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Motor-cart system: a parametric excited
nonlinear system due to electromechan-
ical coupling

The analysis of electromechanical systems is not a new subject. The
interest of analyzing their dynamic behavior is reflected by the increasing
amount of research in this area (see for instance |99, 84, 41, 7, 8]). In [83]
there is a chapter dedicated to the coupled problem and it is remarked that
it is a problem different from parametric resonance. In 37| the whole book is
dedicated to the problem but the analytical treatment supposes some small
parameter, a hypothesis avoided here. Recently, the problem is been intensely
studied again, see [6, 1, 4|, but the literature is vast.

The mutual interaction between electrical and mechanical parts leads us
to analyze a very interesting nonlinear dynamical systems [64, 24, 31, 23, 10],
in which the nonlinearity comes from the coupling and varies with the coupling
conditions.

In this Chapter, we analyze the dynamical behavior of a simple elec-
tromechanical system composed by a cart whose motion is driven by a DC
motor. The coupling between the motor and the cart is made by a mechanism
called scotch yoke so that the motor rotational motion is transformed into a

cart horizontal motion.

2.1 Dynamics of the motor-cart system

2.1.1 Electrical system: DC motor

The mathematical modeling of DC motors is based on the Kirchhoff’s

law [35]. It is written as

le(t) +rce(t) + kea(t) = v, (2.1)

]ma(t) + bma(t) - ke C(t) = _T<t) ) (22)
where t is the time, v is the source voltage, c¢ is the electric current, ¢ is
the angular speed of the motor, [ is the electric inductance, j,, is the inertia

moment of the motor, b,, is the damping ratio in the transmission of the torque
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Figure 2.1: Electrical DC motor.

generated by the motor to drive the coupled mechanical system, k. is the motor
electromagnetic force constant and r is the electrical resistance. Figure 2.1
shows a sketch of the DC motor. The available torque delivered to the coupled
mechanical system is represented by 7, that is the component of the torque
vector T in the z-direction shown in Fig. 2.1. Some relevant situations when

we analyze electrical motors are described as following:

— Assuming that 7 and v are constant in time, the motor achieves a steady
state in which the electric current and the angular speed become constant
in time. By Egs. (2.1) and (2.2), the angular speed of the motor shaft and

the current in steady state, respectively cgeqdy and Cseeqay, are written as

oot () g

dstead = 5 19 Csteady —
Y by 7+ k2 ’ Y oor oo by 7+ k2

— When 7 is not constant in time, the angular speed of the motor shaft and
the current do not reach a constant value. This kind of situation happens
when, for example, a mechanical system is coupled to a motor. In this
case, & and c variate in time in a way that the dynamics of the motor
will be influenced by the coupled mechanical system. When there is no
load applied in the motor (i.e. 7(t) = 0, Vt € R=Y) and the source voltage
is constant in time, the motor achieves its maximum angular speed that
is called the no load speed. 1t is calculated by

) ke v b k. v
Ono load = m ) Cno load = k_e (m) . (2-4)

— The motor delivers the maximum torque, when the load applied in the
motor is such that the motor does not move at all. This is called the stall

torque. If the source voltage is constant in time, it is calculated by

ke v

(2.5)

Tstall =
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Figure 2.2: Coupled cart-motor system.

2.1.2 Cart-motor system: a master-slave relation

As described in the introduction, the system is composed by a cart whose
motion is driven by the DC motor. The motor is coupled to the cart through a
pin that slides into a slot machined in an acrylic plate that is attached to the
cart, as shown in Fig. 2.2. The off-center pin is fixed on the disc at distance A
of the motor shaft, so that the motor rotational motion is transformed into a
cart horizontal movement. It is noticed that with this configuration, the center
of mass of the mechanical system is always located in the center of mass of the
cart, so its position does not change. To model the coupling between the motor
and the mechanical system, the motor shaft is assumed to be rigid. Thus, the
available torque vector to the coupled mechanical system, 7, can be written
as

T(t) = A(t) x £(t), (2.6)
where A = (A cosa(t), A sina(t), 0) is the vector related to the eccentricity
of the pin, and where f is the coupling force between the DC motor and the
cart. Assuming that there is no friction between the pin and the slot, the vector
f only has a horizontal component, f (the horizontal force that the DC motor

exerts in the cart). The available torque 7 is written as
T(t) = —f(t) A sina(t). (2.7)

Due to constraints, the cart is not allowed to move in the vertical direction.
The mass of the mechanical system, m, is equal the cart mass, m., and the
horizontal cart displacement is represented by z. Since the cart is modeled as

a particle, it satisfies the equation

mi(t) = f(t) . (2.8)

Due to the system geometry, x(t) and «(t) are related by the following

constraint

z(t) = A cos (a(t)). (2.9)
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Substituting Eqs. (2.7) to (2.9) into Egs. (2.1) and (2.2), we obtain the initial
value problem for the motor-cart system that is written as follows. Given a

constant source voltage v, find («, ¢) such that, for all ¢t > 0,

Lé(t)+re(t) +keat)=v, (2.10)

a(t) [jm +mA*(sin a(t))ﬂ +6 by +mA*a(t) cosa(t) sina(t)] —ke c(t) =0,

(2.11)
with the initial conditions,

a0)=0 , a0)=0 , c0)="2. (2.12)

Comparing Eq. (2.11) with Eq. (2.2), it is seen that the mechanical system
influences the motor in a parametric way, [40, 65, 93, 62, 71|. The coupling
torque, 7, that appears in the right side of Eq. (2.2), appears now as a time

variation of the system parameters.

2.2 Dimensionless cart-motor system

In this section, the initial value problem to the motor-cart system
is presented in a dimensionless form. The development of this form is a
strategy to determine the dimensionless parameters of the system, which
were useful in the prove of existence and asymptotic stability of a periodic
orbit to this electromechanical system, discussed in Section 2.4. Beside this,
the dimensionless equations were very useful for simulations, since it reduced
significantly the computation time.
Consider the system of (2.10) to (2.11). Taking & (t) = u (t), the system
can be written as a first-order system, thus one gets that
keu(t)+rc(t) —v
;i )

a.
—~
~
SN—
I

(2.13)
- (—c (t) ke + A2mu (1) cos (a (1) sin (a () + by u (t))

<A2 msin® (a (t)) + jm)

t = és, a (l;) —p(s), u (l;) - ”’lﬁ c (l;) — k’“‘z(s) (2.14)

one gets that s is dimensionless parameter. The functions p (s), ¢ (s) and w (s)

are dimensionless functions. Substituting (2.14) into (2.13) one obtains
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w' (s) = —w(s) —q(s) +vo
p(s)=al(s),

) (2.15)
» — (014 () cos (p(5)) sin (p(5)) — v (s) + v (5))
q (s) =
(vl sin? (p () + 1)
where ’ denotes the derivative with respect to s and v;,7 = 0,...,3, are
dimensionless parameters given by
[ A? kel k b 1
UOZU I ‘m, Vg = — ;, Vg = ——. (2.16)
ker Jm Jm T JmT

The strategy to obtain the dimensionless form of the initial value problem to
the motor-cart system, was writing the time ¢ as function of the dimensionless
parameter s and as function of motor parameters (the inductance, [, and
resistance, r). Thus, the new dimensionless time s appeared as a parameter
that is independent of the parameters of the mechanical part of the system. Due
to this independence, this strategy of writing ¢ as function of s, [, and r could
be applied to the others electromechanical systems analyzed in this Thesis. We
used the same dimensionless parameter s to obtain their dimensionless initial

value problems.

2.3 Numerical simulations of the dynamics of the
motor-cart system

Looking at Eqs. (2.10) to (2.12), it can be observed that if the nominal
eccentricity of the pin, A, is small, the initial value problem of the motor-
cart system tends to the linear system equations of the DC motor, Eq. (2.1)
and (2.2), in case of no load. But as the eccentricity grows, the non-linearities
become more pronounced. The nonlinearity also increases with the attached
mass, m. To understand the influence of A and m in the dynamic behavior of
the motor-cart system, a parametric excited system, simulations with different
values to these system parameters were performed. The objective was to
observe the graphs of the system variables, as the motor current over time,
angular displacement of the motor shaft and coupling force. For computation,
the initial value problem defined by Egs. (2.10) to (2.12) has been rewritten
in the dimensionless form given by Eqs. (2.15) to (2.16). Despite of using the
dimensionless initial value problem for numerical simulations, the results are
presented in the dimensional form because we believe that in this way they have
an easier physical interpretation. The duration chosen is 2.0 s. The 4th-order

Runge-Kutta method is used for the time-integration scheme with a time-
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step equal to 107%. The motor parameters used in all simulations are listed in
Table 2.1. The source voltage is assumed to be constant in time and equal to

2.4 V. To observe the influence of the eccentricity of the pin in the behavior

Parameter | Value
1.880 x 10~* H
Jm 1.210 x 10~* kg m?
bin 1.545 x 10~* Nm/(rad/s)
r 0.307 2
ke 5.330 x 1072 V/(rad/s)

Table 2.1: Values of the motor parameters used in simulations.

of the system, the mass was fixed to 5 kg and the results of simulations with
two values of A were compared. The selected values are A = 0.001 m and
A =0.01 m. For A = 0.001 m, Figs. 2.3(a) and 2.3(b) displays & as function
of time and the Fast Fourier Transform (FFT) of the cart displacement, . It
can be noted that the angular speed of the motor shaft oscillates with a small
amplitude around 7 Hz and the FFT graph of x presents only one peak at this
frequency. In contrast to this, when A is bigger, as A = 0.01 m, observing
Figs. 2.4(a) and 2.4(b), it is verified that the amplitude of the oscillations
of & grows and, due to the non-linearity effects, the FFT graph of x presents
more than one peak. The first of them is at 6.56 Hz and the others are at odd

multiples of this value, characterizing a periodic function.
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2.3(a): 2.3(b):

Figure 2.3: Motor-cart system with A = 0.001 m: (a) angular speed of the
motor shaft over time and (b) Fast Fourier Transform of the cart displacement.

As said in the introduction of this Thesis, normally problems of coupled
systems are modeled as uncoupled saying that the force is imposed, and it is
harmonic with frequency given by the nominal frequency of the motor. The
dynamic of the motor is not considered. The graphs of Fig. 2.3(a) and 2.4(a)

confirm that this hypothesis does not correspond to reality. As A increases,
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Figure 2.4: Motor-cart system with A = 0.01 m: (a) angular speed of the motor
shaft over time and (b) Fast Fourier Transform of the cart displacement.

increases the nonlinearity of the problem, and the hypothesis of harmonic force
is inadequate since it falsifies the dynamics. Even when A is small, the angular
speed of the motor shaft does not reach a constant value. After a transient
it achieves a periodic state. It oscillates around a mean value and these
oscillations are periodic. To enrich the analysis in the frequency domain, the
Fast Fourier Transform of the current over time, ¢, was computed for the two
values of A. The results are shown in Fig. 2.5(a) and 2.5(b). It can be observed
that in both cases, the FF'T graph of ¢ presents a peak at a frequency that is
twice the peak frequency of the FF'T % indicating the parametric excitation,

[40]. In the following analysis of the motor-cart system, the nominal eccentricity
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2.5(a): 2.5(b):

Figure 2.5: Motor-cart system: Fast Fourier Transform of the current (a) when
A =0.001 m and (b) when A = 0.01 m.

of the pin was consider to be 0.01 m. This value was selected to highlight
the non-linearity effects. The results obtained to the cart displacement and
current in motor over time are observed in Fig. 2.6(a) and Fig. 2.6(b). The

behavior found for the current over time is similar to the behavior found for
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the angular speed of the motor shaft, Fig. 2.4(a). It achieves a periodic state
after a transient phase. Other graphs to be analyzed are the f(¢) and 7(t)
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i | T 1
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-0.025 05 1 15 2 0 0.5 1 15 >
ts ts
2.6(a): 2.6(b):

Figure 2.6: Motor-cart system with A = 0.01 m: (a) cart displacement and (b)
motor current over time.

variation during one cart movement cycle in the periodic state, phase portraits
of the system, as it is shown in Figs. 2.7(a) and 2.7(b). Observing the f graph,
we see that the coupling force is not harmonic. Remembering the constrain
x(t) = Acosa(t), it is verified that the horizontal force presents its maximum
value when z(t) = —A and its minimum value when z(t) = A. Besides this,
the coupling force changes its sign twice. Observing the 7 graph, it is verified
that the torque presents four points of sign change. Two of them occur when
x(t) = —A and z(t) = A, corresponding respectively to « multiple of 7 and
a multiple of 27. This changes were expected from Eq. (2.7). The others two
changes occur exactly in the same cart positions that we have the sign of f
changing. In each cart movement cycle, the horizontal force f and the torque
7 follow once the paths shown in Fig. 2.7(a) and 2.7(b). Figures 2.8(a) and
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2.7(a): 2.7(b):

Figure 2.7: Motor-cart system with A = 0.01 m: (a) horizontal force f and (b)
torque 7 during one cycle of the cart movement.
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2.8(b) show the phase portraits graphs of the current variation during one cart
movement cycle and the torque variation in function of the current. In the left
graph, it is noted that the current presents four points of sign change in each
cart movement cycle. Observing the right graph, it is verified that the current
follows two times the path shown in Fig. 2.8(b). Thus, there is a relation
2:1 between the period of rotation of the disk (part of the electromechanical
system) and the period of the current in the DC motor. This relation 2:1
between periods is a common phenomenon of parametric excited systems.
Others phase portrait graphs are shown in Figs. 2.9(a), 2.9(b), 2.10(a) and
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2.8(a): 2.8(b):

Figure 2.8: Motor-cart system with A = 0.01 m: (a) current variation during
one cart movement cycle and (b) torque variation as function of the current.

2.10(b).
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Figure 2.9: Motor-cart system with A = 0.01 m: (a) angular velocity of the
motor shaft during one cart movement cycle and (b) current variation as
function of the angular velocity of the motor shaft.
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Figure 2.10: Motor-cart system A = 0.01 m: (a) torque variation as function
of the horizontal force f and (b) horizontal force variation as function of the
angular velocity of the motor shaft.

2.4 Asymptotically stable periodic orbit

Due to the coupling mechanism, the coupling torque, 7, variates in time.
Thus, the angular speed of the motor shaft and the current are not constant
values after the transient. To compare the response of the coupled systems
for different values of A and m, the duration of one cart movement cycle,
T,, were computed in the periodic state. Figures 2.11(a) and 2.11(b) show
the graphs of the computed periods as function of A and m. In both graphs
it is observed that, the bigger A, or m, is, the bigger is the period of the
cart movement cycle in the periodic state. It is noted too that this increment

is more pronounced in relation to A. This result guided the development of

0.16 T T s 0.146 gy
® 045 | | | 3 | . | s s
= 0 B S S 0144 "
=~ : : : : E_?‘ : : :
; ; ; ; i : ; i i
0 0002 0004 0006 0.008 0.01 0.142] 2 3 7 5
A m m kg
2.11(a): 2.11(b):

Figure 2.11: Motor-cart system: period of one cart movement cycle (a) as
function of A with m = 5.0 kg and (b) as function of m with A = 0.005 m.

the paper [18], in which a similar electromechanical motor-cart system was
analyzed and the existence and asymptotic stability of a periodic orbit to

this system were obtained in a mathematically rigorous way. To prove the
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existence and asymptotic stability of periodic orbits, the authors of [18] used
the dimensionless initial value problem given by Eq. (2.15) and, assumed the

following Ansatz

q(s) =wo+ez(s), (2.17)
w(s) = k1 + ew; (s) (2.18)
where
= —0% = 2 (2.19)
U3 + Uy U3 + U2

and v; = e. Substituting the expressions of vy, vy and, v given in Eq. (2.16),
one obtains that

l k. v l. b, v 1 l
= m = COmoload;, W0 = 3p gy = 7 Cno load- (2.20)

b kie(b 7 +k2) ke

From a mechanical point of view, Eq. (2.17) means that the disk, that is a part
of the mechanical system modeled by Egs. (2.10) and (2.11), will rotate at an
angular speed near wy (which is the velocity dne 10aa in @ dimensionless form)
and (2.18) means that electrical current will oscillate near k; (which is current
Cno load 1 @ dimensionless form).

After a mathematical proof of existence and asymptotic stability of
periodic orbits, the authors of [18] obtained the following expression to the

period T}, of the system

4w2 +1) vy)
IH@:1+”%@ﬁ*”“‘”@€+o@y (2.21)
Wo 4 El

where vy and vz are given in Eq. (2.16), and

E1 =2 (Ug + 1}2) Ql (222)

Q1= (4wi +1) v3 + 2003 +v; — 8w vs + 16wy + 4wp. (2.23)
Observing this expression, one concludes that the nonlinear effects on the
period are significant at second order of that expansion. Beside this, using
the expressions given in Eq. (2.16), it is verified that the period grows
proportionally to m? A*, and so the growing of the period is faster in relation
to A than to m. These results are compatible with the numerical findings
shown in Figs. 2.11(a) and 2.11(b). Another interesting consequence is the
following one: from Eqs. (2.17) and (2.8) it follows that the period of rotation
of the disk, in the electromechanical system, is given by i—’; + O (€). So, it
follows from Eq. (2.21) that there is a 2:1 relation between the period of the
disk and the current. Those results are compatible with the numerical findings

shown previously in Figs. 2.8(b) and 2.9(b). To analyze the domain of validity
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Figure 2.12: Comparison between numerical findings and the asymptotic
approximation.

of the approximation of expression to the period 7, approximations to the
period were computed to different values of € considering just the first and
second orders terms of the Eq. (2.21). The obtained approximations were
compared with the values of period obtained from numerical simulations.
The results displayed in Fig. 2.12 shows that domain of validity of the
approximation considering only the first and second orders terms is rather
large, a fact that is not evident from perturbation theory. The paper [18]
treats the problem of electromechanical coupling by a mathematical approach.
As no other references dealing with this king of approach to electromechanical
systems were found, we believe that [18] is a first work on the topic. Some
others articles have been written in this way, as [20, 19, 17, 16]. Among the
several routes for research coming from this mathematical approach, some have
been studied. The objective is to prove the existence and asymptotic stability

for electromechanical systems in which

a capacitor is included in the circuit sketched in Fig. 2.1. This leads to
a system with four degrees of freedom and the possibility of resonances.
The guessing is that if the techniques used here can be useful for this

problem.

— the cart is fixed to a wall by a linear spring and damper, as shown in
Fig. 2.13. Beside this, the motor has a time-dependent voltage source
given by v,(t) = v+ x sin(w;t). Without the spring, the system is driven
by the constraint and the dynamics is a sort of master-slave relation, a
very simple one. With the inclusion of the spring, the dynamics changes

completely, now the constraints cannot always impose the dynamics and
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A\

Figure 2.13: Coupled cart-motor-spring-damper system.

it is richer. The techniques used in [18] do not work any more and new
techniques to show existence and stability have to be used. If the spring
has a high rigidity it does not let the motor to drive the cart all the
way to the end of the track and the cart oscillates around a position
that depends on the rigidity of the spring and the voltage that drives
the system. Some of the results already obtained for this problem are

published [21].

2.5 Summary of the Chapter

The developed models revealed that the electromechanical motor-cart
system is parametric excited, in which the coupling torque appears as a
time variation of the system parameters. Simulations of these systems were
performed for different values of A and m and the results of these numerical
simulations, as the graphs the systems variables over time, graphs of the FFT
of systems variables and phase portraits graphs were analyzed. From these
graphs, a typical phenomenon of parametric excited systems was observed:
the existence of a periodic solution with a relation 2:1 between the period of
rotation of the disk and the period of the current. This result is compatible
with earlier numerical findings in [42] and guided us in the development of
[18], in which the existence and asymptotic stability of a periodic orbit to
an electromechanical system are obtained in a mathematically rigorous way.
Besides this, the nominal eccentricity of the pin of the motor, was characterized
as a parameter that controls the nonlinearities of the equations of motion of

the system.
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