
5
Ray Tracing on the GPU

In this chapter we review the scene data layout on the GPU, as well

as our proposed ray tracing implementation. Firstly, we identify the common

routines used to trace rays using a Uniform Grid inside the GPU. Afterwards,

we describe our optimized ray tracing implementation using the graphics

hardware.

5.1
Data Layout

Scene data corresponding to the current frame is stored inside the GPU

as a set of 2D textures, as follows:

1. Triangle vertices x0, y0, z0 x1, y1, z1 ...

2. Per-vertex normals nx0, ny0, nz0 nx1, ny1, nz1 ...

3. Per-vertex texture coordinates s0, t0 s1, t1 ...

4. Per-triangle materials dr0, dg0, db0, texid0 dr1, dg1, db1, texid1 ...

5. Grid indices start0, size0 start1, size1 ...

6. Grid data cellid0, primid0 cellid0, primid1 ...

The first four textures contain geometry and shading information that

must be updated each animation frame. Material information include the

diffuse colors of each triangle, as well as a texture ID if there are textured

triangles. The last two textures correspond to the Uniform Grid structure.

Whenever there is movement in the scene, these textures are updated by the

grid construction procedure, as described in the previous chapter.

DBD
PUC-Rio - Certificação Digital Nº 0711317/CA



Ray Tracing Dynamic Scenes on the GPU 43

5.2
Common Routines

It is possible to implement the entire ray-tracing procedure inside the

GPU using either the CUDA API or GLSL shaders. Our tests have shown

that a CUDA implementation is significantly slower than an equivalent GLSL

one, even after taking advantage of coherent memory accesses in the graphics

card.

A good reason for this result is that the GLSL implementation is rather

simple: a full-screen quadrilateral is used to trigger a fragment shader, which

in turn performs the necessary computations and outputs the pixel values

directly to the screen. In addition, all information can be efficiently retrieved

from textures exploiting cached read operations.

In order to trace rays using a Uniform Grid inside the GPU, a few

common tasks must be performed. First of all, it is necessary to upload

the current view information, such as camera position and orientation. These

values are used to setup the primary rays. In addition, common ray-traversal

and intersection routines can be formulated. Finally, a shading procedure must

be able to compute correct illumination, considering shadows and reflections.

Figure 5.1 describes a conceptual ray-tracing algorithm that integrates

all these steps in order to render each new frame. Notice how each routine

interacts with different scene and grid data, while also being re-used for tracing

secondary rays such as shadow and reflection ones.

This conceptual algorithm forms the basis of our optimized procedure,

as described in Section 5.3. Before that, we present the following common

routines that will be used in our final implementation.

5.2.1
Viewing Information

At each rendering frame, the GPU routines need to obtain the current

view description, namely its origin and direction. Since we use a pinhole

camera model, the ray origin is the same for all primary rays. Therefore, this

information is sent as an uniform variable.

To compute the ray directions, the implementation exploits a pre-existing

hardware functionality. From the pinhole camera model, all ray directions

can be linearly interpolated in screen space. This means that we can use the

attributes of each of the four quadrilateral vertices to interpolate the direction

information. This can be done automatically by the hardware rasterizer.

In other words, the rendering method sends the ray directions of the

lower left, lower right, upper right and upper left rays each to its corresponding

DBD
PUC-Rio - Certificação Digital Nº 0711317/CA



Ray Tracing Dynamic Scenes on the GPU 44

Figure 5.1: Conceptual ray-tracing algorithm. Texture read and write
operations are highlighted in green and red, respectively.

full screen quadrilateral vertex. The resulting directions will be automatically

interpolated to the fragment shader. The traversal and intersection routines

do not require the directions to be normalized, so this technique is effectively

free.

5.2.2
Uniform Grid Traversal

Before the main traversal loop, the algorithm pre-computes all the

required information for the 3D-DDA traversal. These include the starting

cell coordinates, the constant delta values from Section 3.2 and the out limits

to stop traversal if the ray exits the bounding box.

These pre-computed values are used to traverse the ray through the

grid structure. At each step, the algorithm reads the primitives contained by

the current cell, converting its 3D coordinates to a 2D texture address. The

procedure uses the grid index texture to determine the starting cell indices as

well as its size, which in turn determine where the current cell’s primitive list

is located in the main grid texture.

If no ray-primitive intersection is found, traversal continues until the ray

exits the grid structure without hitting any triangles. On the other hand, if an

intersection is found the procedure stores the hit information and returns.

DBD
PUC-Rio - Certificação Digital Nº 0711317/CA



Ray Tracing Dynamic Scenes on the GPU 45

5.2.3
Ray-Triangle Intersection

Since the GPU has limited resources such as total available memory

and its bandwidth, we have implemented the ray-primitive intersection routine

based on the algorithm by Möller-Trumbore [Möller and Trumbore 1997]. Its

main advantage is that no additional information is required per triangle,

besides its three vertices. Moreover, this routine performs nearly as fast as

other approaches, which in turn require pre-computed coefficients for each

triangle. For instance, an optimized algorithm that uses an additional 48 bytes

per triangle performs at most 20% faster [Wald 2004].

The main principle behind the intersection algorithm is to apply a

transformation to the origin of the ray, so that the resulting vector contains

the distance t to the intersection coordinates (u, v) inside the triangle. A point

T (u, v) on a triangle is given by:

T (u, v) = (1− u− v)V0 + uV1 + vV2 (5-1)

where (u, v) are the barycentric coordinates, which must fulfill u ≥ 0,

v ≥ 0, u + v ≤ 1. Computing the intersection between the Ray(t) and the

triangle T (u, v) is equivalent to:

O + tD = (1− u− v)V0 + uV1 + vV2 (5-2)

Rearranging the terms gives:

[
−D, V1 − V0, V2 − V0

] tu
v

 = O − V0 (5-3)

This means the barycentric coordinates (u, v) and the intersection

distance t can be found by solving the linear system of equations above.

The implementation uses Cramer’s rule to reduce the solution to a few

multiplications and vector products, reusing as many common factors as

possible.

5.3
Optimized Implementation

There are fundamentally two approaches to implementing the ray tracing

algorithm with GLSL. The first is to use a single fragment shader to encode

the entire ray setup, traversal, intersection and shading routines. The other

is to break the procedure into several rendering passes. We have verified

experimentally that separating the traversal and intersection from the shading

routines can perform up to two times faster than a single shader approach.

DBD
PUC-Rio - Certificação Digital Nº 0711317/CA



Ray Tracing Dynamic Scenes on the GPU 46

Therefore, our proposed ray tracing implementation on the GPU can

be summarized in three main steps, each performed by a different fragment

shader:

1. Primary ray traversal and intersection

2. Shadow ray traversal and intersection

3. Shading computations

The following subsections describe the computations done by each step,

including their respective input and output information.

5.3.1
Primary Ray Traversal and Intersection

After initializing the primary rays according to Subsection 5.2.1, the

shader in Step 1 first checks for intersection against the grid bounding box.

If none is found, the shader outputs invalid values. In the other case, the

hit position is evaluated and the first cell to be traversed is obtained. The

algorithm then pre-computes all the required information for the 3D-DDA

traversal, which is then performed according to Subsection 5.2.2.

The output of Step 1 is a texture that contains, for each texel, the

following hit information: triangle ID, barycentric coordinates (u, v) and the

hit distance. If no hit was found, the shader writes invalid values.

5.3.2
Shadow Ray Traversal and Intersection

The shader in Step 2 uses the hit information from Step 1 to compute

the origin and direction of the shadow rays, tracing them using an optimized

procedure similar to the ones described in Subsections 5.2.2 and 5.2.3.

The fundamental difference is that to determine if a point is in shadow,

all we need is to find any intersection along the shadow ray. In this case, the

hit distance is irrelevant. In addition, there is no need to check against the grid

bounding box, as we know for sure the ray origin is already inside of it.

Shadow rays are cast from the primary hit position towards a global

point light. The output of Step 2 is a hit information similar to Step 1, with a

difference: the shader changes the triangle ID to a negative value, identifying a

successful shadow hit. This information will be used in Step 3 to perform the

correct shading computations. If no shadow hit was found, the shader writes

the same hit information obtained from the first step.

DBD
PUC-Rio - Certificação Digital Nº 0711317/CA



Ray Tracing Dynamic Scenes on the GPU 47

5.3.3
Shading Computations

Step 3 reads the hit information from Step 2 to recover the triangle ID,

barycentric coordinates (u, v) and hit distance. The triangle ID is used to

recover the necessary triangle information (normals, texture coordinates and

materials) to perform all shading computations. The barycentric coordinates

are used to interpolate per-vertex attributes such as the normal and texture

coordinates.

Finally, the hit distance is used to evaluate the hit position in space,

which is necessary to compute the Phong illumination with the Lambertian

reflectance model. If the hit is in shadow, no specular is computed and the

final color is divided by a constant factor.

5.4
Enabling Reflections

One of the main advantages of ray tracing, as mentioned in Chapter 1,

is the possibility to evaluate global radiance information simply by tracing

additional rays. We confirm this observation by re-using the aforementioned

algorithm to shade reflective materials. Our strategy consists in another

rendering pass, performing the same Steps 1, 2 and 3 but now for reflection

rays. The final color values are modulated with the original ones, using the

OpenGL blend operation.

A uniform variable is used as a flag to inform each shader if reflections

are being rendered. In this case, Step 1 does not initialize the rays using the

view information, but reads the primary hits previously computed in the same

frame. The shader then computes the reflection ray direction using the surface

normal at the primary hit position. Traversal and intersection is performed,

and the secondary hits are written in an off-screen framebuffer.

Likewise, Step 2 reads the secondary hits to compute shadow information

for the surface reflections. As before, the output indicates whether the hits are

in shadow or not. Finally, Step 3 reads these new hits and performs the same

shading operations as with the primary rays.

Clearly, this iterative process could be repeated, each time shading

another level of reflections. For testing purposes, we have limited our imple-

mentation to a single level.

DBD
PUC-Rio - Certificação Digital Nº 0711317/CA




