
4
GenArch+: Building Software Product Lines with Domain
Knowledge Modeling Languages

4.1
Tool Architecture Overview

GenArch+ is a model-based tool that supports the engineer-
ing of framework-based software product lines (Cirilo et al. 2009,
Cirilo et al. 2011a). This tool implements the ideas discussed in previous
Chapter. Figure 4.1 presents an architectural overview of the tool.

Eclipse

EMF JDT / AJDT / WTP

Reference /
Use Views

Transforme
Project Action

Model Projecting
Plugin

Project
Models Action

Project
Management

Plugin
Derive a

Product Action

Universal DKML Schema /
Generic Feature Structure

Product Derivation
Plugin

Generic
Editor

Model Management
Plugin

Figure 4.1: GenArch+ architectural overview.

GenArch+ models build on Eclipse Modeling Framework (EMF)
(Budinsky et al. 2003). EMF is a eclipse plugin for defining model-based tools
using structured data models. EMF provides some general functionalities, such
as typed references, many-to-many relationships, and standard cross-model ref-
erence mechanism that facilitates our implementation. It also provides some
functionalities that automatically generates a set of Java classes to generically
manipulate and persist models.

The feature model is implemented by the Feature Modeling Plugin
(FMP) (Antkiewicz and Czarnecki 2004). This plug-in allows modeling the
feature model proposed by Czarnecki et al. (Czarnecki and Eisenecker 2000),
which supports mandatory, optional, and alternative features, and their re-
spective cardinality. However, GenArch+ is agnostic of one specific feature
modeling technology. To date GenArch+ implements internally its own feature

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

Chapter 4. GenArch+: Building Software Product Lines with Domain
Knowledge Modeling Languages 61

model structure, which supports to plug any modeling technology that can be
mapped to the provided representation.

GenArch+ contributes two Eclipse views: Reference View and Usage
View. The Reference View is an automated support for a deep analysis
of concept instances association. The Usage view shows which source-code
elements are using a given concept instance. GenArch+ also provides a generic
Editor of DKMLs. Basically the editor supports uniform editing and analysis
of DKMs. These two views are activated via the generic Editor of DMKLs.
Therefore, as we will present next, in Section 4.2, GenArch+ is also a generic
DKML infrastructure, that is, the tool is also a framework for implementing
DKMLs.

The tool also contributes with three actions: Transform a Existing Java
Project to GenArch+ Project; Project Models from Source-code; and Derive a
Product. They are structured over three plugins: (i) project management; (ii)
models projection; (iii) product derivation, respectively. The project manage-
ment is a plugin that supports flexible management of different types of Eclipse
projects. To date, GenArch+ provides support for handling Java projects. The
project derivation plugin is in charge of deriving a product form the product
line project in a new eclipse project. The derivation is performed by removing
from the elements in the new project the elements to which assigned feature ex-
pression is evaluated to false. As mentioned, the knowledge needed to perform
this task is specified in the models. Finally, the model projection plugin is in
charge of parsing meta-data defined in DKML’s abstract syntax and project-
ing the elements defined in the source-code which matches to those meta-data
patterns by creating domain knowledge model elements. This module is imple-
mentation language agnostic, that is, it supports pluggable mapping parsers
that implement interpreters for a given asset type. Each mapping interpreter
is implemented in a separated Eclipse plug-in.

The derivation model and projection model also use different Eclipse
APIs. The mapping interpreter uses Eclipse Java Development Tools (JDT)
API and it relies on the parser, abstract syntax trees API (Shavor et al. 2003).
The XML mapping interpreter uses Eclipse Web Tools Plataform (WTP) API
form handling XML files. The remaining modules handles both plain Java as
well as AspectJ projects.

4.1.1
Domain Knowledge Schema

The basic requirements for the successful use of our proposed technique
are that DKMLs must be easy to be built and composed with each other

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

Chapter 4. GenArch+: Building Software Product Lines with Domain
Knowledge Modeling Languages 62

without being detrimental to their domain-specific capabilities. Our solution
to achieve these requirements is the conception of a product line implemen-
tation infrastructure based on a domain-independent schema and parametric
polymorphism. Following we present the key characteristics of our solution.

Domain Knowledege Schema

Selectable :: Element

String:expression

Reference<element :: Element>

reference: element

Element

String:name
String:id

Injection :: Selectable
ref: [1..1] Reference<Bean>
declaration: [1..1]Refenrece<Fragment>

Summarized Spring DKML

Bean :: Selectable

declaration: [1..1] Refenrece<Fragment>
class: [1..1] Reference<Class>

injection: [0..*] Injection

LegendEClass :: Meta-type

EAttribute : [Cardinality] Reference<EClass>

inheritance
parametric
reference
association EAttribute : [Cardinality] EClass

Figure 4.2: Domain Knowledge Schema

GenArch+ DKML construction method consists of two distinct layers
of semantics definition (see Figure 4.2). The first layer, domain knowledge
schema, is a defined minimal set of concepts that serves to give the second layer,
DKMLs, a configuration foundation. This way, DKMLs are given unambiguous
definitions, and can be interpreted by the tool. DKML is the only language
to be manipulated directly by the developer. The domain knowledge schema
is used by the meta-modelers. They can determine the universe of DKMLs as
composed of domain concepts (Element), where some ones are accountable to
have those instances present in every DKM, others can have those instances
optionally excluded (Selectable). Finally, model elements are also likely to be
related to other elements (Reference).

DKMLs are constructed via inheritance (see Figure 4.2). Every DKML
concept representing a framework-provided concept must be a sub-type of
Element. When a concept represents a valid optional concept it needs to be
a sub-type of Selectable. In this case, the tool enables the mapping between
concept instances and feature expressions through expression property. The
Reference element is used to denote all types of relations between framework
concepts and their mapping to source-code elements. Typed references are
captured via parametric polymorphism. For example, the ref property of
the Injection concept only assumes a reference to model elements that are
instances of the Bean concept. It allows the infrastructure to interpret the

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

Chapter 4. GenArch+: Building Software Product Lines with Domain
Knowledge Modeling Languages 63

DKML abstract syntax in domain-specific ways and guide the developer when
creating the configuration knowledge (see Section 3.4). Therefore, in spite of its
universality, the proposed schema is powerful enough to express the domain-
specific knowledge associated with heterogenous application frameworks.

4.2
DKML Editor and Views

GenArch+ provides a reflective DKML editor that exploits the Domain
Knowledge Schema and DKMLs abstract syntax. It is a tree-based editor
implemented from Eclipse EMF editors (see Figure 4.3). It enables developers
to access and modify domain knowledge models of different DKMLs in a
uniform way. The editor uses reflective capabilities of the EMF object model in
order to structure the user interface and properties view. When the developer
selects an element, three different piece of information about it are exhibited
in the properties view:

– Basic - Only basic properties information are exhibited in this tab, such
as the element’s name.

– Feature Mapping - In this tab is exhibit to which features the element
is assigned to. This can be a boolean feature expression.

– Code Mapping - Here is exhibit to which source code elements the
element is mapped to. Every mapping refers to one element from the
implementation model, as mentioned in Section 3.2.

Filter

Search

Reference

Uses

Figure 4.3: GenArch+ reflective DKML editor.

The editor also provides some advanced generic capabilities:

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

Chapter 4. GenArch+: Building Software Product Lines with Domain
Knowledge Modeling Languages 64

Figure 4.4: Filtered exemplar Spring-DKML

Visualizing on Feature. Visualizing on feature shows the elements in domain
knowledge models or implementation model of one or more features. In this
resumed visualization developer can quickly identify features assignment.
There are basically two kinds of visualizing on feature implemented in the
editor. First, the editor can only show model elements assigned to one or
more feature (and some necessary context) and hide everything else. This
corresponds to the Filter functionality (see Figure 4.4). Second, the editor
can still show the entire tree, but it highlights the model elements assigned
to the desired feature. This operation corresponds to the Search functionality.
Observe that it provides some form of modularity.

Figure 4.5: WeatherService occurrence marked.

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

Chapter 4. GenArch+: Building Software Product Lines with Domain
Knowledge Modeling Languages 65

Figure 4.6: Reference View: references to the Bean WeatherService

Marking occurrences and Searching for Elements. As elements with the
same name are common to appear in distinguished paths in the tree structure,
developers can get lost when they are analyzing references. To overcome
this, the generic editor provides a functionality that helps developers to locate
model elements from selected references (see Figure 4.5). This marks the
concrete referred element in the same domain knowledge model. Alternatively,
to the mark occurrences, developers can also search over the domain-knowledge
models by using the general Search functionality.

Reference View. The reference view is an automated support for developers
analyzing the impact of feature assignment. When the developer selects an
element and clicks on the reference button, the editor queries the underlying

Figure 4.7: Usage View: usage of the Belief client

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

Chapter 4. GenArch+: Building Software Product Lines with Domain
Knowledge Modeling Languages 66

representation for all occurrence of the selected element in a reference. The
resulting references are present in the reference view in the form of a list (see
Figure 4.6). For each element of the list, is exhibit the reference’s parent and
its complete path in the model. A double click on elements from the list in
the reference view can be used to directly navigate to concrete element in the
domain knowledge model.

Usage View. The usage view is an automated support for developers navi-
gate through the uses of a certain concept instance. When the developer selects
an element and click on the uses button, the editor queries the entire source
code for a pattern that identifies the use of the selected element. The pattern
is generic specified in the DKML abstract syntax, as it will be described next
(Section 4.3). The resulting references are present in the usage view in the
form of a list (see Figure 4.7). For each element in the list, it is exhibited the
source code element that encompasses the code using the concept instance and
attached to this element a reference to the actual source code using the concept
instance. Also the complete path of the source code element in the project is
also exhibit. A double click on elements from the list can be used to directly
navigate to the actual source code.

4.3
A Language For Reverse Engineering Domain Knowledge Models

We have defined a language that is based on the idea presented in
(Antkiewicz and Czarnecki 2006) for reversing engineering domain knowl-
edge models from existing source code. As DKMLs do not specify at-
tributes and contain explicitly references, the strategies presented in
(Antkiewicz and Czarnecki 2006) do not generally apply for DKMLs. There-
fore, we have implemented a summarized version of the reverse engineering
strategy proposed in (Antkiewicz and Czarnecki 2006), that therefore fits to
our case. Basically, the idea is to use source code mapping patterns in order
to specify the semantics of DKMLs elements.

Mapping patterns are defined for a certain asset type, such as Java or
XML. That way, the DKMLs meta-data is not tied to a particular implemen-
tation language, therefore it provides support for handling new implementa-
tion languages. Mapping patterns in must of case correspond to attributes of
structural elements of the source-code, but they also might correspond to be-
havioural code pattern in the case of code customization. Figure 4.8 presents
mapping patterns for the DKML from Figure 3.2.

Mappings are associated to classes and references. One reference

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

Chapter 4. GenArch+: Building Software Product Lines with Domain
Knowledge Modeling Languages 67

Mappings Elements Properties
Reference
Asset Extension, Dialect, Pattern
Member Pattern, <Singleton>
AssetMember Extension, Dialect, Pattern, MemberPattern
Reference From, <Scope>
Class
SimpleName Pattern, <Matching-To>
QualifiedName Pattern, <Token>, <Matching-To>

Table 4.1: Mapping Types

might correspond to an Asset, Member, AssetMember, or a Reference. Table
4.1 presents the mappings types and their respective properties. The Asset
specifies that the concept instance is implemented by a source code file, for
example, a Java class, a XML document, a Property File. The Member specifies
that the concept instance source code is a member of Asset of its parent. For
example, a method of a Java class, or tags in XML documents. Observe that in
the case of code customization, the member also can be a behavioural pattern,
for example a method calling. The AssetMember specifies that the concept
instance is implemented by a member of a Asset different from its parent
Asset. Finally, the Reference specifies a reference to a existing element in the
model.

Each type is associated to a Pattern, which is concretely defines as a code
query. For example, the bean reference attached to Context class is asso-
ciated to a Member mapping whose Pattern is the code query $pattern/bean.
The $pattern is replaced by the Pattern of the parent in the abstract syntax
hierarchic. In this case, it will be replaced by /beans value, defined in the
Asset mapping attached to the Context class. The the classes, which type
the references, must define to which attribute of the structural element that
matches to the specified code query its name came from. For example, the
Bean class, which types the bean reference of the previous example, de-
fines that its name must be set with the values of the attribute id of the tag
that matches to the Pattern $pattern/bean. It can refer to a simple name or
even a qualified name. In case of qualified names, it must be defined a Token
that enable the infrastructure stripe out the qualified name. A more specific
filter can also be applied over the elements that results from the code query,
which are specified by the Matching-To attribute and evaluated over a speci-
fied structural attribute value. For example, the ConstructorParameter class

determines that only elements that also equally matches to its parent name are
candidate to be instances. To date it is defined as a equals to a given predefined

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

Chapter 4. GenArch+: Building Software Product Lines with Domain
Knowledge Modeling Languages 68

value or respecting a specific regular expression.
Observe that in some cases, in addition to specifying parameters explic-

itly, parameter values can also be defined implicitly using context values. The
context retrieves the value for a parameter from the instance of: (i) the closes
parent feature with the defined value; (ii) or from an explicitly defined refer-
ence.

4.3.1
Reverse Engineering Domain Knowledge Models

Reverse engineering creates a domain knowledge model from a given
source code. Reverse engineering is driven by the annotation aggregated to the
abstract syntax of a DKML. The algorithm traverses the metamodel, executes
code queries for patterns in the abstract syntax, and creates instances of these
classes for the patterns matched by the queries. After creating an instance
of a class or reference in the model, mappings are established between
the model and the corresponding source code element. These mapping enable
navigation from the model to code. In general, there are 3 ways in which an
model element is created:

1. if a reference does not have any mapping definitions attached, an
instance of the class is created and its references are processed next.

2. if a reference has a mapping definition attached and the Name anno-
tation attached to the class does not expresses a MatchTo, an instance
of the class is created for each source code element that matches with
the pattern.

3. if a reference has a mapping definition attached and the Name anno-
tation attached to the class expresses an MatchTo, an instance of the
class is created for each source code element that matches with the
pattern and the Matching-To rule.

After creating model elements in one of the ways mentioned above, the
algorithm evaluates mappings of the type Reference. For each reference

associated to a Reference the algorithm queries the model to find a element
which matches to the value defined in the From property. In the simplest case,
the algorithm search in the entire model associate the first occurrence, however
the Reference also supporting restrict the context of search. In this case, the
property Context defines from which places the algorithm must search for
elements containing the value specified in the From property.

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

Chapter 4. GenArch+: Building Software Product Lines with Domain
Knowledge Modeling Languages 69

Spring'Domain'Knowledge'Modeling'Language
[DKML] Spring

<1-*> [reference] context : Context
[mapping] Asset

[property] Extension -> xml
[property] Dialect -> xml
[property] Pattern -> /beans

[class] Context : Selectable
<1-*> [reference] bean : Bean

[mapping] Member
[property] Pattern -> $pattern/bean

[class] Bean : Selectable
[mapping] SimpleName

[property] Pattern = @id
<1-1> [reference] interface : BeanInterface
<1-*> [reference] implementation: BeanImplementation

[class] BeanInterface
[class] BeanImplementation : Selectable
[class] ConstructorInjection : Selectable

<1-1> [reference] constructorParameter : ConstructorParameter
[mapping] AssetMember

[property] Extension -> java
 [property] Dialect -> java

[property] Pattern -> &name.lastSegment
[property] MemberPattern -> constructorArg

<1-1> [reference<Bean>] bean : Bean
[mapping] Reference

[property] From -> $name
[class] ConstructorParameter

[mapping] Name
[property] Pattern -> @name
[property] Matching-To -> ==[$name]

[class] PropertyInjection : Selectable
[class] PropertyMethod

Figure 4.8: Spring-DKML mappings patterns.

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

Chapter 4. GenArch+: Building Software Product Lines with Domain
Knowledge Modeling Languages 70

4.4
Summary

In this Chapter we completed our efforts to improve the engineering
of framework-based software product lines. We presented our code-oriented
technique based on DKMLs with tool support, which addresses almost all
problems of traditional code-oriented techniques (see Chapter 2). The tool is
built on universal domain knowledge schema that supports a generic editor of
DKMLs enriched with many advanced functionalities: visualization of features,
references and uses inspection, so on. Finally, we described that DKMLs
elements represent code patterns in the source code and that domain knowledge
model can be automatically projected by attaching such patterns definition to
classes and references elements of the abstract syntax. In next Chapter we
evaluate in what extends the benefits of our proposed improved code-oriented
product line implementation technique.

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

