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PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL



Monografias em Ciência da Computação, No. 14/11 ISSN: 0103-9741
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Abstract. The Capacitated Arc Routing Problem (CARP) stands among the hardest com-
binatorial problems to solve or to find high quality solutions. This becomes even more
true when dealing with large instances. This paper investigates methods to improve on
lower and upper bounds of instances on graphs with over two hundred vertices and
three hundred edges, dimensions that, today, can be considered of large scale. On the
lower bound side, we propose to explore the speed of a dual ascent heuristic to generate
capacity cuts. These cuts are next improved with a new exact separation enchained to the
linear program resolution that follows the dual heuristic. On the upper bound, we ap-
ply a modified Iterated Local Search procedure to Capacitated Vehicle Routing Problem
(CVRP) instances obtained through a transformation from the CARP original instances.
Computational experiments were carried out on the set of large instances from Brandão
and Eglese and also on the regular size set. The experiments on the latter allows evalu-
ating the quality of the proposed lower bounds, while the ones on the former presents
improved lower and upper bounds to all the set of larger instances.

Keywords: Arc Routing, Integer Programming, Dual Ascent, Capacity Cuts, Metaheuris-
tics

Resumo. O Capacitated Arc Routing Problem (CARP) é ums dos problemas combinatórios
mais difı́ceis de ser resolvido ou de encontrar soluções com alta qualidade. Isto se torna
mais destacado ao se tratar de instâncias grandes. Este trabalho apura métodos que mel-
horam os limites inferiores e superiores de instâncias em grafos com mais de duzentos
vértices e trezentas arestas, dimensões as quais, nos dias de hoje, podem ser consider-
adas de larga escala. Para os limites inferiores, é proposto explorar a velocidade de uma
heurı́stica dual ascent a fim de gerar cortes de capacidade. Estes cortes são aprimora-
dos utilizando-se uma nova separação exata ligada à resolução de um programa linear
executada após a heurı́stica dual. Para os limites superiores, uma busca local iterada
modificada é aplicada em instâncias do Capacitated Vehicle Routing Problem (CVRP) obti-
das via uma transformação das instâncias originais do CARP. Experimentos computa-
cionais foram feitos no conjunto de instâncias de Brandão e Eglese e também no conjunto
clássico. Os experimentos neste último permite avaliar a qualidade dos limites inferiores
propostos, enquanto os experimentos no primeiro conjunto apresenta melhorias tanto
nos limites inferiores quanto nos superiores para todo o conjunto de instâncias grandes.

Palavras-chave: Roteamento em Arcos, Programação Inteira, Dual Ascent, Cortes de Ca-
pacidade, Metaheurı́sticas
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1 Introduction

The Capacitated Arc Routing Problem (CARP) can be defined as follows. Let G = (V, E)
be an undirected graph, where V and E are the vertex and edge set respectively. There
is a special vertex called depot (usually vertex 0) where a set I of identical vehicles with
capacity Q is located. Each edge in E has a cost c : E → Z+ and a demand d : E → Z+

0 .
Let ER = {e ∈ E : de > 0} be the set of required edges. The objective is to find a set of
routes, one for each available vehicle, which minimizes the total traversal cost satisfying
the following constraints: (i) every route starts and ends at the depot; (ii) each required
edge must be visited exactly once; (iii) the total load of each vehicle must not exceed Q.

This problem can arise in many real life situations. According to Wølhk [1], some of
the applications studied in the literature are garbage collection, street sweeping, winter
gritting, electric meter reading and airline scheduling.

The CARP is NP-hard and it was first proposed by Golden and Wong in 1981 [2].
Since then, several solution approaches were proposed in the literature involving algo-
rithms based on heuristics, metaheuristics, cutting plane, column generation, branch-
and-bound, among others.

In 2003, Belenguer and Benavent [3] proposed a mathematical formulation for the
CARP which makes use of two families of cuts as constraints, the odd-edge cutset cuts and
the capacity cuts. With this formulation and other families of cuts, they devised a cutting
plane algorithm in order to obtain good lower bounds for the known instance datasets of
the CARP. Before this work, the best known CARP lower bounds were found mainly by
heuristic algorithms.

Since the work from Belenguer and Benavent, the best known lower bounds were
found using exact algorithms. In 2004, Ahr [4] devised a mixed-integer formulation using
an exact separation of capacity cuts. However, due to memory restrictions, the author did
not manage to apply his algorithm in all known instances, which illustrates the difficulty
in separating such cuts.

The main drawback of the exact approaches is the fact of being prohibitive on larger
instances. Up to now, the larger instance solved to optimality is the egl-s3-c from the
eglese instance dataset, proposed almost 20 years ago by Li [5] and Li and Eglese [6]. This
instance has 140 vertices and 190 edges, 159 of these required ones, and it was solved
by Bartolini et al. in 2011 [7] using a cut-and-column technique combined with an ex-
act algorithm based on a set partitioning approach. Other recent works using exact ap-
proaches which solved to optimality instances from eglese instance dataset are those of
Bode and Irnich [8], which used a cut-first branch-and-price-second exploiting the spar-
sity of the instances, and Martinelli et al. [9], which used a branch-cut-and-price with
non-elementary routes.

In their work of 2008, Brandão and Eglese [10] proposed a new set of CARP instances,
called egl-large, containing 255 vertices, 375 edges and 347 or 375 required edges. They
ran the path-scanning heuristic from Golden [11] and compared the results with their
deterministic tabu search, giving the first upper bounds for this instance dataset. In 2009,
Mei et al. [12] improved these upper bounds using a repair-based tabu search algorithm.
To the best of our knowledge, there are no lower bounds reported in the literature for this
instance dataset.

The objective of this paper is to provide a methodology capable of obtaining good
lower and upper bounds for larger sets of instances. In order to find the first lower
bounds for the egl-large instance dataset, we devise a dual ascent heuristic to speed up
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a cutting plane algorithm which uses a new exact separation of the capacity cuts and a
known exact separation of the odd edge cutset cuts. The new upper bounds are found
using a known transformation to the Capacitated Vehicle Routing Problem (CVRP) and
then applying an Iterated Local Search (ILS) based heuristic.

In Section 2, we present the mathematical formulation needed for the dual ascent
heuristic. In Section 3, we explain the known exact separation algorithms and we also
introduce a new exact separation for the capacity cuts. In Section 4, we describe our dual
ascent heuristic and how it generates cuts to hot-start the cutting plane algorithm. In Sec-
tion 5, we explain the known transformation to the CVRP and the ILS heuristic. Finally,
conclusions are given in Section 6.

2 The One-Index Formulation

In their work, Belenguer and Benavent [3] developed a CARP formulation, usually re-
ferred as the One-Index Formulation [13]. In contrast to other approaches, this formulation
is devised using only variables which represent the deadheading of an edge. An edge
is deadheaded when a vehicle traverses this edge without servicing it. Besides that, all
the vehicles are aggregated. This means that the formulation is not complete, i.e., it may
result in an infeasible solution for the problem. Moreover, even when a given solution is
feasible, it is a very hard task to find a complete solution. Nevertheless, these issues do
not prevent such formulation of giving very good lower bounds in practice.

For each deadheaded edge e, there is an integer variable ze representing the number
of times the edge e was deadheaded by any vehicle. Let S ⊆ V\{0} be the set of all
vertices except the depot. We can define δ(S) = {(i, j) ∈ E : i ∈ S ∧ j /∈ S} as being
the set of edges which have one endpoint inside S and the other outside S. Similarly,
δR(S) = {(i, j) ∈ ER : i ∈ S ∧ j /∈ S} is the set of required edges which have one endpoint
inside S and the other outside S. Analogously, E(S) = {(i, j) ∈ E : i ∈ S ∧ j ∈ S} and
ER(S) = {(i, j) ∈ ER : i ∈ S ∧ j ∈ S} are sets with vertices that have edges with both
endpoints inside S.

Given a vertex set S, with |δR(S)| odd, it is easy to conclude that at least one edge in
δ(S) must be deadheaded because each vehicle entering the set S must leave and return
to the depot. This is the principle of the odd-edge cutset cuts:

∑
e∈δ(S)

ze ≥ 1 ∀S ⊆ V\{0}, |δR(S)| odd (1)

Furthermore, we can define a lower bound on the number of vehicles needed to ser-
vice the demands in δR(S)∪ ER(S), k(S) = d ∑

e∈δR(S)∪ER(S)
de/Qe. These k(S) vehicles must

enter and leave the set S, in such a way that at least 2k(S)− |δR(S)| times an edge in δ(S)
will be deadheaded. If this value is positive, we can define the following capacity cut:

∑
e∈δ(S)

ze ≥ 2k(S)− |δR(S)| ∀S ⊆ V\{0} (2)

Since the left-hand side of both (1) and (2) cuts are the same, we can represent them in
the formulation using just one constraint. This can be done by introducing α(S), which
is defined as follows:
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α(S) =
{

max{2k(S)− |δR(S)|, 1} if |δR(S)| is odd,
max{2k(S)− |δR(S)|, 0} if |δR(S)| is even

(3)

These two families of cuts define the one-index formulation:

Min ∑
e∈E

ceze (4)

s.t. ∑
e∈δ(S)

ze ≥ α(S) ∀S ⊆ V\{0} (5)

ze ∈ Z+
0 ∀e ∈ E (6)

The objective function (4) minimizes the cost of the deadheaded edges. Constraints
(5) are the (1) and (2) cuts together. In order to obtain the total cost for the problem, one
needs to add the costs of the required edges (∑e∈ER

ce) to the solution cost.

3 Exact Cut Separation

3.1 Odd-Degree Cutset Cuts Separation

The exact separation of the odd-degree cutset cuts (1) can be done in polynomial time
using the Odd Minimum Cutset Algorithm of Padberg and Rao [14]. We believe that the
application of the algorithm is not immediate and therefore we decided to provide a
brief description of the separation routine, which is as follows.

The odd minimum cutset algorithm creates a Gomory-Hu Tree [15] using just the ver-
tices with odd |δR({v})|, called terminals. This tree represents a maximum flow tree, i.e.,
the maximum flow of any pair of vertices is represented on this tree. In order to obtain
the maximum flow between a pair of vertices, one only needs to find the least cost edge
on the unique path between these two vertices. This edge also represents the minimum
cut between them. Hence, to determine a violated odd-degree cutset cut, one needs to
find any edge with a value less than one. This can be done during the execution of the
algorithm, but we prefer to run it until the end to find as many violated cuts as possible.

This whole operation can be done running at most |V| − 1 times any maximum flow
algorithm. In this work we use the Edmonds-Karp Algorithm [16], which takesO(|V|.|E|2),
resulting in a total complexity of O(|V|2.|E|2).

3.2 Capacity Cuts Separation

3.2.1 Ahr’s Exact Separation

The only exact separation routine for the capacity cuts available in the CARP literature
was proposed by Ahr [4] in 2004. This algorithm runs a mixed-integer formulation sev-
eral times, one for each possible quantity of vehicles. This approach was inspired on the
exact separation of the capacity cuts for the CVRP proposed by Fukasawa et al. [17]. The
separation for the CARP was used to identify violated cuts on a complete formulation. As
we only wish to separate the cuts, we changed the objective function of the mixed-integer
formulation to use it with the one-index formulation.

3



The formulation is composed by three types of variables. The first one is the binary
variable he, ∀e ∈ E, which is 1 when exactly one endpoint of e is inside the cut (what we
call cut edge) and 0 otherwise. The second variable is the binary variable fe, ∀e ∈ E, which
is 1 when both endpoints of e are inside the cut (called inner edge) and 0 otherwise. The
last variable is the binary variable si, ∀i ∈ V, which is 1 if vertex i is inside the cut and 0
otherwise. These variables are sufficient to describe a capacity cut. Thus, the following
formulation is created for each possible quantity of vehicles k = 0...d∑e∈ER

de/Qe − 1:

Min ∑
e∈E

z̃ehe + ∑
e∈ER

he (7)

s.t. he − si + sj ≥ 0 ∀e = {i, j} ∈ E (8)
he + si − sj ≥ 0 ∀e = {i, j} ∈ E (9)
−he + si + sj ≥ 0 ∀e = {i, j} ∈ E (10)

si − fe ≥ 0 ∀e = {i, j} ∈ E (11)
sj − fe ≥ 0 ∀e = {i, j} ∈ E (12)

si + sj − fe ≤ 1 ∀e = {i, j} ∈ E (13)

∑
e∈δ({i})

(he + fe)− si ≥ 0 ∀i ∈ V (14)

he + fe ≤ 1 ∀e ∈ E (15)

∑
e∈ER

de (he + fe) ≥ kQ + 1 (16)

s0 = 0 (17)
he, fe ∈ {0, 1} ∀e ∈ E (18)

si ∈ [0, 1] ∀i ∈ V\{0} (19)

The objective function (7) uses the solution of the one-index formulation z̃e and min-
imizes the total value of the cut edges plus the number of cut edges that are required.
Constraints (8), (9) and (10) bind the variables si and he. Analogously, constraints (11),
(12) and (13) bind the variables si and fe. The constraints (14) assure that if a vertex i is
inside the cut, at least one edge adjacent to i is a cut edge or an inner edge. Constraints
(15) assure that an edge e cannot be a cut edge and an inner edge at the same time. Con-
straints (16) assure that the total demand of the cut found is at least kQ + 1. Constraint
(17) forbids the inclusion of the depot in a cut. Note that because of the association of si
with he and fe, the variables si need not to be integral.

Given the value of the objective function Z∗ associated to a solution in a given iteration
k, the cut which can be generated using the si variables is a violated capacity cut if Z∗ <
2(k− 1). Therefore, the problem needs to be solved to optimality only when we aim at
finding the most violated capacity cut.

This separation routine has the disadvantage of running several MIPs, one for every
possible quantity of vehicles. Depending on the instance, this number may be up to
42. Besides that, in his work, Ahr could not manage to run this separation for all CARP
instances due to memory restrictions.

3.2.2 New Exact Separation

The exact separation suggested by Ahr requires solving several MIPs because it is not
possible to build a mixed-integer formulation that directly represents the ceiling function
(d·e) of the capacity cut. In order to deal with this issue, we developed a new formulation
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which is capable to separate exactly a capacity cut considering any possible quantity of
vehicles. Our approach was inspired by the exact separation of the Chvátal-Gomory cuts
proposed by Fischetti and Lodi in 2007 [18].

Our mixed-integer formulation uses the same three variables presented in Ahr’s for-
mulation, that is, he, fe and si. Besides these variables, we also consider an integer vari-
able κ indicating the value of k(S) in the formulation and a continuous slack variable γ
representing the fractional difference of applying the ceiling function to obtain κ. This
difference must be within the range [0, 1− δ], for a small δ > 0.

In addition, we use the constraints (8), (9), (10), (11), (12), (13), (14), (15) and (17) from
Ahr’s formulation. These constraints are required to depict a capacity cut. Following, we
write our formulation omitting these constraints:

Max 2κ − ∑
e∈ER

he − ∑
e∈E

z̃ehe (20)

s.t. κ = ∑
e∈E

de(he+ fe)
Q + γ (21)

s0 = 0 (22)
he, fe ∈ {0, 1} ∀e ∈ E (23)

si ∈ [0, 1] ∀i ∈ V\{0} (24)
κ ∈ Z+

0 (25)
γ ∈ [0, 1− δ] (26)

The objective function (20) maximizes the violation of the capacity cut, while con-
straint (21) limits the difference between κ and the fractional value using the slack vari-
able γ. This formulation can perform better in practice than Ahr’s formulation.

3.3 Computational Experiments

The exact separation algorithms were implemented in C++, using Windows Vista 32-bits,
Visual C++ 2010 Express Edition and IBM Cplex 12.2. Tests were conducted on an Intel
Core 2 Duo 2.8 GHz, with 4 GB of RAM and using only one core (IBM Cplex 12.2 uses
both cores when running the branch-and-cut for the mixed-integer program). For the
sake of comparison, we applied the algorithms to the classical instance dataset eglese [5,6].
This dataset was constructed using as underlying graph regions of the road network of
the county of Lancashire (UK), where cost and demands are proportional to the length of
the edges and most of the instances have non-required edges.

For both algorithms, we first applied the separation on the linear relaxation of the
one-index formulation. Once the linear optimum was found, the ze variables were then
shifted to integer and the separation continued until the integer optimum was obtained.
For our exact separation, we used δ = 0.0001. Results are shown in Table 1.

Columns Name, |V|, |ER|, |E| and |I| show the name, number of vertices, required
edges, total edges and number of vehicles of each instance, respectively. Column LB is
the known lower bound. Column Cost shows the cost of the separation of (1) and (2)
cuts, which is the same for all algorithms. Columns Cap, Odd and Time show the total
number of capacity cuts, the total number of odd-degree cutset cuts and the total time
in seconds for each algorithm. As one can notice, our algorithm performs better on all
instances, except for s1-b.
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Table 1: Exact cut separation results for eglese dataset

Ahr’s Exact Sep Our Exact Sep

Name |V| |E| |ER| |I| LB Cost Cap Odd Time Cap Odd Time

e1-a 77 98 51 5 3548 3527 228 2 35.974 267 2 25.873
e1-b 77 98 51 7 4498 4468 312 9 48.871 310 38 29.735
e1-c 77 98 51 10 5595 5513 305 0 48.974 349 0 38.906
e2-a 77 98 72 7 5018 4995 196 2 30.499 165 2 14.014
e2-b 77 98 72 10 6305 6273 217 18 37.753 233 59 25.008
e2-c 77 98 72 14 8335 8165 282 26 52.565 237 5 31.638
e3-a 77 98 87 8 5898 5898 164 117 42.982 117 107 11.715
e3-b 77 98 87 12 7729 7649 210 60 49.191 153 54 18.682
e3-c 77 98 87 17 10244 10138 205 8 51.440 184 19 20.672
e4-a 77 98 98 9 6408 6378 116 47 22.242 93 50 6.516
e4-b 77 98 98 14 8935 8838 153 22 33.287 117 10 11.914
e4-c 77 98 98 19 11493 11383 215 9 51.063 159 8 19.065
s1-a 140 190 75 7 5018 5010 654 0 314.841 878 0 296.828
s1-b 140 190 75 10 6388 6368 810 0 437.358 1087 0 479.417
s1-c 140 190 75 14 8518 8404 1040 0 768.406 1009 0 431.669
s2-a 140 190 147 14 9825 9737 344 266 364.681 362 229 279.811
s2-b 140 190 147 20 13017 12901 478 31 569.686 462 109 415.037
s2-c 140 190 147 27 16425 16274 561 21 1414.899 493 98 1216.596
s3-a 140 190 159 15 10146 10083 322 133 350.966 296 194 282.400
s3-b 140 190 159 22 13648 13568 497 21 560.915 391 21 315.105
s3-c 140 190 159 29 17188 17019 485 46 2390.941 447 56 1144.586
s4-a 140 190 190 19 12144 12026 295 26 284.699 227 26 116.047
s4-b 140 190 190 27 16103 16001 471 69 729.154 353 57 448.918
s4-c 140 190 190 35 20430 20256 515 22 1080.952 427 122 545.269

mean 9703 9620 379 40 407.181 368 53 259.393

The algorithms were not tested on the large scale instance dataset because the com-
plete separation of the capacity cuts does not run in reasonable time without some hot-
start technique, as we will discuss next.

4 Dual Ascent Heuristic

Even with the improvement on the exact separation of the capacity cuts, the separation
still takes a long time when applied to large instances. However, if we use a heuristic
approach to generate valid cuts to be used as a hot-start for the separation algorithm, the
number of iterations of the separation routine could reduce drastically. In view of this,
we propose a dual ascent heuristic.

A dual ascent heuristic is usually devised to obtain good lower bounds for a problem.
A good example of this type of approach can be found in the work of Wong [19] on the
Steiner Tree Problem. When this heuristic is applied over the CARP one-index formula-
tion, it can generate several cuts on each iteration. If good cuts are found during these
iterations, they can be very helpful for the exact separation.
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4.1 Main Algorithm

The main algorithm of the dual ascent heuristic works on the dual of the linear relaxation
of the one-index formulation:

Max ∑
S⊆V\{0}

α(S)πS (27)

s.t. ∑
S⊆V\{0}:e∈δ(S)

πS ≤ ce ∀e ∈ E (28)

πS ∈ R+
0 ∀S ⊆ V\{0} (29)

In this formulation, the variables πS are associated with constraints (5) and constraints
(28) are associated with ze variables. These latter constraints impose a limit on the dual
variables. The sum of the dual variables associated with the cuts which have an edge
e ∈ δ(S) must not exceed the cost of this edge e. This is the base of our dual ascent
heuristic.

As already mentioned, the objective of our dual ascent heuristic is to find a lower
bound for the CARP. Therefore, it starts with the trivial lower bound LB = ∑e∈ER

ce. At
each iteration, several cuts are generated using a strategy that will be further discussed.
Among these cuts, only one is chosen using an arbitrary criterion. After testing different
kinds of choices, a good cut for us is one with a large α(S) or, in the case of a tie, one with
a large contribution for the objective function. The contribution of a cut can be calculated
as presented in (30).

σ(S) = α(S).min{ce : e ∈ δ(S)} (30)

Given the selected cut S∗, the heuristic updates its lower bound (LB = LB + σ(S∗))
and it also changes the dual formulation to reflect the use of this cut. Knowing the value
of the variable πS∗ = min{ce : e ∈ δ(S∗)} associated with the cut, each constraint of the
dual formulation where e ∈ δ(S∗) must have its right-hand side modified to ce − πS∗ . As
a result, the variable πS∗ is removed from the formulation.

This latter operation has a direct effect on the graph G. The update of the right-hand
side of the constraints (28) is the same of reducing the costs of the edges e ∈ δ(S). When
an edge e = (i, j) is saturated, i.e., the edge has the cost reduced to 0, the heuristic con-
tracts the vertices i and j as shown in Fig. 1. This contraction guarantees that no saturated
edges appear as cut edges on future iterations of the heuristic.

The next iteration of the heuristic is then applied over the new graph. When the graph
has just one vertex (the depot), the heuristic stops. Notice that at each iteration, at least
one edge is saturated. Due to this fact, the heuristic performs at most |V| − 1 iterations.

4.2 Cut Generation

As pointed before, the dual ascent heuristic can only give good lower bounds if good
cuts are chosen. Therefore, the cut generation strategies are the most important part of
the heuristic. Any strategy can be used within our heuristic. After some preliminary
experiments, we decided to turn attention to four different strategies. When one of the
strategies generates a previously generated cut or a cut S with α(S) = 0, this new cut is
discarded.
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Figure 1: Example of vertex contraction: vertices 2 and 4 are contracted, becoming one
vertex.

4.2.1 Simple Cuts

In the simple cuts strategy, we create a set of cuts S = {v}, ∀v ∈ V\{0}, which contain
only one vertex. Such vertex cannot be the depot. Notice that as the graph is modified
during the iterations of the heuristic, a vertex at some iteration might not be a single
vertex on the original graph. Examples of this strategy are shown in Fig. 2. This strategy
takes time O(|V|) and generates at most |V| − 1 cuts.
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Figure 2: Examples of the Simple Cuts strategy.

4.2.2 Complete Cuts

In the complete cuts strategy, we create a set of cuts S = V\{0, v}, ∀v ∈ V, which, for each
vertex v ∈ V (including the depot), contains all the vertices of the graph except v and the
depot. Analogously to the previous strategy, the vertex left out of the cut might not be a
single vertex at a given iteration of the heuristic. Examples of this strategy are shown in
Fig. 3. This strategy takes time O(|V|2) and generates at most |V| cuts.
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Figure 3: Examples of the Complete Cuts strategy.

4.2.3 Connected Cuts

The connected cuts strategy inserts vertices in the cut using a breadth-first search approach.
Firstly, it chooses a random size for the cut between 2 and |V| − 2, as all the cuts of size
1, |V| − 1 and |V| are generated in the first two strategies. Secondly, it chooses a random
vertex (excluding the depot) to start the search. Each time the breadth-first search finds
a new vertex, this vertex is added to the cut. The search stops when the size of the cut is
equal to the desired size. This operation is repeated |E| times. The whole operation takes
time O(|E|(|V|+ |E|)) and generates at most |E| cuts.

4.2.4 MST Cuts

The MST cuts strategy starts by generating the Minimum Spanning Tree (MST) of the
graph. Each edge of the MST defines two vertex set on the graph. Those which do not
contain the depot is then generated as a cut (see Fig. 4). Using the Kruskal’s Algorithm [20]
for MST, along with any search algorithm, this strategy takes timeO(|E|log|V|) and gen-
erates at most |V| − 1 cuts.
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Figure 4: Example of a MST cut defined by edge (0, 1). The minimum spanning tree is shown
by dashed edges.
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4.3 Computational Experiments

The dual ascent heuristic was implemented using the same configuration of the exact
separation algorithms. As previously stated, the eglese instance dataset was used in order
to compare the running times of the exact separation algorithms with and without the
dual ascent heuristic as hot-start. In Table 2, the first 6 columns show the same informa-
tion from Table 1. The next 3 columns, Cost, Cuts and Time show the cost, the number
of cuts and the total time of the dual ascent heuristic, respectively. The last four columns,
Cost, Cap, Odd and Time show the cost, total number of capacity cuts, the total number of
odd-degree cutset cuts and the total time in seconds of the dual ascent together with our
exact separation, respectively.

Table 2: Dual Ascent results for eglese dataset

Dual Ascent DA + Our

Name |V| |E| |ER| |I| LB Cost Cuts Time Cost Cap Odd Time

e1-a 77 98 51 5 3548 3468 4368 0.082 3527 0 0 0.392
e1-b 77 98 51 7 4498 4294 5093 0.085 4468 46 0 12.277
e1-c 77 98 51 10 5595 5345 4643 0.075 5513 29 0 15.198
e2-a 77 98 72 7 5018 4834 4996 0.089 4995 15 0 2.279
e2-b 77 98 72 10 6305 6165 4716 0.082 6273 36 0 7.614
e2-c 77 98 72 14 8335 7752 5370 0.085 8165 45 0 13.004
e3-a 77 98 87 8 5898 5715 5163 0.090 5898 50 0 8.979
e3-b 77 98 87 12 7729 7412 4599 0.084 7649 59 0 13.206
e3-c 77 98 87 17 10244 9769 4719 0.082 10138 50 1 16.257
e4-a 77 98 98 9 6408 6237 4419 0.081 6378 13 0 1.703
e4-b 77 98 98 14 8935 8681 5079 0.085 8838 22 0 5.914
e4-c 77 98 98 19 11493 10940 5139 0.082 11383 33 0 11.748
s1-a 140 190 75 7 5018 4693 14843 0.482 5010 72 0 55.607
s1-b 140 190 75 10 6388 5850 15994 0.539 6368 180 0 308.441
s1-c 140 190 75 14 8518 7983 20068 0.634 8404 116 0 221.561
s2-a 140 190 147 14 9825 9411 16026 0.561 9737 57 0 124.812
s2-b 140 190 147 20 13017 12431 17613 0.602 12901 67 0 163.043
s2-c 140 190 147 27 16425 15715 18153 0.604 16274 124 0 774.481
s3-a 140 190 159 15 10146 9608 14609 0.515 10083 101 0 186.893
s3-b 140 190 159 22 13648 13190 16767 0.572 13568 79 0 169.424
s3-c 140 190 159 29 17188 16491 18648 0.601 17019 103 0 931.588
s4-a 140 190 190 19 12144 11721 14912 0.530 12026 40 0 45.324
s4-b 140 190 190 27 16103 15557 16854 0.570 16001 95 6 388.003
s4-c 140 190 190 35 20430 19767 17697 0.594 20256 94 0 477.917

mean 9702 9293 10854 0.325 9620 64 0 164.819

These results show the improvement obtained using the cuts of the dual ascent heuris-
tic in the exact separation. In addition to the lower running time, one can notice a de-
crease in the separation of the cuts, more prominent in the almost total absence of sepa-
ration of odd-degree cutset cuts.

As pointed before, with the use of the dual ascent heuristic, we were capable of run-
ning the exact separation for the egl-large instance dataset, proposed by Brandão and
Eglese in 2008 [10]. The results are shown in Table 3. This table uses the same columns
from Table 2, except for column LB because there are no known lower bounds available
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for this instance dataset. Furthermore, in contrast to what was done in the eglese dataset,
we only performed the separation on the linear relaxation of the one-index formulation,
interrupting the execution when the linear optimum was achieved. The continuous val-
ues were rounded up to the next integer.

Table 3: Dual Ascent results for egl-large dataset

Dual Ascent DA + Our

Name |V| |E| |ER| |I| Cost Cuts Time Cost Cap Odd Time

g1-a 255 375 347 20 927232 54246 4.219 970495 329 319 3205.015
g1-b 255 375 347 25 1044780 58936 4.514 1085097 356 160 3502.042
g1-c 255 375 347 30 1153372 59753 4.548 1201030 427 468 10752.462
g1-d 255 375 347 35 1263641 69159 5.329 1325317 546 249 9458.474
g1-e 255 375 347 40 1384581 73761 5.676 1461469 591 262 16463.889
g2-a 255 375 375 22 1020539 54511 4.287 1061103 276 195 2896.446
g2-b 255 375 375 27 1129794 59239 4.356 1173286 355 206 3798.149
g2-c 255 375 375 32 1252044 62286 4.697 1295036 284 105 4587.657
g2-d 255 375 375 37 1360453 67949 5.193 1430267 528 96 7296.234
g2-e 255 375 375 42 1479110 73621 5.694 1557159 562 73 12406.700

mean 1201555 63347 4.851 1256026 426 214 7436.707

5 Iterated Local Search Heuristic

With a view of improving the existing upper bounds for the CARP large-scale instances,
we implemented an ILS [21] based heuristic which was originally proposed by Penna et
al. [22] for solving the Heterogeneous Fleet Vehicle Routing Problem (HFVRP). However,
instead of modifying the algorithm to solve CARP instances, we applied a procedure
that transforms a CARP instance into a CVRP instance. Some transformation routines
are available in the literature (see for example Pearn et al. [23], Longo et al. [24], Baldacci
and Maniezzo [25]). In this work we decided to make use of the one developed in [25].
Since the HFVRP includes the CVRP as a special case when all vehicles are identical, we
only had to perform minor adaptations in the original heuristic.

5.1 The ILS-RVND Heuristic

The multi-start heuristic, called ILS-RVND, combines the ILS approach with a local search
procedure based on the Variable Neighborhood Descent [26] with Random neighborhood
ordering (RVND) [27]. The two main parameters of this heuristic are the number of it-
erations (MaxIter) and the number of consecutive perturbations without improvements
(MaxIterILS).

The initial solutions are generated using two insertion strategies, namely: (i) Sequen-
tial Insertion Strategy, in which a single route is considered at a time; and (ii) Paral-
lel Insertion Strategy, in which all routes are considered at once. Two insertion criteria
were adopted, specifically: (i) Modified Cheapest Insertion Criterion, in which the in-
sertion cost g of customer k between customers i and j in route u is given by g (k) =(

cu
ik + cu

kj − cu
ij

)
− γ

(
cu

0k + cu
k0

)
, where γ ∈ {0.00, 0.05, . . . , 1.70} is a parameter whose in-

terval was empirically calibrated in [27]; and (ii) Cheapest Insertion Criterion, where the
insertion cost g is given by g (k) = cu

ik.
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The RVND procedure is composed by the following six inter-route neighborhood
structures. Shift(1,0), a customer k is transferred from a route r1 to a route r2. Swap(1,1),
permutation between a customer k from a route r1 and a customer l, from a route r2.
Shift(2,0), two adjacent customers, k and l, are transferred from a route r1 to a route r2.
This move can also be seen as an arc transferring. In this case, the move examines the
transferring of both arcs (k, l) and (l, k). Swap(2,1), permutation of two adjacent cus-
tomers, k and l, from a route r1 by a customer k′ from a route r2. As in Shift(2,0), we con-
sider both arcs (k, l) and (l, k). Swap(2,2), permutation between two adjacent customers,
k and l, from a route r1 by another two adjacent customers k′ and l′, belonging to a route
r2. We consider the four possible combinations of exchanging arcs (k, l), (l, k), (k′, l′) and
(l′, k′). Cross, the arc between adjacent customers k and l, belonging to a route r1, and
the one between k′ and l′, from a route r2, are both removed. Next, an arc is inserted
connecting k and l′ and another is inserted linking k′ and l. In case of improvement we
perform a intensification in the modified routes using the following five classical Trav-
eling Salesman Problem neighborhood structures. Exchange, permutation between two
customers. 2-opt, two nonadjacent arcs are deleted and another two are added in such a
way that a new route is generated. Reinsertion, one customer is removed and inserted
in another position of the route. Or-opt2, two adjacent customers are removed and in-
serted in another position of the route. Or-opt3, three adjacent customers are removed
and inserted in another position of the route. The solution spaces of all neighborhoods
are exhaustively explored and their computational complexity is O(n2), where n is the
number of customers. We only consider feasible moves, that is, those that do not violate
the capacity of the vehicle.

Two simple perturbation mechanisms were adopted. Multiple-Swap(1,1), where mul-
tiple Swap(1,1) moves are performed in sequence randomly and Multiple-Shift(1,1),
where multiple Shift(1,1) moves are performed in sequence randomly. The Shift(1,1) con-
sists in transferring a customer k from a route r1 to a route r2, whereas a customer l from
r2 is transferred to r1. Only feasible perturbation moves are admitted.

The main steps of the ILS-RVND heuristic are described as follows.

Step 0. Let iter be the current iteration. If iter ≤ MaxIter then generate an initial solu-
tion by choosing an insertion strategy and an insertion criterion at random. Otherwise,
stop.

Step 1. Apply local search using the RVND procedure.

Step 2. Let iterILS be the current number of perturbations without improvements. If
iterILS ≤ MaxIterILS then apply one of the perturbation mechanisms at random and go
to Step 1. Otherwise, update the incumbent solution (if necessary) and go to Step 0.

5.2 Computational Experiments

The ILS-RVND algorithm was coded in C++ (g++ 4.4.3) and executed in an Intel Core i7
2.93 GHz with 8 GB of RAM running Ubuntu Linux 10.04 64-bits (kernel version 2.6.32).
Only a single thread was used in our experiments. The following parameters values were
selected after some preliminary experiments: (i) MaxIter = 10; (ii) MaxIterILS = 1000;
(iii) number of successive Multi-Swap(1,1) moves was set to 0.5v, where v is the number
of vehicles; (iv) number of successive Multi-Shift(1,1) was randomly selected from the
interval {0.5v, 0.6v, . . . , 1.4v, 1.5v}.

We ran the ILS-RVND heuristic 10 times for each instance and a comparison is per-
formed with the algorithms of Brandão and Eglese [10] and Mei et al. [12]. These two
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algorithms were tested in an Intel Pentium M 1.4 GHz and in an Intel Xeon E5335 2.0
GHz, respectively. In order to perform a rough comparison among the running times
of the different machines, we multiplied the original computing times by a factor that
denotes the ratio between the CPU clock of the machine used in the corresponding work
and the CPU clock of our i7 2.93. Hence, the runtime factors for the Pentium 1.4 GHz and
Xeon 2.0 GHz are 1.40/2.93 and 2.00/2.93, respectively.

Table 4 contains the results found by ILS-RVND and those of Brandão and Eglese [10]
and Mei et al. [12]. In this table, Name is the name of the test-problem, |V|, |ER|, |E|
indicate, respectively, the number of vertices, number of required edges and total number
of edges, Best and Time indicate, respectively, the best solution and the average (or single
run) scaled runtime time in seconds associated to the corresponding work, Worst is the
worst solution found by ILS-RVND, Avg. represents the average solution of the 10 runs,
Gap corresponds to the gap between the average solution found by the ILS-RVND and
the best known solution.

The best solutions are highlighted in boldface and the solutions improved by the ILS-
RVND algorithm are underlined. The gap was calculated using Eq. 31. Negative values
indicate that there has been an improvement.

gap =
ILS-RVND solution− literature solution

literature solution
× 100 (31)

By observing the results presented in Table 4 it can be noticed that the ILS-RVND
algorithm was found capable to improve the Best Known Solution (BKS) of all instances.
The average gap between the average solution obtained by ILS-RVND and the BKSs was
−0.22%.

The average computing time of the full execution of ILS-RVND seems higher then
those spent by the other approaches. However, if we stop the execution of ILS-RVND
when the algorithm obtains or improves the solutions reported by Brandão and Eglese
[10] and Mei et al. [12], the average running times decrease considerably. This happens
especially in the instances where the gap was negative.

Although ILS-RVND was originally designed to solve vehicle routing problems, the
algorithm clearly outperformed, in terms of solution quality, those that dealt with large
scale CARP instances. Surprisingly, ILS-RVND was capable of producing high quality
solutions, even when applied to transformed instances. We believe that the employ-
ment of multiple neighborhood structures helped the algorithm to successfully explore
the search space despite dealing with instances with fixed edges. It is in this context
that the neighborhood structures that move or exchange arcs, i.e., Shift(2,0), Swap(2,1),
Swap(2,2), Or-opt2, play a crucial role. These operators allows for generating neighbor
solutions by modifying the position of the customers associated with fixed edges, but
without eliminating such edges, thus avoiding the need of special procedures to prevent
undesirable edge eliminations.

6 Conclusions

In this work, we presented a new exact separation for the capacity cuts and a dual ascent
heuristic which, together with a known exact separation for the odd-degree cutset cuts,
were able to give the first lower bounds for the egl-large instance dataset. Furthermore,
we transformed these instances to CVRP instances and applied an Iterated Local Search
based heuristic in order to improve the known upper bounds. The results are shown
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in Table 5. Columns LB and UB present the lower bounds found using the dual ascent
heuristic and our exact separation and the upper bounds found using the ILS-RVND.
The column Gap shows the gap between the lower and upper bounds.

Table 5: Improved bounds for egl-large dataset

Name |V| |E| |ER| |I| LB UB Gap

g1-a 255 375 347 20 970495 1004864 3.420%
g1-b 255 375 347 25 1085097 1129937 3.968%
g1-c 255 375 347 30 1201030 1262888 4.898%
g1-d 255 375 347 35 1325317 1398958 5.264%
g1-e 255 375 347 40 1461469 1543804 5.333%
g2-a 255 375 375 22 1061103 1115339 4.863%
g2-b 255 375 375 27 1173286 1226645 4.350%
g2-c 255 375 375 32 1295036 1371004 5.541%
g2-d 255 375 375 37 1430267 1509990 5.280%
g2-e 255 375 375 42 1557159 1659217 6.151%

mean 1256026 1322265 4.907%

It is important to notice that the dual ascent together with the exact separation can be
useful in any algorithm which needs to separate cuts for the CARP, like Branch-and-Cut
and Branch-Cut-and-Price.
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