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Abstract

Alves Souto Neto, Mario Henrique; de Lima Veiga Filho, Álvaro (Advi-
sor). Sparse Statistical Modelling with Applications to Renewa-
ble Energy and Signal Processing. Rio de Janeiro, 2014. 74p. MSc
Dissertation — Departamento de Engenharia Elétrica, Pontif́ıcia Univer-
sidade Católica do Rio de Janeiro.

Motivated by the challenges of processing the vast amount of available

data, recent research on the flourishing field of high-dimensional statistics

is bringing new techniques for modeling and drawing inferences over large

amounts of data. Simultaneously, other fields like signal processing and op-

timization are also producing new methods to deal with large scale problems.

More particularly, this work is focused on the theories and methods based on

`1 -regularization.

After a comprehensive review of the `1-norm as tool for finding sparse

solutions, we study more deeply the LASSO shrinkage method. In order to

show how the LASSO can be used for a wide range of applications, we exhibit

a case study on sparse signal processing. Based on this idea, we present the `1

level-slope filter. Experimental results are given for an application on the field

of fiber optics communication.

For the final part of the thesis, a new estimation method is proposed for

high-dimensional models with periodic variance. The main idea of this novel

methodology is to combine sparsity, induced by the `1-regularization, with the

maximum likelihood criteria. Additionally, this novel methodology is used for

building a monthly stochastic model for wind and hydro inflow. Simulations

and forecasting results for a real case study involving fifty Brazilian renewable

power plants are presented.

Keywords
High-Dimensional Statistics; LASSO; `1 regularization; Sparse Sig-

nal Processing; Renewable Energy Stochastic Modelling; Wind Energy;

Hydro Energy; Optical Fiber Monitoring; Big Data.
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Resumo

Alves Souto Neto, Mario Henrique; de Lima Veiga Filho, Álvaro (Orienta-
dor). Modelagem Estat́ıstica Esparsa com Aplicações em Ener-
gia Renovável e Processamento de Sinais. Rio de Janeiro, 2014.
74p. Dissertação de Mestrado — Departamento de Engenharia Elétrica,
Pontif́ıcia Universidade Católica do Rio de Janeiro.

Motivado pelos desafios de processar a grande quantidade de dados

dispońıveis, pesquisas recentes em estat́ıstica tem sugerido novas técnicas de

modeloagem e inferência. Paralelamente, outros campos como processamento

de sinais e otimização também estão produzindo métodos para lidar problemas

em larga escala. Em particular, este trabalho é focado nas teorias e métodos

baseados na regularização `1.

Após uma revisão compreensiva da norma `1 como uma ferramenta para

defenir soluções esparsas, estudaremos mais a fundo o método LASSO. Para

exemplificar como o LASSO possui uma ampla gama de aplicações, exibimos

um estudo de caso em processamento de sinal esparso. Baseado nesta idea,

apresentamos o `1 level-slope filter. Resultados experimentais sa õ apresentados

para uma aplicação em transmissão de dados via fibra óptica.

Para a parte final da dissertação, um novo m étodo de estimação é pro-

posto para modelos em alta dimensão com variância periódica. A principal ideia

desta nova metodologia é combinar esparsidade, induzida pela regularização

`1, com o método de máxima verossimilhança. Adicionalmente, esta metodo-

ogia é utilizada para estimar os parâmetros de um modelo mensal estocástico

de geração de energia eólica e h́ıdrica. Simulações e resultados de previsão são

apresentados para um estudo real envolvendo cinquenta geradores de energia

renovável do sistema Brasileiro.

Palavras–chave
Estat́ıstica em alta dimensão; LASSO; Regularização; Processamento

de sinais esparsos; Modelagem de energia renovável; Energia eólica; PCH;

Monitoramento de fibras ópticas.
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Where would you go
Where would you go with a lasso?
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1
Introduction

In several businesses and industries data storage has grown exponentially

over the last decade. Many factors are associated with this increasing trend

of data collection. Firstly, the decrease of storage and hardware prices has

allowed the presence of necessary infrastructure. Secondly, the up-rise of new

tools specifically designed to handle massive volume of data has led to more

efficient ways of managing such data bases. All of these different technologies

have been brought together with the popular term Big Data.

On a white paper [1] dated from 2008, Google reported that it processes

more than twenty-five Peta Bytes, i.e. 25 × 1015 bytes, of data. That is

approximately twenty million novels per day of data, that goes from user

searches to satellite images. Another example of an astonishing data volume are

the experiments taken on the Large Hadron Collider (LHC) at CERN. With

the support from 150 million sensors one Peta Byte of data are measured for

each experiment [2].

At first sight, having such a large amount of available data might look

like all good news. It is intuitive to believe that more information is better.

However, such an abundance of data poses a compelling challenge for data

analysis. The demand for extracting valuable information from these massive

data sets takes the classical frameworks to their limits and generates a need

for new tools and methods.

This work starts by exposing the limitations of the traditional methods

when dealing with a high-dimensional framework. Next, we present a compre-

hensive review of `1-regularization and the LASSO. In the second half, new

applications and methodologies are proposed as this work contribution.

Chapter 2 begins by introducing the concept of high-dimensional stat-

istics based on the ”n < p” concept. Then, we briefly summarize the theory

of linear regression. In the following, we explain why the small n and large

p problem poses a challenge to traditional statistical methods such as least

squares. Finally, some alternative techniques, designed to tackle large scale

data, are presented.

Chapter 3 focuses on sparse solutions as a primary tool to deal with
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Chapter 1. Introduction 12

overdetermined systems. We start by showing how to model an optimization

problem to search for a sparse solution to a noise-free system. Next, we describe

conditions that guarantee the uniqueness of these solutions. Since searching

for sparse solutions is computationally exhausting, we introduce the `1-norm

as an alternative. The previous conditions are then extended to the relaxed

problem. To finish the chapter, we show a geometrical interpretation for the

`1-regularization in the presence of noise.

Chapter 4 is exclusively dedicated to the LASSO shrinkage method. After

the definition, we show how sparsity can be controlled by properly choosing

a tuning parameter. The second half of the chapter analyses three different

algorithms for solving the LASSO.

In the last two chapters, the real contribution of this work is presented.

Chapter 5 presents an application on sparse signal processing. Where, the `1-

regularization is used to design a piece-wise linear filter, which benefits from

sparsity. Next, we show how useful the filter can be for monitoring fiber-optic

communication systems. More particularly, we draw an algorithm for detecting

the location of a failure on fiber optic cables. Experimental results are exposed

to validate the methodology.

In the Chapter 6, we propose a novel estimation method for multiresponse

high-dimensional models under heteroskedasticity. Based on the LASSO, we

suggest a maximum-likelihood estimation method for a VARX model with

periodic variance. Additionally, we imply this technique for building a model

for simulating and forecasting renewable energy supply. Relevant results are

presented for a subset of the Brazilian power system.
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2
High-Dimensional Statistics

In classical statistics, many results rely on the fact that the number

of unknown parameters p is fixed and the sample size n → ∞ . With this

framework the asymptotic properties of estimators are evaluated. However,

in many large-scale problems both n → ∞ and p → ∞. On several cases,

the number of unknown parameters might be even greater than the number

of observations, i.e. n � p. The recent field of High-Dimensional Statistics

seeks to extend classical approaches as well as propose new methods in order

to enable inference when the number of unknown parameters is much greater

than the number of observations.

Furthermore, given the large amount of data, every algorithm used for

data analysis must be efficient with respect to the input size. Otherwise,

running any survey would be impracticable for real-life applications. In this

sense, using a polynomial time algorithm or the application of more suitable

data structures could enable solving extremely large problems [3].

This thesis will focus on the linear regression problem under a high-

dimensional framework. However, the results can be extended for logistic

regression or autoregressive models.

2.1
Linear Regression

In several fields, linear regression is the most traditional tool for modeling

the linear relationship between variables of interest. Linear regression was

originally proposed by Legendre [4] and Gauss [5] for astronomy studies,

e.g. establishing the motion of bodies around the sun. Over the years, it has

expanded to a wide range of research areas like epidemiology, engineering and

social sciences. Particularly, in the last decade, it has gained a great attention

given the rise of the field of econometrics [6].

The traditional framework is expressed by a vector of observations

y ∈ Rn, often called endogenous variables, which are assumed to be explained

by linear measurements on the design matrix X ∈ Rn×p. The matrix X is

composed by a concatenation of column vectors denoted by x1, · · · , xp. Each xi
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Chapter 2. High-Dimensional Statistics 14

is an explanatory variable, also known as exogenous variable. The relationship

bertween y and X is assumed to be linear (2-1).

The coefficients are represented by a vector β ∈ Rp,where each element

βi of the vector is a weight given by the explanatory variable xi. Furthermore,

each coefficient βi is the partial effect of the corresponding variable holding

all other explanatory variables fixed. This concept is very useful and can be

interpreted on how y will behave with respect to a one-unit change on xi.

y = Xβ + ε (2-1)

For a given sample of y and X, the Ordinary Least Squares (OLS)

establish a criteria to determine the vector β that ”best” fits the data. As

a simple example, consider a simple linear regression yi = β0 + β1xi + εi ∀i =

1, · · · , n. By minimizing the sum of squared error
∑n

i=1 ε
2
i , the OLS selects the

values for β0 and β1 which minimizes the vertical distances between the data

and the responses predicted by the linear model Fig. [2.1].

𝑒𝑖 

𝑦 

𝑥 

Figure 2.1: Leasts squares fit for simple regression yi = β1xi + εi.

min
β
ε>ε = min

β
(Y −Xβ)>(Y −Xβ) (2-2)

The argument which minimizes (2-2), the OLS estimator β̂OLS, can be

found by taking the first derivative with respect to β and setting to zero.

∂(Y −Xβ)>(Y −Xβ)

∂β
= −2X>(Y −Xβ) = 0 (2-3)

=⇒ β̂OLS = (X>X)−1X>Y (2-4)

DBD
PUC-Rio - Certificação Digital Nº 1221681/CB



Chapter 2. High-Dimensional Statistics 15

The OLS estimator (2-4) can be efficiently computed without necessary

obtaining the inverse of X>X via matrix decompositions techniques. The most

common strategy is to do the QR factorization, using Householder reflections

[7], of the design matrix X. Another attractive approach, is the Cholesky

decomposition of X>X. This method is asymptotically more exhausting, but

may be preferable under certain conditions.

The estimator is a function of random variables and therefore is a random

variable itself. Thus, to establish metrics of comparison and evaluation for

estimators it is necessary to assess some properties of this random variable.

Most commonly this properties are based on the central moments and their

asymptotic behavior. Before developing these properties some hypothesis must

be considered for the noise ε. The expected value of it is equal to zero, i.e.

E[εi] = 0 ∀i = 1, · · · , n. Different realizations of the noise are uncorrelated.

In other words, the variance-covariance matrix of ε is diagonal with σ on the

diagonal. Additionally, the variance must be finite σ <∞.

First, it can be easily verified by (2-5) that the OLS estimator is unbiased.

In other worlds, the difference between the expected value of β̂OLS and its

real value is equal to zero. The bias of an estimator can be interpreted as an

accuracy metric on the capability of recovering the real parameter value. From

classical statistical inference unbiased estimators are preferable to a biased

estimator. However, as will be shown later, unbiased estimator may be useful

under certain circumstances.

E[β̂OLS] = E[(X>X)−1X>Y ]

= E[(X>X)−1X>(Xβ + ε)]

= β + (X>X)−1X>E[ε]

= β (2-5)

Besides accuracy, another key property is the variability of an estimator

(2-6). After obtaining the variance of the estimator Σβ̂OLS
, it is possible to infer

on how precise the estimate will be. In this sense, the smaller the variance the

”better” the estimator will perform.

V ar[β̂OLS] = Σβ̂OLS
= E[(β̂OLS − β)(β̂OLS − β)>]

= E[((X>X)−1X>(Xβ + ε)− ε)((X>X)−1X>(Xβ + ε)− ε)>]

= (X>X)−1X>E[εε>]X(X>X)−1

= σ2(X>X)−1 (2-6)

According to the Gauss-Markov Theorem the OLS estimator is the linear
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unbiased estimator with the lowest variance among all unbiased estimators

of β [8]. This result is very important and is the greatest argument for the use

of OLS estimators.

There are several ways of comparing estimators based on their properties.

The Mean Square Error (MSE) is the most commonly used metric to evaluate

the efficiency of an estimator. Under general conditions, the estimator with the

smallest MSE is preferable over any estimator. The main idea behind MSE is

to measure the average performance of the estimator β̂ under several repeated

samplings of X. This measure is done by taken the expected value of the square

difference between the estimator and the parameter’s real value. As it is shown

bellow, the MSE can be decomposed into a bias and a variance component. This

decomposition will be very useful when developing an intuition for choosing

unbiased estimators.

MSE(β̂) = E[(β̂ − β)2]

= E[((β̂ − E[β̂]) + (E[β̂]− β))2]

= V ar[β̂] +Bias2[β̂] + 2(E[β̂]2 − E[β̂]2 − βE[β̂] + E[β̂]β)

= V ar[β̂] +Bias2[β̂] (2-7)

Since the β̂OLS is unbiased (2-5) and has the lowest variance among the

linear unbiased estimators, the OLS estimator is said to be BLUE (Best Linear

Unbiased Estimator). In this sense, at first sight, there is no apparent reason for

searching for any other linear estimator. However, as it is going to be explored

on the next section, under a high-dimensional setting the OLS estimator is

inappropriate.

2.2
Consequences of High-Dimensionality

Considering an explicit high-dimensional case where p > n, i.e. the

number of unknowns is greater then the number of equations, the OLS

estimator will necessarily suffer from the curse of dimensionality. In other

words, the model will be excessively complex, compromising the uniqueness

of the estimator. Furthermore, the model will over-fit the sample data and

probably will have poor out-of-sample predictive performance.

Theorem 2.1. If p > n no unique ordinary leasts squares solution exists.

Proof. Since X ∈ Rn×p, the rank of the design matrix can be at most equals to

n. Additionally, from linear algebra it is known that rank(X>X) = rank(X).

Considering that (X>X) ∈ Rp×p the matrix (X>X) will never have full
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rank and consequently not have an inverse. Therefore, the OLS estimator

β̂ols = (X>X)−1X>y will not exist.

Figure 2.2: Ilustrative example of rank deficient regression.

The Fig[2.2] seeks to highlight the idea of a rank-deficient regression.

Since a truly high-dimensional case can not be illustrated, consider the

bivariate regression y = Xβ + ε where the matrix X = [x1 x2] has rank

equals to one. As a consequence, the data is spread over a straight-line in the

three-dimensional space and there are infinite ways of fitting a plane to the

data.

A common alternative to overcome the fact that the matrix (X>X) is

rank-deficient is to compute the Moore-Penrose pseudo-inverse [9]. Unfortu-

nately, this method is highly unstable with respect to the data, even small

perturbations on the matrix X can lead to extremely different solutions. A

more robust strategy consists of selecting a more parsimonious model to fit

the data. Less complex models are often preferable since they offer some inter-

pretability and present less-variance. Next sections describe three of the most

popular techniques for model selection.

2.3
Subset Selection

Among the model selection methods, subset selection is the most intuitive

of them all. The main idea relies on seeking a subgroup of k variables out of

a set of p potential explanatory variables. Ideally, k should be considerably

smaller then p, leading to a parsimonious model. The quantity k needs to be

established by some information criteria [10] or goodness of fit [11][12].

In a high-dimensional framework, evaluating all possible subsets is com-

putationally infeasible. To overcome this difficulty, most of the algorithms are
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based on different heuristics like greedy search, e.g. Backward-stepwise, Mal-

low’s Cp [12], Forward-Stepwise regression [13], Forward-Stagewise regression

and Autometrics [14] [15]. The main idea behind those methods is to sequen-

tially insert or remove a variable to the model via least squares.

These kinds of hard-thresholding techniques usually suffer from instability

and are often extremely data-driven. Additionally, there is no guarantee that

any of the aforementioned greedy methods will select the optimal subset.

2.4
Principal Components

The purpose of Principal Components Analysis (PCA)[16] is to perform

a coordinate transformation on the data matrix X in a way that the data is

orthogonal in this new system of coordinates. The result is a uncorrelated set

{z1, · · · , zk} of linear combinations of the columns of X. This orthogonal set

is called the principal components of X and the cardinality k is equal to or

smaller then p. The principal components are usually obtained by Singular

Value Decomposition [7].

This method is useful to reduce the dimensionality of a linear regression

and is robust to multicollinearity. First of all, one can apply PCA on the

design matrix X and preserve a representative subset containing only the first

m principal components. Subsequently, the model is built using {z1, · · · , zm}
as explanatory variables for the response y.

The major problem with this method, is that there is no special reason

for the first m principal components to be the best regressors for y. The

ideal setting corresponds to selecting the components with high-variance that

properly explain the response. The Supervised Principal Components [17] is an

algorithm based on this idea. Basically, the algorithm selects the first principal

components that have a minimum correlation with the endogenous variable y.

This technique is also used as a pre-conditioning [18] for shrinkage methods.

2.5
Shrinkage methods

Shrinkage methods are based on different forms of limiting the feasible re-

gion of the coefficients β. This restraint can be achieved by adding constraints

to the estimation problem, e.g. by penalizing the objective function. In shrink-

age methods, as opposed to subset selection, exogenous variables are gradually

inserted on the model. This technique is also known as soft-thresholding on

the signal processing literature [19].
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The development of efficient algorithms and solvers, associated with the

increasing computational power, led to the popularization of shrinkage based

techniques. Additionally, the establishment of theoretical results has provided

optimality conditions for most of the methods. For these reasons, new shrinkage

techniques and extensions are constantly being proposed in the literature.

One of the pioneers on shrinkage methods was Ridge regression [20].

Then the non-negative garrotte [21] was introduced, which influenced the

most popular of them, the LASSO [22]. In turn, the LASSO has inspired

several derivatives and extensions, like the Graphical LASSO [23] and SCAD

[24]. More recently, the Dantzig Selector [25] is gaining considerable attention.

Every one of these methods has advantages and disadvantages. Depending on

the application, one method may be more suitable than another. In this work,

we will focus on applications and properties of the LASSO estimator.
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3
`1 Regularization

From classical linear algebra it is known that if X has full-rank and

p ≤ n, then the system y = Xβ is either determined or overdetermined.

In the first case, the system has a unique solution and can be efficiently

computed by several well-known algorithms, such as Gaussian elimination,

matrix decompositions or Simplex. On the contrary, if p > n the system is

undetermined, i.e. there are more equations than unknowns, then the system

has either an infinite number of solutions or no solution at all. In this context,

to find a unique solution, additional information needs to be given. In this

work, we will assume the hypothesis that the solution β is sparse.

Over the last twenty years, methods based on sparse solutions has caught

great attention from the academia. Due to the impressive success of these

methods, such as the LASSO [22] and Compressive Sensing [26], a great

effort has been made to build interesting theoretical results. This chapter

offers a small glimpse of the underlying theory, in order to explain why such

methods work so well and under which conditions they are supposed to work.

Additionally, we explore the geometric intuition intrinsic to the `1-norm and

its interpretation. Most of the presented proofs and figures are based on

[27][28][29][30].

To develop a basic intuition on sparse solutions, consider the classic

twelve-coin problem. There is a set of twelve coins, where eleven of them are of

equal weight. The goal is to identify which of the coins has a different weight

and discover if it weights more or less then the others, using a balance the

least number of times as possible. The naive solution would be to compare

all possible pair of coins, i.e.
(
12
2

)
= 12!

10!2!
= 66. However, this problem has

been published along with a solution stating that three measurements are

sufficient [31]. Since three out of sixty-six measures are taken, the solution

can be considered sparse. This puzzle points out how sparse measures might

contain all the necessary information.

Additionally, in several applications it seems natural to assume that the

true value of β is sparse. As in the case of image compression, such as the

JPEG2000 protocol [32], or even on biostatistics, where thousands of genes

DBD
PUC-Rio - Certificação Digital Nº 1221681/CB



Chapter 3. `1 Regularization 21

are potential explanatory variables for a disease [33]. As a matter of fact,

there is a growing literature with several applications where the sparsity of the

regressors is expected and quite intuitive.

3.1
Uniqueness of the sparsest solution

Suppose we want to recover a signal β ∈ Rp taking measures of the form

y = Xβ. For a given vector of observations y ∈ Rn and a measurement matrix

X ∈ Rn×p, where X has much fewer rows than columns (n� p). Additionally,

X is normalized to unit `2-norm, i.e. all columns of X have variance equal

to one. Since the system is extremely underdetermined, one possibility is to

assume that the signal β is a sufficiently sparse vector β0.

First of all, it is necessary to quantify the concept of sparsity. In the

context of the linear system y = Xβ, it can be computed using the `0-norm,

also known as counting norm, which is defined as the number of nonzero entries

in the vector ||β||0 = #{j : βj 6= 0}. Despite being called a norm, the `0-norm

is not even a pseudonorm since it is not absolutely homogeneous [34], still, it

preserves the triangle inequality. One could obtain the sparsest solution for an

underdetermined system of equations by solving the following problem.

(P0) : minimize ||β||0 (3-1)

subject to:

Xβ = y

Under certain conditions on the design matrix X and the sparsity of the

signal β, the recovery of β can be obtained by solving the convex relaxation

(P1). Such conditions ensure that the solution of (P0) and (P1) are the same and

also that both are unique. There are several conditions, such as the Restricted

Isometry Property [35][36] or the Exact Recovery Condition [37]. In this work we

will focus on the matrix Coherence since this property can be easily verified.

To begin with, we are going to investigate the necessary conditions for the

uniqueness of a solution for (P0).

Before establishing any conditions, it is necessary to introduct a few key

concepts. Firstly, a solution β ∈ Rp is said to be K-sparse if it has at most

K nonzero elements. Secondly, the Spark of a matrix X, i.e. spark(X), is the

smallest number of columns of X that columns form a linearly dependent

family. In this sense, spark(X) is an integer that belongs to the interval

[2, n+ 1].
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𝛽3 

𝛽1 

𝛽2 

Figure 3.1: The set of 2-sparse solutions on a three-dimensional space.

Suppose there exist two distinct solutions to the system y = Xβ, in

other words ∃ β1 6= β0 : y = Xβ1 = Xβ0. Since the difference β1 − β0 belongs

to the kernel of X, i.e. X(β1 − β0) = 0, there is a subset of columns of X

that are linearly dependent. Additionally, the number of nonzero elements in

(β1− β0) indicates that there is an equal or less amount of linearly dependent

columns in X. By the definition of spark(X) it is straight-forward that

||β1 − β0||0 ≥ spark(X).

From the triangle inequality ||β1−β0|| ≤ ||β1||0+||β0||0 and consequently,

||β1||0 + ||β0||0 ≥ spark(X) (3-2)

Theorem 3.1. If the under-determined system y = Xβ admits a solution β0

that obeys ||β0||0 < spark(X)
2

, then β0 is the sparsest unique solution for (P0).

Proof. If the solution β0 obeys ||β0||0 < spark(X)
2

, any other solution β1 to the

system must obey ||β1||0 > spark(X)
2

in order to preserve the inequality 3-2. In

this sense, β0 would be the sparsest solution for y = Xβ. Summarizing, any

K-sparse signal can be uniquely recover by (P0) if K < spark(X)
2

.

Since checking an inequality based on the spark of the design matrix

is computationally exhaustive , it requires O(2p) computations, it is more

reasonable to check for computable properties of X. In this regard, the most

widely used metric is coherence. The concept is the same as that applied in

physics to describe wave interferences. The coherence µ of X is defined as the

maximal absolute inner product between any pair of columns of X. Another

common way of formalizing the coherence is by means of the Gram matrix.

Where the Gram matrix G can be obtained by X>X.

µ(X) = max
i 6=j
|〈xi, xj〉| = max

i 6=j
|〈Gi,j〉| (3-3)
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A matrix is said to be incoherent if µ is small, i.e. if the largest off-

diagonal element of the Gram matrix is small. The coherence of any matrix

n×p is in the range
[(

p−n
n(p−1)

)1/2
, 1
]
. The lower bound is known as Welch Bound

on the telecommunication literature [38]. When the system is overdetermined,

n� p, the lower bound tends asymptotically to 1/
√
n.

Figure 3.2: Angle between three columns of X defined using an inner product.

Considering that the columns of X are normalized to unit `2-norm,

coherence is equivalent to the largest correlation between the variables that

composes X. Another possible interpretation, Fig.[3.2], is that coherence is the

cosine of the smallest angle between two columns of X. Thus, the presence of

a coherent design matrix is known as multicollinearity on the field of statistics.

The ideal setting is to have the coherence µ(X) as close to 1/
√
n as

possible. Donoho has shown in [27] that an upper bound can be stated using

the coherence of X. This bound is going to be constructed by the following

corollaries and theorems.

Corollary 3.1. Every diagonally dominant matrix is nonsingular.

Corollary 3.2. Consider an arbitrary square matrix A and its corresponding

Gram matrix G = A>A. If the Gram matrix G is nonsingular then all columns

of A are linearly independent.

Theorem 3.1. Every matrix X obeys the inequality spark(X) ≥ 1 + 1
µ(X)

.

Proof. Take an arbitrary set of m columns of X and denote by G(m) the sub-

Gram matrix correspondent to these columns. G(m) is sad to be diagonally

dominant if
∑

i 6=j Gi,j(m) < Gi,i(m) ∀i = 1, . . . , p. Since Gi,i = 1 ∀ i = 1, . . . , p

then G(m) needs to obey
∑

i 6=j Gi,j(m) < 1.

By definition, the elements of the Gram matrix are limited by the

coherence. In this sense, one can state that
∑

i 6=j Gi,j(m) < (m − 1)µ(X).

Thus, if m < 1 + 1
µ(X)

every sub-Gram matrix, made by m columns of X, will

be diagonally dominant.

According to Corollary 3.1. if G(m) is diagonally dominant then it

is nonsingular. Additionally, by Corollary 3.2., if G(m) is nonsingular the

corresponding m columns of X are linearly independent.
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In this sense, by the definition of spark one can assert that:

spark(X) ≥ m+ 1 > 1 +
1

µ(X)
.

Theorem 3.2. If the under-determined system y = Xβ admits a solution β0

that obeys ||β0||0 < 1+1/µ(X)
2

, then β0 is the sparsest unique solution for (P0).

Proof. By the previous theorem spark(X) ≥ 1 + 1
µ(X)

and spark(X)
2

≥ 1
2
(1 +

1
µ(X)

). Consequently if ||β0||0 < 1+1/µ(X)
2

then ||β0||0 < spark(X)
2

also holds true.

From theorem 3.1 β0 will be the sparsest unique solution for (P0).

There are some instances in which (P0) can be solved by integer program-

ming methods such as cutting planes or branch and bound [39] [40]. However,

in general (P0) is combinatorial and belongs to the class of NP-hard problems

[41] [42]. This statement can be verified by reducing the Exact cover by 3-

sets problem to (P0), the proof of reducibility can be found at [43]. Since the

Exact cover by 3-sets problem is a decision adaptation of one of Karp’s 21 NP-

complete problems [44], i.e. is a well-known classic NP-complete problem, then

it implies that (P0) is NP-hard. In other words, solving this problem requires

searching for the best subset of regressors on a exponential number of poten-

tials subsets. For this reason, this problem can not be solved in polynomial

time.

3.2
Convex Relaxation

The computational intractability of the problem suggests a convex relax-

ation. In this sense, the relaxation must have a polyhedron as feasible region

which contain all feasible points of the original problem. It can be seen graphic-

ally that replacing the `0 norm by the `1 norm is the convex hull of all feasible

points of (P0) as in Fig.[3.3]. As a result, the following problem (P1) is the

tightest convex relaxation and is contained in any other convex relaxation.

(P1) : minimize ||β||1 (3-4)

subject to:

Xβ = y

In order to highlight the differences between norms, let’s consider the

bivariate case where p = 2. Assuming that the columns of X have unit `2

norm, i.e., all explanatory variables have standard deviation equal to one. The
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following figure compares the feasible region ||β||k ≤ s for k = 0, 0.5, 1, 2 and

∞, where s ∈ R+.

Figure 3.3: Unit spheres in R2 as feasible regions.

Since the `1 norm is a convex function in β, the problem can now be

solved by convex programming techniques such as interior points or the simplex

method. In doing so, any instance of this problem can be solved in polynomial

time in the size of β. Additionally, modern off-the-shelf optimization solvers

are prepared to deal with significant large instances of convex optimization

problems.

The formulation of (P1) can be translated into a Linear Programming

problem [39] by expressing each coefficient as the sum of the positive and

negative value it might assume βj = β+
j − β−j and replacing the absolute

value by β+
j + β−j . This formulation (3-5) can be easily implemented on any

optimization software.

minimize

p∑
j=1

(β+
j + β−j ) (3-5)

subject to:
p∑
j=1

xij(β
+
j − β−j ) = yi ∀ i = 1, · · · , n

β+
j , β

−
j ≥ 0 ∀ j = 1, · · · , p

As a result of these computational advantages, the `1 approximation has

been used on several applications. In the field of statistics it has empowered the

classic linear regression to deal with a high-dimensional framework. Further, it

has been used to improve compressing techniques for several medias, such as

images [45], audio [46] and video [47]. Finally, classification problems such as

face recognition [48]. Specially the recent field of Compressed Sensing [26] [49],

which for instance allowed a significant reduction on MRI (Magnetic Resonance

Imaging) scan time.

All these range of applications and the tractability of `1 regularization

techniques justify the term ”`1-magic” used by Candès and Romberg [50]. The
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following subsections investigate the signal recovery in a noise-free system and

for a system in which measures are corrupted with some noise. Additionally,

some conditions for the equivalence between (P1) and (P0) are given.

Since the original problem (P0) is computationally intractable, our main

focus is to describe conditions that guarantee that the convex relaxation (P1)

is going to recover the same solution as (P0).

It can be easily seen that under a high level of coherence the formulation

(P1) will not necessarily recover the correct signal β. Consider that the signal

is 2-sparse and the design matrix has the worst case of coherence, where two

columns of X are completely correlated 〈x1, x2〉 = 1. In this case, the solution

of (P1) might be (β1, 0, · · · , 0)>, (0, β2, 0, · · · , 0)> or any linear combination

of those two vectors.

Theorem 3.3. If the under-determined system y = Xβ admits a solution that

obeys

||β||0 <
1 + 1/µ(X)

2
(3-6)

, then this is the sparsest unique solution for both (P0) and (P1). Ensuring the

equivalence between (P0) and (P1).

Proof. Let β0 be the solution for (P0) and C the set of all potential solutions

for (P1) that are different from β∗.

C = {γ : γ 6= β∗, ||γ||1 ≤ ||β∗||1, ||γ||0 > ||β∗||0, X(γ − β∗) = 0}.

In other words the set C contains solutions that (P1) might prefer over the

sparsest feasible solution β∗. By the Theorem 3.2. if ||β∗||0 < 1+1/µ(X)
2

, β∗ is

the sparsest solution and the condition ||γ||0 > ||β∗||0 is redundant. Letting

e = γ − β∗ one can redefine C as:

Cs = {e : e 6= 0, ||e+ β∗||1 − ||β∗||1 ≤ 0, Xe = 0}.

The main idea of the proof is to show that Cs is empty and therefore

there is no alternative solution that (P1) can pick. In fact, we are going to

relax the conditions of Cs and show that even this larger set, that includes Cs,
is empty.

Without loss of generality, assume that the K nonzero elements of β∗ are

in the first entries of the vector.

||e+ β∗||1 − ||β∗||1 =
K∑
j=1

(|ej + β∗j | − |β∗j |) +
∑
j>K

|ej| ≤ 0.
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By the inequality |ej + β∗j | − |β∗j | ≥ −|ej| ∀j = 1, . . . , p. one can relax the

second condition by requiring only that −
∑K

j=1 |ej| +
∑

j>K |ej| ≤ 0. Adding

and subtracting
∑K

j=1 |ej| leads to −2
∑K

j=1 |ej|+ (
∑

j>K |ej|+
∑K

j=1 |ej|) ≤ 0.

Thus, we have the larger set C1s ⊇ Cs defined as:

C1s =

{
e : e 6= 0,

p∑
j=1

|ej| − 2
K∑
j=1

|ej| ≤ 0, Xe = 0

}
.

Lets also relax the third condition Xe = 0, or equivalently X>Xe = 0. By

adding and subtracting e we have X>Xe − e = −e. Taking the element-wise

absolute value |e| = |(X>X− I)e| ≤ |(X>X− I)||e|. Since the entries of X>X

are limited by the coherence, |e| ≤ |(X>X − I)||e| ≤ µ(X)(1(p×p)− I)|e| holds

true. This last inequality suggests a new set C2s ⊇ C1s defined by:

C2s =

{
e : e 6= 0,

p∑
j=1

|ej| − 2
K∑
j=1

|ej| ≤ 0, |e| ≤ µ(X)

1 + µ(X)
1(p×p)||e||1

}
.

We can limit our analysis to values of e for which ||e||1 = 1. This

restriction is not critic, since for any element e ∈ C2s all αe also belongs to

C2s . In this sense, we have the bounded set:

Cl =

{
e : ||e||1 = 1, 1− 2

K∑
j=1

|ej| ≤ 0, |e| ≤ µ(X)

1 + µ(X)
1(p×1)

}
.

In order to obey the condition 1 − 2
∑K

j=1 |ej| ≤ 0 the vector e needs

to concentrate most of its energy on the first K entries. Using the maximum

value allowed for each entry of e,

1− 2K
µ(X)

1 + µ(X)
≤ 0⇒ K ≥ 1 + 1/µ(X)

2
.

Contradicting the Theorem hypothesis. As a consequence, if K ≤ 1+1/µ(X)
2

, the

original set C is empty and therefore there is no solution for (P1) alternative

to the solution of (P0).

The inequality (3-6) allows a straightforward interpretation of the hard-

ness of the incoherence hypothesis. As Fig.[3.4] indicates, even a small level of

coherence restricts (P1) to uniquely recover only extremely sparse signals. For

instance, consider the case where the matrix X has coherence equal to 0.15,

which is pretty much a soft assumption, then according to 3-6 (P1) will be able

to uniquely recover only 3-sparse signals.
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Figure 3.4: Maximal unique sparse recovery by (P1) versus the coherence of
X.

Observing Fig.[3.4] it is clear that the inequality (3-6) is very restrictive.

At first sight, if one choses an arbitrary design matrix X it seems that (P1)

will hardly be able to uniquely recover the signal β unless the signal is 1-

sparse, 2-sparse or at most 3-sparse. This statement often holds true for several

applications. However, the analysis that establish the inequality 3-6 was based

on the worst case. In practice, it is possible to recover the correct signal with

a high probability even if (3-6) do not hold. Results in probabilistic analysis

are explored using random matrices in [35] [51].

3.3
Adding Some Noise

In most practical applications it is reasonable to assume that the meas-

urements are contaminated with some level of noise. This noise may arise

for different reasons. In engineering applications, the sensor may take noisy

measures or the output may come from a channel affected by some noise. In

statistics modeling, the noise is often added to model in order to represent

inputs to the system that are not known. In this work we will assume that the

system is corrupted by an additive noise ε ∈ Rn, leading to the system

y = Xβ + ε. (3-7)

Additionally, we assume the hypothesis that each element εi of the vector

ε is normally distributed. This hypothesis is motivated by the Central Limit

Theorem [52]. The main idea is that the noise is actually a sum of a large

number of independent random factors. In this regard, even if each random
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factor is not normally distributed, accordingly to the Central Limit Theorem

the sum is going to be normally distributed. Thus, ε = (ε1, · · · , εp)> where

εi∼N (0,Σ) and iid (i.e. independent identically distributed) ∀i = 1, · · · , p.
In order to minimize the noise variance, consider a loss-function L : Rn →

R that measures the disparity between the observations y and the prediction

ŷ = Xβ̂. The loss function is often represented by the residual sum of squares

but it may assume other designs. Another common loss-function is the absolute

sum of residuals used on quantile regression [53] and some applications on

digital communications systems, such as channel decoding [35].

The requirements for convexity are that the loss-function must be convex

in β and the feasible set must be a convex set [54]. In this sense, in a high-

dimensional set-up, the estimator may be obtained by the constrained problem

3.3.
minimize

β∈Rp
L(β, Y,X)

subject to:( p∑
j=1

|βj|q
)1/q

≤ s

For q = 1, this problem can be viewed as a slight modification of (P1),

where the equality constraint y = Xβ is relaxed and a tolerance of the type

||y −Xβ||2 < γ is adopted.

There is a geometric motivation for claiming that q = 1 in (3.3) is

appropriate for recovering a sparse signal. Using the `1-norm, instead of other

norms, produces a spiky polyhedron as feasible region. The sharpness of the

polyhedron along with the fact that the objective function is convex, makes it

more likely that a sparse solution may be found. In this sense, it is possible to

say that the `1-norm constraint induces a sparse solution.

This phenomena can be pictured in the R2 contour plots for three possible

cases. The ellipses are the contour line for the loss-function L and the orange

areas are the feasible regions for the `1-norm and the `2-norm respectively. In

the first case, Fig. 3.5, the real signal β0 is sparse with β2 = 0. The formulation

3.3 with q = 1 can identify the sparse solution, whereas with q = 2 the solution

has only nonzero elements.

In the second case, despite the real signal β0 being non-sparse, the

solution for q = 1 is sparse. This happens because the absolute value of

β2 is small enough to be shrunk to zero, Fig. 3.6. At first sight, improperly

recovering a sparse signal may be considered as a drawback. However, in several

applications, like image compression, it is desirable to obtain a solution with an

incomplete amount of linear measurements as long as most of the information
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Figure 3.5: Case 1: Sparse solution for sparse signal

is preserved.

Figure 3.6: Case 2: Sparse solution for non-sparse signal

Finally, in the third case, Fig. 3.7, both the `1-norm and the `2-norm

formulations find a non-sparse solution. Since neither the absolute value of

β1 and β2 are sufficiently small, the coefficients are not shrunk to zero.

Accordingly, solving (3.3) is equivalent to perform a hard thresholding on the

signal β. Being sufficiently small depends on the loss-function and the value of

s, which establishes how tight the constraint is. The greater the value of s is

more likely it will be to obtain a sparse solution to (3.3).
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Figure 3.7: Case 3: Non-sparse solution for non-sparse signal
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4
LASSO

Since Tibishirani [22] introduced the LASSO (least absolute shrinkage

and selection operator) in the mid-nineties, it has become an extremely popular

technique to tackle high-dimensional data. Ever since, several researches have

proposed new results, algorithms and extensions for the LASSO. For instance

the Adaptative LASSO [55] and the Group LASSO [56].

The computational advantage and the methods simplicity has made

the LASSO an attractive method for modeling large data-sets. Several fields

ranging from biostatistics [57] to social science has been using the LASSO to

make sense out of huge amounts of data. An interesting retrospective can be

found in [58], allowing an understanding of the evolution of the method over

the years.

Two years after the original LASSO, Chen, Donoho and Saunders [59]

also proposed a similar method known as Basis Pursuit DeNoising (BPDN)

in the signal processing literature. This paper has inspired several engineering

applications like audio denoising [60], image denoising [61] and signal compres-

sion.

β̂ ∈ argminβ ∈ Rp

{
1
2
||y −Xβ||22 + λ||β||1

}
The LASSO 4 is comprised of a loss function, which is the classic sum

of squares of residuals, and a penalization on the `1 norm of the regressors. In

other words, the method is basically a plain multivariate linear regression with

an `1-norm penalization term, which induces variable selection. As explained on

the previous chapter, due to the `1 regularization, (4) efficiently does variable

selection and estimation simultaneously.

For practical purposes, it is assumed that the predictors are standardized,

i.e.
∑n

i=1 xij/n = 0 and
∑n

i=1 x
2
ij/n = 1 ∀j = 1, · · · , p. This transformation

allows the coefficients βj to be comparable, since the columns of X are at the

same scale. Additionally, to avoid problems with the standardization of the

intercept, it is assumed that the response y is centered at zero . Since most of

the algorithms and proofs are designed based on this assumptions, for now on

they are going to be considered as the standard framework.
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4.1
Regularization Parameter

The parameter λ is a tunning that controls the amount of regularization,

i.e. it controls the trade-off between the errors and sparsity. The bigger the λ

is, the more elements of β are set to zero. With λ = 0 the solution for 4 is the

same as the Ordinary Leasts Squares solution. Figure 4.1 gives an example of

a 4-sparse signal in order to highlight the difference between the solutions for

the LASSO as λ varies. As the regularization decreases the coefficients are less

shrinkage. On this particular case, with λ = 223.1 the signal is recovered with

a little bias. Note that for λ = 17.7, the solution approaches the OLS estimate

and consequently is not sparse.

0 5 10 15 20 25 30 35 40 45 50
−10

0

10 λ = 801.6

β

0 5 10 15 20 25 30 35 40 45 50
−10

0

10 λ = 428.3

β

0 5 10 15 20 25 30 35 40 45 50
−10

0

10
λ = 223.1

β

0 5 10 15 20 25 30 35 40 45 50
−10

0

10 λ = 17.7

β

 

 

Solution for the LASSO
Original signal

Figure 4.1: Distinct solutions for different regularization parameters.

Additionally, it is possible to obtain the minimum value of λ for which

all coefficients of β are set to zero. Firstly, taking the Karush-Kuhn-Tucker

(KKT) optimality conditions [62] for the LASSO, we have the following first-
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order condition:

X>(y −Xβ̂) + λδ = 0, (4-1)

where 0 is a p-dimensional vector of zeros and δ ∈ Rp is the subgradient of the

`1-norm evaluated at β̂. In order to satisfy 4-1 the subgradient needs to obey,

δi ∈


{+1}, if β̂i < 0

{−1}, if β̂i > 0

[−1, 1], if β̂i = 0

∀ i = 1, · · · , p. (4-2)

Since we are interested in the case where β̂i = 0 ∀ i = 1, · · · , p, then the

subgradient is restricted to X>y = −λδ where δi ∈ [−1, 1] ∀ i = 1, · · · , p. To

guarantee that λ will be able to set to zero all coefficients it is necessary and

sufficient that:

λ > λmax = ||X>y||∞, (4-3)

where the infinity norm returns the maximum element of the vector X>y.

To come up with a proper estimation of β one has to choose the ”best”

λ over a range of possibilities. The only prior information is that λ ∈ [0, λmax].

The usual strategy to establish λ is to solve (4) over a grid of values in

the aforementioned interval. However, since λ = λmax does not bring any

information, we only consider values that are smaller than 0.99×λmax. Further,

since in a high-dimensional framework λ = 0 will lead to an unstable estimator,

the smallest value of λ conisdered is 0.01× λmax.
Accordingly, we are going to evaluate the solutions over a finite number

of values. For convenience, the solution for the kth element on the grid will

be denoted by β̂(λk). For most part of the algorithms, it is better to do the

search backwards, since the previous solution β̂(λk−1) can be used as a warm

start. Additionally, the grid is usually not equidistant but logarithmic. In this

fashion, a greater number of smaller values of lambda are evaluated. This

strategy makes sense as even with a smaller penalty, variable selection will be

achieved and the solution will be less biased Fig.4.1.

Since we are working with an over-complete design matrix X, the task of

modeling the response y is restricted by choosing the amount of regularization.

There is not a universal criteria for establishing the correct value of λ. The

chosen criteria depends primarily on the goal of the model. If one is building

a model to perform predictions the usual strategy is to use a Cross-Validation

method, like K-fold or leave-one-out [63] [64]. On the other hand, if the main

purpose of the model is recovering the original signal β or if the objective is
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drawing conclusions on how X explains the response y, then BIC (Bayesian

information criterion) is thought to be more suitable [65]. This belief is due

to the asymptotic consistency of BIC as a selection criteria [66][30].

Since the case studies presented in this work are not focused on predic-

tion, BIC will be the standard measure to select λ. We can index the residuals

as follows ε(λk) = y −Xβ̂(λk). Under the assumption that residuals follow a

Gaussian distribution and are independent and identically distributed. Then

the Bayesian criteria can be expressed as:

BIC(λk) = n ln σ̂2
ε(λk)

+ ||β̂(λk)||0 lnn, (4-4)

where σ̂2
ε(λk)

is the residual variance. In Fig.[4.2] a numerical experiment was

made to give an intuition on the relationship between BIC and λ. Since BIC

4-4 is penalized by the number of nonzero coefficients, the solutions where λ

is to close to zero are discarded. On the other hand, BIC seeks a model that

can properly filter the residuals in a fashion that it resembles white noise. By

choosing the λ which minimizes BIC, a parsimonious model will be selected

based on this trade-off.
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Figure 4.2: Distinct solutions for different regularization parameters.

4.2
Solution Methods and Algorithms

In this section the most well-known algorithms for solving the LASSO

are exposed. Understanding such algorithms helps building an intuitive view
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of the LASSO-path and how the shrinkage works. The methods are presented

in the chronological order they were proposed on the literature.

Least-Angle Regression and Pathwise Coordinate Descent are available in

the glmnet [67] software for Matlab c© and R. Both methods are also available

for Python on scikit-learn [68].

4.2.1
Quadratic Programming

Initialy, when the LASSO was proposed, the main idea was to use com-

mercial optimization solvers. In this sense, the problem can be reformulated

as a quadratic program of the form:

minimize c>x+ 1
2
x>Qx (4-5)

subject to: Ax = b

x ≥ 0

Since the matrix Q equals the identity, it is readily verified that the

matrix is positive definite. As a consequence, the problem 4-5 is convex and

any feasible solution is a unique global minimizer [54].

There are two main methods for quadratic programming. The Primal-

dual path following algorithm[39] and Linear Complementary Program-

ming [62]. The first one, makes use of the Interior Points Method [69] and

the second is basically a simplex method with a particular pivoting rule [70].

Both methods are based on solving the KKT optimality conditions. Since the

problem is convex, the solution of KKT is the global optimal solution [62].

Since most of the commercial solvers work as black-boxes, solving the

LASSO via quadratic programming was not considered attractive in the

statistical community. One of the reasons for the popularization of the LASSO

was the upcoming of new algorithms, which allowed an interpretation and

provided an intuition about how the method works.

4.2.2
Least-Angle Regression

In 2009 Efron proposed a novel method for model selection known as

least angle regression (LARS) [71], an accelerated version of forward stepwise

regression [72]. Like forward stepwise regression, this method gradually selects

explanatory variables to enter the model. However, LARS is less greedy since

it does not fully enter the coefficients at once. In the same paper it is shown
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that with a slight change to the original algorithm the LARS can compute the

entire LASSO-path efficiently.

The main idea of the algorithm, is to first select the most correlated

variable with the response and move its coefficient from zero towards its OLS

estimator. If another variable is equally correlated with the residual, then the

process is stopped and both coefficients are moved along towards their joint

OLS estimator. This movement is again interrupted when a third variables

has the same correlation with the residual as the previous two. Note that at

each iteration the coefficients approach the OLS estimator, without necessarily

achieving it. This process is repeated until the p variables enter the model.

The direction that the fitted model evolves during the algorithm has the

interpretation of a least angle between the variables on the current active-set.

Unlike from other algorithms there is no need to build a grid of λ. The continuos

piecewise-linear path of the LARS algorithm is a exactly the LASSO-path [73].

Since variables may leave the active-set, the algorithm may take more then p

steps to finish. The following pseudo-code describes the LARS modified for

solving the LASSO.

Algorithm 1 LARS (lasso)

Initialize residual r = y and the active-set A = ∅
Set β1 = · · · = βp = 0

Insert the most correlated variable Xj on A
Compute δ = (X>AXA)−1XAr

while (#A 6= p) do

r = y −XAβA
Move βA on the direction δ

if (Any Xi has as much correlation with r as any variable of A) then

Add Xi to A
end if

if (Any variable of the set A has a null coefficient) then

Remove this variable from A
end if

Compute δ = (X>AXA)−1XAr

end while

This method has been commonly used for solving the LASSO given the

idea behind it. The proof of correctness of the LARS algorithm can be found

at [73].
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4.2.3
Pathwise Coordinate Descent

The Pathwise Coordinate Descent has been previously suggested by [74],

[75] and [76] and subsequently improved by [77] and [78]. This algorithm applies

a general nonlinear programming technique known as coordinate descent to

the LASSO problem. Due to the simplicity and efficiency of this method,

Coordinate Desecent based algorithms are popular tools for large optimization

problems.

The main idea of Coordinate Descent is to optimize a multivariate func-

tion by minimizing the objective function with respect to a single coordinate

direction instead of the multivariate descent direction given by gradient vec-

tor [79][62]. This strategy might look like an heuristicat first sight. However,

since the objective function is composed of a differentiable and convex com-

ponent plus a non-differentiable but separable component then optimality is

guaranteed. This result can be found in the nonlinear programming literature,

particularly on the work of Paul Tseng [80] [81].

The LASSO loss-function is differentiable and convex and the `1-

penalization is non-differentiable but it can be separated into the sum

of the absolute value of each coordinate. For simplificity let us denote

f(β1, β2, · · · , βp) = 1
2
||Y − Xβ||22 + λ||β||1. For a given value of λ, the ith

cycle of the algorithm can be described as:

β
(i)
1 ∈ argminlimitsβ1f(β1, β

i−1
2 , βi−13 , · · · , βi−1p )

β
(i)
2 ∈ argminlimitsβ2f(βi1, β2, β

i−1
3 , · · · , βi−1p )

...

β(i)
p ∈ argminlimitsβpf(βi1, β

i
2, β

i
3, · · · , βp)

This cyclic procedure is repeated until convergence is reached. As we shall

see below, minimization trough one coordinate can be expressed as a shrinkage

operator of the OLS estimate.

Initially, consider the LASSO for a simple linear regression yi = xiβ +

εi ∀i = 1, · · · , n. The loss-function is defined as
∑n

i=1(yi− ŷi)2, where ŷi is the

prediction for the ith observation obtained by xiβ. It is possible to recast the

loss-function as
∑n

i=1(xiβ − xxβ̂)2 = (β − β̂)2
∑n

i=1 x
2
i . Since X is normalized,

as descibed in ..., obtaining the estimator β̂lasso is equivalent to solving the
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following problem:

min
β

1
2
(β − β̂ols)2 + λ|β| (4-6)

where β̂ols is the ordinary least squares estimator given by β̂ols = cov[X,Y ]
V [X]

=∑n
i=1 xiyi.

In order to guarantee the optimality of 4-6, it necessary to assure the first-

order condition from subdifferential calculus. In this sense, one may obtain the

subsequent expression for the sub-gradient:

∂
(

1
2
(β − β̂ols)2 + λ|β|

)
= β − β̂ols + v = 0 (4-7)

exists a v ∈ R such as:

β̂lasso = β̂ols − v, v =


−λ, if β̂ols > 0 and λ < |β̂ols|
+λ, if β̂ols < 0 and λ < |β̂ols|
β̂ols, if λ ≥ |β̂ols|

(4-8)

From (4-8) it is clear that the LASSO estimator is a shrunken version

of the OLS estimator. Thus, β̂lasso can be obtained as a result of a soft-

thresholding operator on β̂ols as illustrated in Fig.[4.3]. The dotted gray line

represents the OLS estimate and the blue line is the corresponding LASSO

estimate. If λ ≥ |β̂ols| then β̂ols is shrunk to zero. The LASSO estimator can

be written more neatly as:

β̂lasso = sign(β̂ols)(|β̂ols| − λ), (4-9)

where sign(.) is a function that returns the sign of the scalar β̂ols. In this

manner, obtaining the OLS estimator and applying 4-9 is equivalent to solving

4-6.

To extrapolate this result for a multivariate regression, consider the

multivariate loss-function:

L(β) = 1
2

n∑
i=1

(
yi −

p∑
k=1

xikβk

)2

. (4-10)

Suppose that the value of every element of the vector β is known, except βj,

one can fix β1 = β̃1, β2 = β̃2, · · · , βp = β̃p. This procedure leads to the following

loss-function associated with the index j.

L(β̃, βj) = 1
2

n∑
i=1

(
yi −

∑
k 6=j

xikβ̃k − xijβj

)2

(4-11)
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Figure 4.3: Soft-thresholding operator

The OLS estimator for βj can be obtained by taking the derivative of 4-11 and

equating to zero.

dL(β̃, βj)

dβj
=

n∑
i=1

(
yi −

∑
k 6=j

xikβ̃k − xijβj

)
(−xij) = 0

n∑
i=1

(
yi −

∑
k 6=j

xikβ̃k

)
=

n∑
i=1

x2ijβj

Since
∑n

i=1 x
2
ij = 1,

β̂olsj =
n∑
i=1

xij

(
yi −

∑
k 6=j

xikβ̃k

)
∀j = 1, · · · , p.

Then the soft-thresholding operator 4-9 can be applied to β̂olsj and then an

iterative algorithm could be establish. For each penalization λi, the vector

β̂lasso(λi) is obtained by iteratively cycling through the p soft-thresholding

operators applied to the OLS estimators given by β̂olsj .

The main idea of the Pathwise Coordinate Descent algorithm is to

successively apply coordinate descent for a different λ in the LASSO path.

In order to speedup the algorithm, Friedman [77] proposes an efficient warm

starting technique. The estimates are obtained for a decreasing grid λ1 > · · · >
λk > · · · > λr. Usually, λ1 is set to 0.99 × (λmax/n) (4-3). The initialization

for the kth problem will be the solution for obtained with the penalization

λk−1. In Fig.[4.4], the green arrows represent coordinate descent steps that

were initialized with a previous solution.
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Figure 4.4: Warm starting for coordinate descent.

Considering that for several iterations it is highly probable that the

coefficient that was set to zero will remain zero, it is less computationally

demanding to redefine β̂olsj as the following. First, substitute
∑

k 6=j xikβ̃k by

ŷi + xijβ̃j. Where ŷi denotes the most updated forecast for the ith observation.

Second, yi− ŷi can be replaced by the residual ri. This modifications will lead

to:

β̂olsj =
n∑
i=1

xijri + β̃j ∀j = 1, · · · , p. (4-12)

This method is usually known as the Naive Coordinate Descent Algorithm.

With this implementation, each iteration for an arbitrary βj is done with O(n)

operations. A complete cycle over all coefficients can be done in O(np).
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Algorithm 2 Naive Coordinate Descent

Initialize β̃j = 0 ∀ j = 1, · · · , p
for all λk ∈ {λ1, · · · , λm} do

while not converge do

for all j ∈ {1, · · · , p} do

ri = yi −
∑p

l=1 xilβ̃j ∀ i = 1, · · · , n
β̂olsj =

∑n
i=1 xijri + β̃j

if λk ≥ |β̂olsj | then

β̃j = 0

else

β̃j = sign(β̂olsj )(|β̂olsj | − λk)
end if

end for

end while

β̂lassoj (λk) = β̃j ∀ j = 1, · · · , p
end for

It is possible to make this algorithm even more efficient by avoiding

redundant computations. First of all, we introduce the set A, called active

set. The purpose of this set is to track when a coefficient β̃j is no longer

zero for the first time. The term
∑n

i=1 xijri computed for the OLS estimator

can be replaced by
∑n

i=1 xijyi −
∑

l∈A (
∑n

i=1 xilxij) β̃l which is the same as

〈xj, y〉−
∑

l∈A〈xj, xl〉β̃l. Consequently, a more effective strategy is to compute

〈xj, y〉 ∀ j = 1, · · · , p in O(np) at the beginning of the routine. Additionally,

whenever an index j is added to the active set A it is necessary to obtain

〈xj, xl〉 ∀ l = 1, · · · , p in O(np) as well. Convergence is obtained if the active

set does not change after a complete cycle. This modifications leads to the

Covariance Updates Coordinate Descent algorithm.
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Algorithm 3 Covariance Updates Coordinate Descent

Initialize β̃j = 0 ∀ j = 1, · · · , p
Initialize active set A = ∅
Compute and store 〈xj, y〉 ∀ j = 1, · · · , p
for all λk ∈ {λ1, · · · , λm} do

while not converge do

for all j ∈ {1, · · · , p} do

β̂olsj = 1
n

[
〈xj, y〉 −

∑
l∈A

〈xj, xl〉β̃l

]
+ β̃j

if λk ≥ |β̂olsj | then

β̃j = 0

else

β̃j = sign(β̂olsj )(|β̂olsj | − λk)
if j /∈ A then

Compute and store 〈xj, xl〉 ∀ l = 1, · · · , p
A = A ∪ {j}

end if

end if

end for

end while

β̂lassoj (λk) = β̃j ∀ j = 1, · · · , p
end for

Figure [4.5] ilustrates an example of the Covariance Updates Coordinate

Descent recovering a 15-sparse signal. The LASSO-path {λ1, · · · , λm} on this

example is a decreasing linear grid with 300 elements ranging from 0.99×λmax
to 0.01 × λmax. As expected, as the regularization parameter decreases more

variables enter the active set A.

At the present moment, no theoretical global convergence rate has been

establish for the pathwise coordinate descent methods. However, empirically

it has been proven to be the fastest method for solving the LASSO, specially

when the number of unknown parameters p is much greater than the number

of observations n.
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Figure 4.5: Solution path for a 15-sparse signal via Covariance Updates

Coordinate Descent.
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5
Case Study 1: Fiber Optics Failure Detection

In this chapter we start to evaluate the potential of the `1-regularization

in solving real-world problems. As mentioned previously, the `1-norm has

became a popular tool in the field of signal processing. In this work, we study

one of those applications, more particularly in fiber-optic communication. Most

of the experiments and techniques presented in this chapter are based on the

work of [82], with additional improvements on the filter algorithm.

In a nutshell, optical fibers are an efficient media for data transmission.

The optical communication is performed using an optical transmitter which

modulates light - commonly originated from a Laser source - based on the

data to be transmitted. The message is sent through the optical fiber and later

demodulated by an optical receiver.

Due to the high effectiveness of optical fibers and their capacity for

transmitting large amounts of data, they have been broadly used in place of

other data transmission media such as copper cables. Several applications like

cable TV and medical imaging are adopting this technology. More recently,

home internet services are offering fast connectivity services based on fiber

optics.

Despite their great success, optical fibers are made of glass implying

mechanical fragility to the material which, under some conditions, may break.

The ruptures usually result in a failure of data transmission which, in turn,

may interrupt the link. Since optical fiber links frequently exceed the length of

two kilometers, finding the location of the rupture with reasonable precision is

essential.

5.1
Experiment description

One of the existing methods for detecting optical fiber breakpoints is the

Photon Counting OTDR [83]. The main idea of the method is to stimulate

the optical fiber with an optical pulse and count the number of photons that

are backscattered, i.e. reflected to the direction from which they came, using

a Single Photon Detector - a device capable of detecting single photons [ref].

DBD
PUC-Rio - Certificação Digital Nº 1221681/CB



Chapter 5. Case Study 1: Fiber Optics Failure Detection 46

In the presence of a rupture on the optical fiber, the number of backscattered

photons after the break is reduced due to power coupling losses. The output

of the method is a sequence representing the number of backscattered photons

on each fiber position.
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Figure 5.1: Output of the experiment.

As can be seen in Fig.5.1, the amount of counted photons has a linear

decay due to an intrinsic power loss of the fiber. Additionally, two level shifts

can be seen at approximately 2500 and 15000 meters.

In the following, we propose a methodology to detect the exact position

of the breakpoints and obtain the relative power loss at the level shifts.

5.2
`1 Level-Slope Filter

Deeply inspired by the work of Boyd et al. [84], we develop a filter where

the key ingredient is the `1-norm. The main idea is to fit to the measurements

a piece-wise linear curve composed by a slope and occasional level shifts.

The `1-regularization is in charge of selecting the location of level shifts in

a parsimonious manner.

The sequence of measurements are denoted by {ys}ns=1, where the index

s corresponds to the location in meters on the fiber cable and n is the total

of measurements. Consider also a slope coefficient α ∈ R and a component of

level shifts w ∈ Rn. The `1 Level-Slope Filter can be defined as:

min
(α,{wi}ni=1)

n∑
i=1

(yi − αi− wi)2 + λ
(
|α|+

n∑
i=2

|wi − wi−1|
)
. (5-1)
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Analogously to the theory presented on the previous chapter, the para-

meter λ ∈ R+ controls the amount of regularization on the slope and level

shifts. For a sufficiently large value of λ, the filter will select where to place

the level shifts and determine their magnitudes, in order to minimize (5-1).

In order to directly apply the results and algorithms of the forth chapter,

we can express the filter in the same form as the LASSO. This can be done by

properly organizing the design matrix X as following:

X =



1 0 0 · · · 0 1

1 1 0 · · · 0 2

1 1 1 · · · 0 3
...

...
. . .

...
...

1 1 1 · · · 1 n


∈ Rn×n+1. (5-2)

Thus, the matrix X is a concatenation of a n×n lower triangular matrix

filled with ones and a sequential column vector. By doing y = X̃β, each

coefficient βj ∀ j = 2, . . . , n corresponds to a level-shift in the filtered signal.

In other words, they represent the level shifts at the position j. The slope

coefficient is expressed by βn+1 = α.

Additionally, the system is corrupted by an additive noise. In this sense,

we can express the measurements by y = Xβ + ε.

β̂ ∈ argminβ ∈ Rp

{
1
2
||y −Xβ||22 + λ||β||1

}
(5-3)

Since the main goal of the filter is to perform noise reduction and properly

recover the signal β, the chosen criteria for selecting a proper value of λ was the

BIC. Additionally, given the fact that the LASSO estimator is usually biased

we are going to use the post-LASSO technique. Considering that the number of

slopes is probably very low, the vector β will be very sparse and consequently

the obtaining the OLS estimator does not represent an extra challenge.

For this particular problem the design matrix is extremely coherent. As

a result uniqueness is definitely not guaranteed. For most of the cases, the

method can not tell the difference between choosing adjacent columns like xj

and xj+1 or any linear combination of them. To overcome this problem it is

necessary to do a post-processing procedure with the objective of avoiding

selecting consecutive coefficients of β.

Here we propose a heuristic based algorithm for avoiding this phe-

nomenon. After solving 5-3 for the whole LASSO-path and selecting the best

β̂(λ) according to the BIC, it is necessary to do an inspection on the solution
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vector. When consecutive nonzero entries of β̂(λ) are found, it is necessary to

choose only one of them to be nonzero. At this point, we have tried several

strategies like selecting the first coefficient of each sequence or selecting the

one on the middle. Empirically, selecting the last coefficient of each consecutive

sequence has led to best results. After applying this strategy, we obtain the

post-LASSO estimators using only the remaining nonzero coefficients.

5.3
Results

In order to validate the `1 Level-Slope Filter, two distinct experiments

are made based on the aforementioned experiment. Since the experiments are

made in laboratory, the exact location of the breakpoints are known. In this

way, it possible to evaluate the precision of the filter in detecting a failure on

the optical fiber.
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Figure 5.2: Signal recover for the first example.

The first example is done by taking seven thousand measurements on the

range of 14,000 meters. As can be seen in Fig.[5.2], the filter correctly identifies

the presence of two breakpoints. The precision on the level shift location can

be evaluated at table [5.1]. The first breakpoint location has a difference of

sixty-two meters to the location estimate by the filter. This may look very

Table 5.1: Breakpoint positions in meters for example 1.

Real positions Estimate positions ∆

1,370 1,308 62

13,664 13,644 20
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Table 5.2: Breakpoint positions in meters for example 2.

Real positions Estimate positions ∆

2,770 2,740 30

15,064 15,046 18

17,200 17,172 28

imprecise, but it is actually a good approximation compared to the range of

fourteen kilometers evaluated by the methodology.

In example 2 we have made 18,000 measurements. In this case, it is

also possible to detect the end of the cable. The last breakpoint, at 17,200

meters, corresponds to end of the optic fiber cable. As can be seen at table

[5.1], results for this example are slightly better, probably because more data

is used to recover the filtered signal.
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Figure 5.3: Signal recover for the second example.

5.4
Conclusion

In the previous examples, the `1 Level-Slope Filter has identified the

position of the breakpoints with a reasonable precision. This result can be used

to motivate a monitoring service for several types of fiber optics applications.

An important detail is that, both `1 Level-Slope Filter and the Photon

Counting OTDR can be employed without interrupting existing links on the

fiber.

Several applications can benefit from this type of piece-wise linear filters.

In macroeconomics, for instance, it can be used as an alternative to the

Hodrick-Prescott filter [85]. Another potential application may arise in the
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field of finance, where the `1 Level-Slope Filter may be used to quickly identify

price shifts in stock prices.

In short, this application also suggests that the LASSO can be used to

several purposes besides high-dimensional linear regression.
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6
Case Study 2: Renewable Energy Stochastic Model

This chapter explores the advantages of using `1-regularization to build

statistical models in a high-dimensional framework. More precisely, an applic-

ation using the LASSO for estimation and selection of explanatory variables

will be shown. A wide range of applications can be found in the statistical lit-

erature, for example in the field of biostatistics, where large DNA microarray

[86][87], data-sets are analysed. In this work, we explore the usage of LASSO

in the context of time-series analysis with a less frequent application.

Electrical grids are usually complex networks of thousands of nodes

and thousands of lines [88]. As a consequence, large amounts of data are

collected everyday by system operators, electric-distribution companies and

generations companies. Additionally, increased modernization of electricity

networks are bringing real-time data to reality. Considering that smart grid

sensors can monitor several aspects of the system, e.g. nodal injection and

weather conditions, making sense of this huge amount of data will be the future

challenge for any system operator. More precisely, in this work, we focus on

the challenge of modeling renewable energy supply.

Technological development associated with environmental concern has

led to significant drop in renewable energy (RE) production costs, enabling

a significant increase on RE shares, as compared to traditional fossil fuel

generation, in the worldwide power system’s matrix. However, the seasonality

and variability intrinsic to these types of sources has become a challenge for

power system agents. This uncertainty has a great impact on unit commitment

and system planning. In a hydro-based power system, the capacity to anticipate

variations in natural water inflow is of major importance for operation.

This ability to properly forecast the increase of river’s inflow can result in

increased electric energy production due to enhanced flexibility in stored water

management. Balancing demand and supply, without causing operational cost

hikes, relies on the capacity of forecasting the renewable supplies, for instance,

wind production and hydro inflow. For energy market participants, predicting

the joint variability of these series is of most importance in their bidding

and contracting strategies. Therefore, forecasting/simulation of RE supply has
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become a valuable tool for power system agents both in the operation and

commercialization sector.

Several studies using time-series modeling on short-term wind power

are available [89–91]. Additionally, some work has been done using machine

learning techniques [92, 93]. The majority of the works focused on modeling

generated wind power per hour, mainly because most power systems perform

the dispatch at every hour. Some work [94] [95] on a monthly basis has also

been done. However, there is still a gap to be filled when it comes to the joint

study of wind and hydro power, particularly in the case of a high-dimensional

framework. This work addresses this problem, highlighting the particularities

of modeling a large amount of renewable power plants.

In power systems with high penetration of renewable resources, the tra-

ditional linear modeling framework fails to estimate the unknown parameters.

The high dimensionality curse arises due to the large number of generators,

and the number of unknown parameters can easily exceed the number of ob-

servations. In order to overcome such problems, the estimation of the unknown

parameters can be done under the assumption of sparsity of the regressors, i.e.,

the number of relevant regressors is much smaller than the number of potential

explanatory variables.

6.1
Proposed model

In this section, we propose a model for wind power and hydro inflow

monthly data using a multivariate time series approach. Given the physical

relationship between renewable resources it is expected that many power plants

affect each other intertemporally. Hence, we adopt a Vector Auto-Regressive

with eXogenous variables (VARX) [96]. This class of auto-regressive models has

been used in signal processing and econometrics, for stationary time-varying

processes. Due to the multivariate structure, the model is able to capture linear

interdependencies among several time series.

The exogenous variables can be composed by operative outputs of the

power system dispatch. In Brazil, the most important operative variables are

the reservoir inflows [97]. Given the Brazilian hydro based power system, the

amount of reservoir usage is able to summarize the state of the system, which

is related to energy prices. In view of the large size of the Brazilian system, the

system is divided in four nodal areas (North, South, Southeast and Northeast

subsystems). Each subsystem has its own storage capacity monitored by the

reservoir inflow. On a different system, other operative variables may arise such

as thermal power plant dispatch or energy spot prices.
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Wind power and hydro inflow at time t are represented by the vector

Yt ∈ Rk, where k is the sum of wind farms and hydro plants. The operative

variables are denoted by Xt ∈ Rr, where r represents the number of exogenous

variables, and ξt ∈ Rk is a vector of Gaussian noise. The unknown parameters

are c ∈ Rk a vector of intercepts, the Φi’s are k × k coefficients matrices, the

Θj’s are k × r coefficient matrices and Σ is a k × k covariance matrix.

Yt = c+

p∑
i=1

ΦiYt−i +

q∑
j=0

ΘjXt−j + ξt (6-1)

ξt∼N (0,Σ) ∀t = 1, ..., T (6-2)

Furthermore, the analysis of renewable energy historical data suggests

that variances and covariances also exhibit seasonal behavior assuming differ-

ent values across months. This particular case of heteroskedasticity is com-

monly observed on physical phenomena. For example, during dry periods river

inflow tends to decrease as well as inflow variability. In order to model these

dynamics, it is necessary to impose a structure on the residual covariance mat-

rix. Basically, it is necessary to relax the hypotheses of homoscedasticity and

allows a periodic variance behavior. For instance, on a monthly basis twelve

covariance matrices would describe the variance dynamics over a year. In this

sense, the covariance matrix can be expressed by Σm(t) = Am(t)A
>
m(t), where

m(t) ∈ {1, 2, 3, ..., 12} maps the temporal index t = 1, ..., T into the respective

months and Am(t)’s are k × k matrices.

ξt = Am(t)εt, εt∼N (0, I) (6-3)

Yt = c+

p∑
i=1

ΦiYt−i +

q∑
j=0

ΘjXt−j + Am(t)εt ∀ t = 1, ..., T (6-4)

Forecasting and simulations are done jointly for all elements of Yt. It is

expected that simulations, generated by such a model, are able to replicate

the seasonal pattern and preserve the observed correlation of the renewable

resources. For instance, complementarity between wind power and natural

water inflow has to be present in the majority of all generated scenarios.

6.2
Estimation Algorithm

The proposed model requires the estimation of a set of unknown para-

meters ψ = {c, {Φi}pi=1, {Θj}qj=1, {Am}12m=1}. In order to simplify the notation

the model (6-4) is redefined as follows. Firstly, β is a (12k2 + k + krq) × 1

vector such that β = vec([c Φ1 Φ2 ... Φ12 Θ1 ... Θq]). Secondly, Wt−1 is
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a sparse matrix with dimension k × (12k2 + k + krq) given by Wt−1 =

[1> Y >t−1 Y
>
t−2 ... Y

>
t−12 X

>
t ... X>t+1−q] ⊗ Ik×k, where ⊗ denotes the Kronecker

product.

Yt = Wt−1β + Am(t)εt (6-5)

Given the aforementioned heteroskedasticity, the estimation of unknown

parameters is not straightforward. As a consequence, traditional estimation

methods lead to unreliable results. In this context, the literature offers some

well-known methods for estimation under heteroskedasticity such as Weighted

Least Squares [98] or GARCH [99]. Since, in this particular case, the variance

has a periodic behavior we can design an ad hoc method based on the maximum

likelihood criteria. Initially, It is necessary to maximize the log-likelihood

function:

`(ψ) =
Tk

2
ln (2π) +

1

2

T∑
t=13

ln (|Σ−1m(t)|) (6-6)

− 1

2

T∑
t=13

(Yt −Wt−1β)>Σ−1m(t)(Yt −Wt−1β)

Obtaining the derivative of (6-6) with respect to β and {Σi}12i=1 leads to

the following nonlinear system:

Σ̂m =
T∑

t=13|m(t)=m

(Yt −Wt−1β) (Yt −Wt−1β)>

n
(6-7)

∀ m = 1, 2, ..., 12

β̂ =

[
T∑

t=13

W>
t−1Σ

−1
m(t)Wt−1

]−1 [ T∑
t=13

W>
t−1Σ

−1
m(t)Yt

]
(6-8)

Unlike in the homoscedastic case, such a system cannot be solved by

substitution. Several numerical methods for solving nonlinear systems are

available in the literature. The following algorithm is a newton based method

that computes fixed-points iteratively, i.e. a point of the function’s domain. The

initial condition for Σ̂0
m is set to the k × k identity matrix, then the solution

of (6-7) is computed on (6-8) and the solution of (6-8) is computed on (6-7).

This procedure is repeated recursively until a solution that satisfy both (6-7)

and (6-8) is fond.

At first sight, the fixed-point algorithm 4 can handle the estimation for

the model 6-4. However, for most of the instances the number of unknown

parameters is considerably large and may exceed the number of observations.
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Algorithm 4 Fixed-Point Method
iter ← 0
Σ̂0
m ← Ik×k ∀m = 1, 2, ..., 12

Obtain β̂0 from (6-8) using Σ̂0
m

while ||β̂iter − β̂iter−1||2 > tolerance do
iter ← iter + 1
Obtain Σ̂iter

m from (6-7) using β̂iter−1 ∀m = 1, 2, ..., 12
Obtain β̂iter from (6-8) using Σ̂iter

m

end while

For example, if six renewable power plants are being modeled, i.e. k = 6, the

vector β is 486-dimensional which is clearly high-dimensional. Thus, for the

reasons discussed in chapter 2, the fixed-point algorithm needs to be refined.

Firstly, given a high-dimensional framework the matrices Σm are usually

singular. Thus, the inverse matrices Σ−1m are obtained by the Moore-Penrose

pseudo-inverse [9]. At each iteration of the algorithm the pseudo-inverse is

calculated via Singular Value Decomposition. The method used to obtain all

eigenvalues and eigenvectors was the Jacobi eigenvalue algorithm [7], which

takes advantage of the symmetry of covariance matrices.

Secondly, it is necessary to introduce an `1-regularization in order to

induce sparsity on the estimation of β. In this fashion, just as the LASSO,

the estimation procedure can select which coefficients are more important

to explain the behavior of Yt over time. For convenience the Lagrangian

formulation `∗(β, {Σm}12m=1) = `(β, {Σm}12m=1)− λ||β||1 is used.

Accordingly, we now need to solve multiple fixed-point algorithms.

In other words, there will be a LASSO-like path of fixed-point algorithms

for different values of λ. In each iteration of the fixed-point, the problem

`(β, {Σm}12m=1) − λ||β||1 will be solved by quadratic programming techniques

as described on the fourth chapter.

Similarly to the LASSO, we can establish the minimum λ for which all

elements of β are zero (6-9). The Karush-Kuhn-Tucker conditions state that

on the optimal solution:

0 ∈ {2
T∑

t=13

W>
t−1Σ

−1
m(t)(Yt −Wt−1β)− λsign(β) : β ∈ Rk}

Where:

sign(βj) ∈


{+1} , if βj > 0

[−1,+1] , if βj = 0

{−1} , if βj < 0
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Then for β = 0 to be the optimal solution,

2
T∑

t=13

W>
t−1Σ

−1
m(t)Yt ∈ [−λ,+λ]

This will happen for every

λ ≥ λ∗ =

∣∣∣∣∣
∣∣∣∣∣2
∣∣∣∣∣
T∑

t=13

W>
t−1Σ

−1
m(t)Yt

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∞

(6-9)

Combining the aforementioned ideas we have the following estimation

algorithm:

Algorithm 5 Fixed-Point & `1-regularization

Σ̂0
m ← Ik×k ∀m = 1, 2, ..., 12

for λ = 0 to λ∗ do
iter ← 0
β̂0 = argmax{`∗(β, {Σ̂0

m}12m=1)}
while ||β̂iter − β̂iter−1||2 > tolerance do

iter ← iter + 1
Obtain Σ̂iter

m from (6-7) using β̂iter−1 ∀m = 1, ..., 12
Calculate the pseudo-inverse Σ−1m via SVD ∀m = 1, ..., 12
β̂iter = argmax{`∗(β, {Σ̂iter

m }12m=1)}
end while
Obtain BIC(λ) using β̂iter and {Σ̂iter

m }12m=1

end for

Finally, we select the parameters β̂ and {Σ̂m}12m=1 and λ which minimize

BIC(λ). After the estimation of unknown parameters it is possible to generate

consistent scenarios for wind production and hydro power via Monte-Carlo

[100] or Bootstrap [101]. Furthermore, the model can be used for forecasting

the potential renewable energy for the forthcoming months.

6.3
Brazilian Power System

The novel methodology was tested for a subset of the Brazilian power

system comprising 16 wind farms and 34 hydro plants. The time-series are

composed of monthly data from January 1981 to December 2011 totalizing

372 observations.

Wind energy is represented by the capacity factor (%), i.e. the percentage

of installed capacity (MW) that was generated (avgMW). Sixteen wind farms

were analyzed, most of them located in the South and the Northeast of Brazil.

It is well known that these regions are wind-rich areas. Furthermore, recent
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prospections have shown that the whole production capacity is greater then the

actual installed capacity of the entire Brazilian system. Opposed to short-term

observations, the wind power is stationary on a monthly basis.

The data for hydro power is composed of monthly mean river inflow

(m3/s) where hydro plants are situated. Available data from the Operator of

the National Electricity System (ONS) consisting of thirty-four rivers was used.

In the case of the Brazilian power system, hydro power is highly representative.

In 2009 according to ONS more than 80% of the generated energy came from

hydro power. Due to environmental concerns, the most recent hydro plants are

run-off river plants. These facts reinforce the interest in predicting river inflow

since run-off river plants have considerably smaller reservoirs.

The explanatory variables are represented by the reservoir inflows of the

main four Brazilian subsystems. Besides the inter-temporal observation, the

lagged observation, i.e. the former month observed of reservoir inflow is used.

To begin with, it is necessary to estimate the unknown parameters of the

VARX model. For the fifty power plants these parameters are β, a vector

30, 450 × 1, and twelve 50 × 50 covariance matrices. The estimation was

done by applying Algorithm 3 and choosing the best λ according to the BIC

criteria which was 16.7. The whole procedure has taken sixteen minutes on

an IntelrCore(TM) i7-3960C with a CPU of 3.3 GHz and 64 GB of RAM,

using Xpress-MP 7.5 under Mosel computer. An amount of 29,582 elements of

β were shrunk to zero. Which represents 97.15 % of the potential explanatory

variables.

The next step consists of generating scenarios for a long time horizon.

In this particular study the model will be used to project possible future

outcomes for the forthcoming four years. An amount of two thousand scenarios

were generated by re-injecting boostrapped residuals back into the model.

Techniques for simulating scenarios via bootstrap are described in detail on

[102] and [103].

Fig.6.1 and Fig.6.2 display the scenarios to a particular wind power plant

and one river water inflow. The purple shaded area correspond to the thirty-

one years of stacked historical data. Thereafter, the two thousand scenarios for

a four years horizons are stacked. Each sequence of colored point corresponds

to a different scenario over time. It is possible to notice that the model is able

to reproduce the seasonal pattern observed on the historical data. In addition,

the seasonal complementarity can be easily noticed through the four years of

simulated data.

More accurate graphs are presented to measure the quality of generated

scenarios. The following figures Fig.6.3 and Fig.6.4 compare, on a monthly
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Figure 6.1: Simulated scenarios for water inflow at Barra dos Coqueiros.

basis, historical data to the quantiles of the two thousand scenarios. Fig.6.3

refers to Icaraizinho’s wind farm, located in the Northeastern area of Brazil,

and Fig.6.4 refers to the natural water inflow of the hydro plant of Tocantins,

located on the North region of Brazil. The stacked points represent the

historical data for each month, the black line represents the median, the blue

line represents the upper 95% quantile and the lower 5% quantile and the red

line represents the maximum and minimum for each month of the generated

scenarios.

Firstly, most of the historical data is centered on the median. Secondly,

one can verify that most of the monthly observed data are within the blue line

band which represents a good fit for the generated scenarios.

Forecasting results are presented in TABLE 6.1 and on TABLE 6.2 using

three well-known measures of accuracy. To begin with, the R2 is obtained for

each time-series. Also known as coefficient of determination, the R2 ranges

from 0 to 1 and corresponds to the relative amount of total variation that can

be explained by the model. Next, it is measured the Mean Absolute Percentage

Error (MAPE) and Mean Absolute Error (MAE). Both these metrics are based

on the absolute deviation between the observed data and the forecast.

The analyses of TABLE 6.1 and TABLE 6.2 suggest that the model
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Figure 6.2: Simulated scenarios for Praia do Morgado’s wind farm.

has shown a reasonable forecasting accuracy. However a few time series were

particularly poorly predicted, such as Itaipu and Peixe Angical. The time-

series of Itaipu corresponds to the Itaipu Dam, one of the largest hydroelectric

power station in the world with 14,000 MW installed capacity. Due to these

considerable dimensions it is very likely that it’s underlying stochastic process

differs from most part of the others natural river inflow.

These predictions could be used to formulate hedging techniques to

reduce the generator exposure, e.g. a wind farm that has a minor forecasted

generation for the next month. In order to avoid the volatility of the spot

markets, one could define a hedging plan by means of financial instruments

such as options purchasing or swaps. An alternative approach consists of energy

storage methods, like pumped storage reservoirs or compressed air facilities. A

comparison of such strategies has been made by [104] regarding the uncertainty

of wind power generation.

Furthermore, it could be useful to enforce an efficient management of

thermal energy on unit commitment and economic dispatch. Considering that

most thermal units only support a gradual change of temperature, if the model

forecasts lower renewable energy supply then thermal units could be brought

on-line in advance. The influence of wind power on thermal system operation

DBD
PUC-Rio - Certificação Digital Nº 1221681/CB



Chapter 6. Case Study 2: Renewable Energy Stochastic Model 60

Figure 6.3: Quantiles of Icaraizinho.

is explored by [105] regarding the Dutch power system.

Particularly on the Brazilian power system, the generated scenarios can

be useful for the system expansion and economic dispatch. The suggested

model could be adapted to NEWAVE [97], the current dispatch methodology

adopted in Brazil. In this fashion, the aforementioned simulations could be

used as an input to the multistage stochastic optimization problem [106]. As a

consequence, it is expected that the energy price will respond more precisely

to fluctuations on the renewable generation.
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Figure 6.4: Quantiles of Tocantins.

Table 6.1: Forecasting accuracy measures

Wind Farms MAE MAPE R2

Alegria 1 3.76 21.59 0.75

Alegria 2 7.14 18.33 0.63

Bons Ventos 6.45 21.49 0.76

Canoa Quebrada 8.21 40.64 0.81

Cerro Chato 4.04 11.08 0.51

Cerro Chato 2 4.14 11.16 0.51

Icaraizinho 7.3 26.67 0.88

Mangue Seco 1 4.6 14.36 0.74

Mangue Seco 2 3.26 9.01 0.51

Mangue Seco 3 3.03 8.39 0.55

Mangue Seco 4 3.77 14.28 0.79

Praia do Morgado 4.18 21.46 0.93

Praia Formosa 4.59 20.47 0.86

Rio do Fogo 5.12 18.38 0.68

Sangradouro 5.43 16.59 0.64

Volta do Rio 5.82 22.61 0.76
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Table 6.2: Forecasting accuracy measures

Natural Water Inflow MAE MAPE R2

Salto Verdinho 39.69 14.99 0.69

Vigario 9.4 7.18 0.64

Itaguaçu 45.56 16.52 0.75

Pereira Passos 22.44 18.37 0.61

Teles Pires 202.17 9.07 0.88

Santana 11.83 10.83 0.62

Ferreira Gomes 105.33 13.18 0.85

Ilha dos Pombos 221.27 36.11 0.59

Santa Cećılia 16.37 15.33 0.57

Belo Monte 1191.5 14.95 0.85

Dardanelos 58.16 28.61 0.91

Salto 34.97 15.26 0.66

Santo Antonio do Jari 238.19 15.96 0.83

Tocos 5.15 50.86 0.53

Olho D’Água 16.04 16.21 0.58

Jupia 2192.4 22.76 0.72

Coaracy Nunes 196.21 20.72 0.85

Manso 34.34 17.59 0.72

Ponte de Pedra 6.77 9.26 0.77

Samuel 79.32 65.65 0.82

Santa Isabel 755.25 17.15 0.92

Balbina 110.36 19.5 0.68

Estreito Tocantins 1190.2 21.2 0.67

Lajeado 716.42 26.2 0.48

Tucurui 1420.9 12.06 0.9

Jirau 2258.9 25.03 0.91

Foz do Rio Claro 51.86 18.42 0.79

Guilman Amorim 25.46 30.88 0.54

Itaipu 2732.7 18.54 0.45

Itiquira 11.97 11.74 0.75

Peixe Angical 669.52 35.42 0.43

Porto Estrela 77.42 52.27 0.49

Barra dos Coqueiros 54.18 24.74 0.65

Cacu 45.06 18.58 0.79
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6.4
Conclusion

Firstly, the proposed methodology, based on the maximum likelihood

and the `1-regularization, was capable of estimating parameters for high-

dimensional models within a reasonable time. The proposed model was able to

generate scenarios that reproduces the observed dynamics, such as seasonality

and complementarity between hydro and wind power.

Further research also suggest evaluating the model performance on differ-

ent power systems. Specially on power systems with considerable participation

of wind power. given the growing of solar energy installations, it is relevant to

include solar plants to the proposed model. Positive results could be used to

foster installation of solar energy.

Since the model is originally designed to tackle high-dimensional data,

an application to smart grids seems natural. Considering that smart grid

sensors can monitor nodal injection and weather conditions, a large amount

of real-time data could be contemplated by the model. In this way, scenario

simulations would provide the grid with relevant information to consider

renewable energy uncertainty on the power management.
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7
Discussions

We applied the LASSO shrinkage method to two problems from different

fields. In both cases, this technique was successful tool for developing solutions

to complex models. This result suggests that a proper usage of `1-norm can

be the key ingredient for solving a wide variety of large-scale problems. In the

following, we point out two important aspects that can foster future research

regarding `1-regularization.

7.1
Tailor-made solution methods

Since the applications of `1-regularization usually are large-scale prob-

lems, the algorithm efficiency is extremely critical. In this regard, certain re-

searches are proposing better solution methods. In several situations, the al-

gorithms presented at the forth chapter may benefit from a particular structure

of the problem.

Some variations of traditional methods is available at the optimization

literature. Works like [107] and [84] suggests custom interior-points methods.

On the other hand, the work of [108] suggests a block coordinate descent

strategy.

On the `1 Level-Slope Filter, given the special structure of the design

matrix, it is very likely that the method would benefit from a custom coordinate

descent algorithm. For the VARX with the balancing inequality, an efficient

algorithm, like a custom interior-points method, is extremely important since

quadratic programming methods are usually slow for large scale constrained

problems.

7.2
Multiresponse regularization

Despite the fact that the proposed methodology for the VARX has led to

reasonable results, there is a clear imbalance between the predict power among

the endogenous variables. Note for instance the differences between the R2 and

MAPE for Santa Isabel and Porto Estrela. Some level of divergence is expected
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considering that some variables are more well-behaved than others. However,

a model with a more homogeneous prediction accuracy would be preferable.

In this sense, there is a need to develop a regularization method that can take

into account that the model is multiresponse. This would allow some kind of

control over the shrinkage in between the different responses.
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[15] C. Epprecht, D. Guegan, Á. Veiga, et al., Comparing variable selection

techniques for linear regression: LASSO and Autometrics, 2013.

[16] H. Hotelling, Analysis of a complex of statistical variables into principal

components., Journal of educational psychology, vol. 24, no. 6,

p. 417, 1933.

[17] E. Bair, T. Hastie, D. Paul, and R. Tibshirani, Prediction by supervised

principal components, Journal of the American Statistical Associ-

ation, vol. 101, no. 473, 2006.

[18] D. Paul, E. Bair, T. Hastie, and R. Tibshirani, ” Preconditioning”

for feature selection and regression in high-dimensional problems, The

Annals of Statistics, pp. 1595–1618, 2008.

[19] D. L. Donoho, De-noising by soft-thresholding, Information Theory,

IEEE Transactions on, vol. 41, no. 3, pp. 613–627, 1995.

[20] A. E. Hoerl and R. W. Kennard, Ridge regression: Biased estimation

for nonorthogonal problems, Technometrics, vol. 12, no. 1, pp. 55–67,

1970.

[21] L. Breiman, Better subset regression using the nonnegative garrote,

Technometrics, vol. 37, no. 4, pp. 373–384, 1995.

[22] R. Tibshirani, Regression shrinkage and selection via the lasso, Journal

of the Royal Statistical Society. Series B (Methodological),

pp. 267–288, 1996.

[23] J. Friedman, T. Hastie, and R. Tibshirani, Sparse inverse covariance

estimation with the graphical lasso, Biostatistics, vol. 9, no. 3, pp. 432–

441, 2008.

DBD
PUC-Rio - Certificação Digital Nº 1221681/CB



Bibliography 68

[24] Y. Kim, H. Choi, and H.-S. Oh, Smoothly clipped absolute deviation on

high dimensions, Journal of the American Statistical Association,

vol. 103, no. 484, pp. 1665–1673, 2008.

[25] E. Candes and T. Tao, The Dantzig selector: Statistical estimation when

p is much larger than n, The Annals of Statistics, pp. 2313–2351,

2007.

[26] D. L. Donoho, Compressed sensing, Information Theory, IEEE

Transactions on, vol. 52, no. 4, pp. 1289–1306, 2006.

[27] D. L. Donoho and M. Elad, Optimally sparse representation in general

(nonorthogonal) dictionaries via `1 minimization, Proceedings of the

National Academy of Sciences, vol. 100, no. 5, pp. 2197–2202, 2003.

[28] A. M. Bruckstein, D. L. Donoho, and M. Elad, From sparse solutions of

systems of equations to sparse modeling of signals and images, SIAM

review, vol. 51, no. 1, pp. 34–81, 2009.

[29] J. A. Tropp, Just relax: Convex programming methods for identifying

sparse signals in noise, Information Theory, IEEE Transactions

on, vol. 52, no. 3, pp. 1030–1051, 2006.

[30] T. Hastie, R. Tibshirani, J. Friedman, T. Hastie, J. Friedman, and

R. Tibshirani, The elements of statistical learning, vol. 2. Springer,

2009.

[31] H. D. Grossman, The twelve-coin problem, Scripta Mathematica,

vol. 11, pp. 360–363, 1945.

[32] D. T. Lee, JPEG 2000: retrospective and new developments, Proceed-

ings of the IEEE, vol. 93, no. 1, pp. 32–41, 2005.

[33] S. Zheng and W. Liu, An experimental comparison of gene selection

by Lasso and Dantzig selector for cancer classification, Computers in

biology and medicine, vol. 41, no. 11, pp. 1033–1040, 2011.

[34] C. S. Kubrusly, The elements of operator theory. Springer, 2011.

[35] E. J. Candes and T. Tao, Decoding by linear programming, Information

Theory, IEEE Transactions on, vol. 51, no. 12, pp. 4203–4215, 2005.

[36] E. J. Candès, J. Romberg, and T. Tao, Robust uncertainty principles:

Exact signal reconstruction from highly incomplete frequency informa-

tion, Information Theory, IEEE Transactions on, vol. 52, no. 2,

pp. 489–509, 2006.

DBD
PUC-Rio - Certificação Digital Nº 1221681/CB



Bibliography 69

[37] J. A. Tropp, Greed is good: Algorithmic results for sparse approxima-

tion, Information Theory, IEEE Transactions on, vol. 50, no. 10,

pp. 2231–2242, 2004.

[38] L. Welch, Lower bounds on the maximum cross correlation of signals

(Corresp.), Information Theory, IEEE Transactions on, vol. 20,

no. 3, pp. 397–399, 1974.

[39] D. Bertsimas and J. N. Tsitsiklis, Introduction to linear optimization,

1997.

[40] L. A. Wolsey, Integer programming, vol. 42. Wiley New York, 1998.

[41] B. K. Natarajan, Sparse approximate solutions to linear systems, SIAM

journal on computing, vol. 24, no. 2, pp. 227–234, 1995.

[42] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization:

algorithms and complexity. Courier Dover Publications, 1998.

[43] R. C. Thompson, System Identification Via Basis Pursuit. PhD thesis,

Arizona State University, 2012.

[44] R. M. Karp, Reducibility among combinatorial problems.

Springer, 1972.

[45] P. Frossard, P. Vandergheynst, R. M. Figueras i Ventura, and M. Kunt, A

posteriori quantization of progressive matching pursuit streams, Signal

Processing, IEEE Transactions on, vol. 52, no. 2, pp. 525–535, 2004.

[46] R. Gribonval and E. Bacry, Harmonic decomposition of audio signals

with matching pursuit, Signal Processing, IEEE Transactions on,

vol. 51, no. 1, pp. 101–111, 2003.

[47] T. Nguyen and A. Zakhor, Matching pursuits based multiple description

video coding for lossy environments in Image Processing, 2003. ICIP

2003. Proceedings. 2003 International Conference on, vol. 1,

pp. I–57, IEEE, 2003.

[48] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, Robust face

recognition via sparse representation, Pattern Analysis and Machine

Intelligence, IEEE Transactions on, vol. 31, no. 2, pp. 210–227, 2009.

[49] E. J. Candès and M. B. Wakin, An introduction to compressive sampling,

Signal Processing Magazine, IEEE, vol. 25, no. 2, pp. 21–30, 2008.

DBD
PUC-Rio - Certificação Digital Nº 1221681/CB



Bibliography 70

[50] E. Candes and J. Romberg, l1-magic: Recovery of sparse sig-

nals via convex programming, URL: www. acm. caltech.

edu/l1magic/downloads/l1magic. pdf, vol. 4, 2005.

[51] M. Elad, Sparse and redundant representations: from theory to

applications in signal and image processing. Springer, 2010.

[52] K. B. Athreya and S. N. Lahiri, Measure theory and probability

theory. Springer, 2006.

[53] R. Koenker, Quantile regression. No. 38, Cambridge university press,

2005.

[54] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge

university press, 2004.

[55] H. Zou, The adaptive lasso and its oracle properties, Journal of the

American statistical association, vol. 101, no. 476, pp. 1418–1429,

2006.

[56] M. Yuan and Y. Lin, Model selection and estimation in regression with

grouped variables, Journal of the Royal Statistical Society: Series

B (Statistical Methodology), vol. 68, no. 1, pp. 49–67, 2006.

[57] T. T. Wu, Y. F. Chen, T. Hastie, E. Sobel, and K. Lange, Genome-wide

association analysis by lasso penalized logistic regression, Bioinformat-

ics, vol. 25, no. 6, pp. 714–721, 2009.

[58] R. Tibshirani, Regression shrinkage and selection via the lasso: a retro-

spective, Journal of the Royal Statistical Society: Series B (Stat-

istical Methodology), vol. 73, no. 3, pp. 273–282, 2011.

[59] S. S. Chen, D. L. Donoho, and M. A. Saunders, Atomic decomposition by

basis pursuit, SIAM journal on scientific computing, vol. 20, no. 1,

pp. 33–61, 1998.

[60] K. Siedenburg and M. Dörfler, Audio denoising by generalized time-

frequency thresholding in Audio Engineering Society Conference:

45th International Conference: Applications of Time-Frequency

Processing in Audio, Audio Engineering Society, 2012.

[61] M. Elad and M. Aharon, Image denoising via learned dictionaries and

sparse representation in Computer Vision and Pattern Recogni-

tion, 2006 IEEE Computer Society Conference on, vol. 1, pp. 895–

900, IEEE, 2006.

DBD
PUC-Rio - Certificação Digital Nº 1221681/CB



Bibliography 71

[62] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear program-

ming: theory and algorithms. John Wiley & Sons, 2013.

[63] R. R. Picard and R. D. Cook, Cross-validation of regression models,

Journal of the American Statistical Association, vol. 79, no. 387,

pp. 575–583, 1984.

[64] J. Shao, Linear model selection by cross-validation, Journal of the

American statistical Association, vol. 88, no. 422, pp. 486–494, 1993.

[65] S. Chand, On tuning parameter selection of lasso-type methods-A Monte

Carlo study in Applied Sciences and Technology (IBCAST), 2012

9th International Bhurban Conference on, pp. 120–129, IEEE,

2012.

[66] G. Schwarz, Estimating the dimension of a model, The annals of

statistics, vol. 6, no. 2, pp. 461–464, 1978.

[67] Friedman, Jerome and Hastie, Trevor and Tibshirani, Robert, GLMnet

for Matlab -

[68] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al.,

Scikit-learn: Machine learning in Python, The Journal of Machine

Learning Research, vol. 12, pp. 2825–2830, 2011.

[69] I. Adler, M. G. Resende, G. Veiga, and N. Karmarkar, An implementa-

tion of Karmarkar’s algorithm for linear programming, Mathematical

programming, vol. 44, no. 1-3, pp. 297–335, 1989.

[70] P. Wolfe, The simplex method for quadratic programming, Economet-

rica: Journal of the Econometric Society, pp. 382–398, 1959.

[71] B. Efron, T. Hastie, I. Johnstone, R. Tibshirani, et al., Least angle

regression, The Annals of statistics, vol. 32, no. 2, pp. 407–499, 2004.

[72] S. Weisberg, Applied linear regression, vol. 528. John Wiley & Sons,

2005.

[73] R. J. Tibshirani, The lasso problem and uniqueness, Electronic Journal

of Statistics, vol. 7, pp. 1456–1490, 2013.

[74] W. J. Fu, Penalized regressions: the bridge versus the lasso, Journal of

computational and graphical statistics, vol. 7, no. 3, pp. 397–416,

1998.

DBD
PUC-Rio - Certificação Digital Nº 1221681/CB



Bibliography 72

[75] S. K. Shevade and S. S. Keerthi, A simple and efficient algorithm for

gene selection using sparse logistic regression, Bioinformatics, vol. 19,

no. 17, pp. 2246–2253, 2003.

[76] I. Daubechies, M. Defrise, and C. De Mol, An iterative thresholding al-

gorithm for linear inverse problems with a sparsity constraint, Com-

munications on pure and applied mathematics, vol. 57, no. 11,

pp. 1413–1457, 2004.
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