
1
Introduction

As the software development field has become more complex, agent-

oriented software engineering (AOSE) [81][28] has emerged as a research area

that has increased in importance over the past decade. An agent is a software

entity situated in a particular environment that is capable of flexible and

autonomous action with some level of initiative and reactivity [28][30][79].

Agents exhibit varying levels of the key attributes of learning, cooperation and

mobility. Agents have partial control over their environments, perceive stimulus

and receive inputs, and immediately respond by fulfilling their objectives.

Autonomy refers to the capacity of agents to make decisions and pursue

objectives without external input. This means that agents initiate actions and

decisions without specific commands, based on present objectives and changes in

their environmental parameters. To pursue their objectives, agents collaborate via

communication protocols to accomplish complicated tasks, access information or

services they do not have, or manage the dependencies that take place from being

situated in a common environment.

In most cases, a given agent environment contains a number of agents

whose actions mutually affect one another [38]. This interdependence arises

because the dissimilar agents, with their own aims and objectives, must operate in

a common environment that has finite resources and capabilities. Depending on

the agents’ environment, several different types of social interaction occur

dynamically between the agents, including cooperation to achieve common goals,

coordination of their actions, and negotiation to resolve conflicts. Some agents are

even capable of learning from past experience and adapting their behavior in

given situations. Agents process information and can act as assistant to the user

rather than a tool by learning from interaction, proactively anticipating the user’s

needs and gradually making decisions on behalf of the user, for instance

protecting them from excess information or excessive requests. A multi-agent

system (MAS) is composed of individual agents, the interactions and social

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 1 Introduction 17

relations among agents, and their mutual dependencies. Furthermore, a multi-

agent application engineering process is characterized by the construction of

applications based on reusable software artifacts from agent-oriented software

[47].

Agents also helps on the development of complex and distributed systems,

based on agent abstractions [79][30]. The main idea is to adopt human-inspired

abstractions to model a complex, typically distributed, domain [80]. Using agent-

oriented abstractions, complex problems are decomposed into autonomous, pro-

active and reactive agents with social ability to manage their complexity [29]. An

agent-based conceptual framework makes partitioning the problem space of agent-

oriented decompositions more effective for modeling complex systems [28].

AOSE research contains the promise to build scalable, robust and high

quality software systems. Benefits that could be garnered from adopting an agent-

oriented development approach include the support of analyses, the design and

implementation of software applications and the development of a range of

complex and large-scale distributed software systems of great complexity [29].

Agent-centered frameworks for software development have already been

developed and applied in a wide variety of application domains, e.g., electronic

commerce [39], telecommunications network management [73], air traffic control

[37][80], data mining [66], smart databases [55], digital libraries [46], information

retrieval and management [80], education [13], automated personal digital

assistants [80], and scheduling diary management [55]. More generally, internet

applications that involve the development of personalized, cooperative, proactive

tools for information gathering and management tend to be based on agent

frameworks. Since agents maintain a description of their own processing state and

the state of the world around them, agents are also ideally suited to automation

applications, such as process and workflow automation, and robotics.

Currently, several solutions for engineering agent-based software systems

are available. They aim at addressing complex problems intrinsic to agent-based

systems, such as distributed communication, thread management, and

coordination. Common examples of solutions in this context are modeling

languages, e.g., AUML [3]; standardized protocol languages, such as those

specified by FIPA [16]; development platforms, for example JADE [6]; and

conceptual frameworks such as TAO [71]. In addition, several architectures have

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 1 Introduction 18

been developed that propose particular methodologies for building agent-based

systems, dealing with many different types of problem domain, e.g., agents

provided with cognitive abilities are often specified in terms of high-level

concepts, such as those part of the belief-desire-intention (BDI) paradigm [65].

Despite the fact that AOSE is a well-recognized area and there is a set of

methodologies, techniques and tools for engineering agent-based software

systems, there are still advances to be made. Developing an agent-based system

from the ground up is a difficult, expensive, and lengthy software-engineering

activity due to the various kinds of expertise necessary. In developing a multi-

agent system, it is necessary to define multiple agents that communicate and

cooperate among themselves and to group decision making as well as competitive

behavior. The benefits of applying software-engineering principles to guide

solving problems, such as maintenance-oriented development environments and

software reuse to agent development, have not yet completely migrated to the

agent-development community. There is a major technical obstruction to the

widespread adoption of multi-agent technology which has been discussed

[40][11]; in order to build development environments for the construction of

agent-oriented software systems, there is a need to “… create powerful agent

construction toolkits, model-driven generators, and visual builders to quickly

define and generate (large parts of) of individual agents and agent systems. We

need libraries of agent parts, complete agents, and pre-connected agent societies.”

This highlights the importance of applications created from predetermined

software agent-oriented systems, or agent reuse. Therefore, the reuse of existing

agents is an important element of the of software reuse.

The foremost purpose of software engineering is to produce methods,

techniques and tools to develop software systems with high levels of quality and

productivity. Software reuse is one of the central approaches proposed to address

these software engineering goals due its manifold advantages. Software reuse

techniques have contributed to significant improvements to reduce both cost and

time invested in developing projects, as well as increased adaptation to different

requirements and needs of software engineers and architects. Other advantages of

the reuse include [45]: the resulting software is more reliable, consistent and

standardized; the increased flexibility in the structure of the software produced

facilitates its maintenance and evolution; and the improvement software system

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 1 Introduction 19

interoperability. Over the last years several reuse techniques have been proposed

and refined by the software engineering community including component-based

development, object-oriented application frameworks and libraries, software

architectures and patterns [56][57].

Software reuse is a point that must be considered in the AOSE as well,

bringing its benefits the multi-agent system development. Functionally specific

agents can be reused in diverse agent teams to solve dissimilar problems. By

constructing new systems out of reusable agent-oriented artifacts, creating large,

high-quality agent-oriented software applications will be more efficient than is

currently possible. In this scenario, agents are an advanced form of reusable

software artifacts capable of exhibit interesting features like autonomous

reasoning and goal-direct behavior. Today, although software artifact reuse is

already established in the literature on software engineering, the work addressing

agent reuse is meager and does not tackle the problem of identifying, organizing

and storing agent-oriented artifacts for reuse. Therefore, the process of retrieving

existing reusable agent-oriented artifacts from different application domains, or

agent retrieval, is limited by the absence of appropriate mechanisms and

standards. In this context, the entire agent retrieval process, which includes

identification, storage and maintenance, turns into a crucial impediment to be

overcome in AOSE.

A serious problem involved with reuse is the location of appropriate

software reusable artifacts, made difficult because potential reusable artifacts are

created by others, making it challenge identify the appropriate artifact in less time

than it could be developed. The objective of searching artifacts is to leverage the

information captured in these artifacts and find those with similar functionality or

some other attributes to the desired specifications. Thus, instead of attempting a

focused search, a larger set of artifacts is typically retrieved; from which the most

appropriate are selected. These requirements are not easily achievable. In this

case, software repositories appear as a solution, which must have an information

retrieval system that, according to user needs, identifies and locates appropriate

reusable artifacts. The effort that is involved in locating appropriate artifacts is

considerable due to the diverse range of artifacts that might be included, as

artifacts are distributed in several sources. In addition, there is little

documentation about what the artifacts are and how they should be used. In a

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 1 Introduction 20

repository where the spectrum of artifacts can grow exponentially, the task of

describing the artifacts becomes significant. Without guidance towards what

might actually lead to an optimal repository population, the probability of a

successful search is reduced.

In this context, from a reuse viewpoint, there is another challenge to be

considered: to model artifacts parsimoniously and intelligibly in a way that can be

matched against software engineers’ implementation needs. For a software agent

to be effectively reused, its specifications must be flexible enough and easy to

adapt to the many variations that exist in an application domain, for example

using a meta-model. The benefits of a meta-model, for any given domain, include:

(i) domain concepts are easier to apply for newcomers (concepts would be present

in the single meta-model instead of looking for them in a spread out collection of

existing ones); (ii) increased portability of models across supportive modeling

tools (they would refer to the same meta-model); (iii) better communication

among researchers (they could use the same frame of reference, i.e., the unified

meta-model); and (iv) the research could focus on improving and/or realizing the

unified meta-model instead of being spread across a number of existing meta-

models.

According to published literature [78], the gap between the problem

formulation in user’s mind and the artifact description in the repository is the

main obstacle to retrieve an artifact that corresponds to the software engineer’s

need. Writing a good query is not an easy task for several reasons. First, users

may not be familiar with the vocabulary used to describe particular concepts in the

search space (i.e., the collection of software artifacts). Other factors inherently

affect some retrieval techniques in other fields as well. A common example that

contributes to the ambiguity of a query is synonyms and homonyms. In addition,

these retrieval techniques do not use predefined vocabularies or grammars, which

makes them fast and robust, but also limits their retrieval performance in such

cases. Thus, descriptions must describe the artifact architecture, functionalities

within some domain, relationship between other artifacts and supplementary

properties. Consequently, artifacts description becomes complex not only making

it hard to describe new artifacts and their common and variable features in a

specific domain, but also to identify appropriate artifacts for the user.

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 1 Introduction 21

In order to productively retrieve artifacts, a software engineer needs to have

a constant awareness of existing reusable artifacts, by browsing through similar

artifacts in the repository, or querying structural content of artifacts. The types of

information related to software artifacts include: structural information

(operations, concepts, control and dataflow), dynamic information (behavioral

aspects of the program), and lexical information (problem domain and developer

intentions). The schema of a repository itself often does not consider semantic

relationships among components and thus omits important retrieval information.

The information in existing repositories needs to be structured in a way that takes

into account the meaning (semantics) of the artifacts. In this scenario, different

practices should be experimented with to consider semantic relationships during

the retrieval process. We propose a retrieval model to represent different

information, structures, behaviors, relationships of software agents, and provide

search and recommendation methods based on semantics to support the agent

reuse.

1.1.
Contributions

To undertake the problem of retrieving agent-oriented artifacts, we propose

a methodology and a repository prototype based on semantic web technologies

that exploit reuse in agent-oriented development among different agent

architectures, platforms and programming languages in diverse application

domains. Our prototype is implemented as a web-based repository which stores

and shares reusable agents already created.

Firstly, it includes a flexible and scalable meta-model for representing the

heterogeneous agent-based artifacts and their common and variable features,

which are formally modeled by means of ontology and feature model. The meta-

model was derived from a literature review of various already proposed agent

specifications. It contains requirements that are more complex since each agent

platform uses its own data structures and its own interaction interfaces. Moreover,

the conversion between specifications cannot be done automatically, as there is no

mapping process that will do this in a transparent and efficient manner. To make

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 1 Introduction 22

this manageable, we explore how parts of an agent can be modularized and be

sufficiently generic in order to be reused.

Secondly, we define two taxonomies in order to establish agent description

protocols and to reduce the time invested during the retrieval by mapping specific

attributes of stored agent-oriented artifacts, (i) context categories represented by

domain-specific taxonomy to classify agents according their application domain,

and (ii) an application domain taxonomy to structure intrinsic characteristics of

software agents like autonomy and mobility.

Thirdly, we create a recommendation system that allows end-users to

discover the existence of reusable interrelated agents, and to learn new

information or agents as needed improving user productivity and promoting agent

reuse.

Fourthly, we make a subscription service to announce updates to the agents

that are associated to specific categories, allowing users to know about updated

information regarding stored agents. The recommendation system and the

subscription service keep users aware of such agent’s existence or the need of

such agents.

Finally, we implement enhanced search and browsing methods constituting

the semantic retrieval model that supports the reuse of software agent-based

artifacts on different domains. The semantic retrieval process includes the

following phases: semantic indexing, query processing, searching and raking.

We argue that the combination of modern information retrieval practices

and semantic web technologies provides a rich and effective retrieval system,

helping to overcome the existing limitations on agent-oriented software

engineering. We evaluate the constructed repository and verify that the proposed

reuse method is an improvement in terms of the relevance of retrieved agent-

oriented artifacts.

1.2.
Outline

The remainder of this thesis is structured as follows. Chapter 2 introduces

the basic concepts mentioned in the approach. Chapter 3 examines the related

work and explains the need for reusing agent-oriented artifacts. Chapter 4 deals

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 1 Introduction 23

with our methodology and repository prototype adopted. Chapter 5 evaluates the

research, gives some remarks identifying the major issues addressed to support the

agent reuse, and analyzes the limitations of our approach. Chapter 6 shows the

tool that supports our study. Finally, Chapter 7 concludes the work presenting

research directions in the area for future work and outlines a brief discussion of

open problems, challenges, issues that must be addressed if agents are to achieve

their potential as a software engineering paradigm.

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

