

Cesar Augusto de Oliveira Ferrante

Estudo Teórico-Experimental do Comportamento à Flexão de Vigas Mistas com Perfil Assimétrico Parcialmente Embutido

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil da PUC-Rio.

Orientador: Sebastião Arthur Lopes de Andrade

Rio de Janeiro Junho de 2015

Cesar Augusto de Oliveira Ferrante

Estudo Teórico-Experimental do Comportamento à Flexão de Vigas Mistas com Perfil Assimétrico Parcialmente Embutido

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Sebastião Arthur Lopes de Andrade

Orientador Departamento de Engenharia Civil – PUC-Rio

Prof. José Guilherme Santos da Silva

Universidade do Estado do Rio de Janeiro

Prof. Ney Augusto Dumont Departamento de Engenharia Civil – PUC-Rio

Prof. José Eugênio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 26 de Junho de 2015

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Cesar Augusto de Oliveira Ferrante

Graduou-se em Engenharia Civil pela UFPA (Universidade Federal do Pará). Na UFPA participou de pesquisas experimentais na área de estruturas de concreto armado. Na PUC-Rio desenvolveu seu trabalho de pesquisa com ênfase em Estudos Experimentais de vigas mistas.

Ficha Catalográfica

Ferrante, Cesar Augusto de Oliveira

Estudo Teórico-Experimental do Comportamento à Flexão de Vigas Mistas com Perfil Assimétrico Parcialmente Embutido. / Cesar Augusto de Oliveira Ferrante; orientador: Sebastião Arthur Lopes de Andrade. – Rio de Janeiro: PUC-Rio, Departamento de Engenharia Civil, 2015.

v., 139 f: il. ; 29,7 cm

 Dissertação (Mestrado em Engenharia Civil) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil.

Inclui referências bibliográficas.1. Engenharia civil – Tese. 2. Vigas-mistas. 3. Sistemas construtivos préfabricados. 4. Perfis celulares assimétricos. 5. Experimentação estrutural. I. Andrade, Sebastião A. L. de. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. III. Título.

CDD:624

Agradecimentos

À Deus pelo dom da vida, por prover-me de sabedoria, paciência, inspiração, força, fé e perseverança para vencer os obstáculos em todos momentos durante esta jornada. À minha mãe, Soelia, pelo amor, carinho e suporte incondicional durante toda a minha vida. À minha família pelo apoio e incentivo, especialmente meus irmãos, Nathalia, Guilherme, Luciana, Claudia e Cintia, ainda que distante fisicamente, ando sempre com vocês em meus pensamentos. Aos meus sobrinhos, Cayro, Letícia, Isabele, Julia e Laura pelo amor e carinho.

Ao professor Sebastião Arthur Lopes de Andrade pela orientação e confiança depositada no desenvolvimento deste trabalho, direcionando leituras e autores, assim como, proporcionando momentos de discussão intelectual durante nossos encontros. Além da amizade e atenção destinada ao longo destes anos, o meu mais sincero obrigado.

À minha amiga e colega, Raquel Silva, que me ajudou, apoiou e incentivou na realização deste trabalho principalmente durante a fase dos ensaios experimentais, e vivenciou os melhores e piores momentos ao meu lado. Aos meus colegas e amigos do departamento de engenharia estrutural: André, Carlos, Gustavo, Hélvio, João, Luiz, Magno, Meline, Murilo, Patrick, Rafael, Raquel e Ronaldo, entre tantos que participaram das horas de estudo, dos momentos de descontração, e a cada conversa com vocês era uma injeção de ânimo que me permitia continuar.

Aos funcionários do Laboratório de Estruturas e Materiais da PUC-Rio, Euclides, José Nilson, Rogério, Alex, Max e Carlos, pela colaboração e empenho durante a montagem e execução dos ensaios, e com muita atenção e amizade me auxiliaram a desenvolver este estudo proporcionando um excelente ambiente de trabalho. Ao professor Flávio pela amizade e contribuições na realização dos ensaios.

À empresa Metalfenas pelo serviço de fabricação dos perfis metálicos, e à empresa Periplasticos pelo fornecimento de espaçadores plásticos.

Ao CNPq pelo apoio financeiro para a realização desta pesquisa.

Resumo

Ferrante, Cesar Augusto de Oliveira; Andrade, Sebastião Arthur Lopes (Orientador) **Estudo Teórico-Experimental do Comportamento à Flexão de Vigas Mistas com Perfil Assimétrico Parcialmente Embutido.** Rio de Janeiro, 2015. 139p. Dissertação de Mestrado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Nesta dissertação, foi desenvolvido um estudo teórico-experimental de um sistema pré-fabricado de vigamentos mistos de pisos de edificações. O modelo estrutural consiste em vigas mistas do tipo duplo T, onde as nervuras são constituídas por uma viga celular formada a partir de um perfil I laminado, parcialmente embutido na laje de concreto. Após a montagem das vigas-mistas na obra, é feito um capeamento de concreto armado para solidarização do conjunto. Uma grande vantagem deste sistema é proporcionar a integração do piso com o sistema de instalações prediais, por meio da passagem de dutos pelas aberturas do perfil metálico. São apresentados os detalhes do sistema construtivo, bem como as recomendações de projeto. Foi executada uma análise paramétrica para avaliação do comportamento estrutural em termos de eficiência estrutural, visando-se principalmente a redução de custos de fabricação e velocidade de montagem. Com base neste estudo, foi desenvolvido um programa experimental no Laboratório de Estruturas e Materiais da PUC-Rio, para análise do comportamento carga/deformação e da resistência última à flexão dos protótipos submetidos a um carregamento estático. Com os dados obtidos, fez-se uma comparação com os resultados previstos. Os resultados experimentais confirmaram as previsões de resistência fornecidas pelas recomendações de projeto.

Palavras-chave

Vigas-mistas; sistemas construtivos pré-fabricados; perfis celulares assimétricos; experimentação estrutural.

Abstract

Ferrante, Cesar Augusto de Oliveira; Andrade, Sebastião Arthur Lopes (Advisor) **Theoretical and Experimental Study of Flexural Behaviour of Composite Beams using Asymetric Steel Section partially encased.** Rio de Janeiro, 2015. 139p. MSc. Dissertation – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

In this research, is present a theoretical and experimental study of the prefabricated composite beams system. The structural model consists of composite beams of double T type where the ribs are constituted by an asymmetric I-section cellular beam, partially embedded in the concrete slab. After installation of the beams in the work, it is made a reinforced concrete capping for solidarity assembly. A great advantage of this system is integrate the floor with the building installations system, by passing ducts through the openings of the metal profile. This dissertation presents the system with the general details of construction and design. A parametric analysis was performed to assess the structural behavior in terms of structural efficiency. It is mainly aimed at reducing manufacturing costs and speed of assembly. Based on this study, was developed an experimental program in the Structure and Materials Laboratory at PUC-Rio, to analyze the behavior load / deformation and ultimate flexural strength of prototypes subjected to a static loading. With the obtained data, a comparison is made with the expected results analytically. The experimental results confirmed the estimated strength given by the design recommendations.

keywords

Composite beams; prefabricated systems; Asymmetric cellular steel section; structural testing.

Sumário

1 Introdução	21
1.1. Contexto e Motivação	21
1.2. Revisão Bibliográfica	23
1.3. Objetivo	28
1.4. Apresentação e Organização da Dissertação	29
2. Estudo do Arto	24
2 Estudo da Aite	31 21
2.2. Comportamento Estrutural	30
2.2. Comportamento Estrutural	32
2.4. Vigas Mistas Parcialmente Povestidas com Abertura na Alma	30
2.4.1 Critários do Projoto	30
3 Sistema Proposto de Vigas Mistas Pré-fabricadas	48
3.1. Descrição do Sistema	48
3.2. Fabricação da Viga Mista	50
3.3. Vantagens e Desvantagens do Sistema	51
3.4. Modelo de Cálculo	53
3.4.1. Resistência ao Cisalhamento Vertical	53
3.4.2. Mecanismo de Transferência de Forças Horizontais	54
3.4.3. Resistência Última à Flexão	55
3.5. Estudo Paramétrico dos Resultados Teóricos	60
4 Programa Experimental	66
4.1. Parâmetros de Projeto	66
4.2. Fabricação das Vigas Metálicas	67
4.3. Descrição dos Modelos de Ensaio	69
4.3.1. Viga Mista 01	69
4.3.2. Viga Mista 02	71
4.4. Levantamento da Geometria dos Elementos Empregados nos	

Testes	73
4.5. Preparação dos Modelos em Escala Real	74
4.5.1. Montagem dos Perfis Celulares	75
4.5.2. Forma e Armadura	76
4.5.3. Concreto	78
4.5.4. Alterações Realizadas para o Ensaio 2	79
4.6. Caracterização dos Materiais	80
4.6.1. Concreto	80
4.6.2. Aço	81
4.7. Instrumentação	82
4.7.1. Instrumentação do Modelo VM-01	82
4.7.2. Instrumentação do Modelo VM-02	85
4.8. Sistema de Ensaio	86
4.8.1. Ensaio do Protótipo VM-01	86
4.8.2. Ensaio do Protótipo VM-02	89
5 Resultados Experimentais	91
5.1. Introdução	91
5.2. Resultados Experimentais do Teste 01	91
5.2.1. Comportamento Momento Fletor/Deslocamento no Centro do	
Vão	92
5.2.2. Comportamento e Fissuração	93
5.2.3. Interface Aço-concreto e Comportamento da Conexão entre os	
Materiais	94
5.2.4. Monitoramento das Tensões	95
5.3. Resultados Experimentais do Teste 02	97
5.3.1. Comportamento Momento Fletor/Deslocamento no Centro do	
Vão	98
5.3.2. Comportamento e Fissuração	100
5.3.3. Interface Aço-concreto e Comportamento da Conexão entre os	
Materiais	101
5.3.4. Monitoramento das Tensões	103
6 Avaliação Teórica da Resistência	105

Referências Bibliógráficas	130
8.3. Recomendações para Trabalhos Futuros	128
8.2.2. Análise Comparativa Teórico-Experimental	128
8.2.1. Análise Experimental	126
8.2. Conclusões	126
8.1. Considerações Finais	125
8 Considerações Finais e Conclusões	125
7.3. Inspeção dos Protótipos Após os Ensaios	122
7.2. Deslocamentos	121
7.1. Resistência	118
7 Análise dos Resultados Teóricos e Experimentais	118
6.5.2. Modelo VM-02	115
6.5.1. Modelo VM-01	112
6.5. Análise a Flexo-Tração	112
6.4. Resumo dos Resultados	112
6.3. Flecha	111
6.2.2. Modelo VM-02	111
6.2.1. Modelo VM-01	110
6.2. Carga Máxima Aplicada no Teste Experimental	110
6.1.2. Modelo VM-02	108
6.1.1. Modelo VM-01	106
6.1. Resistência da Seção com Abertura da Viga Mista	105

Lista de Figuras

Figura 1.1 - Edifício One World Trade Center e detalhe da planta baixa o um dos seus pavimentos tipo (Fonte: One WTC).	de 22
Figura 1.2 - Sistema de vigas mistas proposto por Frangi et al. (2008).	25
Figura 1.3 - Vista conceitual do modelo proposto por Ju et al. (2009).	25
Figura 1.4 - Configuração dos três modelos ensaiados por Ju et al. (200)9). 26
Figura 1.5 - Modelo representativo dos protótipos SCFB 1 e 2 do ensaio experimental conduzido por Chen et al. (2015).) 28
Figura 2.1 - Tipos de vigas mistas (Fonte: Universidade de Coimbra)	32
Figura 2.2 - Interação aço-concreto em vigas mistas, David (2007).	33
Figura 2.3 - Classificação do tipo de vigas mistas quanto a interação aço concreto, figura adaptada de Pfeil (2009).	o- 34
Figura 2.4 - Distribuição de tensões longitudinais na laje considerando o efeito shear lag, (Alva & Malite, 2005).) 35
Figura 2.5 - Tipos de Fissuras na laje de estruturas mistas, figura adaptada de Oehlers (1989).	37
Figura 2.6 - Mecanismo de ruptura por cisalhamento longitudinal, Oehle (2010).	ers 38
Figura 2.7 - Sistemas mistos utilizando perfis celulares incorporados à la de concreto.	aje 39
Figura 2.8 - Tipos de conexão entre aço-concreto para vigas mistas parcialmente embutidas, adaptada de Nardin et al. (2009).	40
Figura 2.9 - Forças que atuam na abertura de uma alma sob momento fletor positivo, adaptada de Darwin (1990).	41
Figura 2.10 - Diagrama de Interação momento-cisalhamento, adaptado Darwin (1990).	de 42
Figura 2.11 - Modos de ruptura de vigas mistas com abertura na alma, Fahmy e Hassanein (2002).	43
Figura 2.12 - Armadura de reforço sobre uma abertura em viga mista, Veríssimo et al. (2012).	47
Figura 3.1 - Viga mista no formato duplo T.	48
Figura 3.2 - Montagem das vigas mistas em um edifício.	49
Figura 3.3 - Possibilidade de ligação entre a viga mista e a viga principa	al. 49
Figura 3.4 - Maquina corta laser (Fonte: Voortman).	50

Figura 3.6 - Sistema de piso utilizando perfis celulares embutidos no concreto. 51	1
Figura 3.7 - Detalhe da passagem de dutos pelas aberturas na alma do perfil. 53	3
Figura 3.8 - Mecanismo de transferência de forças entre o aço e o concreto. 54	4
Figura 3.9 - Modelo de cálculo da viga mista quando a linha neutraplástica cai sobre a espessura da laje acima do perfil.56	6
Figura 3.10 - Modelo de cálculo com linha neutra plástica atingindo a mesa do perfil metálico. 58	8
Figura 3.11 - Modelo de cálculo com linha neutra plástica sobre o concreto abaixo da mesa do perfil metálico. 59	0 9
Figura 3.12 - Dimensões proporcionalmente determinadas para uma viga castelada, adaptado de Grünbauer. 60	C
Figura 3.13 - Dimensões de uma viga mista com 1/2 Perfil W. 61	1
Figura 3.14 - Carregamento distribuído x Vão, variando a largura efetiva para cada perfil.	3
Figura 3.15 - Taxa de aço x Vão livre. 64	4
Figura 3.16 - Estudo da relação taxa de aço pelo momento resistente para cada vão da viga mista.	а 4
Figura 4.1 - Modelo do corte no perfil metálico. 67	7
Figura 4.2 - Vigas formadas a partir de um perfil W com chapa metálica soldada no topo da alma. 67	7
Figura 4.3 - Projeto de fabricação dos perfis celulares (dimensões em mm). 68	8
Figura 4.4 - Projeto de fabricação das vigas de apoio e elementos de ligação (dimensões em mm). 69	9
Figura 4.5 - Detalhamento das dimensões e posicionamento das armaduras no modelo VM-01 (dimensões em mm). 70	0
Figura 4.6 - Detalhe da ligação da VM-01 com a viga de apoio (dimensões em mm). 71	s 1
Figura 4.7 - Seção longitudinal do modelo VM-02 (dimensões em mm). 71	1
Figura 4.8 - Detalhamento das dimensões e posicionamento das armaduras no modelo VM-02, após as modificações (dimensões em mm). 72	2
Figura 4.9 - Modelo do apoio da viga VM-02 com a viga H e cantoneiras.	3
Figura 4.10 - Dimensão dos elementos: a) perfil celular; b) perfil U; c) laje de concreto; d) detalhe da abertura de alma.	3
Figura 4.11 - Vigas metálicas posicionadas no Laboratório de Estruturas da PUC-Rio. 75	5

Figura 4.12 – a) e b) Vigas montadas em baixo do pórtico de reação c) d) detalhe dos aparelhos de apoio fixo e móvel, respectivamente.	e 75
Figura 4.13 - Ligação da Viga metálica com a viga de apoio.	76
Figura 4.14 – Detalhe da forma de madeira para a laje de concreto.	77
Figura 4.15 – Detalhes das armaduras transversais e da malha de aço posicionadas na forma.	77
Figura 4.16 - Realização do slump test.	78
Figura 4.17 - Concretagem das vigas mistas.	78
Figura 4.18 - Perfil U soldado na mesa inferior da viga mista VM-02.	79
Figura 4.19 - Detalhe do apoio do modelo 2.	79
Figura 4.20 - Corpos de prova a serem ensaiados aos 28 dias e corpo o prova após ensaio.	de 80
Figura 4.21 - Dimensões dos corpos-de-prova de aço ASTM A 572 (dimensões em mm).	81
Figura 4.22 - Corpos-de-prova do aço a) antes do ensaio e b) após o ensaio.	82
Figura 4.23 - Extensômetros nas mesas superior e inferior da VM-01.	83
Figura 4.24 - Posicionamento dos extensômetros na V-01.	83
Figura 4.25 - Transdutores de deslocamento posicionados: um vertical sobre cada apoio, um vertical no vão central e um horizontal em cada extremidade da viga.	84
Figura 4.26 - Posicionamento dos transdutores de deslocamento na vig VM-01 (dimensões em mm).	a 84
Figura 4.27 - Extensômetros na mesa superior e em um dos lados da mesa inferior e do perfil U da VM-02.	85
Figura 4.28 - Posicionamento dos extensômetros no perfil 2 e no perfil 0	U. 85
Figura 4.29 - Posicionamento dos transdutores de deslocamento na vig VM-02 (dimensões em mm).	a 86
Figura 4.30 - Pórtico de reação e sistema de ensaio para o modelo VM- 01.	86
Figura 4.31 - Içamento do protótipo.	87
Figura 4.32 - Sistema de transmissão de cargas.	87
Figura 4.33 - Bomba hidráulica com sistema de controle de aplicação de carga.	e 88
Figura 4.34 - Sistema de aquisição de dados.	88
Figura 4.35 - Esquema do sistema de ensaio para a VM-01 (dimensões em mm).	; 89
Figura 4.36 - Esquema do sistema de ensaio para a VM-02 (dimensões em mm).	; 90

91
92
94
nto 95
95
ão. 96
97
98
99
je 100
o 101
02
M- 02
03
03
04
06
ara 107
08
ara 109
10
13
14

Figura 6.8 - Modelo de cálculo para o tê inferior do perfil submetido à flexo-tração.	114
Figura 6.9 - Modelo estrutural simplificado para o protótipo VM-02 (dimensões em mm).	115
Figura 6.10 - Diagrama de momento fletor (kN.m) e força axial (kN) do modelo estrutural para o protótipo VM-02.	116
Figura 6.11 - Modelo de cálculo para o tê inferior e perfil U submetidos flexo-tração.	à 117
Figura 7.1 - Flecha teórica e experimental.	121
Figura 7.2 - Ligação da VM-01 com o apoio após o ensaio.	122
Figura 7.3 - Inspeção da laje de concreto na região de abertura de alm próxima da extremidade da viga VM-02.	a 123
Figura 7.4 - Perfil celular V-01 após o ensaio.	124
Figura 7.5 - Perfil celular V-02 após o ensaio.	124

Lista de Tabelas

Tabela 3.1 - Dimensões do Perfil	61
Tabela 3.2 - Propriedades do Perfil	61
Tabela 3.3 - Soluções mais eficientes para o vão necessário.	65
Tabela 4.1 - Dimensões medidas dos Perfis metálicos e da abertura na alma. (valores médios)	a 74
Tabela 4.2 - Dimensões medidas da laje de concreto. (valores médios) 74
Tabela 4.3 - Resistência à compressão do concreto.	80
Tabela 4.4 - Peso próprio da viga mista mais sistema de transmissão carga.	de 89
Tabela 5.1 - Dados experimentais do modelo VM-01	93
Tabela 5.2 - Dados experimentais do modelo VM-02.	99
Tabela 6.1- Propriedades dos modelos VM-01 e VM-02.	105
Tabela 6.2 - Dimensões do modelo VM-01	106
Tabela 6.3 - Dimensões do modelo VM-02.	108
Tabela 6.4 - Distância entre forças, resistência dos modelos e peso próprio.	110
Tabela 6.5 - Resultados teóricos.	112
Tabela 6.6 - Dados de entrada no modelo estrutural para a viga VM-0	1. 113
Tabela 6.7 - Propriedades do tê inferior do perfil.	114
Tabela 6.8 - Valores de momentos e forças de tração, resistente e solicitante, da viga mista VM-01.	115
Tabela 6.9 - Dados de entrada no modelo estrutural para a viga VM-02	2. 116
Tabela 6.10 - Propriedades do tê inferior e perfil U.	117
Tabela 6.11 - Valores de momentos e forças de tração, resistente e solicitante, da viga mista VM-02.	117
Tabela 7.1 - Momentos fletores resistentes teóricos e experimentais.	118
Tabela 7.2 - Relação entre momentos fletores resistentes, teóricos e experimentais.	119
Tabela 7.3 - Carregamento distribuído devido ao momento resistente último.	119
Tabela 7.4 - Esforço cortante teórico e experimental.	120
Tabela 7.5 - Deslocamentos teóricos e experimentais para um carregamento 2P = 40 kN.	121

Lista de Simbolos

Letras Romanas Maiúsculas

Acc	Área de cisalhamento da laje de concreto			
As	Área da seção do perfil celular assimétrico			
Asb	Área da seção transversal do tê inferior do perfil celular			
Asu	Área da seção transversal do perfil U			
Aw	Área da alma do perfil celular na seção com abertura			
Cr	Força resistente à compressão no perfil e na região de			
	concreto adjacente em uma espessura t _{fc}			
Ċr	Força fatorada de compressão no concreto acima do perfil			
C ["] r	Força de compressão na região de concreto abaixo da			
	chapa de aço			
Crs	Força resistente à compressão na mesa superior do perfil e			
	na região de concreto adjacente			
D	Altura da viga castelada			
Ec	Módulo de elasticidade do concreto			
Es	Módulo de elasticidade do aço			
lc	Momento de inércia da laje de concreto			
le	Momento de inércia efetivo			
ls	Momento de inércia do perfil			
sb	Momento de inércia do tê inferior do perfil celular			
sb-u	Momento de inércia do tê do perfil + perfil U			
lt	Momento de inércia da viga mista			
L	Vão			
Lcc	Comprimento de cisalhamento da laje			
Lm	Distância entre as seções de momento fletor máximo			
	positivo e momento fletor nulo em vigas biapoiadas			
Mbl - Mbh	Momento fletor secundário nas extremidades de maior e			
	menor momento do tê inferior, respectivamente			
Mn	Momento nominal			

Mpl	Momento resistente último			
M_{Rd}	Momento resistente de projeto			
MRe	Momento resistente de início de escoamento da viga mista			
Ms	Momento fletor solicitante			
Mtl - Mth	Momento fletor secundário nas extremidades de maior e			
	menor momento do tê superior, respectivamente			
Р	Metade da carga aplicada por atuador			
Pb	Força axial no tê inferior			
Pt	Força axial no tê superior			
S	Espaçamento mínimo entre aberturas			
Tr	Força resistente à tração			
Ts	Força solicitante à tração			
Vb	Força cortante atuando no tê inferior numa abertura			
Vn	Cisalhamento Nominal			
Vp	É a força cortante correspondente à plastificação da alma			
	por cisalhamento na viga sem abertura.			
V _{pl}	É a força cortante correspondente à plastificação da alma			
	por cisalhamento na seção da viga mista com abertura.			
V_{Rd}	Força cortante resistente de cálculo			
Vsd	Força cortante solicitante			
Vt	Força cortante atuando no tê superior numa abertura			
Vu	Maior força cortante solicitante de cálculo no trecho entre os			
	centros de duas aberturas adjacentes			
W	Módulo de resistência elástico			

Letras Romanas Minúsculas

a Alt	tura da região	comprimida	da laje d	e concreto
-------	----------------	------------	-----------	------------

- a₀ Comprimento de uma abertura
- b₀ Distância da extremidade do perfil celular até a borda da primeira abertura
- bc Largura efetiva da laje de concreto
- bef Largura efetiva fictícia da laje de concreto em vigas mistas

bf	Largura da mesa do perfil
bs	Largura da mesa superior do perfil celular assimétrico
С	Taxa de aço
d	Altura total da seção de aço
е	Braço de alavanca
<i>f</i> _{ck}	Resistência característica à compressão do concreto
fckest	Valor estimado da resistência característica à compressão
	na idade especificada
<i>f</i> m	Resistência média dos exemplares em cada idade
fy	Resistência ao escoamento do perfil de aço
<i>f</i> u	Resistência à ruptura
g	Peso próprio
h	Altura da alma do perfil na seção com abertura
h ₀	Altura da abertura de alma
hc	Altura total da laje de concreto
n	Relação modular
р	Fator de interação da seção mista
q	Carregamento distribuido
t	Espessura da região em compressão de concreto abaixo da
	chapa de aço
to	Espessura da laje de concreto de embutimento do perfil
tc	Espessura efetiva da laje de concreto
t _f	Espessura da mesa inferior do perfil celular
t _{fc}	Espessura da mesa superior do perfil e de concreto
	submetidos a compressão
ts	Espessura da mesa superior do perfil celular assimétrico
tw	Espessura da alma do perfil
Уm	Distância do centro de gravidade da seção mista até a face
	superior da laje de concreto
Уs	Distância do centro de gravidade do perfil até a face inferior
	desse perfil
y sb	Distância do centro de gravidade do tê inferior do perfil até a
	face inferior da viga mista

Ysu	Distância	do	centro	de	gravidade	do	perfil	U	até	а	face
	inferior da	vig	a mista								
y sb-u	Distância	do (centro d	le g	ravidade do	o tê	inferio	r +	perf	il (J até

Letras Gregas

- *φ* Coeficiente de resistência do aço
- ϕ_c Coeficiente de resistência do concreto

a face inferior da viga mista

- γ Coeficiente de ponderação para combinações normais
- δ Deslocamentos verticais na fase elástica
- σ_c Tensão no concreto
- σ_s Tensão no aço

Lista de Abreviaturas

ASB	Asymmetric Slimflor Beam
ASTM	American Society for Testing and Materials
CP's	Corpos de Prova
CSA	Canadian Standards Association
EUA	Estados Unidos da América
LNP	Linha Neutra Plástica
NBR	Norma Brasileira Registrada
PUC-Rio	Pontifícia Universidade Católica do Rio de Janeiro