

Daniel Duque Estrada Fernandes de Melo

Modelo analítico 3D de corte e sua aplicação na obtenção de propriedades de rocha a partir de testes de cortador simples

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica do Departamento de Engenharia Mecânica da PUC-Rio.

Orientador: Prof. Arthur Martins Barbosa Braga Co-orientador: Prof. Sérgio Augusto Barreto da Fontoura

Rio de Janeiro Abril de 2014

Daniel Duque Estrada Fernandes de Melo

Modelo analítico 3D de corte e sua aplicação na obtenção de propriedades de rocha a partir de testes de cortador simples

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica do Departamento de Engenharia Mecânica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Arthur Martins Barbosa Braga Orientador Departamento de Engenharia Mecânica - PUC-Rio

> Prof. Sérgio Augusto Barreto da Fontoura Co-orientador Departamento de Engenharia Civil - PUC-Rio

> > Prof. João Carlos Ribeiro Plácido Petrobrás/PUC-Rio

Dr. Affonso Marcelo Fernandes Lourenço Baker-Hughes

> Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico-Científico - PUC-Rio

> > Rio de Janeiro, 8 de Abril 2014

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Daniel Duque Estrada Fernandes de Melo

Graduou-se em Engenharia de Petróleo na PUC-Rio em Dezembro de 2011. Durante a graduação foi bolsista de pesquisa do programa PRH-ANP. Em 2012 ingressou no curso de Mestrado em Engenharia Mecânica com ênfase em Petróleo e Gás na PUC-Rio desenvolvendo dissertação de mestrado na linha de pesquisa de Perfuração em Engenharia de Petróleo.

Ficha Catalográfica

Melo, Daniel Duque Estrada Fernandes de

Modelo analítico 3D de corte e sua aplicação na obtenção de propriedades de rocha a partir de testes de cortador simples / Daniel Duque Estrada Fernandes de Melo ; orientador: Arthur Martins Barbosa Braga ; co-orientador: Sérgio Augusto Barreto da Fontoura. – 2014.

108 f. : il. (color.) ; 30 cm

Dissertação (mestrado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica, 2014. Inclui bibliografia

1. Engenharia Mecânica – Teses. 2. Corte em rocha. 3. Ângulos de falha. 4. Angulos de corte. I. Braga, Arthur Martins Barbosa. II. Fontoura, Sérgio Augusto Barreto da. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III. Título.

PUC-Rio - Certificação Digital Nº 1213330/CA

CDD: 621

PUC-Rio - Certificação Digital Nº 1213330/CA

Dedico aos meus familiares pelo apoio e incentivo.

Agradecimentos

Agradeço a meus familiares pelo apoio e incentivo durante a dissertação;

Agradeço ao meu orientador, Arthur Braga, e ao meu co-orientador, Sérgio Fontoura, pela orientação e transferência de conhecimento;

Agradeço a CNPq e à PUC-Rio pelos auxílios concedidos, sem os quais essa dissertação não seria possível.

Agradeço aos meus amigos da PUC-Rio pela parceria nos momentos de estudo;

Agradeço aos doutores que participaram da Comissão Examinadora.

Resumo

Melo, Daniel Duque Estrada Fernandes; Braga, Arthur Martins Barbosa (Orientador); Fontoura, Sergio Augusto Barreto (Co-Orientador). **Modelo analítico 3D de corte e sua aplicação na obtenção de propriedades de rocha a partir de testes de cortador simples**, Rio De Janeiro, 2014, 108p, Dissertação de Mestrado - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

A mecânica do corte de rochas vem sendo estudada a fim de proporcionar um melhor entendimento do processo de perfuração. A energia de corte é principalmente dependente da orientação do cortador e das propriedades da rocha. Foi previamente relatado na literatura que a energia específica de corte é fortemente dependente dos ângulos de inclinação posterior (backrake) e lateral (siderake) da broca. Embora existam boas tentativas de desenvolver uma solução analítica para descrever o processo de corte da rocha, os efeitos do ângulo de inclinação lateral não são levados em conta na maioria dos modelos. Esta dissertação propõe uma solução analítica para o corte de rocha considerando ambos os ângulos de inclinação relevantes, tanto o backrake quanto o siderake. Um modelo de corte é proposto considerado cortadores afiados e desgastados, e as soluções obtidas são corroboradas através de uma investigação experimental com base no corte de argilas. Um estudo paramétrico para duas rochas hipotéticas é realizado empregando modelo proposto, mostrando 0 novo que backrakes e/ou siderakes maiores tendem a aumentar exponencialmente a energia específica de corte. Todavia, a influência do backrake é fortemente dependente do ângulo de atrito interno da rocha. Os efeitos da profundidade de corte e pressão de confinamento também são investigados. Além disso, os efeitos do desgaste do cortador são apresentados através do diagrama de E-S.

Palavras-Chave

Corte em Rochas; Ângulos de corte; Propriedades de rochas.

Abstract

Melo, Daniel Duque Estrada Fernandes; Braga, Arthur Martins Barbosa (Advisor); Fontoura, Sergio Augusto Barreto (Co-Advisor). **3D Analytical Model for Cutting Applied in the Determination of Rock Properties Through Simple Cutting Tests**, Rio de Janeiro, 2014, 108p, MSc. Dissertation - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro

Rock cutting mechanics has been studied in order to better understand drilling process in cutter scale. The cutting energy is mainly dependent of cutter orientation and rock properties. It was previously reported in the literature that specific energy is strongly dependent of *backrake* and *siderake*. Although there have been good attempts to develop an analytical solution to describe the cutting process, the *siderake* effects are not taken into account. This Thesis proposes an analytical solution for the rock cutting considering both *backrake* and *siderake*. The proposed model is considered for sharp and blunt cutters and the solution agrees with preliminary experimental investigation based on the cutting action of clays. With the new model, a parametric study for two hypothetical rocks is made, showing that higher *backrakes* and/or *siderakes* increase the specific energy in an exponential-like trend. The *backrake* effect is strongly dependent of the rock internal friction angle though. The effects of cutter bluntness are presented through the E-S diagram.

Keywords

Rock Cutting; Siderake and Backrake Angles, Rock Properties.

Sumário

1 Introdução		
1.1 Definição do problema		
1.2 Objetivo do trabalho		
1.3 Escopo do trabalho		
2 Revisão Bibliográfica		
2.1 Corte ortogonal em metais		
2.2 Corte oblíquo em metais		
2.3 Corte em rocha 2D		
2.4 Corte em rocha 3D		
2.5 Experimentos de single cutter no corte de rochas	38	
2.6 Estimativa de propriedades de rocha a partir de testes de	40	
conador simples	48	
3 Modelo analítico 3D para corte em rocha	54	
3.1 Cortador afiado a pressão atmosférica	54	
3.2 Cortador atiado com pressão confinante e pressão de poros	64	
3.3 Cortador desgastado	66	
3.4 Solução para o caso 3D	68	
4 Efeitos dos parâmetros de teste na energia específica	72	
4.1. Efeitos do <i>backrake</i>	72	
4.2. Eteitos do <i>siderake</i>	//	
4.3. Efeitos da protundidade de corte	81	
4.4. Eleitos da pressão commanie	84 85	
	00	
5 Metodología para obtenção de propriedades de rocha	89	
6 Conclusões e sugestões para trabalhos futuros	91	
6.1 Conclusões	91	
6.2 Sugestões para trabalhos futuros	92	
Referência Bibliográfica	94	
Apêndice A	97	
Apêndice B		

Lista de Figuras

Figura 2.1: Bandas de cisalhamento geradas pelo corte ortogonal	
em metais. Extraído de Atkins (2003).	21
Figura 2.2: Análise de forças no corte ortogonal em metais proposta	
por Merchant (1945).	23
Figura 2.3: Tipos de corte em metais: a) Corte ortogonal; b) Corte	
oblíquo.	24
Figura 2.4: Esquema de corte oblíguo em metal proposto por	
Shamoto e Altintas (1999) com base nas velocidades.	26
Figura 2.5: Diagrama de velocidades para análise do ângulo de	
deslocamento do chip proposto por Shamoto e Altintas (1999).	26
Figura 2.6: Esquema de corte ortogonal em rocha proposto por	
Evans (1962)	27
Figura 2.7: Forca de corte em função da exposição do cortador	
para diferentes regimes de corte. Extraído de Detournav et al	
(1998)	28
Figura 2.8: Forcas atuantes em um cortador desgastado. Extraído	20
de Detournay e Defourny (1992)	29
Figura 2.9: Diagrama E-S proposto por Adachi <i>et al</i> para o corte	20
2D em rocha	31
Figura 2.10: Esquema de tensões atuantes no bloco de rocha	01
falbado proposto por Gerbaud <i>et al.</i> (2006)	32
Figura 2.11: Esquema de forças para o corte 2D em rocha quando	02
há pressão confinante. Extraído de Bahmani <i>et al.</i> (2012)	34
Figura 2.12: Esquema de forças para o corte 2D em rocha quando	01
há adomeração de material na frente do cortador. Extraído de	
Bahmani et al. (2012)	35
Figura 2.13: Esquema de forças, suas direções e definição dos	00
ângulos de fricção apresentados por Coudyzer e Bichard (2005)	36
Figura 2.14: Esquema de forças 3D proposto por Bajaboy (2012)	37
Figura 2.14: Esqueina de friçção avial em função do <i>backrake</i> para	07
diferentes siderakes obtido por Coudyzer e Richard (2005)	20
Figura 2 16: Ângulo de fricção lateral em função do siderake para	00
diferentes backrakes obtido por Coudyzer e Bichard (2005)	20
Figura 2.17: Epergia específica de corte em função do backrake	00
obtida por Bajaboy (2012)	20
Figura 2.18: Energia específica em função do <i>backrake</i>	59
adimensionalizada nela energia de um cortador a 15º backrako	
obtida por lianvona (2012)	۸۵
	40

Figura 2.19: Energia específica em função do <i>siderake</i> para	
diferentes pressões de confinamento, obtida por Rajabov (2012).	40
Figura 2.20: Forca tangencial em função da forca axial de corte	
obtida por Rajabov (2012).	41
Figura 2.21: Energia específica em função da profundidade de	
corte para diferentes <i>backrakes</i> obtida por Rajabov (2012).	42
Figura 2.22: Energia de corte (expressa por em função da forca	
dividida pela área) em função da profundidade de corte, obtida por	
Jianvong (2012).	42
Figura 2 23: Forca de corte em função da exposição do cortador	
para diferentes rochas. Extraído de Bichard <i>et al.</i> (2012)	43
Figura 2.24: Energia de corte em função da área do cortador para	.0
diferentes geometrias de cortador. Extraído de Richard <i>et al</i>	
(2010)	43
Figura 2 25: Energia específica associada ao corte em diferentes	10
pressões confinantes e comparação com a Besistência Confinada	
da rocha para Mármore de Cartago. Extraído de Bafatian <i>et al</i>	
(2009)	44
Figura 2.26. Adomeração de material a frente do cortador após o	• •
experimento Extraído de Bafatian <i>et al.</i> (2009)	45
Figura 2 27: Efeitos da pressão confinante na energia específica	10
para Eolhelho Mancos (Extraído de Detournay e Tan (2002)	45
Figura 2.28: Plano contendo todas as soluções possíveis para o	10
caso 2D de corte em rocha. Extraido de Adachi <i>et al.</i> (1996)	46
Figura 2 29: Resultados obtidos para Arenitos Red Wildmoor	10
representados através do diagrama E-S para cortadores afiados e	
desgastados Extraido de Adachi <i>et al.</i> (1996)	47
Figura 2.30: Resultados para a determinação da linha de corte para	
diferentes tipos de rocha. Extraido de Adachi <i>et al.</i> (1996)	47
Figura 2 31: Belação entre energia intrínseca de corte a 20°	.,
backrake e a resistência não confinada da rocha. Extraído de	
Bichard et al. (1998)	49
Figura 2.32: Comparação entre resistência não confinada da rocha	
e energia específica de corte para Arenitos não saturados. Extraído	
de Schei <i>et al.</i> (2000).	50
Figura 2.33: Comparação entre resistência não confinada da rocha	00
e energia específica de corte para Carbonatos não saturados.	
Extraído de Schei <i>et. al.</i> (2000).	50
Figura 2 34: Belação entre energia intrínseca a um <i>backrake</i> de 15°	00
e resistência não confinada da rocha para diferentes tipos de rocha	
Extraído de Richard <i>et. al.</i> (2012).	51
Figura 2.35: Belação, entre força e área exposta do cortador para	5.
um cortador circular de 13mm e 20° <i>backrake</i> . Ambas	
an contacor circular de romme zo bactrare. Ambas	

adimensionalizadas pelo comprimento de cortador em contato com	
a rocha. Extraido de Jianyoung (2012).	52
Figura 2.36: Relação entre força e área exposta do cortador para	
um cortador circular de 8mm e 15° backrake. Ambas	
adimensionalizadas pelo comprimento de cortador em contato com	
a rocha. Extraido de Jianyoung (2012).	53
Figura 3.1: Esquema de forças 3D (forças normal, de fricção axial e	
de fricção lateral) para corte em rocha.	55
Figura 3.2: Esquema de forças 3D (forças normal, de fricção total)	
para corte em rocha.	59
Figura 3.3: Esquema de forças 3D no plano de falha da rocha	
(forças normal e de cisalhamento).	62
Figura 3.4: Diagrama de forças que atuam no plano de falha da	
rocha e suas relações com a força resultante de corte.	62
Figura 3.5: Representação 2D das direções da pressão de fundo de	
poço e pressão de poros atuantes na falha da rocha.	65
Figura 3.6: Comparação entre a solução 3D e a solução 2D do	
ângulo normal de falha para diferentes backrakes e diferentes	
ângulos de fricção interno da rocha.	70
Figura 3.7: Representação do bloco falhado durante o corte oblíquo	
em rocha a partir das soluções analíticas.	71
Figura 4.1: Efeitos do backrake na energia específica para	
cortadores com diferentes siderakes no corte da rocha 1.	74
Figura 4.2: Efeitos do backrake na energia específica para	
cortadores com diferentes siderakes no corte da rocha 2.	74
Figura 4.3: Efeitos do backrake na energia específica para	
cortadores com diferentes siderakes no corte da rocha 1. Energia	
Adimensionalisada em função da energia para <i>backrake</i> de 20°.	76
Figura 4.4: Efeitos do backrake na energia específica para	
cortadores com diferentes <i>siderakes</i> no corte da rocha 2. Energia	
Adimensionalisada em função da energia para <i>backrake</i> de 20°.	76
Figura 4.5: Efeitos do siderake na energia específica para	
cortadores com diferentes backrakes no corte da rocha 1.	78
Figura 4.6: Efeitos do siderake na energia específica para	
cortadores com diferentes backrakes no corte da rocha 2.	78
Figura 4.7: Efeitos do siderake na energia específica para	
cortadores com diferentes backrakes no corte da rocha 1. Energia	
Adimensionalisada em função da energia para <i>siderake</i> de 0°.	80
Figura 4.8: Efeitos do siderake na energia específica para	
cortadores com diferentes backrakes no corte da rocha 2. Energia	
Adimensionalisada em função da energia para siderake de 0°.	80
Figura 4.9: Efeitos da exposição do cortador na força de corte para	
o corte da rocha 1 e rocha 2.	82

Figura 4.10: Efeitos da exposição do cortador na energia específica para o corte da rocha 1 e rocha 2.	83
Figura 4.11: Efeitos da pressão confinante na energia específica para o corte da rocha 1 e rocha 2.	85
Figura 4.12: Efeitos do <i>backrake</i> no diagrama E-S para o corte da rocha 1.	86
Figura 4.13: Efeitos do <i>siderake</i> no diagrama E-S para o corte da rocha 1	87
Figura 4.14: Efeitos do <i>backrake</i> no diagrama E-S para o corte da	00
Figura 4.15: Efeitos do <i>siderake</i> no diagrama E-S para o corte da rocha 2.	88
Figura 5.1: Fluxograma para obtenção de propriedades de rocha a partir de dados experimentais de teste de cortador simples.	90
Figura A.1: Esquema de forças 2D no corte ortogonal em rocha.	97
Figura B.1: 'Máquina experimental de corte' montada para validar a solução do ângulo lateral de falha obtido.	102
suporte de cortador.	103
Figura B.3: Pinos de segurança para evitar a rotação do suporte de cortador e furos que determinam a direção do <i>siderake</i> .	104
Figura B.4: Demonstração do teste de cortador a ser realizado em argila.	104
Figura B.5: Formação do chip e estrias na superfície da argila no início do corte para um cortador com 30° <i>siderake</i> .	105
Figura B.6: Direção da falha da rocha no meio do corte para um cortador com 30° <i>siderake</i> .	105
Figura B.7: Direção da falha da rocha no início do corte e sua direção com relação à direção do movimento para um cortador com	
30° <i>siderake.</i> Figura B 8: Vista superior da falha da recha no moio do corto o sua	106
direção para um cortador com 30° <i>siderake</i> .	106
Figura B.9: Final do corte e direção da falha da argila para um cortador com 30° <i>siderake</i> .	107
Figura B.10: Vista de trás do corte demonstrando a cunha formada pelo cortador com 30° <i>siderake</i> .	107
Figura B.11: Início do corte para um cortador com 60° <i>siderake</i> e orientação da falha da argila.	108
Figura B.12: Início do corte para um cortador com 60° <i>siderake</i> e orientação da falha da argila em relação a direção de movimento.	108

Lista de tabelas

Tabela 4.1: Efeitos do <i>backrake</i> na energia específica para a	
rocha 1.	73
Tabela 4.2: Efeitos do <i>backrake</i> na energia específica para a rocha 2.	75
Tabela 4.3: Efeitos do <i>siderake</i> na energia específica para a rocha 1.	77
Tabela 4.4: Efeitos do <i>siderake</i> na energia específica para a rocha 2.	79
Tabela 4.5: Efeitos da profundidade de corte na força tangencial	
e na energia específica.	83
Tabela 4.6: Efeitos da pressão de confinamento na energia	
específica.	84

Lista de símbolos

A lista de símbolos que se segue é válida apenas após o Capítulo 2 (Revisão Bibliográfica).

θ	Backrake
β	Siderake
arphi	Ângulo de fricção interno da rocha
α_n	Ângulo de falha normal
α_s	Ângulo de falha lateral
$lpha^*$	Ângulo entre as forças normal e cisalhante atuantes no plano de falha
γ	Ângulo entre força normal no plano de falha e vetor normal do plano de falha
ψ_n	Ângulo de fricção normal (axial)
ψ_s	Ângulo de fricção lateral
λ_n	Ângulo de fricção axial proposto por Coudyzer e Richard (2005)
λ_s	Ângulo de fricção lateral proposto por Coudyzer e Richard (2005)
ζ_n	Ângulo entre as forças axial e tangencial
ζ_s	Ângulo entre as forças radial e tangencial
ε	Energia específica de corte
Ε	Energia total de corte
S	Energia de penetração
k	Coeficiente de fricção de Mohr-Coulomb, equivalente a tan $arphi$
k_w	Coeficiente de fricção entre a zona desgastada do cortador e a superfície da rocha
k_f	Coeficiente de fricção entre o chip e a face do cortador
η	Ângulo de direção do chip

P_b	Pressão de confinamento ou pressão de fundo de poço
P_p	Pressão de poros
$ au_0$	Coesão da rocha
τ	Tensão cisalhante no plano de falha da rocha
σ	Tensão normal no plano de falha da rocha
F_c^H	Força tangencial ou horizontal na face do cortador
F_c^V	Força axial ou vertical na face do cortador
F_c^S	Força radial ou lateral na face do cortador
F_c^N	Força normal na face do cortador
F_c^{FA}	Força de fricção axial na face do cortador
F_c^{FS}	Força de fricção lateral na face do cortador
F_c^F	Força de fricção total na face do cortador
F_r^N	Força normal no plano de falha da rocha
F_r^S	Força cisalhante no plano de falha da rocha
F_w^H	Força de horizontal no desgaste do cortador
F_w^V	Força de vertical no desgaste do cortador
$\sum F^H$	Força tangencial total
$\overline{\sum} F^V$	Força axial total
A_r	Área do plano de falha da rocha
A_t	Área transversal do plano de falha da rocha
R_c	Força resultante no cortador
<i>R</i> _w	Força resultante no desgaste