

Helmut Isaac Padilla Chavarría

Dinâmica Molecular da Interação de Dibenzo [a,h]antraceno e de seu Metabólito com Modelos de Membrana Celular e Surfactante Pulmonar

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Química da PUC-Rio.

Orientador: Prof. André Silva Pimentel

Rio de Janeiro Agosto de 2014

Helmut Isaac Padilla Chavarría

Dinâmica Molecular da Interação de Dibenzo [a,h]antraceno e de seu Metabólito com Modelos de Membrana Celular e Surfactante Pulmonar.

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Química da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. André Silva PimentelOrientador
Departamento de QUÍMICA - PUC-Rio

Prof. Ernesto Raul Caffarena FIOCRUZ

Prof. Adriano Mesquita Alencar USP

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 1 de agosto de 2014

Todos os direitos reservados. É proibida a reprodução total ou parcial sem a autorização da universidade, do autor e do orientador.

Helmut Isaac Padilla Chavarría

Graduou-se em Engenharia Química Industrial na Universidade Nacional Autónoma de Honduras (UNAH) em 2011.

Padilla Chavarría, Helmut Isaac

Dinâmica molecular da interação de dibenzo[a,h]antraceno e de seu metabólito com modelos de membrana celular e surfactante pulmonar / Helmut Isaac Padilla Chavarría : orientador: André Silva Pimentel. – 2014.

125 f.: il. (color.); 30 cm

Dissertação (mestrado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Química, 2014.

Inclui bibliografia

Química – Teses. 2. HPAs. 3.
 Dibenzo[a,h]antraceno. 4. Dinâmica molecular. 5. Surfactante pulmonar. 6. Membrana celular. I. Pimentel, André Silva. II.
 Pontifícia Universidade Católica do Rio de Janeiro.
 Departamento de Química. III. Título.

CDD: 540

Agradecimentos

A meu orientador André Silva Pimentel pela confiança e paciência para realizar este trabalho.

A Teobaldo Cuya pela introdução ao mundo da dinâmica molecular e da pesquisa no Brasil.

A CNPq e PUC-Rio pelo fomento concedido para desenvolver este trabalho.

À secretária Fátima Almeida pela facilidade com que resolve os problemas administrativos.

A Ítalo, Mariane, Erika e Alline pelo tempo agradável no laboratório

Aos professores pelo conhecimento que adquiri.

A Josué Molina por me trazer à PUC-Rio e pelas inumeráveis conversas

A Maciel, Jairo, Valto e Zé Roberto por me fazer sentir em casa no Rio de Janeiro.

E finalmente a minha família pelo apoio incondicional.

Resumo

Padilla-Chavarría, Helmut Isaac; Pimentel, André Silva. **Dinâmica Molecular da Interação de dibenzo[a,h]antraceno e de seu Metabólito com Modelos de Membrana Celular e Surfactante Pulmonar.** Rio de Janeiro, 2014. 125p. Dissertação de Mestrado - Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro.

O estudo da interação de dibenzo[a,h]antraceno (DBahA) e de seu metabólito com modelos de membrana celular e surfactante pulmonar foi realizado através de dinâmica molecular. Os modelos de membrana celular e de surfactante pulmonar são geralmente misturas de dipalmitoil fosfatidilcolina (DPPC), dipalmitoil fosfatidilglicerol (DPPG), e colesterol. No caso do modelo de surfactante pulmonar pode ser incluido as proteínas surfactantes (SP-A, SP-B, SP-C e SP-D). Neste projeto, o dibenzo[a,h]antraceno (DBahA) foi simulado com o DPPC sozinho e com uma mistura 32/32/1 de DPPC/DPPG/Colesterol. DBahA é encontrado nos gases de exaustão de veículos automotores (especialmente os movidos a diesel), na fumaça do cigarro e da madeira, além de alimentos grelhados na brasa. Ele é capaz de ser metabolizado pelo citocromo P450 e seu metabólito interage com o DNA, sendo então mutagênico e altamente carcinogênico. Os principais resultados mostram que o DBahA se difunde para o interior dos modelos e forma aglomerados. Quando o DBahA está em concentração elevada na parte exterior dos modelos, este não consegue se difundir facilmente para o interior dos modelos na escala de tempo simulado e forma aglomerados na interface água/modelo. O metabólito age similarmente, no entanto prefere ficar mais próximo da cabeça polar dos modelos.

Palayras-chave

HPAs; dibenzo[a,h]antraceno; dinâmica molecular; surfactante pulmonar; membrana celular.

Abstract

Padilla-Chavarría, Helmut Isaac; Pimentel, André Silva (Advisor). Molecular Dynamics of the Interaction of dibenz[a,h]anthracene and its Metabolite with Models of Cell Membrane and Lung Surfactant. Rio de Janeiro, 2014. 125p. Master Dissertation- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro.

The study of the interaction of dibenz[a,h]anthracene (DBahA) and its metabolite with cell membrane and pulmonary surfactant models was performed by molecular dynamics. The cell membrane and pulmonary surfactant models usually are mixtures of dipalmitoyl phosphatidylcholine (DPPC), dipalmitoyl phosphatidylglycerol (DPPG), and cholesterol. In the case of pulmonary surfactant, the models may include surfactant proteins (SP-A, SP-B, SP-C and SP-D). In this project, the DBahA was simulated with DPPC and with a 32/32/1 mixture of DPPC/DPPG/Cholesterol. DBahA is found in automotive vehicles (especially diesel vehicles), in cigarette and wood smoke, and grilled food. The DBahA molecule is metabolized by cytochrome P450 and its metabolite interacts with DNA, being mutagenic and highly carcinogenic. The results show that the DBahA diffuses into the interior of the models forming clusters. In the simulated time scale, when the DBahA is in high concentration in the outer part of the models, it may not spread easily to the inner side of the models because it forms clusters in the water/model interface. The metabolite acts similarly, but prefers to stay closer to the polar head of the models.

Keywords

PAHs; dibenz[a,h]anthracene; molecular dynamics; pulmonary surfactant; Cell membrane.

Sumário

1 Introdução	16
1.1. Introdução	16
2 Hidrocorp anotae Deligialises Aremáticae (HDAs)	10
2 Hidrocarbonetos Policíclicos Aromáticos (HPAs)	18
2.1. Hidrocarbonetos Policíclicos Aromáticos (HPAs)	18
2.1.1. Citocromos	20
2.1.2. Propriedades comuns dos HPAs carcinogênicos	23
2.1.3. HPAs no Pulmão	25
2.1.4. HPAs na membrana celular e no surfactante pulmonar	26
2.2. Modelos de membrana celular e de Surfactante Pulmonar	27
2.2.1. Interfaces	27
2.2.2. Tensioativos	30
2.2.3. Membranas	34
2.2.4. Permeabilidade	36
2.2.5. Surfactante Pulmonar	36
2.2.6. Simulação de Modelos de Membrana Celular e de Surfactante	
Pulmonar.	39
3 Fundamentação Teórica	41
3.1. Dinâmica Molecular	41
3.1.1. Dinâmica Molecular Clássica	41
3.2. Campos de Força da Dinâmica Molecular Clássica	42
3.2.1. Interações entre átomos ligados	43
3.2.2. Interações entre átomos não ligados	44
3.3. Algoritmos da dinâmica molecular	46
3.3.1. Algoritmo Verlet	48
3.3.2. Algoritmo <i>Leap-Frog</i>	49
3.3.3. Algoritmo de velocidade de Verlet	49
3.4. Algoritmos de Minimização de Energia	50
3.5. Ensembles	51
3.5.1. NVT	52
3.5.2. NPT	52

3.6. Termostatos	53
3.6.1. Termostato de redimensionamento	53
3.6.2. Termostato Berendsen	54
3.6.3. Termostato Nosé–Hoover	54
3.7. Barostatos	55
3.7.1. Barostato Berendsen	55
3.7.2. Barostato Nosé-Hoover	56
3.8. Modelos de água	56
3.9. Campos de Força Gromos e Gromos53A6	58
3.9.1. Interações	60
3.9.2. Interações entre átomos ligados	61
3.9.3. Interações entre átomos não ligados	61
3.10. PME	63
3.11. LINCS	64
3.12. Gromacs	65
4 Objetivos	67
5 Metodologia	68
5.1. Resumo da metodologia.	68
5.2. Parâmetros	68
5.3. Formação dos sistemas.	69
5.3.1. Modelo de DPPC com DBahA e metabólito inicialmente na	
fase aquosa.	69
5.3.2. Modelos de DPPC e DPPC/DPPG/Colesterol DBahA e	
metabólito inicialmente na fase lipídica.	71
5.4. Etapa de minimização de energia	72
5.4.1. Modelo de DPPC com DBahA e metabólito inicialmente na	
fase aquosa.	74
5.4.2. Modelos de DPPC e DPPC/DPPG/Colesterol DBahA e	
metabólito inicialmente na fase lipídica.	75
5.5. Dinâmica Molecular	75
6 Resultados e Discussões	79
6.1. Verificação e Validação	79
6.1.1. Temperatura	80
6.1.2. Pressão	80

6.1.3. Energia	81
6.1.4. Função de distribuição radial	82
6.1.5. Área superficial xy, Área por fosfolipídio.	89
6.2. Comportamento e influência do dibenzo[a,h]antraceno e de seu	
metabólito	90
6.2.1. Preferência de fase	90
6.2.2. Orientação	95
6.2.3. Gráfico de densidades	96
6.2.4. Perfil de densidade eletrônica	97
6.2.5. Espessura da bicamada fosfolipídica	98
6.2.6. Parâmetro de ordem	103
6.2.7. Difusão xy	107
6.2.8. Difusão na normal	110
6.2.9. Formação de agregados	113
6.3. Resumo de Resultados	118
7 Conclusões	119
8 Referência Bibliográfica	121

Lista de figuras

Figura 1-1 Esquema das etapas de formação do metabólito.	20
Figura 1-2 Esquema etapas de metabolização do BAP.	22
Figura 5-1 Temperatura dos sistemas simulados.	80
Figura 5-2 Pressão dos sistemas simulados.	81
Figura 5-3 Energia total dos sistemas simulados.	82
Figura 5-4 Função de distribuição radial, átomos de nitrogênio e	
fósforo (N-P), modelo DPPC.	84
Figura 5-5 Função de distribuição radial, átomos de fósforos (P-P),	
modelo DPPC.	85
Figura 5-6 Funções de distribuição radial, centros de massa sn-1	
e sn2, modelo DPPC.	86
Figura 5-7 Função de distribuição radial, átomos de nitrogênio e	
fósforo (N-P), modelo DPPC/DPPG/Colesterol.	87
Figura 5-8 Função de distribuição radial, átomos de fósforos (P-P) ,	
modelo DPPC/DPPG/Colesterol.	88
Figura 5-9 Funções de distribuição radial, centros de massa sn-1 e	
sn-2, modelo DPPC/DPPG/Colesterol.	89
Figura 5-10 Trajetórias centro de massa, fósforo e cada molécula de	
DBahA e seu metabólito, inicialmete na fase aquosa, modelo DPPC.	91
Figura 5-11 Trajetórias centro de massa, fósforo e cada molécula de	
DBahA e seu metabólito, inicialmete na fase lipídica, modelo DPPC.	92
Figura 5-12 Trajetórias centro de massa, fósforo e cada molécula de	
DBahA e seu metabólito, inicialmete na fase lipídica, modelo	
DPPC/DPPG/Colesterol.	93
Figura 5-13 Sistemas inciais e finais, inicialmente na fase aquosa,	
modelo DPPC.	96
Figura 5-14 Densidade eletrônica em função da possição Z.	98
Figura 5-15 Espessura da bicamada, modelo DPPC.	99
Figura 5-16 Espessura da bicamada, modelo	
DPPC/DPPG/Colesterol.	100
Figura 5-17 Densidade em função do eixo Z dos átomos de fósforo.	101
Figura 5-18 Desvio padrão do gráfico de densidade dos átomos de	
fósforo.	102

Figura 5-20 Quadrado do deslocamento médio lateral, modelo DPPC.	108
Figura 5-21 Quadrado do deslocamento médio lateral, modelo	
DPPC/DPPG/Colesterol.	109
Figura 5-22 Quadrado do deslocamento médio na normal, modelo	
DPPC.	110
Figura 5-23 Quadrado do deslocamento médio na normal, modelo	
DPPCDPPG/Colesterol.	111
Figura 5-24 Coeficientes de difusão no eixo Z.	112
Figura 5-25 Sistemas inciais e finais, inicialmente na fase lilpídica,	
modelo DPPC.	114
Figura 5-26 Sistemas inciais e Finais, inicialmente na fase aquosa,	
modelo DPPC/DPPG/Colesterol.	115

Lista de tabelas

Tabela 5-1 Coeficientes de difusão dos fosfolipídios nos modelos de	
DPPC e de DPPC/DPPG/Colesterol.	79
Tabela 5-2 Área do sistema (nm²), Área por Fosfolípidio (nm²) e área	
por molécula (nm²) nos sistemas com DPPC e DBahA e fosfolipídio	
inicialmente na fase lipídica.	90
Tabela 5-3 Espessuras (em nm) para cada sistema de DPPC com o	
DBahA e do mDBahA na fase lipídica, calculadas com os últimos	
30 ns de simulação.	100
Tabela 5-4 Valores do parâmetro de ordem para a cauda 1 (sn1)	
dos sistemas de DPPC com DBahA e mDBahA inicialmente na fase	
lipídica.	104
Tabela 5-5 Valores do parâmetro de ordem para a cauda 2 (sn2)	
dos sistemas de DPPC com o DBahA e mDBahA inicialmente na	
fase lipídica.	105
Tabela 5-6 Valores do parâmetro de ordem para a cauda 1 (sn1)	
dos sistemas de DPPC/DPPG/Colesterol.	106
Tabela 5-7 Valores do parâmetro de ordem para a cauda 2 (sn2)	
dos sistemas com DPPC/DPPG/Colesterol.	106
Tabela 5-8 Coeficientes de difusão no eixo z para DBahA e seu	
metabólito nas bicamadas fosfolipídicas de DPPC e de DPPC/DPPG/	
Colesterol.	109
Tabela 5-9 Coeficientes de difusão no eixo z para	
dibenzo[a,h]antraceno e seu metabólito nas bicamadas fosfolipídicas	
de DPPC e de DPPC/DPPG/Colesterol.	111
Tabela 5-10 Resumo de resultados das simulações com o DBahA	
e seu metabólito inicialmente na fase lipídica.	118

Lista de ilustrações

Ilustração 1 Possíveis mesofases formadas por surfactantes.	
Adaptado de Myers(MYERS, 2005).	32
Ilustração 2 Componentes da membrana biológica. Adaptado de	
Koolman e Röhm(KOOLMAN; RÖHM, 2005).	35
llustração 3 Estruturas formadas pelo surfactante pulmonar e	
pelas proteinas asociadas. Adaptado de Pérez-Gil(PÉREZ-GIL, 2008).	37
Ilustração 4 Bicamada de DPPC previamente equilibrada.	70
Ilustração 5 Foto instantânea que mostra exemplos dos agregados	
formados na simulação com 40 moléculas de DBahA na bicamada	
fosfolipídica de DPPC. São mostradas apenas as moléculas de	
DBahA, onde é aplicada sobre elas uma representação com o raio	
de van der Walls e a superfície acessível ao solvente.	113

Lista de quadros

Quadro 1 HPAs e atividade carcinogênica	24
Quadro 2 HPAs considerados como possíveis carcinogênicos	
segundo segundo agências.	25
Quadro 3 Partição de HPAs entre o material particulado e a fase	
gasosa.	26
Quadro 4 Estruturas formadas segundo forma crítica de	
empacotamento e valores do parâmetro crítico de empacotamento.	33
Quadro 5 Composição de surfactante natural e sintético.	39
Quadro 6 Estruturas das moléculas usadas nas simulações com	
as fontes da topologia.	69
Quadro 7 Estruturas iniciais do modelo de DPPC com DBahA e mDBahA	
inicialmente na fase aquosa. Em vermelho os átomos de nitrogênio e fósforo	
delimitando a membranas, em azul a fase aquosa e em amarelo os HPAs.	72
Quadro 8 Estruturas iniciais do modelo de Modelos de DPPC com	
DBahA e mDBahA inicialmente na fase lipídica.	72
Quadro 9 Parâmetros importantes da etapa de minimização de	
energia.	73
Quadro 10 Parâmetros importantes da etapa de equilíbrio,	
inicialmente na fase aquosa.	74
Quadro 11 Parâmetros importantes da etapa de equilíbrio,	
inicialmente na fase lipídica.	75
Quadro 12 Parâmetros importantes da etapa de dinâmica molcular.	77
Quadro 13 Características iniciais dos sistemas simulados.	78