise) can help researchers and developers on improving the
identification of program locations that need to be refactored. Developers often
need guidance on how to prioritize refactorings in large systems. However, there
is limited research effort in this field. Several studies have focused on investi-
gating whether refactoring operations are commonly applied on code elements
having bugs, code smells, design problems, and the like (17, 18, 53). However,
it might be too late for a developer knowing afterwards that its refactoring
operations introduced these problems in the source code. On the other hand,
internal quality attributes can be measured as soon as there are preliminary
versions of the source code. Thus, in this study, we analyzed whether devel-
opers tend to apply refactoring operations on code elements with at least one
critical internal quality attribute. If this expectation is confirmed, our study
results can: (i) guide researchers on identifying means to support early prioriti-
zation of code elements with critical internal quality attributes, and (ii) guide
developers in early development stages on how to better concentrate effort on
code elements with specific characteristics of structural quality decay.

Second, our analyses of the impact of refactoring (and re-refactoring)

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 3. Study Design 34

operations on internal quality attributes can help researchers to produce
refactoring recommendation systems that alert about refactoring operations
that are potentially harmful, i.e. those operations that commonly degrade
the internal quality attributes. Most refactoring recommendation systems are
based on the fact that developers refactor with the sole aim of simply removing
code smells (54, 55, 56, 57). As we explore the impact of refactoring (and re-
refactoring) operations on structural quality, our results can better support
developer with different aims. Many developers try to perform minor structural
quality improvements through refactoring in order to achieve other aims, such
as adding a new functionality or enhancing program testability. With our
study results, we can better inform developers on incorporating rules into
refactoring recommendation tools based on their different, hybrid aims, where
improvement and/or worsening of internal quality attributes are desirable
and/or expected. To achieve our goal, we will address the following research
questions.

RQ1. Are refactoring operations often applied to code elements with
critical internal attributes?

Boshnakoska and Misev (58) investigated the correlation between object-
oriented software quality metrics and refactoring. They used an extended
CK (30) metrics suite and concluded that object-oriented metrics can be used
to identify classes that require immediate attention. In other words, object-
oriented metrics are good indicators of degraded code elements, but in fact
these elements are refactored in real software systems? We designed RQ1 to
answer this question, i.e., investigate if developers tend to apply refactoring
operations on code elements with critical internal quality attributes. Our goal
is to understand if code elements with critical internal quality attributes are
potential indicators of problems in the code structure which are commonly
refactored. In the affirmative case, we can investigate the actual impact of
refactoring operations on the internal quality attributes (RQ2).

To answer RQ1, we need to assess the criticality of internal quality
attributes for each code element affected by a refactoring operation. For this
purpose, we annotated each refactoring operation according to the number
of critical internal attributes present in the code elements affected by the
refactoring. Thus, refactored code elements can be affected by: (i) no critical
attribute, i.e., elements that do not have any critical attribute, (ii) single
critical attribute, i.e., elements that have only one bad attribute, and (iii)
multiple critical attributes, i.e., elements that have more than one critical
attribute.

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 3. Study Design 35

In our study, an attribute is critical whether at least one metric used
to quantify the attribute is either below a lower threshold or above an
upper threshold. Thresholds are computed for each project’s commits. These
threshold values are calculated based on quartiles (59) for the commit. The
first and third quartiles define the lower and upper thresholds, respectively.
For each commit, we collect the metrics related to each code element. Then,
we define the lower and upper thresholds of each metric by calculating the first
and third quartile of the metric values obtained from all the code elements.
The first quartile (Q1) is the lower threshold, which comprises the 25% of the
bottom data (metrics). The third quartile (Q3) is the upper threshold, which
comprises the top 25% of the data above it. Thus, if a metric value of an
element is above the Q3, then we say that metric got critical in that element.
There are few metrics that are critical if their value is below the Q1, according
to the nature of the metric. In other words, the values of quality metrics are
desired to be lower or higher. For instance, the value of Lack of Cohesion of
Method 2 (LCOM2) (30), Depth of Inheritance Tree (DIT) (30), Weighted
Method per Class (WMC) (30), Lines of Code (LOC) (31) and Cyclomatic
Complexity (CC) (42) are desired to be lower in a system whereas Tight Class
Cohesion (TCC) (39) are desired to be higher (60). If an element has more
than one critical metric, then we say that the internal quality attribute related
to those metrics is also critical.

RQ2. What is the impact of refactoring on internal quality attributes?

Each internal quality attribute is measured using a set of quality metrics,
where each metric captures a distinct property of each internal attribute.
For instance, to measure coupling it is not enough to know the number of
elements of a class that calls elements of another class. We also need to
capture the number of elements of other classes that call elements of the class
being measured. Thus, for each internal attribute, we selected a set of metrics
(Section 3.5) that may have improved, worsened or may not be affected after
applying a refactoring operation. The behavior of each metric is calculated by
comparing the metric value of the code elements in the commits before and
after each refactoring operation.

To answer our RQ2, we divide the analysis into two approaches, related
to how to classify the behavior of internal quality attributes: (i) At Least One
Metric, and (ii)Most Metrics. In the first approach, we assume that the internal
quality attribute improves when at least one of the metrics that quantifies such
attribute improves. In the second approach, we assume that an internal quality
attribute improves when most of the metrics that capture the attribute also
improve. Both approaches are explained in more detail below.

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 3. Study Design 36

Most metrics. An internal quality attribute improves when most of the
metrics that capture the attribute also improve. This approach tries to cover
the scenarios in which several properties of each attribute are improved
by a refactoring operation. This approach is strict because each refactoring
operation has to improve several metrics at once. This strict approach does
not consider an attribute improvement if only a few attribute’s metrics (less
than a half of the metrics) improve. The majority of the metrics has to improve
in order to represent an improvement of the internal quality attribute. There
might be several metrics for a single internal quality attribute. For instance,
Size has eight metrics, and Complexity and Coupling have five attributes
each. Because each metric captures a specific property of the attribute, an
improvement represents an overall improvement of the attribute properties.

At least one metric. An internal quality attribute improves when at least
one of the metrics that quantify such attribute also improves. This approach is
interesting because the developer may improve only one of the properties of an
internal quality attribute in each refactoring operation. On the other hand, we
try to resolve other study problems (Section 2.4) that measure internal quality
attributes using only one quality metric. This approach is less strict than the
most metrics approach because, for each refactoring operation, only one metric
has to improve in order to consider the improvement of the internal quality
attribute. With this approach, we aim to understand the impact of refactoring
operations on a smaller metrics subset (less than a half) that capture each
internal attribute. This analysis as a relevant resource of data to identify the
improvement of specific properties of each internal attributes.

RQ3. What is the impact of re-refactoring on internal quality attributes?

Developers may need to apply more than one refactoring to improve one
or various internal quality attributes. In fact, a developer may often apply
multiple refactoring operations in a single code element. Suppose a developer
applies a refactoring to a code element in an X commit. Then, it applies
another refactoring in the same code element in a Y commit, where Y is greater
than X in terms of time. We assume that the refactoring applied to commit
Y is a re-refactoring. In other words, we define re-refactoring as the action of
applying another refactoring operation (not necessarily the same refactoring
type) in a code element that was refactored before. We disregard the temporal
dimension here, i.e., a new refactoring applied to the same previously refactored
element is considered a re-refactoring operation regardless when it was applied

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 3. Study Design 37

to the same code element (e.g., not necessarily in successive commits, weeks
or months).

To answer our RQ3, we analyze the impact of re-refactoring operations
on internal quality attributes. Similar to RQ2, we divide the analysis into two
approaches: Most metrics and At least one metric. We also analyze the impact
of re-refactoring operations on internal quality attributes by analyzing both
refactoring tactics: Root-canal refactoring and Floss refactoring.

3.2
Selection of Software Projects

The software development process is managed using software repositories
that include source code, documentation, archived communications and defect-
tracking systems. The researchers and developers can use the information
contained in these repositories for maintaining software systems, improving
software quality, and empirical validation of data and techniques. Researchers
can mine these repositories to understand software development, software
evolution and how some concepts like refactoring impact on the improvement
of the quality of the source code.

To conduct our study, we selected a set of software projects from GitHub
repositories because we are concerned with the evolution of software projects
regarding refactoring operations. We focused the data analysis on open source
projects to support the study replication and extension. In this study, we
analyze 23 software projects selected using the following quality criteria. First,
Java software projects, a very popular programming language1. Second, open
source projects, to allow the study replication. Third, highly popular projects,
based on the number of stars received by the projects. In addition, we decided
to focus on open source projects due to three main reasons. First, it is difficult
to have access to the proprietary code for analysis, but there are several open
source projects with many clients and contributors, e.g., Elasticsearch (851
contributors) and Junit (137 contributors). Second, these projects are often
under maintenance. Thus, assuring the code structural quality is as important
as in the case of proprietary systems (2, 7). Third, by analyzing open source
projects, we can compare our results with previous work (17, 18) that also
analyze open source projects.

Table 3.1 lists the selected software projects. The first column presents
the partial repository path at GitHub. The second column provides the number
of commits per project. The third column presents the number of refactoring
operations per project. The fourth column shows the number of contributors

1https://www.tiobe.com/tiobe-index/

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 3. Study Design 38

per project. The projects have, in total, 113,306 commits, 29,303 refactoring
operations and 2,843 contributors.

Table 3.1: Software Projects Analyzed in this Study
Software Project # Commits # Refactorings # Contributors

alibaba/dubbo 1,836 280 30
AndroidBootstrap/android-bootstrap 230 8 17
apache/ant 13,331 2,063 29
argouml 17,654 2,588 87
elastic/elasticsearch 23,597 9,507 879
facebook/facebook-android-sdk 601 341 45
facebook/fresco 744 161 98
google/iosched 129 73 40
google/j2objc 2,823 713 36
junit-team/junit4 2,113 309 138
Netflix/Hystrix 1,847 266 103
Netflix/SimianArmy 710 55 46
orhanobut/logger 68 20 9
PhilJay/MPAndroidChart 1,737 398 57
prestodb/presto 8,056 2,068 195
realm/realm-java 5,916 1,699 70
spring-projects/spring-boot 8,529 1,386 378
spring-projects/spring-framework 12,974 5,320 228
square/dagger 696 96 35
square/leakcanary 265 12 39
square/okhttp 2,645 855 144
square/retrofit 1,349 232 109
xerces 5,456 853 31
Sum 113,306 29,303 2,843

3.3
Refactoring Detection and Classification

Since we aim to analyze a large set of commits for different systems, we
used the Refactoring Miner tool (version 0.2.0) (61) to detect refactoring oper-
ations. Previous work observed a precision of Refactoring Miner equals 96.4%
with low rates of false positives (61), which we confirmed in our validation
process. Refactoring Miner detects 11 of the most recurring refactoring types
investigated in the literature (12).

Validation of Refactoring Types We conducted a manual validation of the
refactoring types identified by the Refactoring Miner tool. Such validation
covered a random set of refactoring operations. After applying a statistical
test with a confidence level of 95%, we observed a high precision of the tool for
each refactoring type, with a median of 88.36% (excluding the Rename Method
refactoring type). By applying the Grubb outlier test (62) (alpha = 0.05),
we could not find any outliers, indicating that no refactoring type strongly

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 3. Study Design 39

influences the median precision found. Thus, the obtained results represent a
key factor to provide reliability to the results reported in this work.

Refactoring Tactic Classification. In our study, we manually analyzed a
randomly selected sample of refactoring operations to classify them as root-
canal refactoring or floss refactoring. Our goal is to investigate whether the
refactoring tactics influences in the frequency and impacts of refactoring oper-
ations on the internal quality attributes. For this purpose, we assess whether
the changes performed by developers during the refactoring are exclusively
refactoring operations. We classify a transformation as floss refactoring when
we identify additional changes in the code, such as the addition of methods
or changes in a method body unrelated to refactoring operations. Otherwise,
we classify the refactoring as root-canal refactoring. It is important to note
that we carefully assigned the classification task to experienced developers,
and provided sufficient time for completing the task.

3.4
Mapping Refactoring to Internal Quality Attributes

One could expect that each refactoring type is likely to positively affect
a subset of quality attributes. Thus, we mapped each refactoring type to
one or more internal quality attributes by relying on previous work (1, 63).
Essentially, we infer the internal quality attributes related to each refactoring
type addressed in our study from the Fowler’s catalog (1). By doing that, we
aim to gain a better understanding of how refactoring operations affect each
related internal quality attribute.

Table 3.2 presents the association of each refactoring type with internal
quality attributes, which are expected to be improved by each refactoring
type. The first column lists each refactoring type. The second column presents
the related internal quality attributes. According to the table, we expect
that Extract Superclass has a direct impact on size and inheritance. Thus,
if there are two different classes that implement similar functionalities, we
apply Extract Superclass to create a single superclass that implements such
functionalities. Consequently, we remove the duplicate code of both subclasses,
thereby reducing their size, and increasing the inheritance depth.

3.5
Measuring Internal Quality Attributes

In Section 3.4, we mapped each refactoring type to its related internal
quality attributes. After, we investigated the quality metrics for quantifying

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 3. Study Design 40

Table 3.2: Expected effect on internal quality attributes
Refactoring Type Related Internal Attributes

Extract Interface Size, Inheritance
Extract Method Size, Coupling
Extract Superclass Size, Inheritance
Inline Method Size, Coupling
Move Field Coupling, Cohesion, Inheritance
Move Method Coupling, Cohesion, Complexity, Inheritance
Pull Up Field Size
Pull Up Method Size
Push Down Field Inheritance
Push Down Method Inheritance
Rename Method Size

each internal quality attribute. We defined a set composed by 25 quality metrics
based on previous work (6, 30, 31, 39, 42, 45, 46). To select appropriate metrics
per internal quality attribute, we applied the following criteria. First, we
selected well-known metrics from the literature (6, 31, 39, 45, 46), including the
CK suite (30) and McCabe’s cyclomatic complexity (42). Second, we selected
metrics that assess different properties of each internal quality attribute (30,
37, 47, 42). For example, LOC measures the number of lines of code, CBO
measures the number of classes to which a class is coupled, and CC measures
the complexity of a module’s decision structure. Third, we selected metrics
with evidence of accuracy in capturing and predicting problems in structural
code quality. For instance, LOC helps in identifying classes having a poor
design from the viewpoint of software developers (17).

Additionally, we have discarded metrics criticized in previous work (64),
such as Lack of Cohesion in Methods (LCOM) (30), a metric that is non-
normalized and has artificial outliers, which makes diffcult to compare two
LCOM values (65). Table 3.3 presents the set of 25 metrics obtained through
the aforementioned criteria. The first column lists the internal quality at-
tributes. The second column presents the software metrics related to each
internal quality attribute. The third column describes each software metric.
Finally, the fourth column presents the behavior of each software metrics, i.e.,
when improves and when gets worse each software metrics. For instance, the
complexity of a system improves while the value of the Cyclomatic Complex-
ity (CC) (42) metric is lower, because of that, Cyclomatic Complexity (CC)
improves when its value decreases. To compute each metric, we used the non-
commercial license of the Understand tool2.

3.6
2http://www.scitools.com

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 3. Study Design 41

Table 3.3: Quality metrics used in this study
Attribute Metric Metric description Improve when
Coupling Coupling Between Objects (CBO) (30) The number of classes to which a class is coupled Decreases

Fan-in (FANIN) (66) The number of other classes that reference a class Decreases
Fan-out (FANOUT) (66) The number of other classes referenced by a class Decreases
Coupling Intensity (CINT) (6) The number of distinct operations called by the Decreases

measured operation
Coupling Dispersion (CDISP) (6) The number of classes in wich the operations called Decreases

from the measured operation are defined by
Cohesion Lack of Cohesion of Methods 2 (LCOM2) (30) Number of pairs of methods that do not share Decreases

attributes, minus the number of pairs of methods
that share attributes

Lack of Cohesion of Methods 3 (LCOM3) (45) Number of disjoint components in the graph that Decreases
represents each method as a node and the sharing
of at least one attribute as an edge

Tight Class Cohesion (TCC) (39) Ratio of number of similar method pairs to total Increases
number of method pairs in the class

Complexity Cyclomatic Complexity (CC) (42) Measure of the complexity of a module’s decision Decreases
structure

Weighted Method Count (WMC) (30) The sum of Cyclomatic Complexity (42) Decreases
of all methods declared in the given class

Essential Complexity (Evg) (42) Measure of the degree to which a module contains Decreases
unstructured constructs

Paths (NPATH) (67) Number of unique paths though a body of code, Decreases
not counting abnormal exits or gotos

Nesting (MaxNest) Maximum nesting level of control constructs Decreases
Inheritance Depth of Inheritance Tree (DIT) (30) The depth of a class as the number of its ancestor Increases

classes
Number Of Children (NOC) (30) The number of direct descendants (subclasses) of a class Increases
Base Classes (IFANIN) (9) Number of immediate base classes Increases
Override Ratio (OR) (6) The number of methods of the measured class that Decreases

override methods from the base class, divided by the
total number of methods in the class

Size Lines of Code (LOC) (31) The number of lines of code excluding white Decreases
spaces and comments

Lines with Comments (CLOC) (31) Number of lines containing comment Increases
Statements (STMTC) (31) Number of statements Decreases
Classes (CDL) (31) Number of classes Decreases
Instance Variables (NIV) (31) Number of instance variables Decreases
Instance Methods (NIM) (31) Number of instance methods Decreases
Weight of Class (WOC) (6) The sum of funtional public methods divided by Decreases

the total number of public members
Number of Public Attributes (NOPA) (6) The number of publics attributes of a class Decreases

Selected Tools

Software quality metric collection tools. Structural quality attributes are
measured using a set of software quality metrics. As mentioned in Section 3.5,
all metrics values were collected using the Understand software with non-
commercial license. Understand is a proprietary and paid application developed
by SciTools. It is a static code analysis software tool and is mainly employed
for calculation of source code metrics for software projects with large size or
code bases. Understand supports a large number of programming languages,
including Ada, C, the style sheet language CSS, ANSI C, and C++, C,
Cobol, JavaScript, PHP, Delphi, Fortran, Java, JOVIAL, Python, HTML,
and the hardware description language VHDL. The calculated metrics include
complexity metrics, size and volume metrics, and other OO metrics such as
Depth of Inheritance Tree (DIT) and Coupling Between Object Classes (CBO).

Refactoring detection tools. Refactoring has become a well-known tech-
nique for the software engineering community and developers. There are dif-
ferent tools to automatically detect the presence of a refactoring operation in a

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 3. Study Design 42

pair of versions of a program. Studies of software refactoring require the anal-
ysis of a high number of commits to search refactorings operations, thereby
causing the need for automatic detection and classification of refactorings. One
of the tools for this purpose is Ref-Finder 3. This tool is an Eclipse plugin that
identifies refactorings using a template-based reconstruction technique. It ex-
presses each refactoring type in terms of template logic queries and uses a
logic programming engine to infer concrete refactoring situations. Ref-Finder
currently supports 63 refactoring types described in Fowler’s catalog (33). Ref-
Finder seemed to be, in principle, a good candidate to support refactoring de-
tection. However, there are some practical problems: (i) the precision was as
low as 15% for most of the refactoring types (as observed in validation phase
in the study of Cedrim et al. (18)), causing a substantial number of false posi-
tives; and (ii) the detection algorithm was inefficient when executed in a large
dataset.

Because of these problems, Ref-Finder was discarded, and another tool
was selected in this phase: Refactoring Miner (61) (version 0.2.0)4. This tool is
more efficient than Ref-Finder since it was designed to be executed in a large
dataset. Besides, its precision is 96.4% (as observed in our validation phase),
leading to a very low rate of false positives. The only disadvantage of this
tool is the number of refactoring types detected. While Ref-Finder detects 63
types of refactoring, Refactoring Miner detects 11 types. Fortunately, these 11
types were amongst the ones reported by Murphy-Hill as the most common
refactoring types (11).

3.7
Threats to validity

We discuss threats to the study validity (71), with respective treatments,
as follows.

Construct and Internal Validity. The threats to internal validity of this
work concern the data collection procedure. Regarding the refactoring detec-
tion, we used the Refactoring Miner tool. To mitigate this threat, we selected
random samples by refactoring type and performed a manual validation of it.
The idea was to check whether we could have confidence on Refactoring Miner
precision. We observed an average precision of Refactoring Miner equals to
96.4% with low rates of false positives. The set of metrics used in this study
also represents a threat to validity, because it may not capture all relevant

3Available at https://github.com/SEAL-UCLA/Ref-Finder
4Available at https://github.com/tsantalis/RefactoringMiner

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 3. Study Design 43

properties of the internal quality attributes. To mitigate this threat, we did
not choose a random set of metrics. We chose metrics that assess different
properties of each internal quality attribute (30, 37, 42, 47). Another criteria
was used to chose our set of metrics that are detailed in Section 3.5. On the
other hand, we analyzed 11 refactoring types detected by the Refactoring
Miner tool. This amount represents a threat to validity because they do not
cover all refactoring types reported by Fowler (1). We mitigated this threat
by considering the 11 refactoring types that represent the most common types
according to the literature (12).

To conduct our study, we selected a set of 23 software projects. The
selection of the software projects represents a threat to validity and results
extensibility. To mitigate this threat, our choice of the software projects is
not random. To select the appropriate software projects to conduct our study,
we applied the following criteria. First, we selected a set of software projects
from GitHub repositories because we are concerned with the evolution of
software projects regarding refactoring operations. Second, we selected open
source projects to support the study replication and extension. Third, we
selected Java software projects because it is a very popular programming
language5. Fourth, we chosen highly popular projects, based on the number of
stars received by the projects. Fifth, we selected software project with many
contributors (2,843 in total) to have different points of view related to the
refactoring operations. In addition, we computed our results for each project
separately, and the results were similar in comparison to the general results.
In other words, the results of each software project were similar to the results
using the 23 software projects, this evidence that there is no a software project
influencing the results.

Conclusion and External Validity. In this dissertation, we analyzed dif-
ferent tactics to perform refactoring operations, namely root-canal refactoring
and floss refactoring. Due the lack of effective tools for classifying refactoring
operations by tactics (root-canal refactoring and floss refactoring), we decided
to perform a manual classification of 2,119 refactoring operations (about 7%
of all refactoring operations). This manual classification represents a threat to
validity. Then, two researchers performed double-checking for a random subset
of the classified refactoring operations and obtained a high precision (>95%)
in the classification.

5https://www.tiobe.com/tiobe-index/

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 3. Study Design 44

3.8
Final Remarks

This chapter presented the study design of the work. First, we discussed
our goals and designed our research questions to understand the effect of
refactoring and re-refactoring operation on internal quality attributes. For
this purpose, we select a set of 23 open source project of GitHub repositories
and we used the Refactoring Miner tool to detect refactoring operations over
our project sample. Then, we mapped refactoring types with internal quality
attributes in order to understanding of how refactoring operations affect each
related internal quality attribute. After mapping each refactoring type to its
related internal quality attributes, we investigated the quality metrics for
quantifying each internal quality attribute. With the set of metrics selected,
we investigate the necessary tools to collect the value of each metrics. Finally,
we discuss threats to the study validity, with respective treatments. The next
chapter presents and discusses the results of the first research question.

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



4
(Re-)Refactoring Affecting Critical Elements

In this chapter, we assess whether refactoring and re-refactoring opera-
tions are often applied to code elements with critical internal quality attributes.
We aim to observe if developers target their refactoring effort mostly on code
elements that require structural quality improvement.

4.1
Overall Results

To address the RQ1 (Are refactoring operations often applied to code
elements with critical internal quality attributes?), we have analyzed the
internal quality attributes in code elements affected by refactoring operations.
In particular, we computed the number of critical internal quality attributes
associated with code elements being refactored. Algorithm 1 illustrates this
process. The algorithm iterates over the set R of refactoring operations (line
2). For each refactoring operation r, the code elements affected by r are iterated
(line 4). For each code element e, we compute the number of critical internal
quality attributes (line 5). Finally, we sum the total number of critical internal
quality attributes for the current code elements affected by a refactoring
operation (line 6). The total number of critical internal attributes is used to
classify the refactoring operation as None if the number equals zero, Single if
the number equals one, and Multiple if the number is greater than one (line 7).
We also compute the number of critical internal quality attributes associated
with code elements being re-refactored. In other words, we run Algorithm 1 on
the set of refactoring operations applied in a code element that was refactored
before, called re-refactoring operations.

Algorithm 1 Classifying refactoring operations
0: Initilize R = refactoring operations
0: for r ∈ R do
0: Initilize t = total of critical internal attributes for r
0: Initilize E = code elements affected by r
0: for e ∈ E do
0: Initilize c = number of critical internal attributes of e
0: t += c

0: Classify r as None, Single, or Multiple =0

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 4. (Re-)Refactoring Affecting Critical Elements 46

Table 4.1: (Re-)Refactoring and elements with critical attributes

Experimental
Groups

Refactoring
Tactic Total

Critical Internal Attribute

None Some
Single Multiple

Sample Root-Canal 576 7
(1,72%)

17
(2.95%)

552
(95,83%)

Floss 1,543 4
(0.26%)

13
(0.84%)

1,526
(98.90%)

All-refactorings Any 29,303 1,570
(5,36%)

4,458
(15,21%)

23,275
(79,43%)

Re-Refactoring Any 14,521 20
(0.14%)

33
(0.23%)

14,468
(99.64%)

Overall Analysis Regardless the Refactoring Type. After computing
the number of critical internal quality attributes present in code elements
affected by refactoring, we are able to analyze the results. Thus, Table 4.1
presents the number of refactoring operations applied on code elements with
critical internal quality attributes. The first column lists each experimental
group: Sample, composed of the refactoring operations that we manually clas-
sified (Section 3.3), Re-refactoring composed by the re-refactoring operations,
and All-refactorings, composed by all the refactoring operations collected from
the target projects. Sample and Re-refactoring are subsets of All-refactorings
set. The second column indicates the tactics for conducting refactoring op-
erations, namely Root-canal refactoring and Floss refactoring. Note that the
Re-refactoring and All-refactorings groups include re-refactoring and refac-
toring operations regardless the refactoring tactic applied by developers. The
third column provides the total number of refactoring operations per refactor-
ing tactic and experimental group. The fourth column named None presents
the number and percentage of operations applied to code elements without
critical internal quality attributes. The fifth and sixth columns present the
number and percentage of operations applied to code elements with at least
one critical internal quality attribute, i.e., the Some columns (see Section 3.1).
We divided these operations into two, namely: Single, i.e., the ones with ex-
actly one critical internal attribute, and Multiple, i.e., the ones with two or
more critical internal attributes.

The data in Table 4.1 suggest that developers tend to apply refactoring
operations most frequently to code elements with at least one critical internal
quality attribute, as indicated in the Some columns. By summing the refactor-
ing operations with a Single and Multiple critical internal quality attributes,
the total frequency represents 94.64% (27,733) of the refactoring operations.
This result takes into consideration the All-refactorings line regarding all an-

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 4. (Re-)Refactoring Affecting Critical Elements 47

alyzed refactoring operations. Moreover, most of these refactoring operations
are applied to Multiple critical internal quality attributes, i.e., two or more
attributes. It represents 79.43% (23,275) of the refactoring operations, against
only 15.21% (4,458) for code elements with a Single critical internal quality
attribute.

These observations seem to confirm that critical internal quality at-
tributes tend to indicate code elements that require refactoring operations.
Thus, developers seem to be, in principle, targeting these code elements to
improve their structural quality through refactoring. Also, they contradict the
finding of Bavota et al. (17), which suggest that there is no clear relationship
between quality metrics and refactoring operations. One of the reasons for not
having a clear relationship is that Bavota et al. (17) considers the improvement
of an internal quality attribute if the same metric related to that attribute of-
ten improves along all refactoring operations. In contrast, our study analyzes
multiple metrics for the same internal quality attribute, which may have in-
creased the chances of capturing the positive impact of refactoring operations
on internal quality attributes. Each type of refactoring may prove a different
impact on the same internal quality attribute whenever it is instantiated to a
particular context.

From data in Table 4.1, we can draw conclusions on the frequency
of refactoring operations per refactoring tactic. By comparing Root-canal
refactoring and Floss refactoring, we observe no relevant differences between
the percentages of operations per number of critical attributes. As in the
aforementioned overall analysis, most of the operations are applied to code
elements with at least one critical attribute. The percentages are 98.78%
and 99.74% for root-canal refactoring and floss refactoring, respectively. Thus,
regardless the aim of developers on improving or not the structural program
quality, they tend to apply refactoring operations in elements with many
critical attributes.

On the other hand, the third row of Table 4.1 shows the number of re-
refactoring operations applied or not on code elements with critical internal
quality attributes. The total of refactoring operations affecting any code ele-
ments that had already been affected by an earlier refactoring operation, which
we call as re-refactoring operations, is 14,521 (49.55% of the total number of
refactoring operations). This means that almost a half of the code elements
that are refactored anytime are refactored again in the future. This observa-
tion confirms the literature assumption which suggests that multiple refac-
toring operations should be applied to gradually improve the code structural
quality. In addition, similarly to the analysis of refactoring operations, we ob-

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 4. (Re-)Refactoring Affecting Critical Elements 48

serve that most re-refactoring operations are applied to code elements with
Multiple critical internal quality attributes. It represents 99.63% (14,468) of
the re-refactoring operations, against only 0.37% (53) for code elements with
a Single or None critical internal quality attribute.

We can observe that most of the refactoring operations are applied in
code elements with more than one critical attribute (93.45% in average). In
other words, in the vast majority of cases, when developers apply a refactoring
operation, the refactored code has critical internal attributes, regardless of
refactoring tactic and whether the code element was refactored in the past
(re-refactoring). Moreover, the percentage of re-refactoring operations applied
in code elements without critical internal quality attributes (None, 0.14%)
and with only one critical internal quality attribute (Single, 0.23%), being
the least percentages of the samples. This means that when a refactoring
operation is applied to a code element that has been refactored in the past, in
a few cases, those code elements have no critical internal quality attributes or
have only one critical internal quality attribute.

Analysis per Refactoring Type. Table 4.2 presents the number of refactor-
ing operations applied on code elements with critical internal quality attributes
per refactoring type. The first column lists the 11 refactoring types under anal-
ysis. The next columns of this table follow a similar structure of the columns
in Table 4.1. The second column provides the total number of refactoring
operations per refactoring type. The third column presents the number and
percentage of operations applied to code elements without critical internal at-
tributes. The fourth and fifth columns present the number and percentage of
operations applied to code elements with at least one critical internal attribute.
Similarly to Table 4.1, we divided these operations into two, namely: Single,
i.e., the ones with exactly one critical internal attribute, and Multiple, i.e., the
ones with two or more critical internal attributes.

Data of Table 4.2 lead to some relevant observations discussed as follows.
First, 8 out of the 11 refactoring types rarely affect code elements without
critical internal quality attributes, as indicated by the None column. In fact,
only Extract Interface and Rename Method affect more than approximately
10% of code elements without critical attributes. This result is expected for
Rename Method refactorings since it does not alter the structure of the source
code. Also, we find that refactorings of type Rename Method are applied as a
consequence of other refactoring operations. For instance, a developer moves
a method from one class to another. Consequently, they change the name of
the method to represent the new responsibility in the target class. Overall, we

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 4. (Re-)Refactoring Affecting Critical Elements 49

Table 4.2: Refactoring types and elements with critical attributes
Refactoring

Type Total
Critical Internal Attribute

None Some
Single Multiple

Push down Field 78 0
(0%)

0
(0%)

78
(100%)

Push down Method 114 0
(0%)

1
(0.88%)

113
(99.12%)

Inline Method 1,525 1
(0.07%)

1
(0.07%)

1,523
(99.86%)

Pull up Field 465 2
(0.43%)

0
(0%)

463
(99.57%)

Move Field 4,355 0
(0%)

6
(0.14%)

4,349
(99.86%)

Pull up Method 629 2
(0.32%)

5
(0.79%)

622
(98.89%)

Move Method 1,404 4
(0.28%)

10
(0.71%)

1,390
(99.01%)

Extract Method 7,513 14
(0.19%)

14
(0.19%)

7,485
(99.62%)

Extract Superclass 341 16
(4.69%)

10
(2.93%)

315
(92.38%)

Extract Interface 133 13
(9.78%)

12
(9.02%)

108
(81.20%)

Rename Method 12,746 1,518
(11.91%)

4,399
(34.51%)

6,829
(53.58%)

conclude that developers should carefully apply refactoring operations, since
most refactoring types may negatively affect multiple critical internal quality
attributes together.

Finding 1. Most of the refactoring operations (93.45% in average) are
very often applied to code elements with at least one critical internal quality
attribute. This observation is independent of the refactoring tactic. It also
applies to re-refactoring operations.

4.2
Contradicting Findings and Implications: Discussion

In Section 4.1 we analyze the frequency of refactoring and re-refactoring
operations applied to code elements with critical internal quality attributes.
This analysis aims at revealing whether refactoring operations often target
structurally critical elements in the source code. If so, this means that refac-
toring indeed has the potential to improve internal quality attributes. As a
result, we find that developers apply more than 93% of the refactoring and
re-refactoring operations to code elements with at least one critical internal
quality attribute. In addition, more than 79% of the refactoring operations are
applied in code elements with more than one critical internal quality attribute.

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 4. (Re-)Refactoring Affecting Critical Elements 50

We then conclude that refactoring operations mostly target on code elements
that indeed require structural quality improvement.

Our results have different implications. First, developers should carefully
apply those operations, even if a code element was refactored before (re-
refactoring), since each refactoring operation may negatively affect the code
structural quality in several ways. Second, after manually classifying the
refactoring operations per tactic, we have found that most operations are floss
refactoring (72.82%), i.e., the major concern of developers when refactoring
is not strictly or explicitly improving the code structural quality alone. Thus,
developers should pay special attention when changing the source code to add
new functionalities or fixing bugs after refactoring the source code, for instance,
since these changes may have a negative impact on the code structural quality.

Our finding partially contradicts the results of a recent study (17),
which suggest that there is no clear relationship between quality metrics
and refactoring operations. In order to understand the causes for both study
findings to differ, we compared our study with the previous one. Table 4.3
compares the design of both studies, which may lead to the different findings.
The first column presents the studies. The second column shows the refactoring
detection tool used by each study. The third column presents the releases that
were used to detect refactoring operations. The fourth and fifth columns show
the number of internal quality attributes and quality metrics analyzed in each
study, respectively. The sixth column presents the exclusive metrics, i.e., the
number of quality metrics used in each study that was not used in the other.
Finally, the seventh column shows the number of software projects analyzed
in each study.

Table 4.3: Comparison with the study design (17)
Study Refactoring

Detection Tool
Refactoring
Computation

Internal
Attributes

Quality
Metrics

Exclusive
Metrics Projects

Previous (17) Ref-Finder Between major
releases 5 11 6 3

Ours Refactoring Miner Between
commits 5 25 20 23

By relying on Table 4.3, we observed several differences between both
studies that may produce different results. For instance, to detect each refac-
toring operation, we used the Refactoring Miner tool (version 0.2.0) (61).
Previous work observed a precision of Refactoring Miner equals 96.4% with
low rates of false positives (61). Indeed, to detect each refactoring opera-
tion, bavota2015experimental used the Ref-Finder tool. The precision of Ref-
Finder tool was as low as 15% for most of the refactoring types, as observed in
validation phase in the study of Cedrim et al. (18), causing a substantial num-

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 4. (Re-)Refactoring Affecting Critical Elements 51

Table 4.4: Quality metrics grouping of Bavota et al. (17) study
Internal Attribute Quality Metrics

Cohesion Lack of COhesion of Methods (LCOM) (30)
Conceptual Cohesion of Classes (C3) (68)

Coupling
Response for a Class (RFC) (30)
Coupling Between Object (CBO) (30)
Conceptual Coupling Between Classes (CCBC) (69)

Complexity Weighted Methods per Class (WMC) (30)

Inheritance

Depth of Inheritance Tree (DIT) (30)
Number Of Children (NOC) (30)
Number of Operations Added by a subclass (NOA) (31)
Number of Operations Overridden by a subclass (NOO) (31)

Size Lines of Code (LOC) (31)

ber of false positives. Furthermore, Bavota et al. (17) analyze the occurrence of
refactoring operations only in major versions, being able to leave relevant infor-
mation in intermediate commits. To the contrary, we analyze all the commits
to detect and investigate the refactoring operations.

The fourth column in Table 4.3 presents the number of internal quality
attributes analyzed by both studies. Since Bavota et al. (17) do not explicitly
study internal quality attributes, we grouping the quality metrics used by them
into internal quality attributes. The Table 4.4 presents this grouping. The first
column shows the internal quality attributes. The second columns presents the
quality metrics associated to each internal quality attributes. To archive this
information, we used the same mapping criteria of Section 3.5. After grouping
the quality metrics, we observe that both studies used the same internal quality
attributes.

The fifth column presents the number of quality metrics analyzed in each
study and the sixth column shows the exclusive metrics. We used a set of 25
quality metrics chosen using several criteria (See Section 3.5), against only
11 quality metrics used by Bavota et al. (17). On the other hand, Bavota et
al. (17) uses the Lack of Cohesion of Methods (LCOM) metric (30), which was
discarded in our study. There are evidences that LCOM is not an appropriate
metric to capture and measure cohesion 64,65. First, LCOM is not normalized
and has outliers, so, it is difficult to compare two values of LCOM. Second,
LCOM equals 0 may be meaningless, since it does not exactly indicate “no
lack of cohesion" (65). These aspects represent another difference that may
have led to different results.

Finally, as shown in the last column of Table 4.3, we analyzed 23
software projects, against only 3 projects analyzed by Bavota et al. (17).
We analyze the 3 projects analyzed by Bavota et al. (17) plus 20 more
projects. The software projects selection may have led to different results.

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 4. (Re-)Refactoring Affecting Critical Elements 52

We observed several differences related to the software project under analysis.
First, our study has projects with additional domains. Second, both studies
have different developers communities with diverse views about the application
of refactoring operations and code structural quality. All these aspects can lead
to different insights of generalization and results of the studies (70). Thus,
another implication of our study is that more empirical studies, performed
by independent researchers, need to be conducted in this field. The analyzes
present in the next chapter also aims to reinforce either our findings or Bavota
et al.’s findings.

4.3
Final Remarks

In this chapter, we analyze if refactoring and re-refactoring operations
are often applied to code elements with critical internal quality attributes. We
aim to observe if developers target their refactoring effort mostly on code
elements that require structural quality improvement. We assume that an
internal quality attribute is critical if at least one metric used to quantify the
internal attribute has a critical value (Section 3.1). As a result, we observe that
most of the refactoring operations (93.45% in average) are very often applied
to code elements with at least one critical internal quality attribute. This
observation is also valid for root-canal refactoring (98.78%), floss refactoring
(99.74%) and re-refactoring (99.86%). This finding led us to investigate the
effects of refactoring operations on internal quality attributes. The next chapter
presents and discusses the results of RQ2.

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



5
Effects of Refactorings on Internal Quality Attributes

In this chapter, we assess the impact of refactoring operations on differ-
ent internal quality attributes. While answering this research question, we aim
to understand if developers improve at least one internal quality attribute af-
ter refactoring code elements. We are also interested in analyzing if developers
affect most of the internal attributes when applying a refactoring operation.
Through this assessment, we answer our RQ2 (What is the impact of refactor-
ing operations on internal quality attributes?).

5.1
Answering RQ2 with Two Approaches

After applying a refactoring operation to a code element, each of the
metrics that capture each internal quality attribute may present three different
behaviors, which are captured in Table 5.1. The value of a given metric
may increase, decrease, or remain unaffected. Also, multiple metrics help to
capture a single internal quality attribute. Thus, to understand the impact of
refactoring operations on internal quality attributes, we defined a notation for
the metric behavior. Table 5.1 presents the notation used to categorize the
metric behavior. This notation aims to support the discussion of study results
in Sections 5.2 and 5.3.

Table 5.1: Notation of Software Metric Behavior
Symbol Description

↑ The metric improves
↓ The metric worsens
_ The metric remains unaffected

We address RQ2 by analyzing the behavior of internal quality attributes
in two different approaches: Most Metrics and At Least One Metric. The
Most Metrics approach tries to identify whether refactoring operations affect
several properties (quality metric) of an internal quality attribute, i.e., when
the refactoring operation aims to positively affect the entire internal quality
attribute. On the other hand, the At Least One Metric approach aims at
assessing if refactoring positively affects at least one property (quality metric)
of an internal quality attribute, i.e., when a simple refactoring operation aims

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 5. Effects of Refactorings on Internal Quality Attributes 54

to improve a specific property of the attribute, possibly as a step for future
improvement of the entire internal quality attribute. Sections 5.2 and 5.3
describe each approach.

5.2
The Most Metrics Approach

Table 5.2 presents the impact of refactoring operations per type using
the Most Metrics approach. The first column lists the 11 refactoring types
under analysis. The second column provides the total number of refactoring
operations per refactoring type. The remaining columns concern the five in-
ternal quality attributes investigated in this study. For each column, the table
presents the predominant behavior for the respective refactoring type. For this
purpose, we use the notation described in Table 5.1. These columns also pro-
vide the percentage of refactoring operations categorized in the predominant
behavior for the respective internal quality attribute. Each cell highlighted in
gray indicates that a given internal quality attribute (captured by the corre-
sponding column of the cell) is expected to improve after applying a given
refactoring type (captured by the corresponding row of the cell). The gray
highlight on each cell was assigned by the mapping of refactoring to internal
quality attributes described in Table 3.2. These gray cells represent the cases
of internal quality attributes expected to be improved by the corresponding
refactoring types.

Table 5.2: Refactoring Effect Using the Most Metrics Approach
Refactoring Type Total Cohesion Coupling Complexity Inheritance Size
Extract Superclass 341 ↑ _ _ _ ↑

51.32% 53.67% 60.12% 54.25% 73.02%
Extract Interface 133 _ _ _ ↑ _

83.46% 69.92% 94.74% 64.66% 42.11%
Move Field 4,355 ↑ _ _ _ _

63.31% 55.57% 88.4% 90.13% 50.95%
Inline Method 1,525 ↑ ↓ _ _ ↑

58.3% 39.87% 48.92% 92.92% 56.59%
Push down Field 78 ↓ ↑ _ _ ↑

47.44% 41.03% 87.18% 97.44% 46.15%
Extract Method 7,513 ↓ ↓ ↑ _ ↓

59.03% 45.77% 44.95% 93.81% 58.53%
Move Method 1,404 ↓ ↓ _ _ ↑

46.44% 41.17% 68.87% 81.05% 43.73%
Push down Method 114 ↓ ↑ _ _ ↓

42.11% 44.74% 59.65% 89.47% 58.77%
Pull up Method 629 ↓ ↓ _ _ ↓

43.88% 67.89% 69.16% 85.06% 52.94%
Pull up Field 465 ↓ ↓ _ _ ↓

59.35% 66.45% 68.6% 81.94% 63.87%
Rename Method 12,746 _ _ _ _ _

100% 82.93% 97.98% 100% 86.11%

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 5. Effects of Refactorings on Internal Quality Attributes 55

Based on Table 5.2, we observe that, for Extract Superclass, Extract In-
terface, Move Field, Inline Method, and Push down Field, one or more inter-
nal quality attributes improved. That is, these refactoring types have internal
quality attributes improving more than worsening. Furthermore, exactly one
related internal quality attribute to a given refactoring type has improved for
each type. Overall, five out of 11 (45.45%) of the refactoring types have im-
proved for one or more internal quality attributes. On the other hand, for the
Extract Method, Move Method, Push down Method, Pull up Method, and Pull
up Field, one or more internal quality attributes worsens. That is, these refac-
toring types have internal quality attributes worsening more than improving.
Overall, five out of 11 (45.45%) of the refactoring types have worsens for one
or more internal quality attributes. Finally, Rename Method unalters all the
internal quality attributes.

Finding 2. For some refactoring types, the internal quality attributes
tend to improve or remain unaffected. This observation is valid when
considering most metrics per internal quality attribute.

Based on Table 5.2, we compute the total internal quality attributes that
improve, worsen and remain unaffected for each approach. This computation is
performed over the related internal quality attributes (gray cells). Concerning
the Most Metrics approach, the amount of improved internal quality attributes
is equal to four (20%); thus, we observed some positive impact of refactoring
operations on certain internal quality attributes. However, the amount of wors-
ening internal attributes is equal to seven (35%), and nine (45%) remain un-
affected. In fact, the number of worsened internal quality attributes surpasses
the number of improved attributes. However, it represents only a half of the
total number of improved attributes summed with unaffected internal quality
attributes. These results suggest we should study if less strict approaches (e.g.,
the At Least One Metric approach) may better capture the positive impact of
refactoring operations. Section 5.3 aims at analyzing the internal quality at-
tributes using the At Least One Metric approach.

The study of Bavota et al. (17) suggests there is no relationship between
refactoring operations and metrics that capture key quality attributes, such
as cohesion. Table 5.2 shows that cohesion is expected to be improved by
Move Method and Move Field refactoring types. We observed that Move Field
improves cohesion while Move Method has an opposite effect, using the Most
Metrics approach. One of the possible reasons for this diverging results (with
respect to Bavota et al. (17)) is that our study used a different set of metrics to
capture cohesion. In their study, they only analyze the LCOM (30) metric, that

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 5. Effects of Refactorings on Internal Quality Attributes 56

according to Henderson-Sellers (64) is not an appropriate metric to capture
and quantify cohesion. According to Henderson-Sellers (64), the LCOM is not a
non-normalized metric and has outliers. Consequently, it is difficult to compare
two values of LCOM. On the other hand, LCOM equal to 0 is sometimes
meaningless, that is, is does not exactly indicates “no lack of cohesion", as
observed by some studies (64, 65).

5.3
The At Least One Metric Approach

Table 5.3 presents the impact of refactoring operations per type using
the At Least One Metric approach. The structure of this table is similar to
Table 5.2. Using this approach, when a particular metric used to quantify the
internal quality attribute improves, it means that the internal quality attribute
also improves. An analysis of Table 5.3 reveals that, in most cases, refactoring
operations tend to improve the related internal quality attributes. For instance,
the Extract Superclass refactoring type is expected to improve two internal
quality attributes, namely inheritance and size (see Table 3.2). Table 5.3 shows
that this refactoring type improves inheritance in 92.67% of the cases, and size
in 81.52%. Besides that, it also improves cohesion and coupling.

Table 5.3: Refactoring Effect Using the At Least One Metric Approach
Refactoring Type Total Cohesion Coupling Complexity Inheritance Size
Extract Superclass 341 ↑ ↑ _ ↑ ↑

51.32% 48.68% 60.12% 92.67% 81.52%
Inline Method 1,525 ↑ ↑ _ _ ↑

58.3% 77.64% 48.07% 91.48% 88.98%
Extract Method 7,513 ↓ ↑ ↑ _ ↑

59.03% 71.4% 47.03% 93.09% 85.81%
Move Method 1,404 ↓ ↑ _ _ ↑

46.44% 48.01% 68.87% 74.29% 82.55%
Push down Field 78 ↓ ↑ _ _ ↑

47.44% 53.85% 87.18% 94.87% 79.49%
Push down Method 114 ↓ ↑ _ _ ↑

42.11% 77.19% 59.65% 85.09% 78.07%
Extract Interface 133 _ _ _ ↑ _

83.46% 63.16% 94.74% 68.42% 39.85%
Move Field 4,355 ↑ _ _ _ _

63.31% 49% 88.4% 87.83% 48.45%
Pull up Field 465 ↓ ↓ _ _ ↑

59.35% 66.45% 68.6% 70.97% 81.29%
Pull up Method 629 ↓ ↓ _ _ ↑

43.88% 67.89% 69.16% 83.47% 82.99%
Rename Method 12,746 _ _ _ _ _

100% 80.63% 97.98% 100% 85.74%

The eight (72.73%) first refactoring types in Table 5.3 show a predomi-
nant behavior of improvements. This means that using the At Least One Metric
approach, most refactoring types tend to improve rather than worsen the in-

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 5. Effects of Refactorings on Internal Quality Attributes 57

ternal quality attributes. Similar to the Most Metrics approach, the Rename
Method refactoring type does not alter internal quality attributes. Finally, Pull
up Field and Pull up Method tend to worsen rather than improve the internal
quality attributes. This observation is also valid for Most Metrics approach.
Consequently, we should take some care by applying this refactoring types
since it negatively affects most internal quality attributes.

Based on Table 5.3, we compute the total internal quality attributes that
improve, worsen and remain unaffected for each approach. With respect to At
Least One Metric approach, the amount of related internal quality attributes
(grey cells) is equals to 11 (55%). The amount of worsen internal attributes
is equals to one (5%), while eight (40%) attributes remain unaffected. As
expected, the number of improved internal quality attributes when using a
less strict approach has increased in 35% when compared to the Most Metrics
approach. In turn, the number of worsened attributes has declined in 30%
when compared to the more strict approach.

Finding 3. The refactoring operations tend to improve or unalter the
internal quality attributes. This observation is valid when considering at
least one metric per internal quality attribute.

The study of Bavota et al. (17) reports a low relationship between
refactoring operations and metrics that capture the coupling attribute. In
contrast, our study shows that refactoring operations in most of the cases
improve the coupling attribute. For instance, in our work, we assume that the
coupling attribute is related to the following refactoring types: Inline Method,
Extract Method, Move Method, and Move Field. Using the At Least One Metric
approach, we confirmed that Inline Method, Extract Method and Move Method
refactorings often improve coupling, while Move Field refactorings often does
not affect coupling. One of the possible reasons for the difference with Bavota’s
study is the different set of metrics employed to capture coupling. Bavota et
al. (17) analyze three metrics that capture coupling, while we used five metrics
(see Table 3.3).

5.4
Refactoring Recommendations

In Chapter 4 we assess whether refactoring operations are often applied to
code elements with critical internal quality attributes. As a result, we observe
that most of the refactoring operations (93.45% in average) are applied to
code elements with at least one critical internal quality attribute. In this
chapter we assess the impact of refactoring operations on different internal

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 5. Effects of Refactorings on Internal Quality Attributes 58

quality attributes, aimed at providing recommendations about the use of
each refactoring type. These recommendations can be tailored to particular
developers’ concerns with respect to internal quality attributes.

Table 5.4 presents recommendations for developers who are applying
each refactoring type. The first column lists the 11 refactoring types under
analysis. The second column presents whether each refactoring type is often
applied to code elements with critical internal quality attributes. In other
words, the second column summarizes the results of the RQ1 (Section 4).
The third and fourth columns show the effect of each refactoring type on
the internal attributes using the Most Metrics and At Least One Metrics
approaches respectively. That is the results of the RQ2 (Section 5.1). Finally,
the fifth column presents the recommendations for applying each refactoring
type.

The data in Table 5.4 provide recommendations for applying refactor-
ing operations when developers attempt to improve the structural quality by
improving internal attributes. We can observe several interesting recommen-
dations. For instance, the cohesion internal quality attribute can be improved
by three refactoring types, (i) Extract Superclass, (ii) Move Field, and (iii) In-
line Method. This means that developers should first consider the application
of these refactoring types, when they want to improve cohesion. On the other
hand, although cohesion is related to Move Method refactoring type, we can
observe that the cohesion is often worsened by Move Method. We believe that
the result can be produced because the moved method could be very related
to the attributes and other methods of the source class. This recommendation
serves as a warning for developers applying the Move Method refactoring. De-
velopers should be more careful when performing this refactoring; otherwise,
they have a high chance of reducing the cohesion of either the source of the
target class.

We found that Push down Field and Push down Method refactoring
types are opportunities to improve the coupling internal quality attribute. On
the other hand, the complexity and inheritance internal attributes only were
improved by Extract Method and Extract Interface, respectively. This means
that when there is interest in ameliorating complexity, a refactoring operation
of type Extract Method should be considered. Furthermore, the application of
Extract Interface is likely to lead to improvements in inheritance. We can note
that Pull up Method refactoring type does not improve any internal quality
attribute and negatively affects cohesion, coupling and some properties of size.
Therefore, care must be taken when applying this type of refactoring.

In summary, we assess whether refactoring operations are often applied

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 5. Effects of Refactorings on Internal Quality Attributes 59
Ta

bl
e
5.
4:

R
ef
ac
to
rin

g
re
co
m
m
en
da

tio
ns

ba
se
d
on

at
tr
ib
ut
es
.

R
ef
ac
to
ri
ng

T
yp

e
O
cc
ur
re
nc
e
w
it
h
in
te
rn
al

at
tr
ib
ut
es

(R
Q
1)

R
ef
ac
to
ri
ng

eff
ec
ts

on
in
te
rn
al

at
tr
ib
ut
es

(M
os
t
M
et
ri
cs
)
(R

Q
2)

R
ef
ac
to
ri
ng

eff
ec
ts

on
in
te
rn
al

at
tr
ib
ut
es

(A
t
Le

as
t
O
ne

)
(R

Q
2)

R
ec
om

m
en

da
ti
on

Ex
tr
ac
t

M
et
ho

d

It
ra
re
ly

aff
ec
ts

co
de

el
em

en
ts

w
ith

ou
t
cr
iti
ca
l

in
te
rn
al

qu
al
ity

at
tr
ib
ut
es
.I
n
m
os
t
ca
se
s,

Ex
tr
ac
t
M
et
ho

d
aff

ec
ts

co
de

el
em

en
ts

w
ith

m
ul
tip

le
cr
iti
ca
li
nt
er
na

lq
ua

lit
y
at
tr
ib
ut
es
.

It
un

al
te
rs

in
he

rit
an

ce
.O

n
th
e

ot
he

r
ha

nd
,i
t
te
nd

s
to

im
pr
ov
e

co
m
pl
ex
ity

an
d
wo

rs
en

s
co
he

sio
n,

co
up

lin
g
an

d
siz

e.

It
un

al
te
rs

th
e
in
he

rit
an

ce
.

O
n
th
e
ot
he

r
ha

nd
,i
t
te
nd

s
to

im
pr
ov
e
co
up

lin
g,

co
m
pl
ex
ity

an
d
siz

e,
an

d
wo

rs
en

co
he

sio
n.

It
ca
n
be

fre
el
y
us
ed

,w
ith

ou
t
m
aj
or

co
nc

er
ns

ab
ou

t
in
he

rit
an

ce
.I
n
ad

di
tio

n,
sh
ou

ld
be

co
ns
id
er
ed

to
im

pr
ov
e
th
e
co
m
pl
ex
ity

in
te
rn
al

qu
al
ity

at
tr
ib
ut
es
.

C
ar
e
sh
ou

ld
be

ta
ke
n
to

th
e
co
he

sio
n
at
tr
ib
ut
e
sin

ce
th
is

re
fa
ct
or
in
g
ty
pe

te
nd

s
to

wo
rs
en

co
he

sio
n.

Ex
tr
ac
t

In
te
rfa

ce

It
aff

ec
ts

a
co
ns
id
er
ab

le
nu

m
be

r
of

co
de

el
em

en
ts

w
ith

ou
t
cr
iti
ca
la

tt
rib

ut
es
,w

ith
re
sp
ec
t
to

th
e

ot
he

r
re
fa
ct
or
in
g
ty
pe

s.

It
un

al
te
rs

al
la

tt
rib

ut
es

ex
ce
pt

in
he

rit
an

ce
,w

hi
ch

te
nd

s
to

im
pr
ov
e.

It
un

al
te
rs

al
la

tt
rib

ut
es

ex
ce
pt

in
he

rit
an

ce
,w

hi
ch

te
nd

s
to

im
pr
ov
e
it.

It
ca
n
be

fre
el
y
us
ed

,w
ith

ou
t
m
aj
or

co
nc

er
ns

ab
ou

t
th
e
co
de

st
ru
ct
ur
al

qu
al
ity

.I
n
ad

di
tio

n,
sh
ou

ld
be

co
ns
id
er
ed

to
im

pr
ov
e
th
e
in
he

rit
an

ce
in
te
rn
al

qu
al
ity

at
tr
ib
ut
e.

Ex
tr
ac
t

Su
pe

rc
la
ss

It
aff

ec
ts

a
m
in
im

um
bu

t
al
so

co
ns
id
er
ab

le
nu

m
be

r
co
de

el
em

en
ts

w
ith

ou
t
cr
iti
ca
la

tt
rib

ut
es
,

w
ith

re
sp
ec
t
to

th
e
ot
he

r
re
fa
ct
or
in
g
ty
pe

s.

It
un

al
te
rs

al
la

tt
rib

ut
es

ex
ce
pt

co
he

sio
n
an

d
siz

e,
w
hi
ch

te
nd

s
to

im
pr
ov
e.

It
un

al
te
rs

al
la

tt
rib

ut
es

ex
ce
pt

co
he

sio
n
an

d
siz

e,
w
hi
ch

te
nd

s
to

im
pr
ov
e
it.

It
ca
n
be

fre
el
y
us
ed

,w
ith

ou
t
m
aj
or

co
nc

er
ns

ab
ou

t
th
e
co
de

st
ru
ct
ur
al

qu
al
ity

.I
n
ad

di
tio

n,
sh
ou

ld
be

co
ns
id
er
ed

to
im

pr
ov
e
th
e
co
he

sio
n
an

d
siz

e
in
te
rn
al

qu
al
ity

at
tr
ib
ut
es
.

In
lin

e
M
et
ho

d

It
ra
re
ly

aff
ec
ts

co
de

el
em

en
ts

w
ith

ou
t
cr
iti
ca
l

in
te
rn
al

qu
al
ity

at
tr
ib
ut
es
.I
n
m
os
t
ca
se
s,

In
lin

e
M
et
ho

d
aff

ec
ts

co
de

el
em

en
ts

w
ith

m
ul
tip

le
cr
iti
ca
li
nt
er
na

lq
ua

lit
y
at
tr
ib
ut
es
.

It
un

al
te
rs

al
la

tt
rib

ut
es

ex
ce
pt

co
he

sio
n
an

d
siz

e,
w
hi
ch

te
nd

s
to

im
pr
ov
e.

It
im

pr
ov
e
co
he

sio
n,

co
up

lin
g

an
d
siz

e.
O
n
th
e
ot
he

r
ha

nd
,i
t

un
al
te
rs

fo
r
co
m
pl
ex
ity

an
d

in
ha

rit
an

ce
.

It
ca
n
be

fre
el
y
us
ed

to
im

pr
ov
e
th
e
co
he

sio
n
an

d
siz

e
in
te
rn
al

qu
al
ity

at
tr
ib
ut
e.

It
al
so

po
te
nt
ia
lly

im
pr
ov
es

so
m
e
pr
op

er
tie

s
of

co
up

lin
g.

M
ov
e

Fi
el
d

It
ne

ve
r
aff

ec
ts

co
de

el
em

en
ts

w
ith

ou
t
cr
iti
ca
l

in
te
rn
al

qu
al
ity

at
tr
ib
ut
es
.I
n
m
os
t
ca
se
s,

M
ov
e
Fi
el
d
aff

ec
ts

co
de

el
em

en
ts

w
ith

m
ul
tip

le
cr
iti
ca
li
nt
er
na

lq
ua

lit
y
at
tr
ib
ut
es
.

It
un

al
te
rs

al
la

tt
rib

ut
es

ex
ce
pt

co
he

sio
n,

w
hi
ch

te
nd

s
to

im
pr
ov
e.

It
un

al
te
rs

al
la

tt
rib

ut
es

ex
ce
pt

co
he

sio
n,

w
hi
ch

te
nd

s
to

im
pr
ov
e
it.

It
ca
n
be

fre
el
y
us
ed

,w
ith

ou
t
m
aj
or

co
nc

er
ns

ab
ou

t
th
e

im
pr
ov
em

en
t
of

al
li
nt
er
na

la
tt
rib

ut
es

ex
ce
pt

co
he

sio
n.

T
hi
s
re
fa
ct
or
in
g
ty
pe

sh
ou

ld
be

co
ns
id
er
ed

to
im

pr
ov
e

th
e
co
he

sio
n
in
te
rn
al

qu
al
ity

at
tr
ib
ut
es
.

M
ov
e

M
et
ho

d

It
ra
re
ly

aff
ec
ts

co
de

el
em

en
ts

w
ith

ou
t
cr
iti
ca
l

in
te
rn
al

qu
al
ity

at
tr
ib
ut
es
.I
n
m
os
t
ca
se
s,

M
ov
e
M
et
ho

d
aff

ec
ts

co
de

el
em

en
ts

w
ith

m
ul
tip

le
cr
iti
ca
li
nt
er
na

lq
ua

lit
y
at
tr
ib
ut
es
.

It
im

pr
ov
es

siz
e
an

d
re
m
ai
ns

un
aff

ec
te
d,
bo

th
in
he

rit
an

ce
an

d
co
m
pl
ex
ity

.H
ow

ev
er
,i
t

wo
rs
en

s
co
he

sio
n
an

d
co
up

lin
g.

It
im

pr
ov
es

siz
e
an

d
co
up

lin
g.

In
ad

di
tio

n,
it
un

al
te
rs

bo
th

in
he

rit
an

ce
an

d
co
m
pl
ex
ity

.
H
ow

ev
er
,i
t
wo

rs
en

s
co
he

sio
n.

It
ca
n
be

fre
el
y
us
ed

to
im

pr
ov
e
th
e
siz

e
in
te
rn
al

qu
al
ity

at
tr
ib
ut
e.

C
ar
e
sh
ou

ld
be

ta
ke
n
to

th
e
co
he

sio
n
at
tr
ib
ut
e

sin
ce

th
is

re
fa
ct
or
in
g
ty
pe

,te
nd

s
to

wo
rs
en

co
he

sio
n.

R
en

am
e

M
et
ho

d

It
aff

ec
ts

a
co
ns
id
er
ab

le
nu

m
be

r
of

el
em

en
ts

w
ith

ou
t
cr
iti
ca
la

tt
rib

ut
es
,w

ith
re
sp
ec
t
to

th
e

ot
he

r
re
fa
ct
or
in
g
ty
pe

s.
It

un
al
te
rs

al
la

tt
rib

ut
es
.

It
un

al
te
rs

al
la

tt
rib

ut
es
.

It
ca
n
be

fre
el
y
us
ed

,w
ith

ou
t
m
aj
or

co
nc

er
ns

ab
ou

t
th
e

co
de

st
ru
ct
ur
al

qu
al
ity

Pu
ll
up

Fi
el
d

It
ra
re
ly

aff
ec
ts

co
de

el
em

en
ts

w
ith

ou
t
cr
iti
ca
l

in
te
rn
al

qu
al
ity

at
tr
ib
ut
es
.I
n
m
os
t
ca
se
s,

Pu
ll

up
Fi
el
d
aff

ec
ts

co
de

el
em

en
ts

w
ith

m
ul
tip

le
cr
iti
ca
li
nt
er
na

lq
ua

lit
y
at
tr
ib
ut
es
.

It
wo

rs
en

s
co
he

sio
n,

co
up

lin
g,

an
d
siz

e.
H
ow

ev
er
,i
t
re
m
ai
ns

un
aff

ec
te
d
th
e
ot
he

r
in
te
rn
al

at
tr
ib
ut
es
.

It
im

pr
ov
es

siz
e
on

ly
.I
n
ad

di
tio

n,
it
un

al
te
rs

th
e
ot
he

r
in
te
rn
al

at
tr
ib
ut
es
.H

ow
ev
er
,i
t
wo

rs
en

co
he

sio
n
an

d
co
up

lin
g.

It
ca
n
be

fre
el
y
us
ed

w
ith

ou
t
on

ce
rn
s
ab

ou
t
co
m
pl
ex
ity

an
d
in
he

rit
an

ce
.W

e
sh
ou

ld
ta
ke

so
m
e
ca
re

by
ap

pl
yi
ng

th
is

re
fa
ct
or
in
g
ty
pe

sin
ce

it
ne

ga
tiv

el
y
co
he

sio
n
an

d
co
up

lin
g,

in
ad

di
tio

n
to

th
e
ne

ga
tiv

e
im

pa
ct

of
so
m
e

pr
op

er
tie

s
of

siz
e.

Pu
ll
up

M
et
ho

d

It
ra
re
ly

aff
ec
ts

co
de

el
em

en
ts

w
ith

ou
t
cr
iti
ca
l

in
te
rn
al

qu
al
ity

at
tr
ib
ut
es
.I
n
m
os
t
ca
se
s,

Pu
ll

up
M
et
ho

d
aff

ec
ts

co
de

el
em

en
ts

w
ith

m
ul
tip

le
cr
iti
ca
li
nt
er
na

lq
ua

lit
y
at
tr
ib
ut
es
.

It
wo

rs
en

s
co
he

sio
n,

co
up

lin
g,

an
d
siz

e.
H
ow

ev
er
,i
t
re
m
ai
ns

un
aff

ec
te
d
th
e
ot
he

r
in
te
rn
al

at
tr
ib
ut
es
.

It
im

pr
ov
es

siz
e
on

ly
.I
n
ad

di
tio

n,
it
un

al
te
rs

th
e
ot
he

r
in
te
rn
al

at
tr
ib
ut
es
.H

ow
ev
er
,i
t
wo

rs
en

s
co
he

sio
n
an

d
co
up

lin
g.

It
ca
n
be

fre
el
y
us
ed

w
ith

ou
t
co
nc

er
ns

ab
ou

t
co
m
pl
ex
ity

an
d
in
he

rit
an

ce
.W

e
sh
ou

ld
ta
ke

so
m
e
ca
re

by
ap

pl
yi
ng

th
is

re
fa
ct
or
in
g
ty
pe

sin
ce

it
ne

ga
tiv

el
y
im

pa
ct
s

co
he

sio
n
an

d
co
up

lin
g,

in
ad

di
tio

n
to

th
e
ne

ga
tiv

e
im

pa
ct

of
so
m
e
pr
op

er
tie

s
of

siz
e.

Pu
sh

do
w
n

Fi
el
d

It
al
wa

ys
aff

ec
ts

co
de

el
em

en
ts

w
ith

m
ul
tip

le
cr
iti
ca
li
nt
er
na

lq
ua

lit
y
at
tr
ib
ut
es
.

It
im

pr
ov
es

co
up

lin
g
an

d
siz

e,
wo

rs
en

s
co
he

sio
n,

an
d
un

al
te
rs

th
e
ot
he

r
at
tr
ib
ut
es

It
im

pr
ov
es

co
up

lin
g
an

d
siz

e,
wo

rs
en

s
co
he

sio
n,

an
d
un

al
te
rs

th
e
ot
he

r
at
tr
ib
ut
es

It
ca
n
be

fre
el
y
us
ed

,w
ith

ou
t
m
aj
or

co
nc

er
ns

ab
ou

t
co
m
pl
ex
ity

an
d
in
he

rit
an

ce
.I
n
ad

di
tio

n,
it

sh
ou

ld
be

co
ns
id
er
ed

to
im

pr
ov
e
co
up

lin
g
an

d
siz

e.
W
e
sh
ou

ld
ta
ke

so
m
e
ca
re

by
ap

pl
yi
ng

th
is

re
fa
ct
or
in
g
ty
pe

w
he

n
de

ve
lo
pe

rs
ar
e
co
nc
er
ne

d
w
ith

im
pr
ov

in
g
co
he

sio
n.

Pu
sh

do
w
n

M
et
ho

d

It
ne

ve
r
aff

ec
ts

co
de

el
em

en
ts

w
ith

ou
t
cr
iti
ca
l

in
te
rn
al

qu
al
ity

at
tr
ib
ut
es
.I
n
m
os
t
ca
se
s,

Pu
sh

do
w
n
M
et
ho

d
aff

ec
ts

co
de

el
em

en
ts

w
ith

m
ul
tip

le
cr
iti
ca
li
nt
er
na

lq
ua

lit
y
at
tr
ib
ut
es
.

It
im

pr
ov
es

co
up

lin
g
an

d
wo

rs
en

s
bo

th
co
he

sio
n
an

d
siz

e.
In

ad
di
tio

n,
it
un

al
te
rs

bo
th

co
m
pl
ex
ity

an
d

in
he

rit
an

ce

It
im

pr
ov
es

bo
th

co
up

lin
g
an

d
siz

e,
wo

rs
en

s
co
he

sio
n,

an
d

un
al
te
rs

co
m
pl
ex
ity

an
d

in
he

rit
an

ce

It
ca
n
be

fre
el
y
us
ed

w
ith

ou
t
co
nc

er
ns

ab
ou

t
co
m
pl
ex
ity

an
d
in
he

rit
an

ce
.I
t
al
so

ca
n
be

us
ed

to
im

pr
ov
e
co
up

lin
g

an
d
so
m
e
pr
op

er
tie

s
of

siz
e.

H
ow

ev
er
,w

e
sh
ou

ld
ta
ke

so
m
e

ca
re

by
ap

pl
yi
ng

th
is

re
fa
ct
or
in
g
ty
pe

sin
ce

it
ne

ga
tiv

el
y

aff
ec
ts

co
he

sio
n

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 5. Effects of Refactorings on Internal Quality Attributes 60

to code elements with critical internal quality attributes (Chapter 4). On the
other hand, we assess the impact of refactoring operations on different internal
quality attributes (Chapter 5). These analyses help us to produce recommen-
dations about the use of each refactoring type, depending on the developers
concerns about internal quality attributes (Table 5.4). These recommendations
can help developers by suggesting refactoring types for improving specific in-
ternal quality attributes. Additionally, these recommendations can be used by
tools to suggest or alert the application of refactoring operations. These sug-
gestions or warnings can guide the improvement of code structural quality by
inducing developers to positively impact internal quality attributes.

By analyzing Table 5.4, we observe that the At Least One Metric
approach is not very less strict than the Most Metrics approach. That is,
even by considering the improvement of an internal quality attribute by just
one improve metric, we observe a slight difference of results when compared
to the Most Metrics approach, which is our most strict approach. Indeed, for
Extract Interface, Extract Superclass, Move Field, Rename Method and Push
down Field nothing has changed. In addition, for Inline Method and Pull up
Field, we observe that only one attribute has changed its behavior from one
approach to another.

5.5
Root-canal versus Floss Refactoring

This section discusses the impact of root-canal refactoring and floss
refactoring using both approaches. Table 5.5 presents the general results for
the Most Metrics approach. The first column lists each metric behavior. The
second and third columns present data regarding root-canal refactoring. Each
cell presents the number and percentage of internal quality attributes in the
case of related and all attributes, respectively. The fourth and fifth columns
present data regarding floss refactoring. Similarly to the root-canal refactoring,
each cell presents the number and percentage of internal quality attributes in
the case of the related and all attributes, respectively.

Data in Table 5.5 point out interesting observations for the Most Metrics
approach. For instance, for both root-canal refactoring and floss refactoring,
the number of worsened attributes represents a half of the number of improved
attributes summed with the number of unaffected attributes. These results
suggest that, regardless the refactoring tactic, refactoring operations tend to
improve most metric of the attribute.

Table 5.6 presents the general results for the At Least One Metric
approach. The first column lists each metric behavior. The second and third

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 5. Effects of Refactorings on Internal Quality Attributes 61

Table 5.5: Most Metrics approach by refactoring tactic
Behavior Root-canal Refactoring Floss Refactoring

Related
Attributes

All
Attributes

Related
Attributes

All
Attributes

↑ 8
(40%)

14
(25.45%)

5
(25%)

10
(18.18%)

↓ 4
(20%)

11
(20.00%)

7
(35%)

20
(36.36%)

_ 8
(40%)

30
(54.55%)

8
(40%)

25
(45.45%)

columns present, for root-canal refactoring, the number and percentage of
internal attributes per behavior, in the case of related (second column) and
all attributes (third column). The fourth and fifth columns present, for floss
refactoring, the number, and percentage of internal attributes per behavior,
in the case of related (fourth column) and all attributes (fifth column).
Considering the At Least One Metric approach, the number of improved and
unaffected attributes are both higher than the number of worsened attributes.
This observation applies to both refactoring tactics. As expected, by using a
less strict approach, these results evidence that refactoring operations have
mostly at least a slightly positive impact on internal quality attributes.

Finding 4. Root-canal refactoring tends to improve internal quality at-
tributes when considering at least one metric per attribute. Moreover, floss
refactoring tends to improve at least one metric per attribute, even if de-
velopers may not be explicitly concerned with this improvement.

Table 5.6: At Least One Metric approach by refactoring tactic
Behavior Root-canal Refactoring Floss Refactoring

Related
Attributes

All
Attributes

Related
Attributes

All
Attributes

↑ 13
(65%)

23
(41.82%)

11
(55%)

23
(41.82%)

↓ 0
(0%)

5
(9.09%)

2
(10%)

11
(20%)

_ 7
(35%)

27
(49.09%)

7
(35%)

21
(38.18%)

Comparing both approaches, we observed that the incidence of worsened
internal attributes is higher in the Most Metrics approach than such incidence
in the At Least One Metric approach. This observation applies to both
refactoring tactics. This means that whenever refactoring operations worsen
a internal attribute, those operations tend to considerably deteriorate the

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 5. Effects of Refactorings on Internal Quality Attributes 62

attribute. In other words, negative refactoring operations more often decrease
multiple (rather than a single) metric of each negatively affected attribute.

5.6
Example

To represent our finding in a real example, we will show a Move Method
refactoring operation affecting the internal quality attributes. This refactoring
type is often applied when a method is used more in another class than in
its own class. To solve this issue, developers move the method for the class
that most uses it. Listing 5.1 and 5.2 show the source code before and after
applying theMove Method refactoring, respectively. This example is taken from
Apache Ant1 project from GitHub. The SysProperties class is a utility class
for handling system properties and the EnvironmentData class is a wrapper
for environment variables. Before applying the Move Method refactoring, the
size() method is in the SysProperties class. This method returns the number
of environment variables in the environment field. We can observe that the
EnvironmentData class must provide this responsibility. Consequently, there
is a coupling between the two classes.

Listing 5.1: Before applying Move Method
public class SysPrope r t i e s
{

private Prope r t i e s m_system ;
private EnvironmentData environment ;

public int s i z e ( )
{

return environment . m_variables . s i z e ( ) ;
}

//More methods and p r o p e r t i e s
}

public class EnvironmentData
{

public ArrayList m_variables = new ArrayList ( ) ;

//More methods and p r o p e r t i e s
}

1Available at https://github.com/apache/ant

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 5. Effects of Refactorings on Internal Quality Attributes 63

Listing 5.2: After applying Move Method
public class SysPrope r t i e s
{

private Prope r t i e s m_system ;

//More methods and p r o p e r t i e s
}

public class EnvironmentData
{

public ArrayList m_variables = new ArrayList ( ) ;

public int s i z e ( )
{

return m_variables . s i z e ( ) ;
}

//More methods and p r o p e r t i e s
}

To understand the effects of Move Method refactoring, we quantify
the internal quality attributes before and after the refactoring operation.
Table 5.7 presents the effect in the internal quality attributes caused by Move
Method in the example. Each column presents the effects of each internal
quality attribute. We used the same notation of Table 5.1. This Move Method
refactoring improves the coupling by eliminating the dependency between
both classes. Additionally, it improves the size making the code more easy
to maintain. The cohesion, complexity, and inheritance remained unaltered.
This example illustrates our findings that suggest that for some refactoring
types, such as Move Method refactoring, the internal quality attributes tend
to improve or remain unaffected. However, there are several cases, including
instances of the Move Method refactoring, where the effect is clearly negative:
the refactoring operation, in addition to unalter some attributes, worsens
others.

Table 5.7: Effects on internal attributes caused by Move Method
Cohesion Coupling Complexity Inheritance Size

_ ↑ _ _ ↑

Back to Finding 4, we observed that the internal quality attributes tend
to improve or remain unaffected using the At Least One Metric approach,

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 5. Effects of Refactorings on Internal Quality Attributes 64

regardless the refactoring tactic. The aforementioned example illustrates a real
scenario where there is an improvement in two internal attributes (coupling
and size). In fact, our findings are significant since previous work reports
that refactoring operations tend to worsen or do not affect the code quality.
In contrast, as we illustrate with our example extracted from our empirical
study conducted with real software projects, certain refactoring types have a
potential to improve a single or multiple internal quality attributes together.

5.7
Final Remarks

In this chapter, we analyze the effects of refactoring operations on internal
quality attributes. We divide the analysis into two approaches, related to how
to classify the behavior of internal quality attributes: (i) At Least One Metric,
and (ii) Most Metrics. In (i) At Least One Metric approach, we assume that
the internal quality attribute improves when any of the metrics that measures
such attribute improve. In Most Metrics approach, we assume that an internal
quality attribute improves when most of the metrics that capture the attribute
also improve. We also analyze the impact of root-canal refactoring and floss
refactoring using both approaches.

As a result, we obtain interesting observations. First, in 65% of the cases,
the related internal quality attributes are improved, and the remaining 35%
operations keep the quality attributes unaffected. Second, whenever root-canal
refactoring operations are applied, we confirm that internal quality attributes
are either frequently improved or at least not worsened. Finally, while refac-
toring operations often reach other specific aims, called floss refactoring, 55%
of these operations surprisingly improve internal quality attributes, with only
10% of the quality decline.

We provide recommendations for applying each refactoring type to
aimed at improving the code structural quality. These recommendations could
support the proposal of refactoring recommendation tools based, on the
internal quality attributes which mostly concern developers and organizations.
The next chapter presents and discusses the results of RQ3 (What is the impact
of re-refactoring on internal quality attributes?).

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



6
Re-Refactoring Impact on Internal Attributes

In this chapter, we assess the impact of re-refactoring operations on
internal quality attributes. We aim to understand if developers improve at
least one internal quality attribute after refactoring code elements which was
refactored in the past. On the other hand, we are interested in analyzing
if developers affect most of the internal attributes when applying a re-
refactoring operation. Thus, we answer RQ3 (What is the impact of re-
refactoring operations on internal quality attributes?) as follows.

6.1
Answering RQ3 with Two Approaches

Similarly to Chapter 5, we divide the analysis into two approaches: Most
Metrics and At Least One Metric approaches. Section 6.2 and Section 6.3
describe each approach, respectively. For the data analysis in this section, we
use the same notation of Table 5.1. That is, we use an arrow up (↑) to express
an improvement on the attribute, an arrow down (↓) to express negative effects
on attributes and (_) to expose unaltered attributes.

6.2
The Most Metrics Approach

Table 6.1 presents the impact of re-refactoring operations per type
using the Most Metrics approach. The first column lists the 11 refactoring
types under analysis. The second column provides the total number of re-
refactoring operations per each type. The remaining columns concern the
five internal quality attributes investigated in this study. For each column,
the table presents the predominant behavior for the respective refactoring
type. For this purpose, we used the notation described in Table 5.1. These
columns also provide the percentage of refactoring operations categorized in the
predominant behavior for the respective internal quality attribute. Highlighted
cells in the table indicate that a given internal quality attribute (i.e., a column
of the table) is expected to improve after applying a given refactoring type
(i.e., a line of the table). The gray highlight on each cell was assigned by the
mapping of re-refactoring to internal quality attributes described in Table 3.2.

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 6. Re-Refactoring Impact on Internal Attributes 66

These gray cells represent the cases of internal quality attributes expected to
be improved by the corresponding refactoring types.

Table 6.1: Re-refactoring impact using the Most Metrics approach
Refactoring Type Total Cohesion Coupling Complexity Inheritance Size
Extract Superclass 114 ↑ _ _ _ ↑

54.39% 61.40% 57.89% 50% 71.93%
Extract Interface 42 _ _ _ ↑ _

85.71% 76.19% 100% 57.14% 54.76%
Move Field 3,813 ↑ _ _ _ _

65.7% 59.74% 90.24% 91.37% 56.86%
Push down Field 35 ↑ ↑ _ _ ↓

40% 42.86% 85.71% 97.14% 54.29%
Inline Method 1,521 ↑ ↓ _ _ ↑

58.32% 39.91% 48.98% 92.9% 56.54%
Extract Method 7,478 ↓ ↓ ↑ _ ↓

59.11% 45.77% 44.93% 93.82% 58.53%
Move Method 888 ↓ ↓ _ _ ↑

47.52% 38.29% 71.17% 84.23% 44.26%
Push down Method 70 ↓ ↑ _ _ ↓

48.57% 42.86% 51.43% 94.29% 57.14%
Pull up Method 301 ↓ ↓ _ _ ↓

39.2% 72.43% 67.77% 91.36% 59.47%
Pull up Field 259 ↓ ↓ _ _ ↓

47.88% 59.07% 61% 77.22% 69.5%

From data in Table 6.1, we observed several interesting results related
to the impact of re-refactoring operations on internal quality attributes. Our
results show that for the Extract Superclass, Extract Interface, Move Field,
Push down field, and Inline method one or more internal quality attributes
tend to improve (it improves rather than worsens), while the others remained
unaffected. Furthermore, one internal attribute related to a given refactoring
type has improved. Overall, five out of 10 (50%) of the refactoring types have
improved for one or more internal quality attributes. On the other hand, we
observed that for the Extract Method, Move Method, Push down Method, Pull
up Method, and Pull up Field the related internal attributes (gray cells) always
worsen or remain unaffected. Overall, five out of 10 (50%) of the refactoring
types have worsened for one or more related internal quality attributes (it
worsens rather than improves). In addition, we observed that Pull up Method
and Pull up Field never improve any of the internal quality attributes when
developers re-refactor the affected code elements.

Based in Table 6.1, we compute the tally of internal quality attributes
that improve, worsen and remain unaffected for each approach. Concerning
the Most Metrics approach, the amount of related internal quality attributes
(gray cells) is equal to four (21.05%); thus, we observed some positive impact
of refactoring operations on certain internal quality attributes. However, the
amount of worsened internal attributes is equal to seven (36.84%), while eight

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 6. Re-Refactoring Impact on Internal Attributes 67

Table 6.2: Re-refactoring impact with At Least One Metric approach
Refactoring Type Total Cohesion Coupling Complexity Inheritance Size
Extract superclass 114 ↑ ↑ _ ↑ ↑

54.39% 55.26% 57.89% 95.61% 86.84%
Push down field 35 ↑ ↑ _ _ ↑

40% 54.29% 85.71% 97.14% 82.86%
Inline method 1,521 ↑ ↑ _ _ ↑

58.32% 77.65% 48.13% 91.45% 89.02%
Move field 3,813 ↑ _ _ _ _

65.7% 54.34% 90.24% 89.46% 54.73%
Extract interface 42 _ _ _ ↑ _

85.71% 69.05% 100% 59.52% 50%
Extract method 7,478 ↓ ↑ ↑ _ ↑

59.11% 71.4% 46.99% 93.1% 85.85%
Move method 888 ↓ ↑ _ _ ↑

47.52% 51.01% 71.17% 77.59% 85.25%
Push down method 70 ↓ ↑ _ _ ↑

49.02% 80% 51.43% 94.29% 84.29%
Pull up method 301 ↓ ↓ _ _ ↑

40.32% 72.99% 67.77% 91.03% 83.72%
Pull up field 259 ↓ ↓ _ _ ↑

46.98% 59.07% 61% 72.2% 85.71%

(42.11%) remain unaffected. In fact, the number of worsened internal quality
attributes surpasses the number of improved attributes. However, it represents
only a half of the total number of improved attributes summed with unaffected
ones. These results suggest we should study if less strict approaches (e.g., the
At Least One Metric approach) may better capture the positive impact of
re-refactoring operations.

6.3
The At Least One Metric Approach

Using the At Least One Metric approach, when any of the metrics used
to quantify the internal quality attribute improve, it means that the internal
quality attribute also improves. Table 6.2 presents the impact of re-refactoring
operations per refactoring type using the At Least One Metric approach. The
structure of this table is similar to Table 6.1. Table 6.2 show that for 9 out of 10
refactoring types, representing a 90%, the internal quality attributes improved
and remained unaffected. Only in the case of the Move Method refactoring
type, which worsened the cohesion attribute.

Based on the data of Table 6.2, we compute the tally of internal quality
attributes that improve, worsen and remain unaffected. For At Least One
Metric approach, the amount of related internal quality attributes (grey cells)
is equal to 11 (57.89%). The amount of worsened internal attributes is equal to
one (5.26%), while seven (36.84%) remain unaffected. As a result, we observed
that using At Least One Metric approach, most re-refactoring operations

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 6. Re-Refactoring Impact on Internal Attributes 68

improve the related internal attributes, representing a 57.89%.

Finding 5. Similarly to the analysis of individual refactorings, for some
refactoring types, the internal quality attributes tend to improve or remain
unaffected when developers refactor code that was also refactored in the
past (re-refactoring). Additionally, the re-refactoring operations tend to
improve or unalter the internal quality attributes when considering at least
one metric per internal quality attribute.

6.4
Root-canal versus Floss Re-Refactoring

This section discusses the impact of root-canal re-refactoring and floss
re-refactoring on internal quality attributes using both approaches. The set
of root-canal re-refactoring is composed by the root-canal refactoring affecting
code elements that were refactored in the past. This means that the developers
are applying a re-refactoring with the aim of exclusively improving the code
structural quality. On the other hand, the set of floss re-refactoring is composed
by the floss refactoring affecting code elements that were refactored in the
past. This indicates that the developers are applying a re-refactoring with
more specific goals, such as adding features or fixing bugs.

Table 6.3 presents the general results for the Most Metrics approach. The
first column lists each metric behavior. The second and third columns present
data regarding root-canal re-refactoring. Each cell presents the number and
percentage of internal quality attributes in the case of related attributes and
all attributes, respectively. The fourth and fifth columns present data regarding
floss re-refactoring. Similarly to the root-canal re-refactoring, each cell presents
the number and percentage of internal quality attributes in the case of the
related internal quality attributes and all attributes, respectively.

Table 6.3: Refactoring tactics and Most Metrics approach

Behavior Root-canal Refactoring Floss Refactoring
Related

Attributes
All

Attributes
Related

Attributes
All

Attributes

↑ 9
(47.37%)

16
(32%)

5
(26.32%)

9
(18%)

↓ 4
(21.05%)

11
(22%)

7
(36.84%)

19
(38%)

_ 6
(31,58%)

23
(46%)

7
(36.84%)

22
(44%)

Data in Table 6.3 show results similar those observed in the analysis of
refactorings operations for the Most Metrics approach. For instance, for both

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 6. Re-Refactoring Impact on Internal Attributes 69

root-canal and floss refactoring, the number of worsened attributes represents
a half of the number of other (improved and unaffected) attributes. These
results suggest that regardless the refactoring tactic, re-refactoring operations
tend to improve most metrics of the attribute.

Table 6.4 presents the general results for the At Least One Metric
approach. The first column lists each metric behavior. The second and third
columns present, for root-canal re-refactoring, the number and percentage of
internal quality attributes per behavior, in the case of related (second column)
and all attributes (third column). The fourth and fifth columns present, for
floss re-refactoring, the number, and percentage of internal quality attributes
per behavior, in the case of related (fourth column) and all attributes (fifth
column).

Table 6.4: Refactoring tactics and At Least One Metric approach

Behavior Root-canal Refactoring Floss Refactoring
Related

Attributes
All

Attributes
Related

Attributes
All

Attributes

↑ 13
(68.42%)

26
(52%)

12
(63.16%)

22
(44%)

↓ 0
(0%)

5
(10%)

1
(5.26%)

11
(22%)

_ 6
(31.58%)

19
(38%)

6
(31.58%)

17
(34%)

Considering the At Least One Metric approach, the number of improved
and unaffected attributes are both higher than the number of worsened
attributes. This observation applies to both refactoring tactics. As expected by
using a less strict approach, these results evidence that similar to refactoring
operations, the re-refactoring operations have mostly at least a slightly positive
impact on internal quality attributes. On the other hand, it is interesting
to note that using the At least One Metrics approach, the internal quality
attributes that worsen are less than 22%. This observation is valid for both
refactoring tactics. In the specific case of root-canal re-refactoring, we find that
the percentages of internal quality attributes that worsen are less than 10%.

Finding 6. There is no difference between the results of refactorings
and re-refactorings operations regarding the effect on the internal quality
attributes.

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 6. Re-Refactoring Impact on Internal Attributes 70

6.5
Final Remarks

In this chapter, we analyze the effects of re-refactoring operations on
internal quality attributes. We divide the analysis into two approaches, related
to how to classify the behavior of internal quality attributes: (i) At Least
One Metric, and (ii) Most Metrics. In (i) At Least One Metric approach, we
assume that the internal quality attribute improves when any of the metrics
that measures such attribute improve. In Most Metrics approach, we assume
that an internal quality attribute improves when most of the metrics that
capture the attribute also improve. We also analyze the impact of root-canal
re-refactoring and floss re-refactoring using both approaches.

Similarly to the analysis of refactoring operations, we observe that re-
refactoring operations tend to improve or remain unaffected the internal quality
attributes for some refactoring types. That is, the internal quality attributes
tend to improve or remain unaffected when developers refactor code that was
refactored in the past (re-refactoring), for some refactoring types. However, for
Extract Method, Move Method, Pull up Method, and Pull up Field refactoring
types, the related internal quality attributes tend to worsen or unalter after
re-refactoring. Additionally, the re-refactoring operations tend to improve or
unalter the internal quality attributes when considering at least one metric per
internal quality attribute.

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



7
Conclusion and Future Work

This dissertation investigates the impact of refactoring and re-refactoring
operations on internal quality attributes. For this purpose, we analyze 23
Java open source projects with 29,303 refactoring operations, which includes
49.55% of re-refactoring operations. Our study focuses on 11 commonly studied
refactoring types and five internal quality attributes. We split our study into
three parts. First, we investigate whether refactoring operations are often
applied to code elements with critical internal quality attributes. Second,
we assess the effects of refactoring operations on internal quality attributes
using two complementary approaches: Most Metrics, when most of the metrics
that capture an internal quality attribute improve, and At Least One Metric,
when at least one of the metrics improves. Third, we assess the effects of re-
refactoring operations on internal quality attributes using two complementary
approaches: Most Metrics and At Least One Metric. We define re-refactoring
as the action of applying another refactoring in a code element that was
refactored before. We also analyze two different refactoring tactics: root-canal
refactoring, when developers are explicitly concerned on improving the code
structure quality, and floss refactoring, when quality improvement is a means
to reach other goals.

As a result, we have noticed that developers apply more than 93.45% of
the refactoring operations to code elements with at least one critical internal
quality attribute. Furthermore, in 65% of the cases, the related internal
quality attributes are improved, and the remaining 35% operations keep the
quality attributes unaffected. Also, whenever pure refactoring operations are
applied (root-canal refactoring), we confirm that internal quality attributes are
either frequently improved or at least not worsened. Finally, while refactoring
operations often reach other specific aims, such as adding a new feature or
fixing a bug, 55% of these operations improve internal quality attributes, with
only 10% of the quality decline. We found similar results for re-refactoring
operations regarding the effect on the internal quality attributes. This means
that there is no difference between the results of refactorings and re-refactorings
operations regarding the effect on the internal quality attributes.

This dissertation provides several contributions. First, our results sug-

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Chapter 7. Conclusion and Future Work 72

gest that developers should consider applying refactoring and re-refactoring
to improve the code structural quality. However, they should be careful when
applying certain refactoring types, which could worsen the code structural
quality. Second, the paper compares our empirical study with previous stud-
ies (17, 18). Surprisingly, our study findings partially contradict the findings of
these studies. Our findings suggest that most refactoring operations are applied
on code elements with critical internal quality attributes, by positively affect-
ing it and improving the code structural quality. Third, the paper investigates
the effects of re-refactoring operations on internal quality attributes, which
is barely unexplored by previous work. Fourth, we provide recommendations
for applying refactoring operations when developers attempt to improve the
structural quality by improving internal attributes. These recommendations
can be used by tools to suggest or alert in the application of refactoring op-
erations to improve the code structural quality by improving internal quality
attributes. Finally, the paper provides a mapping of several refactoring types
from the literature (1) with five well-known internal quality attributes. Addi-
tionally, the paper provides a mapping of these five internal quality attributes
with software metrics which are commonly used to quantify them (30, 31). Al-
though previous work (32) provide similar mappings, we cover a larger set of
refactoring operations, internal quality attributes, and software metrics. Both
mappings may support further investigations on the code structural quality.

As future work, we intend to reflect upon our findings in order to improve
refactoring tools. For instance, one could think of a recommender system that
ranks refactoring opportunities in terms of the structural criticality of the code
elements in a program. Additionally, incorporate the recommendations derived
from our findings to propose suggestions and opportunities for code quality
improvements concerned with internal quality attributes. Another direction of
future work consists of conducting other studies using software systems written
in different programming languages, such as C++ or C#. Also it is interesting
to understand the effect of refactoring operations in proprietary software
systems. Our present study focused only on the analysis of popular open
source projects, which may have different structural degradation behaviors as
compared to proprietary software systems. Finally, as future work, we propose
to study the relationship between refactoring and re-refactoring operation with
the addition of bugs and bugs fixing, as well as other design problems.

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Bibliography

[1] FOWLER, M.. Refactoring. Addison-Wesley Professional, 1999.

[2] KIM, M.; ZIMMERMANN, T. ; NAGAPPAN, N.. An empirical study of
refactoring challenges and benefits at microsoft. IEEE Transactions
on Software Engineering, 40(7):633–649, 2014.

[3] MENS, T.; TOURWÉ, T.. A survey of software refactoring. IEEE
Trans. Softw. Eng., 30(2):126–139, 2004.

[4] HEITLAGER, I.; KUIPERS, T. ; VISSER, J.. A practical model for
measuring maintainability. In: QUALITY OF INFORMATION AND
COMMUNICATIONS TECHNOLOGY, 2007. QUATIC 2007. 6TH INTER-
NATIONAL CONFERENCE ON THE, p. 30–39. IEEE, 2007.

[5] KITCHENHAM, B.; PFLEEGER, S. L.. Software quality: the elusive
target [special issues section]. IEEE software, 13(1):12–21, 1996.

[6] LANZA, M.; MARINESCU, R.. Object-oriented metrics in practice.
Springer Science & Business Media, 2007.

[7] AOKI, A.; HAYASHI, K.; KISHIDA, K.; NAKAKOJI, K.; NISHINAKA, Y.;
REEVES, B.; TAKASHIMA, A. ; YAMAMOTO, Y.. A case study of the
evolution of jun: an object-oriented open-source 3d multimedia
library. In: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFER-
ENCE ON SOFTWARE ENGINEERING, p. 524–533. IEEE Computer Society,
2001.

[8] AL DALLAL, J.. The impact of inheritance on the internal quality
attributes of java classes. Kuwait Journal of Science and Engineering,
39(2A):131–154, 2012.

[9] DESTEFANIS, G.; COUNSELL, S.; CONCAS, G. ; TONELLI, R.. Soft-
ware metrics in agile software: An empirical study. In: INTER-
NATIONAL CONFERENCE ON AGILE SOFTWARE DEVELOPMENT, p.
157–170. Springer, 2014.

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Bibliography 74

[10] SIMON, F.; STEINBRUCKNER, F. ; LEWERENTZ, C.. Metrics based
refactoring. In: SOFTWARE MAINTENANCE AND REENGINEERING,
2001. FIFTH EUROPEAN CONFERENCE ON, p. 30–38. IEEE, 2001.

[11] MURPHY-HILL, E.; PARNIN, C. ; BLACK, A. P.. How we refactor, and
how we know it. In: PROCEEDINGS OF THE 31ST INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING, ICSE ’09, p. 287–297,
Washington, DC, USA, 2009. IEEE Computer Society.

[12] MURPHY-HILL, E.; PARNIN, C. ; BLACK, A.. How we refactor, and
how we know it. IEEE Trans. Softw. Eng., 38(1):5–18, 2012.

[13] SILVA, D.; TSANTALIS, N. ; VALENTE, M. T.. Why we refactor? con-
fessions of github contributors. In: PROCEEDINGS OF THE 24TH
INTERNATIONAL SYMPOSIUM ON FOUNDATIONS OF SOFTWARE EN-
GINEERING (FSE), p. 858–870, 2016.

[14] ALSHAYEB, M.. Empirical investigation of refactoring effect on
software quality. Information and software technology, 51(9):1319–1326,
2009.

[15] GEPPERT, B.; MOCKUS, A. ; ROBLER, F.. Refactoring for changeabil-
ity. In: PROCEEDINGS OF THE 11TH INTERNATIONAL SYMPOSIUM
ON SOFTWARE METRICS (METRICS), p. 10–pp, 2005.

[16] MOSER, R.; SILLITTI, A.; ABRAHAMSSON, P. ; SUCCI, G.. Does
refactoring improve reusability? In: INTERNATIONAL CONFERENCE
ON SOFTWARE REUSE, p. 287–297. Springer, 2006.

[17] BAVOTA, G.; DE LUCIA, A.; DI PENTA, M.; OLIVETO, R. ; PALOMBA,
F.. An experimental investigation on the innate relationship
between quality and refactoring. J. Syst. Softw., 107:1–14, 2015.

[18] CEDRIM, D.; SOUSA, L.; GARCIA, A. ; GHEYI, R.. Does refactoring
improve software structural quality? In: PROCEEDINGS OF THE
30TH BRAZILIAN SYMPOSIUM ON SOFTWARE ENGINEERING (SBES),
p. 73–82, 2016.

[19] DU BOIS, B.; DEMEYER, S. ; VERELST, J.. Refactoring-improving
coupling and cohesion of existing code. In: PROCEEDINGS OF THE
11TH WORKING CONFERENCE ON REVERSE ENGINEERING (WCRE),
p. 144–151, 2004.

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Bibliography 75

[20] JIAU, H. C.; MAR, L. W. ; CHEN, J. C.. Obey: Optimal batched
refactoring plan execution for class responsibility redistribution.
IEEE Transactions on Software Engineering, 39(9):1245–1263, 2013.

[21] ARCELLI, D.; CORTELLESSA, V. ; DI POMPEO, D.. Towards a unifying
approach for performance-driven software model refactoring. In:
GEMOC+ MPM@ MODELS, p. 42–51, 2015.

[22] ARCELLI, D.; CORTELLESSA, V. ; DI POMPEO, D.. Automated trans-
lation among epsilon languages for performance-driven uml soft-
ware model refactoring. In: PROCEEDINGS OF THE 1ST INTERNA-
TIONAL WORKSHOP ON SOFTWARE REFACTORING, p. 25–32. ACM,
2016.

[23] CHÁVEZ, A.; FERREIRA, I.; FERNANDES, E.; CEDRIM, D. ; GARCIA,
A.. How does refactoring affect internal quality aributes? a
multi-project study. In: PROCEEDINGS OF THE 31ST BRAZILIAN
SYMPOSIUM ON SOFTWARE ENGINEERING (SBES), p. 1–10, 2017.

[24] FERREIRA, K. A.; BIGONHA, M. A.; BIGONHA, R. S.; MENDES, L. F.
; ALMEIDA, H. C.. Identifying thresholds for object-oriented
software metrics. Journal of Systems and Software, 85(2):244–257, 2012.

[25] NORMAN, F. E.. Software metrics–a rigorous approach, 1991.

[26] FENTON, N.; PFLEEGER, S.. Software metrics: a rigorous and
practical approach pws publishing co. Boston, MA, USA, 1997.

[27] SZŐKE, G.; NAGY, C.; FÜLÖP, L. J.; FERENC, R. ; GYIMÓTHY, T..
Faultbuster: An automatic code smell refactoring toolset. In:
SOURCE CODE ANALYSIS AND MANIPULATION (SCAM), 2015 IEEE
15TH INTERNATIONAL WORKING CONFERENCE ON, p. 253–258. IEEE,
2015.

[28] KERIEVSKY, J.. Refactoring to patterns. Pearson Deutschland GmbH,
2005.

[29] BAKOTA, T.; HEGEDUS, P.; LADÁNYI, G.; KORTVELYESI, P.; FERENC,
R. ; GYIMÓTHY, T.. A cost model based on software maintainabil-
ity. In: SOFTWARE MAINTENANCE (ICSM), 2012 28TH IEEE INTERNA-
TIONAL CONFERENCE ON, p. 316–325. IEEE, 2012.

[30] CHIDAMBER, S.; KEMERER, C.. A metrics suite for object oriented
design. IEEE Trans. Softw. Eng., 20(6):476–493, 1994.

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Bibliography 76

[31] LORENZ, M.; KIDD, J.. Object-oriented software metrics. Prentice
Hall, 1994.

[32] BANSIYA, J.; DAVIS, C. G.. A hierarchical model for object-oriented
design quality assessment. IEEE Transactions on software engineering,
28(1):4–17, 2002.

[33] FOWLER, M.. Catalog of refactorings, 2013.

[34] YAMASHITA, A.; MOONEN, L.. Do code smells reflect important
maintainability aspects? In: SOFTWARE MAINTENANCE (ICSM),
2012 28TH IEEE INTERNATIONAL CONFERENCE ON, p. 306–315. IEEE,
2012.

[35] YAMASHITA, A.; COUNSELL, S.. Code smells as system-level indi-
cators of maintainability: An empirical study. Journal of Systems
and Software, 86(10):2639–2653, 2013.

[36] BROWN, W.; MALVEAU, R.; MCCORMICK, H. ; MOWBRAY, T.. An-
tiPatterns. John Wiley & Sons, Inc., 1998.

[37] MALHOTRA, R.. Empirical research in software engineering. CRC
Press, 2016.

[38] YOURDON, E.; CONSTANTINE, L. L.. Structured design: Fundamen-
tals of a discipline of computer program and systems design.
Prentice-Hall, Inc., 1979.

[39] BIEMAN, J.; KANG, B.-K.. Cohesion and reuse in an object-oriented
system. In: ACM SIGSOFT SOFTWARE ENGINEERING NOTES, volu-
men 20, p. 259–262, 1995.

[40] PRESSMAN, R. S.. Software engineering: a practitioner’s approach.
New York, McGraw Hill, 1987.

[41] KATAOKA, Y.; IMAI, T.; ANDOU, H. ; FUKAYA, T.. A quantitative eval-
uation of maintainability enhancement by refactoring. In: PRO-
CEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON SOFT-
WARE MAINTENANCE (ICSM), p. 576–585, 2002.

[42] MCCABE, T.. A complexity measure. IEEE Trans. Softw. Eng., (4):308–
320, 1976.

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Bibliography 77

[43] BIEMAN, J. M.; ZHAO, J. X.. Reuse through inheritance: A quan-
titative study of c++ software. ACM SIGSOFT Software Engineering
Notes, 20(SI):47–52, 1995.

[44] BOOCH, G.. Object-oriented analysis and design with applica-
tions, 1994. Redwood City, CA.

[45] LI, W.; HENRY, S.. Object-oriented metrics that predict maintain-
ability. J. Syst. Softw., 23(2):111–122, 1993.

[46] LIU, Y.; POSHYVANYK, D.; FERENC, R.; GYIMÓTHY, T. ; CHRISO-
CHOIDES, N.. Modeling class cohesion as mixtures of latent topics.
In: PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON
SOFTWARE MAINTENANCE (ICSM), p. 233–242, 2009.

[47] BIEMAN, J.; OTT, L.. Measuring functional cohesion. IEEE Trans.
Softw. Eng., 20(8):644–657, 1994.

[48] SOKOL, F. Z.; ANICHE, M. F. ; GEROSA, M. A.. Does the act of
refactoring really make code simpler? a preliminary study. In:
4TH BRAZILIAN WORKSHOP ON AGILE METHODS, 2013.

[49] WILKING, D.; KAHN, U. ; KOWALEWSKI, S.. An empirical evaluation
of refactoring. e-Informatica, 1(1):27–42, 2007.

[50] DU BOIS, B.; MENS, T.. Describing the impact of refactoring on in-
ternal program quality. In: PROCEEDINGS OF THE INTERNATIONAL
WORKSHOP ON EVOLUTION OF LARGE-SCALE INDUSTRIAL SOFT-
WARE APPLICATIONS (ELISA), CO-LOCATED WITH 19TH ICSM, p. 37–
48, 2003.

[51] STROGGYLOS, K.; SPINELLIS, D.. Refactoring–does it improve
software quality? In: PROCEEDINGS OF THE 5TH INTERNATIONAL
WORKSHOP ON SOFTWARE QUALITY, p. 10. IEEE Computer Society,
2007.

[52] MURPHY-HILL, E.; BLACK, A. P.; DIG, D. ; PARNIN, C.. Gathering
refactoring data: a comparison of four methods. In: PROCEEDINGS
OF THE 2ND WORKSHOP ON REFACTORING TOOLS, p. 7. ACM, 2008.

[53] DIAS, M.; BACCHELLI, A.; GOUSIOS, G.; CASSOU, D. ; DUCASSE, S..
Untangling fine-grained code changes. In: SOFTWARE ANALYSIS,
EVOLUTION AND REENGINEERING (SANER), 2015 IEEE 22ND INTER-
NATIONAL CONFERENCE ON, p. 341–350. IEEE, 2015.

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Bibliography 78

[54] TSANTALIS, N.; CHATZIGEORGIOU, A.. Identification of extract
method refactoring opportunities for the decomposition of
methods. Journal of Systems and Software, 84(10):1757–1782, 2011.

[55] TAIRAS, R.; GRAY, J.. Increasing clone maintenance support by
unifying clone detection and refactoring activities. Information
and Software Technology, 54(12):1297–1307, 2012.

[56] HUA, L.; KIM, M. ; MCKINLEY, K. S.. Does automated refactoring
obviate systematic editing? In: SOFTWARE ENGINEERING (ICSE),
2015 IEEE/ACM 37TH IEEE INTERNATIONAL CONFERENCE ON, volu-
men 1, p. 392–402. IEEE, 2015.

[57] HOTTA, K.; HIGO, Y. ; KUSUMOTO, S.. Identifying, tailoring, and
suggesting form template method refactoring opportunities with
program dependence graph. In: SOFTWARE MAINTENANCE AND
REENGINEERING (CSMR), 2012 16TH EUROPEAN CONFERENCE ON,
p. 53–62. IEEE, 2012.

[58] BOSHNAKOSKA, D.; MIŠEV, A.. Correlation between object-
oriented metrics and refactoring. In: INTERNATIONAL CONFER-
ENCE ON ICT INNOVATIONS, p. 226–235. Springer, 2010.

[59] MOORE, D.; NOTZ, W. ; FLIGNER, M.. The basic practice of statis-
tics. W. H. Freeman, 2015.

[60] RODRIGUEZ, D.; HARRISON, R.. An overview of object-oriented
design metrics. 2001.

[61] TSANTALIS, N.; GUANA, V.; STROULIA, E. ; HINDLE, A.. A multi-
dimensional empirical study on refactoring activity. In: PRO-
CEEDINGS OF THE 23RD CONFERENCE OF THE CENTER FOR AD-
VANCED STUDIES ON COLLABORATIVE RESEARCH (CASCON), p. 132–
146, 2013.

[62] GRUBBS, F.. Procedures for detecting outlying observations in
samples. Technometrics, 11(1):1–21, 1969.

[63] JOSHUA, K.. Refactoring to patterns, 2005.

[64] HENDERSON-SELLERS, B.. Object-oriented metrics. Prentice-Hall,
Inc., 1995.

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



Bibliography 79

[65] HITZ, M.; MONTAZERI, B.. Chidamber and kemerer’s metrics suite:
a measurement theory perspective. IEEE Transactions on software
Engineering, 22(4):267–271, 1996.

[66] HENRY, S.; KAFURA, D.. Software structure metrics based on
information flow. IEEE transactions on Software Engineering, (5):510–
518, 1981.

[67] NEJMEH, B. A.. Npath: a measure of execution path complexity
and its applications. Communications of the ACM, 31(2):188–200, 1988.

[68] MARCUS, A.; POSHYVANYK, D. ; FERENC, R.. Using the concep-
tual cohesion of classes for fault prediction in object-oriented
systems. IEEE Transactions on Software Engineering, 34(2):287–300, 2008.

[69] POSHYVANYK, D.; MARCUS, A.; FERENC, R. ; GYIMÓTHY, T.. Using
information retrieval based coupling measures for impact anal-
ysis. Empirical software engineering, 14(1):5–32, 2009.

[70] NAGAPPAN, M.; ZIMMERMANN, T. ; BIRD, C.. Diversity in software
engineering research. In: PROCEEDINGS OF THE 2013 9TH JOINT
MEETING ON FOUNDATIONS OF SOFTWARE ENGINEERING, p. 466–
476. ACM, 2013.

[71] WOHLIN, C.; RUNESON, P.; HÖST, M.; OHLSSON, M.; REGNELL, B. ;
WESSLÉN, A.. Experimentation in software engineering. Springer
Science & Business Media, 2012.

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA



A
Published paper

Chávez, A., Ferreira, I., Fernandes, E., Cedrim, D., and Garcia, A.
(2017). How does refactoring affect internal quality attributes? a multi-project
study. InProceedings of the 31st Brazilian Symposium on Software Engineering
(SBES)

Cedrim, D., Garcia, A., Mongiovi, M., Gheyi, R., Sousa, L., de Mello,
R., ... Chávez, A. (2017, August). Understanding the impact of refactoring
on smells: a longitudinal study of 23 software projects. In Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering (FSE) (pp.
465-475). ACM.

DBD
PUC-Rio - Certificação Digital Nº 1522494/CA


	How does refactoring affect internal quality attributes? A multi-project study
	Resumo
	Table of contents
	Introduction
	(Re-)Refactoring and Critical Internal Quality Attributes
	Effects of Refactoring on Internal Quality Attributes
	Effects of Re-refactoring on Internal Quality attributes
	Contributions
	Dissertation Outline

	Background and Related Work
	Refactoring
	Internal Quality Attributes
	Software Quality Metrics
	Previous Work on Refactoring and Software Quality
	Previous Work on Refactoring and Internal Quality
	Previous Work on Re-Refactoring and Software Quality
	Final Remarks

	Study Design
	Goal and Research Questions
	Selection of Software Projects
	Refactoring Detection and Classification
	Mapping Refactoring to Internal Quality Attributes
	Measuring Internal Quality Attributes
	Selected Tools
	Threats to validity
	Final Remarks

	(Re-)Refactoring Affecting Critical Elements
	Overall Results
	Contradicting Findings and Implications: Discussion
	Final Remarks

	Effects of Refactorings on Internal Quality Attributes
	Answering RQ2 with Two Approaches
	The Most Metrics Approach
	The At Least One Metric Approach
	Refactoring Recommendations
	Root-canal versus Floss Refactoring
	Example
	Final Remarks

	Re-Refactoring Impact on Internal Attributes
	Answering RQ3 with Two Approaches
	The Most Metrics Approach
	The At Least One Metric Approach
	Root-canal versus Floss Re-Refactoring
	Final Remarks

	Conclusion and Future Work
	Bibliography
	Published paper



