
3
Preference Metamodel

Chapter 2 presented a user study in which a set of preference specifications in
natural language was collected. These specifications allowed us to analyse patterns
and common expressions that people typically adopt to express their preferences. In
this chapter, we describe a preference metamodel developed based on our previous
study. The goal is to provide constructions to model user preferences in a way
independent from the target application area and to allow users to use a language
as close as possible to natural language. Besides using our user study as a source
to build our model, we also took into account existing preference representation
models in computer science (which will be discussed in Chapter 4) and other areas,
such as psychology and philosophy.

As preferences are expressed in terms of entities of specific application
areas, we first introduce an ontology metamodel, before detailing the preference
metamodel. The ontology metamodel defines how these entities are structured so
that they can be referred to in preference specifications.

All diagrams presented in this chapter are modelled with Unified Modeling
Language (UML). Entities of our metamodel are highlighted in boldface, and
examples of preferences and other entities are in italics. UML was adopted to
introduce our metamodel, because it is simple, widely known and used. However,
as UML lack a formal semantics, we also present a specification of our preference
metamodel using the Z notation (Wordsworth 1992) (Appendix B), which is a
formal specification language used for describing and modelling software. This
formal specification models constraints and other aspects of our metamodel that
are described informally in this chapter and cannot be represented in UML.

3.1
Ontology Metamodel

Most of the existing work in the context of preferences and decision making
defines a decision problem by considering a set of alternatives (or outcomes),
which are structured in terms of features X1, ...,Xn , each of which associated with
a particular domain Dom(Xi ) = x i

1 , ..., x
i
ni

. The set of all possible alternatives is
therefore Dom(X1) × ... × Dom(Xn). The subset of possible alternatives is called

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA



Chapter 3. Preference Metamodel 58

Figure 3.1: Ontology metamodel.

feasible outcomes.
Our experimental study has shown that users adopt a richer vocabulary

than attributes and their (single) associated domain to refer to entities of the
application area, thus not only making statements about the specific features of
entities. Based on the analysis of the specifications collected in our study, we have
defined an ontology metamodel, depicted in Figure 3.1, which structures entities of
an application area. It is also built on the foundation of decision making research
work (Keeney 1944).

Our model defines a main coarse-grained entity, namely concepts. A concept
represents a class of elements that is composed of attributes, and is denoted by a
name. As it is a type composed of finer-grained entities, it is a composite type.
A concept typically represents a class of concrete entities of the world, such as a
laptop.

Attributes, which are also denoted by a name, have a type, which defines
the domain of values that can be assigned to a particular attribute. Based on our
study, we identified three kinds of attributes: (i) objective attributes (e.g. size of
the RAM memory); (ii) attributes that are built subjectively by individuals (e.g.
quality); and (iii) attributes that represent a collection of other attributes, serving
as a proxy to them (e.g. laptop size, for which the real attributes are the dimensions
of the laptop). These three kinds of attributes are referred to as natural attributes,
constructed attributes and proxy attributes, respectively. The first two kinds are
collectively referred to as concrete attributes. We adopted these terms because
they match similar concepts proposed by Keeney (Keeney 1944), used to measure
the achievement of objectives.

The type of an attribute can be either composite, already introduced, or
primitive. Primitive types are the basic building blocks to create composite types.
These types, presented on the left hand side of Figure 3.2, can be a single character

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA



Chapter 3. Preference Metamodel 59

Figure 3.2: Ontology primitive types.

(char), a string (a sequence of characters), numeric (discrete or continuous,
optionally with lower and upper bounds), boolean (true and false), a date and an
enumeration (a set of elements, possibly having a natural order).

Even though instances of a concept always have a particular value assigned
to each of its attributes, users typically use fuzzy domains to express preferences
about attributes values, e.g. “I want a big screen.” Therefore, we associate attributes
not only with their type but also with a set of scales, which are composed of scale
values. An example could be a scale size, whose values can be tiny, small, normal,
big and huge.

Another common construction adopted by our study participants is adjectives.
This is illustrated by the expression “fast laptop,” which can be translated to a
laptop whose processor speed is high and RAM memory is big. This construction
is supported by associating a concept with a set of possible adjectives, which has a
precise meaning defined in a specific ontology. Adjectives are not grouped to form a
scale (as above), because adjectives can be translated to a set of statements in terms
of attributes, as described in the example. The statements translated from adjectives
are, in turn, situated in an ordered domain according to an attribute type, or in a
scale.

Finally, types are generic representations for classes of particular instances.
Instances of primitive types are literals, which are specific values assigned for slots,
which in turn hold a value associated with an attribute. This value is one of the
possible values of the primitive type associated with the attribute. For instance, if
the attribute is associated with an enumeration, the literal assigned for the slot must
be an enumeration value. The different literals are shown on the right hand side of
Figure 3.2. Concept instances, on the other hand, are a composition of these slots,
which are place holders for values (instances) assigned for each of the attributes that
are associated with the concept of the instance.

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA



Chapter 3. Preference Metamodel 60

3.2
Propositional Formulae

In different parts of preference specifications, users use propositional-formula-like
constructions, for example, to express conditions (if the laptop is a Mac) or to
restrict possible attribute values (screen size between 14” and 15”). So, we have
developed a representation for propositional logic formulae, which are used for
different purposes in our model, such as building constraints and conditions.

We captured these constructions in the model shown in Figure 3.3,
which allows modelling formulae with three logic operators not (NotFormula),
and (AndFormula), and or (OrFormula). We define a generic entity, namely
AtomicFormula, to represent atomic formulae, and in particular we define three
kinds of them, detailed below.

– Attribute value specification, which indicates a restriction over a domain of
an attribute. For instance, “Screen.size = 15 inches”. As an attribute is always
part of a concept, we represent an attribute by <concept>.<name>, where
concept is the concept that the attribute is part of, and name is its name.
We represent concept names initiated with uppercase, and attribute names
initiated with lowercase.

An attribute is associated with a concept, and this concept can be the type
of different attributes, which are part of different concepts. Consequently,
preferences for an attribute value (of a concept) can be different, when this
concept is related to different concepts, i.e. different contexts, e.g. preferences
for colour depend on which concept colour is associated to: I prefer white

Figure 3.3: Propositional formula model.

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA



Chapter 3. Preference Metamodel 61

houses and I prefer red cars. Therefore, this type of formula is represented as
shown below:

<context><attribute><comparison operator><instance>.

An example is:

context: Trip.returnFlight, Flight.company
attribute: Company.group
comparison operator: = (equal)
instance: OneWorld

In this example, the context is composed of two attributes for defining the
context of the attribute Company.group. Note that the type of a previous
attribute in the context list must match the concept to which the following
attribute is part of (the type of returnFlight is Flight). The same occurs with
the last attribute of the context and the attribute. In Figure 3.3, context and
attribute together are represented as an attribute reference.

– Attribute scale specification, which is represented as

<context><attribute><scale value>.

It also establishes a restriction over values of a particular attribute, but instead
of specifying specific values, a scale value associated with the attribute is
specified. Example:

context: Laptop.ramMemory
attribute: RAMMemory.size
scale value: Big

– Qualified concept, which qualifies a concept with an adjective, e.g. “fast
laptop.” In theory, the notion of context could also be adopted to associate the
concept being qualified with a particular context, but this was not observed in
our study of how humans express preferences, so we did not include it in our
metamodel.

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA



Chapter 3. Preference Metamodel 62

3.3
Preference Metamodel

In this section, we describe the preference metamodel, divided into multiple
parts. We first present, in Section 3.3.1, an overview of all preference types and
priorities of our metamodel, and how we model conditions and contexts associated
with those preferences. Next, we describe preference constructions to express goals
and constraints (Section 3.3.2). Constraints, in turn, are used to construct more
sophisticated preferences, namely preference statements, which are presented in
Section 3.3.3. Then, we detail how to express preferences over preferences, i.e.
priorities (Section 3.3.4). Finally, Section 3.3.5 shows a set of examples of the
different kinds of preferences presented.

3.3.1
Overview

Our metamodel is composed of different kinds of preferences and how
to express priority among them. All of these are shown Figure 3.4, which
overviews our metamodel, showing its main entities and how they are connected
by generalisation or association. This figure also shows the two entities that are part
of our preference metamodel, namely conditions and decision context, and indicate
when preferences and priorities are applicable. These entities are represented in
the same way, i.e. by a propositional logic formula, but they have two different
meanings, as detailed next.

(i) Condition. Values assigned to certain attributes might impact preferences
over other attributes, concepts, and so on. A condition specifies a set of values
for attributes, to which a preference is subjected. Example: “if Laptop.brand
= Mac, <preference>.” Conditions can also be used for specifying priorities.

Figure 3.4: Overview of the preference metamodel.

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA



Chapter 3. Preference Metamodel 63

3.5(a): Goal. 3.5(b): Constraint.

Figure 3.5: Goals and Constraints.

(ii) Decision context. Decision contexts model a state of world in which a
particular set of preferences and priorities is relevant. Example: “if the
purpose of buying the laptop is for business work, <preference>.” Moreover,
adjectives of the ontology as well as scales have a specific meaning for a
particular decision context, i.e. “light laptop,” for instance, can have different
interpretations in personal or business contexts.

3.3.2
Simple Preferences

When users know the application area in which they are expressing
preferences, they are aware of the possible values that concepts and attributes can
have and they have preferences over these values, which impose restrictions on what
these values should be. Moreover, users might not be interested in values or certain
attributes. This kind of preferences are presented in this section, which we call
simple preferences, as opposed to preferences presented in the next section, which
involve expressing not only attributes and their values, but also a more sophisticated
vocabulary, involving expressive speech acts and rates. Three kinds of preferences
are introduced next: goals, constraints and don’t care.

Goals (Figure 3.5(a)) represent an overall rule that indicates when an
attribute value is preferred to another. Users state that they prefer to minimise or
maximise (optimisation type) a particular attribute (attribute goal). An examples
is: “Minimise Laptop.price.”

A constraint (Figure 3.5(b)) represents a restriction over the values that can
be selected for a particular attribute or set of attributes — it depends on which
attributes are referred to in the propositional formula associated with the constraint.
Users can specify any formula, but two predefined formulae are provided, as they
are commonly expressed by users, as described next.

(i) Interval preference: it indicates that the value of an attribute should fall
within a range of two provided values. Example: “Laptop.hardDrive.size
between 500GB and 750GB.” The propositional formula associated with this
preference is an and formula composed of two attribute value specifications,

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA



Chapter 3. Preference Metamodel 64

Figure 3.6: Don’t care preference.

Figure 3.7: Preference targets.

one with the comparison operator less than (or less than or equal to) and the
other with the comparison operator greater than (or greater than or equal to).
Both attribute value specifications must refer to the same attribute.

(ii) Around preference: it indicates that an attribute should have a value that is
close to a provided reference value, i.e. the closer the attribute value is to the
reference value, the better. Example: “Laptop.hardDrive.size around 500GB.”
The propositional formula associated with this preference is an attribute value
specification, whose comparison operator is equal to.

These two kinds of preferences do not state how much users prefer the
restriction captured by this preference or make any kind of comparison — they
are interpreted as “I want to 〈goal or constraint〉.”

In addition, users might indicate that a certain attribute or value is totally
irrelevant for them, by stating for instance “I don’t care about price.” This means
that the user does not impose any restriction to the values of this attribute, and is
indifferent to all possible values that can be assigned to it. This kind of preference
is referred to as don’t care, and refers to an attribute as shown in Figure 3.6.

3.3.3
Preference Statements

Preference statements are sentences provided by users that state preferences
over different entities of an application area, such as concepts and instances,
and also the relevance of constraints. These entities and constraints are called
preference targets, as they are targets of the provided preference statements.
Figure 3.7 indicates the possible preference targets by showing which previously

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA



Chapter 3. Preference Metamodel 65

Figure 3.8: Preference statements model.

entities are a type of preference target. As preference statements are constructed
by referring generically to targets, they can be any of the elements presented in
Figure 3.7.

According to Hansson (Hansson 2001), preferences can be classified in two
groups: (i) monadic preferences, which evaluate a single target, e.g. “I like skiing,”
and use terms such as “good,” “very bad,” and “worst;” and (ii) dyadic preferences,
which indicate a relation between two targets, e.g. “I prefer skying to surfing,” and
use terms such as “better,” “worse,” and “equal in value to.” These two main kinds of
statements were indeed identified in our study, which are modelled as classificatory
statement and comparative statement, respectively, as illustrated in Figure 3.8.

Our study showed that users not only classify preference targets as “good” and
“bad” (rating statement) as suggested by Hansson (Hansson 2001), but also make
extensive use of different expressive speech acts in their statement. This is captured
by qualifying statements, which are speech acts (Searle 1969, Austin 1975) that
classify targets with expressive speech acts, such as “I need a light laptop,” “I
avoid Laptop.brand = Acer.” In addition, these expressive speech acts can also be
used in the negative form, e.g. “I don’t need a light laptop,” represented by the
attribute don’t in qualifying statements. These different expressive speech acts are
natural language expressions that indicate how hard (or soft) a preference is.

The other way of expressing preference statements is by stating an explicit
comparison between two or more preference targets. The comparison can state that
a target is preferred to another, strictly or not (order statement) or that a set of
targets are equally preferred (indifferent statement).

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA



Chapter 3. Preference Metamodel 66

3.3.4
Preference Priority

Users express different preferences about an application area, but these
preferences can conflict with each other. In order to resolve these conflicts users
indicate preferences over previously stated preferences, showing which are more
relevant for them. This notion of preferences over preferences is represented as
priorities in our metamodel.

The most common way that participants of our study indicated priority was
numbering preference statements or restrictions, which is modelled with preference
priority in our metamodel — see Figure 3.9. The other way was by stating
relative importance over attributes, e.g. “Laptop.quality is more important than
Laptop.price” (attribute priority) or “Laptop.quality and Laptop.price are equally
important to me” (attribute indifference).

Figure 3.9: Preference priority model.

3.3.5
Interaction among Preferences and Targets

In previous sections, we presented different kinds of preferences: goals,
constraints, don’t care and four types of statements. Statements can refer to different
entities of the ontology metamodel as well as to constraints, which are generically
referred to as preference targets. In this section, we show how different statements
interact with each target, by showing examples of their each possible combination.
These examples are presented in Table 3.1(a). In addition, in order to make the
remaining preferences and priorities clear for reader, we also provide examples
of goals, don’t care preferences, and the three types of priorities in Table 3.1(b).
Therefore, Table 3.1 summarises most of the preference expressions that can be
represented with our metamodel.

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA



Chapter 3. Preference Metamodel 67

Ta
bl

e
3.

1:
Ex

am
pl

es
of

pr
ef

er
en

ce
s

an
d

pr
io

rit
ie

s.
Ty

pe
R

at
in

g
Q

ua
lif

yi
ng

O
rd

er
In

di
ff

er
en

t
O

nt
ol

og
y

el
em

en
ts

C
on

ce
pt

La
pt

op
is

go
od

.
In

ee
d

a
la

pt
op

.
Ip

re
fe

rl
ap

to
p

to
de

sk
to

p.
I

am
in

di
ff

er
en

t
to

la
pt

op
s

an
d

de
sk

to
ps

.
En

um
er

at
io

n
va

lu
e

C
ol

or
.p

in
k

is
ve

ry
go

od
.

Ia
cc

ep
tC

ol
or

.b
lu

e.
Ip

re
fe

rC
ol

or
.b

lu
e

to
C

ol
or

.g
re

en
.

I
am

in
di
ff

er
en

tt
o

C
ol

or
.b

lu
e

an
d

C
ol

or
.g

re
en

.
In

st
an

ce
H

P
is

go
od

.
In

ee
d

a
D

el
l.

Ip
re

fe
rH

P
to

D
el

l.
Ia

m
in

di
ff

er
en

tt
o

H
P

an
d

D
el

l.
C

on
st

ra
in

ts
C

on
st

ra
in

t
La

pt
op

.s
cr

ee
n
=

sm
al

li
sv

er
y

ba
d.

Il
ik

e
La

pt
op

.s
cr

ee
n
=

bi
g.

I
pr

ef
er

La
pt

op
.s

cr
ee

n
=

bi
g

to
La

pt
op

.s
cr

ee
n
=

sm
al

l.
Ia

m
in

di
ff

er
en

tt
o

La
pt

op
.s

cr
ee

n
=

bi
g

an
d

La
pt

op
.s

cr
ee

n
=

sm
al

l.
In

te
rv

al
La

pt
op

.s
cr

ee
n.

si
ze

be
tw

ee
n

14
”

an
d

15
”

is
go

od
.

I
lik

e
La

pt
op

.s
cr

ee
n.

si
ze

be
tw

ee
n

14
”

an
d

15
”.

I
pr

ef
er

La
pt

op
.s

cr
ee

n.
si

ze
be

tw
ee

n
10

”
an

d
13

”
to

be
tw

ee
n

14
”

to
15

”.

I
am

in
di
ff

er
en

t
to

La
pt

op
.s

cr
ee

n.
si

ze
be

tw
ee

n
10

”
an

d
13

”,
an

d
be

tw
ee

n
14

”
to

15
”.

A
ro

un
d

La
pt

op
.s

cr
ee

n.
si

ze
ar

ou
nd

15
”

is
go

od
.

I
lik

e
La

pt
op

.s
cr

ee
n.

si
ze

ar
ou

nd
15

”.
Ip

re
fe

rL
ap

to
p.

sc
re

en
.s

iz
e

ar
ou

nd
15

”
to

ar
ou

nd
10

”.
I

am
in

di
ff

er
en

t
to

La
pt

op
.s

cr
ee

n.
si

ze
ar

ou
nd

15
”

an
d

ar
ou

nd
10

”.
(a

)
Pr

ef
er

en
ce

st
at

em
en

ts
an

d
ta

rg
et

s
in

te
ra

ct
io

n.

G
oa

l
M

in
im

is
e

La
pt

op
.w

ei
gh

t.
D

on
’t

C
ar

e
Id

on
’t

ca
re

ab
ou

tL
ap

to
p.

bl
ue

to
ot

h.
Pr

io
ri

tie
s

A
ttr

ib
ut

e
pr

io
ri

ty
La

pt
op

.s
iz

e
is

m
or

e
im

po
rta

nt
th

an
La

pt
op

.w
ei

gh
t.

A
ttr

ib
ut

e
in

di
ff

er
en

ce
La

pt
op

.s
iz

e
is

as
im

po
rta

nt
as

La
pt

op
.w

ei
gh

t.
Pr

ef
er

en
ce

pr
io

ri
ty

1.
M

in
im

is
e

pr
ic

e.
2.

In
ee

d
Sc

re
en

.s
iz

e
≥

15
”. (b

)
G

oa
ls

,d
on

’t
ca

re
pr

ef
er

en
ce

s
an

d
pr

io
rit

ie
s.

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA



Chapter 3. Preference Metamodel 68

3.4
Final Remarks

In this chapter, we described a preference metamodel that contemplates
patterns and expressions that are used by people and were identified in our study of
how humans express preferences. The metamodel includes an ontology metamodel,
whose instances describe an application area, such as laptops and their attributes.
Propositional formulae are also represented, as many preferences refer to them
to indicate preferred attribute values. Our metamodel consists of different types
of preferences, such as goals and constraints, or more complex preferences that
are associated with natural-language-like expressions, e.g. expressive speech acts.
Many of these preferences are not part of existing preference metamodels, and this
limitation of existing approaches is discussed in next chapter.

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA




