

Monique Cordeiro Rodrigues

Estudo Teórico-Experimental das Componentes Mistas em Ligações Semirrígidas

Tese de Doutorado

Tese apresentada ao Programa de Pós-graduação em Engenharia Civil da PUC-Rio como requisito parcial para obtenção do título de Doutor em Engenharia Civil.

Orientador: Prof. Sebastião Arthur Lopes de Andrade

Co-Orientador: Prof. Luciano Rodrigues Ornelas de Lima

Volume I

Rio de Janeiro Agosto de 2015

Monique Cordeiro Rodrigues

Estudo Teórico-Experimental das Componentes Mistas em

Ligações Semirrígidas

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Sebastião Arthur Lopes de Andrade

Presidente / Orientador Departamento de Engenharia Civil – PUC-Rio

Prof. Luciano Rodrigues Ornelas de Lima Co-orientador Departamento de Estruturas e Fundações – UERJ

Prof. Pedro Colmar G. da Silva Vellasco Departamento de Estruturas e Fundações – UERJ

Prof. Paulo Batista Gonçalves Departamento de Engenharia Civil – PUC-Rio

Prof. Raul Rosas e Silva Departamento de Engenharia Civil – PUC-Rio

> Prof. Emil de Souza Sánchez Filho UFF

Prof. Ricardo Rodrigues de Araujo Departamento de Engenharia Civil – CEFET/RJ

Prof. José Eugênio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 21 de Agosto de 2015

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Monique Cordeiro Rodrigues

Graduou-se em engenharia civil pela UERJ em 2007. Titulou-se mestre pela UERJ em 2009, mesmo ano do ingresso no curso de doutorado na PUC-Rio. Desenvolveu atividades relacionadas a área de estruturas de aço e mista. Participou de congressos na área, com apresentação de artigos nesses eventos.

Ficha Catalográfica

Rodrigues, Monique Cordeiro

Estudo teórico-experimental das componentes mistas em ligações semirrígidas / Monique Cordeiro Rodrigues ; orientador: Sebastião Arthur Lopes de Andrade ; co-orientador: Luciano Rodrigues Ornelas de Lima. - 2015.

2 v., : il. (color.) ; 30 cm

Tese (doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil, 2015.

Inclui bibliografia

1. Engenharia civil – Teses. 2. Estruturas mistas. 3. Ligações mistas. 4. Análise experimental. 5. Ensaio pull out. 6. Solda dos conectores. I. Andrade, Sebastião Arthur Lopes de. II. Lima, Luciano Rodrigues Ornelas de. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título.

CDD: 624

Agradecimentos

Ao meu orientador Professor Sebastião Arthur Lopes de Andrade pelo apoio, orientação, e oportunidade de desenvolvimento.

Aos meus co-orientadores, Professor Luciano Rodrigues Ornelas de Lima, pelos anos de convivência, orientação e amizade vindos da faculdade, e ao Professor Pedro Colmar G. da Silva Vellasco, pelo conhecimento transmitido durante este período.

A meus pais, Jorge e Luciméli, que sempre se empenharam em mostrar a importância dos estudos, as minhas irmãs, Michelle e Melissa, e sobrinho, Miguel, por participarem e estarem presentes nesta caminhada, pelo apoio e incentivo.

À Fernanda Lins Gonçalves Pereira, por todos estes anos de amizade, pela presença, conversas, incentivos e compreensão, com os quais pude me apoiar em diversos momentos. Ao André Luiz Ferreira Pinto, pela amizade e por tentar sempre me mostrar o lado otimista das coisas. Agradeço a contribuição e apoio dos dois, importantes para o desenvolvimento deste trabalho.

À PUC-Rio, pelos auxílios concedidos, com recursos e com o laboratório, que permitiram o desenvolvimento dos trabalhos. Aos técnicos do laboratório de estruturas e materiais da PUC-Rio (LEM-DEC), que auxiliaram na montagem dos ensaios, em especial ao Euclides, pela paciência com as explicações do funcionamento das atividades de laboratório.

À UERJ e aos técnicos do laboratório de Engenharia Civil, que contribuíram para o desenvolvimento dos ensaios de caracterização dos materiais.

À Metalfenas, pela disponibilização de materiais e profissionais para os ensaios realizados.

Aos amigos que durante este tempo compartilharam seus incentivos para o alcance deste objetivo.

Resumo

Rodrigues, Monique Cordeiro; Andrade, Sebastião Arthur Lopes de. Estudo Teórico-Experimental das Componentes Mistas em Ligações Semirrígidas. Rio de Janeiro, 2015. 365p. Tese de Doutorado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Um dos métodos adotados para a caracterização das ligações mistas semirrígidas é o método das componentes descrito no Eurocode 3 e no Eurocode 4. O modelo de componentes desenvolvido nesse método considera para a contribuição mista à incorporação da componente da barra de armadura, aspectos relativos ao concreto e a resistência do conector. Porém, o modelo é baseado em suposições ainda não totalmente estudadas quanto à resposta estrutural da parcela mista da ligação, principalmente em regiões de momento negativo. Todo esse aspecto tem limitado o uso do método para o projeto de estruturas mistas. Esse fato motivou a concepção e o desenvolvimento de um programa experimental para investigar as ligações em estruturas mistas, por meio de testes de pull out, considerados os modos de falha devido a ruptura da barra, da ancoragem da barra e da solda dos conectores. Adicionalmente, foi realizada uma investigação da influência da solda dos conectores devido a falha desse elemento no decorrer de alguns ensaios. Os resultados dos ensaios desenvolvidos permitiram que conclusões gerais pudessem ser determinadas e possibilitaram um maior conhecimento sobre a solda e seus impactos ao sistema. A correta utilização de soluções de ligações mistas pode aumentar a competitividade do sistema estrutural, propiciando construções mais econômicas e eficientes.

Palavras-chave

Estruturas Mistas; Ligações Mistas; Análise Experimental; Ensaio *Pull Out*; Solda dos Conectores; Arrancamento; *Eurocode 3*; *Eurocode 4*.

Rodrigues, Monique Cordeiro; Andrade, Sebastião Arthur Lopes de (Advisor). Theoretical and Experimental Study of Composite Components of Semi-rigid Joints. Rio de Janeiro, 2015. 365p. Dsc. Thesis - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

One of the methods adopted for the characterization of the composite semirigid joints is the method of the components described in Eurocode 3 and Eurocode 4. The model developed in the method considered for the composite contribution the incorporation of reinforcement bar components, aspects related to the concrete and the connector strength. However, the model is based on not fully validated assumptions as to structural response of the composite portion of the joint, mainly negative moment areas. All this aspect has limited the use of the method for the design of composite structures. This fact encouraged to the conception and development of an experimental program to investigate joints in composite structures, by means of pull out tests, considering the failure modes due to rupture of the reinforcement bar, of the anchorage of the bar, and of the weld connectors. Additionally was made a research of the weld connectors influence due to failure of this element in the course of a few pull out tests. The results of the tests developed have allowed general conclusions could be determined and made possible a better understanding of the weld and its impacts to the system. The correct use of composite joints solutions can increase the competitiveness of the structural system, providing more economical and efficient buildings.

Keywords

Composite Structures; Composite Joints; Analyzing Experimental; Pull Out Experimental; Weld Connectors; Eurocode 3; Eurocode 4.

Sumário

1 Introdução	26
1.1. Revisão Bibliográfica	30
1.1.1. Liew et al. (2000, 2004)	30
1.1.2. Kattner e Crisinel (2000)	37
1.1.3. Simões et al. (2001)	38
1.1.4. Pires (2003)	39
1.1.5. Fu e Lam (2006)	40
1.1.6. Braconi et al. (2007)	42
1.1.7. Oliveira (2007)	44
1.1.8. Mairal (2010)	45
1.1.9. Ramires (2010)	46
1.1.10. Barros (2011)	47
1.1.11. Piluso et al. (2012)	48
1.1.12. Pisarek (2012)	49
1.1.13. Higashiyama et al. (2013)	50
1.2. Motivação	51
1.3. Objetivos	52
1.4. Contribuições	53
1.5. Descrição do escopo	53
2 Ligações Semirrígidas Mistas	55
2.1. Introdução às ligações semirrígidas	55
2.2. Ligações aparafusadas e efeito alavanca	59
2.3. Ligações mistas	61
2.3.1. Funcionamento básico do sistema misto	63
2.4. Dimensionamento segundo o Eurocode	71
2.4.1. Método das Componentes	72
2.5. Descrição das Componentes segundo o Eurocode	91
2.5.1. Componentes do Aço	91
2.5.2. Componentes do Sistema Misto	107
2.5.3. Componentes do Concreto Armado	110
2.6. Distribuição das Solicitações	112

3 Caracterização dos Ensaios Experimentais	116
3.1. Introdução	116
3.2. Modelo Experimental Estudado	116
3.3. Modelo Experimental Pull Out	118
3.3.1. Tipos de Confinamento	119
3.4. Descrição dos ensaios pull out	120
3.4.1. Pré-ensaios	121
3.4.2. Ensaios pull outs subsequentes - Série S2010 (Ramires, 2010)	136
3.4.3. Ensaios <i>pull outs</i> subsequentes – Série S2014	148
3.4.4. Previsão dos resultados	163
3.5. Ensaio de cisalhamento direto nos conectores	164
3.5.1. Ensaios com perna de solda conhecidas	164
3.5.2. Ensaios de cisalhamento direto com conectores da Série S2014	172
4 Resultados e Análise Experimental	174
4.1. Ensaio de cisalhamento direto nos conectores	174
4.1.1. Ensaios com perna de solda conhecida	174
4.1.2. Ensaios de cisalhamento direto dos conectores da Série S2014	186
4.2. Ensaios Pull Out	195
4.2.1. Ensaios dos materiais	203
4.2.2. Resultados dos ensaios	214
5 Análise Numérica para os conectores	279
5.1. Ensaio dos conectores	279
6 Considerações finais	283
6.1. Conclusões	283
6.2. Contribuições do trabalho	285
6.3. Sugestões para trabalhos futuros	286
Apêndice A – Resumo dos Ensaios	291

Lista de Figuras

Figura 1.1 – Classificação das ligações de acordo com sua rigidez.	27
Figura 1.2 – Comportamento das ligações.	28
Figura 1.3 - Ligação de cisalhamento entre a laje de concreto e a	
viga de aço (Figueiredo; Gonçalves, 2007).	29
Figura 1.4 - Layout geral das amostras de ligações (adaptado de	
Liew et al., 2000).	31
Figura 1.5 - Configuração dos ensaios (adaptado de Liew et al.,	
2004).	33
Figura 1.6 - Distribuição de tensões e força sob momento positivo	
(adaptado de Liew et al., 2004).	35
Figura 1.7 – Detalhe típico dos ensaios dos conectores (adaptado de	
Liew et al., 2004).	36
Figura 1.8 – Ligações mistas estudadas (adaptado de Pires, 2003).	40
Figura 1.9 – Arranjo geral para os ensaios (Fu e Lam, 2006).	41
Figura 1.10 – Diagrama de forças e componentes da ligação mista	
(Fu e Lam, 2006).	42
Figura 1.11 – Seção transversal da viga mista (Braconi et al., 2007).	44
Figura 1.12 – Ligações mistas do tipo viga-viga (Oliveira, 2007).	45
Figura 1.13 – Modelo experimental cruciforme (Mairal, 2010).	45
Figura 1.14 - Ligação viga-coluna em placa de extremidade sob	
momento fletor positivo.	50
Figura 1.15 – Comparação entre os studs soldados de forma	
convencional e melhorados (adaptado de Higashiyama et al., 2013).	51
Figura 2.1 – Pórtico de ligações rígidas.	55
Figura 2.2 – Pórtico de ligações flexíveis.	56
Figura 2.3 – Pórtico de ligações semirrígidas.	56
Figura 2.4 – Viga bi-apoiada.	57
Figura 2.5 – Ligação com placa de extremidade com solicitação	
bilateral (Silva et al., 2001).	58
Figura 2.6 – Ligação em nós externos (Ramires, 2010).	58
Figura 2.7 – Ligação em nós internos (Ramires, 2010).	59
Figura 2.8 – Transmissão das solicitações em parafusos comuns	
(CBCA, 2004).	60

Figura 2.9 – Comportamento força versus deslocamento relativo.	61
Figura 2.10 – Efeito alavanca (De Nardin, 2003).	62
Figura 2.11 – Efeito alavanca (NBR 8800:2008).	62
Figura 2.12 – Descrição do conjunto da ligação mista (Ramires,	
2010).	62
Figura 2.13 – Funcionamento básico do sistema misto (adaptado de	
Ramires, 2010).	63
Figura 2.14 – Modos de interação (Ramires, 2010).	64
Figura 2.15 – Transferência da força de cisalhamento do sistema	
misto (Ramires, 2010).	64
Figura 2.16 - Comportamento idealizado de um tirante de concreto	
armado (adaptado de CEB-FIP, 1999).	66
Figura 2.17 – Deformações ao longo do tirante de concreto armado:	
(a) formação da primeira fissura; (b) estado de fissuração	
estabilizado (CEB-FIP, 1999).	67
Figura 2.18 – Diagrama tensão versus deformação específica	
simplificada para armaduras envolvidas pelo concreto (CEB-FIP,	
1999).	70
Figura 2.19 – Gráfico momento versus rotação e curva bilinear de	
comportamento.	72
Figura 2.20 – Zonas de verificação (Ramires, 2010).	74
Figura 2.21 – Modelo mecânico de ligações viga-pilar soldada	
(adaptado de Ramires, 2010).	74
Figura 2.22 – Modelo mecânico de ligações viga-pilar com placa de	
extremidade (adaptado de Ramires, 2010).	75
Figura 2.23 – Componentes da ligação mista com placa de	
extremidade estendida (adaptado de Ramires, 2010).	76
Figura 2.24 – Orientação do <i>T-Stub</i> (adaptado de <i>Eurocode</i> 3, 2003).	77
Figura 2.25 – Mecanismos de colapso (Rodrigues, 2007).	77
Figura 2.26 – Formação das charneiras plásticas (Ramires, 2010).	78
Figura 2.27 – Algumas combinações das charneiras plásticas e	
notações geométricas (Ramires, 2010).	79
Figura 2.28 – Componentes que compõem a ligação mista.	81
Figura 2.29 – Componentes identificados no modelo mecânico	
(adaptado de Ramires, 2010).	84
Figura 2.30 – Representação do braço de alavanca das linhas de	
parafusos e da linha da armadura tracionada (Ramires, 2010).	84

Figura 2.31 – Resistência da primeira linha (Ramires, 2010).	87
Figura 2.32 – Resistência das linhas 2 e 3 (Ramires, 2010).	87
Figura 2.33 – Rotação da viga com relação ao pilar (Ramires, 2010).	88
Figura 2.34 – Comportamento momento versus rotação de alguns	
tipos de ligações.	89
Figura 2.35 – Diferentes representações da curva: momento versus	
rotação.	89
Figura 2.36 – Análise da estrutura e da ligação (adaptado de	
Ramires, 2010).	90
Figura 2.37 – Alma do pilar submetida ao cisalhamento (Ramires,	
2010 e Faella, 2000).	92
Figura 2.38 – Mecanismo do painel de alma (Ramires, 2010).	93
Figura 2.39 – Enrijecedores transversais e em diagonal (Ramires,	
2010).	93
Figura 2.40 – Placa de reforço no painel de alma (<i>Eurocode</i> 3, 2003).	94
Figura 2.41 – Sistema de compressão na alma do pilar (Ramires,	
2010).	95
Figura 2.42 – Ábaco e parâmetros geométricos para determinação de	
α (<i>Eurocode</i> 3, 2003).	98
Figura 2.43 – Combinação das linhas de parafusos para a alma e	
mesa do pilar (adaptado de <i>Eurocode</i> 3, 2003 e Ramires, 2010).	98
Figura 2.44 – Detalhamento do <i>T-Stub</i> (<i>Eurocode</i> 3, 2003).	99
Figura 2.45 – Placas de reforço da mesa do pilar (Ramires, 2010).	101
Figura 2.46 – Mecanismos de colapso da linha externa de parafusos	
acima da mesa superior da viga (Ramires, 2010).	102
Figura 2.47 - Parâmetros geométricos da mesa do pilar e da placa	
de extremidade - perfil laminado (adaptado de Eurocode 3, 2003).	103
Figura 2.48 - Parâmetros geométricos da mesa do pilar e da placa	
de extremidade - perfil soldado (adaptado de Eurocode 3, 2003).	104
Figura 2.49 – Alma e mesa da viga submetidos à compressão	
(Ramires, 2010).	104
Figura 2.50 – Alma da viga submetida à tração (Ramires, 2010).	105
Figura 2.51 – Detalhamento do comprimento útil do parafuso	
(Ramires, 2010).	106
Figura 2.52 - Representação da armadura longitudinal na ligação	
(Simões, 2001).	108

Figura 2.53 - Determinação do comprimento L, alongamento da	
armadura longitudinal (Ramires, 2010).	110
Figura 2.54 – Comparação do comportamento de uma ligação com	
chapa de topo com e sem laje de concreto (Ramires, 2010).	110
Figura 2.55 – Alma do pilar embutida no concreto (Ramires, 2010).	111
Figura 2.56 - Reforço devido ao concreto armado na componente	
alma do pilar (Simões, 2001).	112
Figura 2.57 – Composição típica de transferência de solicitações	
entre componentes.	113
Figura 2.58 – Distribuição das Solicitações nos Parafusos (Ramires,	
2010).	113
Figura 2.59 – Formas de distribuição das solicitações na ligação em	
aço (Ramires, 2010).	115
Figura 2.60 – Distribuição das solicitações na ligação mista (Ramires,	
2010).	115
Figura 3.1 – Viga contínua (Ramires, 2010).	117
Figura 3.2 – Padrão para espaçamento dos conectores (d1 e d2).	118
Figura 3.3 – Arranjo dos pré-ensaios (Ramires, 2010).	121
Figura 3.4 - Posicionamento dos conectores de cisalhamento para	
os pré-ensaios (Ramires, 2010).	122
Figura 3.5 – Estribos para os pré-ensaios (Ramires, 2010).	122
Figura 3.6 - Extensômetros nas armaduras principais dos pull outs	
(Ramires, 2010).	123
Figura 3.7 – Posicionamento da célula de carga (Ramires, 2010).	124
Figura 3.8 – Locação e identificação dos LVDTs (Ramires, 2010).	124
Figura 3.9 – Posicionamento dos LVDTs (Ramires, 2010).	125
Figura 3.10 – Forma metálica para os pré-ensaios (Ramires, 2010).	125
Figura 3.11 – Execução do concreto dos pré-ensaios (Ramires,	
2010).	126
Figura 3.12 – Armaduras dos pré-ensaios (Ramires, 2010).	127
Figura 3.13 - Barra de armadura: detalhes e posicionamento dos	
extensômetros (Ramires, 2010).	128
Figura 3.14 – Conectores de Cisalhamento (Ramires, 2010).	128
Figura 3.15 – Perfil metálico principal (Ramires, 2010).	129
Figura 3.16 - Perfil metálico de travamento do primeiro nível	
(Ramires, 2010).	130

Figura 3.17 – Perfil metálico de travamento do segundo nível	
(Ramires, 2010).	130
Figura 3.18 – Barra redonda (Ramires, 2010).	131
Figura 3.19 - Sistema de travamento e posicionamento do atuador	
hidráulico (Ramires, 2010).	131
Figura 3.20 – Mesinhas de apoio dos <i>pull outs</i> (Ramires, 2010).	132
Figura 3.21 – Barras redondas posicionadas nos furos (Ramires,	
2010).	132
Figura 3.22 – Pontos de apoio em neoprene (Ramires, 2010).	133
Figura 3.23 – Placa de distribuição de tensões (Ramires, 2010).	133
Figura 3.24 – Posicionamento das estruturas auxiliares - primeiro	
nível de travamento (Ramires, 2010).	133
Figura 3.25 – Perfis de travamento do segundo nível (Ramires,	
2010).	134
Figura 3.26 – Estrutura de travamento e pull out prontos para a	
execução do teste (Ramires, 2010).	134
Figura 3.27 – Posicionamento do perfil metálico (Ramires, 2010).	135
Figura 3.28 – Montagem das armaduras (Ramires, 2010).	135
Figura 3.29 – Posicionamento para concretagem do pull out	
(Ramires, 2010).	135
Figura 3.30 – Posicionamento do pull out sobre a mesa (Ramires,	
2010).	136
Figura 3.31 – Configuração geral dos ensaios principais (Ramires,	
2010).	137
Figura 3.32 - Distribuição de conectores e barra de armadura -	
PO.1X.r (Ramires, 2010).	138
Figura 3.33 - Distribuição de conectores e barra de armadura -	
PO.2X.r (Ramires, 2010).	138
Figura 3.34 - Distribuição de conectores e barra de armadura -	
PO.7X.r (Ramires, 2010).	139
Figura 3.35 – Distribuição de conectores e barra de armadura -	
PO.8X.r (Ramires, 2010).	140
Figura 3.36 – Concretagem dos ensaios principais (Ramires, 2010).	141
Figura 3.37 – Corpos de prova de concreto (Ramires, 2010).	141
Figura 3.38 - Geometria do perfil dos ensaios principais (Ramires,	
2010).	141

Figura 3.39 - Modificação dos perfis de primeiro nível (Ramires,	
2010).	142
Figura 3.40 – Modificação da estrutura para o ensaio PO.13.r	
(Ramires, 2010).	143
Figura 3.41 – Modificação do ensaio PO.82.r (Ramires, 2010).	143
Figura 3.42 – Modificação do ensaio PO.83.r (Ramires, 2010).	144
Figura 3.43 – Montagem das formas de madeira (Ramires, 2010).	145
Figura 3.44 - Posicionamento dos transdutores de deslocamento -	
Série S2010 (Ramires, 2010).	146
Figura 3.45 – LVDTs posicionados (Ramires, 2010).	147
Figura 3.46 - Posicionamento dos extensômetros para ensaios com	
dois conectores - Séries S2010 (Ramires, 2010).	147
Figura 3.47 - Posicionamento dos extensômetros para ensaios com	
três conectores - Séries S2010 (Ramires, 2010).	148
Figura 3.48 – Formas das novas séries de ensaios.	150
Figura 3.49 – Preenchimento dos corpos de prova.	150
Figura 3.50 – Detalhe das barras de armadura.	150
Figura 3.51 – Configuração ensaio perfil: (a) divisão geral, perfil	
W 410x46; (b) divisão da mesa; (c) divisão da alma.	152
Figura 3.52 – Detalhe para marcação da barra redonda.	152
Figura 3.53 – Ensaios barra: (a) CP1_Barra; (b) CP2_Barra; (c)	
CP3_Barra.	153
Figura 3.54 – Ensaios alma do perfil: (a) CP1_Alma; (b) CP2_Alma;	
(c) CP3_Alma.	153
Figura 3.55 – Ensaios alma do perfil: (a) CP1_Mesa; (b) CP2_Mesa.	153
Figura 3.56 – Extensômetros nos CPs de aço.	154
Figura 3.57 – Perfis de travamento de primeiro nível.	155
Figura 3.58 – Mesa de apoio.	156
Figura 3.59 – Perfis de travamento de segundo nível.	156
Figura 3.60 – Barras redondas.	157
Figura 3.61 – Perfis de travamento de segundo nível com adição das	
barras soldadas.	157
Figura 3.62 – Placa de aplicação - ensaios modificados.	158
Figura 3.63 – Posicionamento do ensaio sobre a mesa de apoio.	159
Figura 3.64 – Primeiro nível de travamento.	159
Figura 3.65 – Conjunto atuador hidráulico e placa de aço.	160
Figura 3.66 – Fios ligados dos extensômetros.	160

Figura 3.67 – Conjunto atuador hidráulico, placa de aço e rótula.	161
Figura 3.68 – Barras retangulares para medição dos LVDTs.	161
Figura 3.69 - Modificações da estrutura para os ensaios PO.22,	
PO.81 e PO.92.	162
Figura 3.70 – Elementos utilizados.	165
Figura 3.71 – Arranjo dos ensaios.	166
Figura 3.72 – Execução do ensaio - arranjo.	167
Figura 3.73 – Execução das soldas do arranjo.	167
Figura 3.74 – Detalhes de posicionamento dos conectores.	168
Figura 3.75 – Detalhes de montagem do sistema auxiliar.	169
Figura 3.76 - Montagem dos ensaios com os perfis utilizados nas	
Série S2014.	173
Figura 4.1 – Ensaio S5.1.	175
Figura 4.2 – Ensaio S5.2.	176
Figura 4.3 – Ensaio S5.3.	176
Figura 4.4 – Gráfico perna de solda de 5 mm.	177
Figura 4.5 – Ensaio S8.1.	178
Figura 4.6 – Ensaio S8.2.	179
Figura 4.7 – Ensaio S8.3.	180
Figura 4.8 – Ensaio S8.4.	180
Figura 4.9 – Gráfico perna de solda de 8 mm.	181
Figura 4.10 – Ensaio S10.3.	182
Figura 4.11 – Ensaio S10.4.	183
Figura 4.12 – Gráfico perna de solda de 10mm.	183
Figura 4.13 – Detalhes dos ensaios: (a) PO.22.P1 e (b) PO.22.P2.	188
Figura 4.14 - Ensaio do perfil PO.22: (a) detalhe na solda e (b)	
detalhe no pino.	188
Figura 4.15 - Ensaio do perfil PO.11: (a) detalhe na solda e (b)	
detalhe no pino.	189
Figura 4.16 - Ensaio do perfil PO.12: (a) detalhe na solda e (b)	
detalhe no pino.	190
Figura 4.17 – Resultados dos testes com os perfis da Série S2014.	192
Figura 4.18 - Gráfico das soldas previstas comparadas as soldas	
padrões.	194
Figura 4.19 - Localização e identificação dos LVDTs para os pré-	
ensaios e da Série S2010.	196

Figura 4.20 - Posicionamento dos extensômetros para os pré-	
ensaios (dimensões em mm).	197
Figura 4.21 - Posicionamento dos extensômetros para ensaios com	
duas barras (Série S2010).	198
Figura 4.22 - Posicionamento dos transdutores de deslocamento	
(LVDTs) - Série S2010.	199
Figura 4.23 - Posicionamento dos extensômetros para ensaios com	
quatro barras (Série S2010).	200
Figura 4.24 - Posicionamento dos extensômetros para ensaios com	
duas barras (Série S2014).	201
Figura 4.25 - Posicionamento dos extensômetros para ensaios com	
quatro barras (Série S2014).	202
Figura 4.26 - Posicionamento dos transdutores de deslocamento	
(LVDTs) - Série S2014.	203
Figura 4.27 – Gráficos para o aço da barra.	205
Figura 4.28 – Gráficos para o aço da mesa do perfil.	206
Figura 4.29 – Gráficos do aço para a alma do perfil.	207
Figura 4.30 – Ensaios barra: (a) CP1_Barra; (b) CP2_Barra; (c)	
CP3_Barra.	207
Figura 4.31 – Ensaios alma do perfil: (a) CP1_Alma; (b) CP2_Alma;	
(c) CP3_Alma.	208
Figura 4.32 – Ensaios alma do perfil: (a) CP1_Mesa; (b) CP2_Mesa.	208
Figura 4.33 – Rompimento dos corpos de prova - UERJ.	209
Figura 4.34 – Ensaio de tração do concreto.	212
Figura 4.35 – Corpo de prova para determinação do módulo de	
elasticidade.	212
Figura 4.36 – Macaco hidráulico sem a cabeça rotulada.	215
Figura 4.37 – Ruptura do pré-ensaio PO.0.2.	216
Figura 4.38 – Carga versus deformação específica dos grupos g2 e	
g3 – PO.0.1.	217
Figura 4.39 – Carga <i>versus</i> deslocamento dos LVDTs 1, 2, 8, 9 e 10	
– PO.0.1.	218
Figura 4.40 - Carga versus deformação específica dos grupos g2 -	
PO.0.2.	219
Figura 4.41 – Gráfico carga versus deformação específica – Ensaio	
PO.11.r, g1.	221

Figura 4.42 – Gráfico carga versus deformação específica – Ensaio	
PO.11.r, g3.	222
Figura 4.43 – Gráfico carga versus deslocamento, PO.11.r (LVDTs	
1,2,7,8).	222
Figura 4.44 – Ruptura do ensaio PO.12.r (Ramires, 2010).	223
Figura 4.45 – Gráfico carga versus deformação específica - Ensaio	
PO.12.r, g1.	223
Figura 4.46 – Gráfico carga versus deslocamento – PO.12.r, LVDTs	
1,2, 7, 8.	224
Figura 4.47 – Rompimento da solda do conector - PO.21.	225
Figura 4.48 – Gráfico carga versus deformação específica - Ensaio	
PO.21, g1 - lado 1.	225
Figura 4.49 – Gráfico carga versus instante de leitura – Ensaio PO.21	
– células de carga.	226
Figura 4.50 – Gráfico carga versus deformação específica – Ensaio	
PO.21.r, g7.	227
Figura 4.51 – Gráfico carga versus deslocamento - Ensaio PO.21.r,	
LVDTs 1,2,7,8.	227
Figura 4.52 – Gráfico carga versus deformação específica – Ensaio	
PO.23.r, g3.	228
Figura 4.53 – Gráfico carga versus deslocamento – Ensaio PO.23.r,	
LVDTs 1,2,7,8.	228
Figura 4.54 – Gráfico carga versus deformação específica – Ensaio	
PO.71.r, g1.	229
Figura 4.55 – Gráfico carga versus deslocamento – Ensaio PO.71.r,	
LVDTs 3,4,5,6.	230
Figura 4.56 - Gráfico carga versus deformação específica - Ensaio	
PO.73.r, g3.	230
Figura 4.57 – Gráfico carga versus deslocamento - Ensaio PO.73.r,	
LVDTs 1,2,7,8.	231
Figura 4.58 - Gráfico carga versus deslocamento - Ensaio PO.73.r,	
LVDTs 3,4,5,6.	231
Figura 4.59 – Gráfico carga versus deformação específica – Ensaio	
PO.81.r, g1.	232
Figura 4.60 – Gráfico carga versus deslocamento – Ensaio PO.81.r,	
LVDTs 3,4,5,6.	233
Figura 4.61 – Rompimento da solda do conector – PO.91.	233

Figura 4.62 – Rompimento da solda do conector - PO.93.	234
Figura 4.63 – Gráfico carga versus deformação específica - Ensaio	
PO.91, g3.	234
Figura 4.64 – Gráfico carga versus deformação específica - Ensaio	
PO.93, g3.	235
Figura 4.65 – Gráfico carga <i>versus</i> medições - Ensaio PO.93 -	
células de carga.	236
Figura 4.66 – Gráfico carga versus deformação específica – Ensaio	
PO.0.1, g2, lado 2.	240
Figura 4.67 – Gráfico carga versus deslocamento – Ensaio PO.0.1,	
LVDTs 1,2,8,9 e 10.	240
Figura 4.68 – Cone de rompimento do concreto – PO.11.	241
Figura 4.69 – Rompimento da barra – PO 11.	241
Figura 4.70 – Gráfico carga versus deformação específica – Ensaio	
PO.11, g3.	242
Figura 4.71 – Gráfico carga <i>versus</i> deslocamento – Ensaio PO.11,	
LVDTs 1,2,7,8.	242
Figura 4.72 – Gráfico carga <i>versus</i> instante de leitura – Ensaio PO.11	
– células de carga.	243
Figura 4.73 – Ruptura do ensaio PO.13.r (Ramires, 2010).	243
Figura 4.74 – Gráfico carga versus deformação específica – Ensaio	
PO.13.r, g5.	244
Figura 4.75 – Gráfico carga versus deslocamento – PO.13.r, LVDTs	
1,2,7,8.	245
Figura 4.76 – Gráfico carga versus deslocamento – PO.13.r, LVDTs	
3,4,5,6.	245
Figura 4.77 – Rompimento da ancoragem – PO.12.	248
Figura 4.78 – Gráfico carga versus deformação específica – Ensaio	
PO.12, g3.	248
Figura 4.79 – Gráfico carga versus deslocamento – Ensaio PO.12,	
LVDTs 1,2,7,8.	249
Figura 4.80 – Gráfico carga <i>versus</i> instante de leitura – Ensaio PO.12	
- células de carga.	249
Figura 4.81 – Formação do cone de concreto – PO.22.	250
Figura 4.82 – Gráfico carga versus deformação específica – Ensaio	
PO.22, g1.	250

Figura 4.83 – Gráfico carga versus instante de leitura – Ensaio PO.22	
– células de carga.	251
Figura 4.84 - Ruptura da ancoragem no ensaio PO.72.r (Ramires,	
2010).	252
Figura 4.85 – Gráfico carga versus deformação específica – Ensaio	
PO.72.r, g1.	252
Figura 4.86 – Gráfico carga versus deslocamento - Ensaio PO.72.r,	
LVDTs 3,4,5,6.	253
Figura 4.87 – Formação do cone de concreto - PO.81.	253
Figura 4.88 – Gráfico carga versus deformação específica – Ensaio	
PO.81, g2 lado 2.	254
Figura 4.89 – Gráfico carga <i>versus</i> instante de leitura – Ensaio PO.81	
– células de carga.	254
Figura 4.90 - Ruptura da ancoragem da barra de armadura do	
ensaio PO.82.r (Ramires, 2010).	255
Figura 4.91 – Ruptura da ancoragem da barra de armadura do	
ensaio PO.83.r (Ramires, 2010).	255
Figura 4.92 – Gráfico carga versus deformação específica – Ensaio	
PO.82.r, g3.	256
Figura 4.93 – Gráfico carga versus deslocamento – Ensaio PO.82.r,	
LVDTs 3,4,5,6.	256
Figura 4.94 – Gráfico carga versus deformação específica – Ensaio	
PO.83.r, g3.	258
Figura 4.95 – Gráfico carga versus deslocamento – Ensaio PO.83.r,	
LVDTs 3,4,5,6.	259
Figura 4.96 - Colapso na alma do perfil metálico no ensaio PO.22.r	
(Ramires, 2010).	261
Figura 4.97 – Gráfico carga versus deformação específica - Ensaio	
PO.22.r, g1.	262
Figura 4.98 – Gráfico carga versus deslocamento - Ensaio PO.22.r,	
LVDTs 1,2,7,8.	263
Figura 4.99 – Situação após a ruptura inesperada – PO.92.	265
Figura 4.100 – Gráfico carga versus deformação específica – Ensaio	
PO.92, g3.	265
Figura 4.101 – Gráfico carga versus instante de leitura – Ensaio	
PO.92 – células de carga.	266
Figura 4.102 – Simbologia dos extensômetros.	267

Figura 4.103 – Carga versus deformação específica do grupo g2 –	
PO.1X e PO.2X.	268
Figura 4.104 – Carga <i>versus</i> deformação específica do grupo g3 –	
PO.1X e PO.7X.	269
Figura 4.105 – Carga <i>versus</i> deformação específica do grupo g1 –	
PO.1X e PO.8X.	270
Figura 4.106 – Carga <i>versus</i> deformação específica do grupo g5 –	
PO.1X e PO.8X.	271
Figura 4.107 – Carga <i>versus</i> deformação específica do grupo g2 –	
PO.2X e PO.7X.	272
Figura 4.108 – Carga <i>versus</i> deformação específica do grupo g3 –	
PO.2X e PO.7X.	273
Figura 4.109 – Carga <i>versu</i> s deformação específica do grupo g9 –	
PO.2X e PO.8X.	273
Figura 4.110 – Carga <i>versus</i> deformação específica do grupo g2 –	
PO.7X e PO.8X.	274
Figura 4.111 – Carga <i>versus</i> deformação específica do grupo g2,	
lado 1 – PO.2X e PO.9X.	275
Figura 4.112 – Carga <i>versus</i> deformação específica do grupo g2 –	
PO.1X e PO.2X.	276
Figura 4.113 – Carga <i>versu</i> s deformação específica do grupo g1 –	
PO.1X e PO.8X.	277
Figura 4.114 – Carga <i>versu</i> s deformação específica do grupo g5 –	
PO.2X e PO.8X.	278
Figura 5.1 – Modelo Ansys – conectores.	279
Figura 5.2 – Geometria do elemento SHELL 181 (Ansys, 2008).	280
Figura 5.3 – Deslocamentos obtidos no Ansys – conectores.	281
Figura 5.4 – Tensões obtidas no Ansys – Conectores.	281
Figura 5.5 – Gráfico comparativo de tensões.	282
Figura 5.6 – Gráfico comparativo de deslocamentos.	282
Figura 6.1 – Gráfico carga <i>versu</i> s área de arrancamento.	285

Lista de Tabelas

Tabela 2.1 – Componentes básicos da ligação em aço – parte 1	
(adaptado de Eurocode 3).	79
Tabela 2.2 - Componentes básicos da ligação - parte 2 (adaptado	
de Eurocode 3).	80
Tabela 2.3 – Componentes do sistema misto.	82
Tabela 2.4 – Componentes modificados pelo sistema misto	83
Tabela 2.5 – Valor do coeficiente ψ.	85
Tabela 2.6 – Largura efetiva para elementos não enrijecidos	
(adaptado de Eurocode 3, 2003).	96
Tabela 2.7 – Largura efetiva para elementos enrijecidos (adaptado de	
Eurocode 3, 2003).	97
Tabela 2.8 - Larguras efetivas para a placa de extremidade	
(adaptado de Eurocode 3, 2003).	103
Tabela 3.1 – Série dos ensaios <i>pull out.</i>	120
Tabela 3.2 - Características dos ensaios subsequentes - Série	
S2010.	137
Tabela 3.3 - Características dos ensaios subsequentes - Série	
S2014.	149
Tabela 3.4 – Características do aço estudado - previsão.	151
Tabela 3.5 – Previsão dos resultados para os pré-ensaios.	164
Tabela 3.6 – Previsão dos resultados - Séries S2010 e S2014.	164
Tabela 3.7 - Resistências previstas dos ensaios de cisalhamento	
direto nos conectores.	171
Tabela 3.8 - Resistências previstas dos ensaios de cisalhamento	
direto nos conectores.	171
Tabela 4.1 – Resultados para a solda de perna de 5 mm.	178
Tabela 4.2 – Resultados para a solda de perna de 8 mm.	182
Tabela 4.3 – Resultados para a solda de 10 mm.	184
Tabela 4.4 – Comparação dos resultados com os ensaios realizados	
– S8.	185
Tabela 4.5 – Comparação dos resultados com os ensaios realizados	
– S10.	185
Tabela 4.6 – Resultados esperados e obtidos com a S10.	186

Tabela 4.7 – Resultados dos ensaios para previsão da solda.	191
Tabela 4.8 – Previsão da perna da solda.	192
Tabela 4.9 - Comparação dos resultados das previsões das pernas	
de solda.	193
Tabela 4.10 - Comparação aos valores previstos para os ensaios	
nas soldas.	194
Tabela 4.11 – Estudo da perna da solda.	195
Tabela 4.12 – Resultados dos corpos de prova da barra.	204
Tabela 4.13 – Resultados dos corpos de prova da mesa do perfil.	205
Tabela 4.14 – Resultados dos corpos de prova da alma do perfil.	206
Tabela 4.15 – Resultados dos ensaios a compressão simples.	210
Tabela 4.16 – Resultados dos ensaios a compressão diametral.	213
Tabela 4.17 – Resultados dos ensaios de módulo de elasticidade.	214
Tabela 4.18 – Resultados dos pré-ensaios (Ramires, 2010).	215
Tabela 4.19 – Resultados obtidos para os pré-ensaios – forças (parte	
1).	219
Tabela 4.20 – Resultados obtidos para os pré-ensaios – forças (parte	
2).	220
Tabela 4.21 – Resultados obtidos para os pré-ensaios – tensões.	220
Tabela 4.22 – Ruptura pela solda do conector – resultados.	221
Tabela 4.23 - Resultados obtidos para a ruptura da solda dos	
conectores – cargas (parte 1).	238
Tabela 4.24 - Resultados obtidos para a ruptura da solda dos	
conectores – cargas (parte 2).	238
Tabela 4.25 - Resultados ruptura pela solda dos conectores -	
tensões.	239
Tabela 4.26 - Ruptura pelo rompimento da barra de armadura -	
resultados.	241
Tabela 4.27 - Resultados obtidos para a ruptura da barra - forças	
(parte 1).	246
Tabela 4.28 - Resultados obtidos para a ruptura da barra - forças	
(parte 2).	247
Tabela 4.29 – Resultados obtidos pela ruptura da barra – tensões.	247
Tabela 4.30 - Ruptura pela ancoragem da barra de armadura -	
resultados.	248
Tabela 4.31 - Resultados obtidos para a ruptura da ancoragem da	
barra – forças (parte 1).	260

Tabela 4.32 – Resultados obtidos para a ruptura da ancoragem da	
barra – forças (parte 2).	260
Tabela 4.33 – Resultados obtidos a ruptura pela ancoragem da barra	
- tensões.	260
Tabela 4.34 – Ensaios descartados – resultados.	261
Tabela 4.35 – Resumo dos ensaios Séries S2010 e S2014 – parte	
01.	266
Tabela 4.36 – Resumo dos ensaios Séries S2010 e S2014 – parte	
02.	267

Lista de Símbolos

- A_s área da seção transversal da barra de armadura
- A_{sc} área da seção transversal do conector
- E_a módulo de elasticidade do aço
- E_c módulo de elasticidade do concreto
- E_{ci} módulo de elasticidade inicial do concreto
- E_{cs} módulo de elasticidade secante do concreto
- E_{cm} módulo de elasticidade secante do concreto
- M_{j,Rd} momento resistente de projeto de uma ligação
- M_{Rd+} momento máximo positivo
- M_{Rd-} momento máximo negativo
- $F_{t,Rd}$ força resistente à tração por parafuso
- S_d desvio padrão do concreto
- S_{j,ini} rigidez rotacional inicial de uma ligação
- V_{wp,Rd} resistência plástica cortante da alma do pilar

b _{eff}	largura efetiva total
f _c	resistência à compressão do concreto
f _{ci}	resistência à compressão do concreto aos j dias
f _{ck}	resistência característica à compressão do concreto
f _{cm}	resistência média à compressão do concreto
f _{ct,sp}	resistência do concreto à tração indireta
fy	tensão de escoamento do aço
f _u	tensão último do aço
k _{eq}	rigidez equivalente
k _{sc}	rigidez do conector de cisalhamento
t _{fc}	espessura da mesa do pilar
t _w	espessura da alma do pilar
8	deformação específica
Ø	diâmetro da barra de armadura
v	coeficiente de poisson
0	

- τ tensão cisalhante
- σ tensão normal

"Não há nada mais difícil e perigoso do que mudar a ordem das coisas. Quem o faz adquire a inimizade daqueles que se beneficiaram com a ordem antiga, e é defendido sem muito calor por todos os que seriam beneficiados pela nova ordem. A falta de calor se explica pelo medo dos adversários e, em parte, pela incredulidade dos homens. Estes não acreditam nas novas coisas até que as experimentem."

Nicolau Maquiavel, 1515.