
 39

4
Implementation

The Data Processing Slice Load Balancing Solution presented in chapter 3

was implemented as a prototype using the Java programming language [51] ver-

sion 7 and CoreDX DDS [52] version 3.5.3. The Java language was chosen be-

cause Java programs can run on many different computer architectures and operat-

ing systems; it is one of the most popular programming languages, well adopted

both at academia and industry; and SDDL (section 2.2) is also implemented on

this programming language. The reason for choosing CoreDX DDS as the com-

munication layer was because it delivers high-performance communication and

low-overhead, and has shown low latency and high throughput message delivery

numbers [52]. CoreDX DDS takes account of fundamental design principles

aimed to meet the requirements of real-time and near-real time systems, including

minimal data copies, compact encoding on the wire, light-weight notification

mechanisms, pre-allocation of resources and pre-compilation of type-specific code

blocs [21]. It also can run on many computer architectures and operating systems

such as x86, x86_64, ARM, i686pc, sun4u architectures, and Windows, Linux,

Android and Solaris operational systems, respectively.

Figure 16 – Implementation architecture

DBD
PUC-Rio - Certificação Digital Nº 1112660/CB

 40

Figure 16 shows the main modules that are used in the PNs and the Load

Balancer of the DPSLB mechanism. As mentioned in section 4.1, it is based on

the Autonomic Computing Framework MAPE-K adapted to the SDDL middle-

ware (MAPE-SDDL). The services of MAPE-SDDL exchange control and moni-

toring data (e.g. Action Plan and Monitoring Event Notification). PNs also use

CoreDX DDS to receive/send data from/to Client Nodes and for sending their

caches to other PNs. The Load Balancer further has a module, called Load Bal-

ancing Algorithm, which will be described in section 4.2.

4.1
MAPE-SDDL

MAPE-SDDL was developed cooperatively between LAC at PUC-Rio and

the Laboratório de Sistemas Distribuídos (LSD) at the Federal University of Ma-

ranhão (UFMA). It should be noted that MAPE-SDDL was neither proposed nor

developed as part of this thesis, but only used to facilitate the implementation of

the DPSLB prototype.

MAPE-SDDL, which is inspired by the MAPE-K reference model, is a au-

tonomic extension layer of the SDDL that incorporates general dynamic adaptive

capabilities into SDDL. Its goal is to support resource monitoring, as well as anal-

ysis, planning and execution of dynamic reconfigurations on components of the

SDDL middleware. It comprises four services: Monitoring Service (MS), Local

Event Service (LES), Analysis and Planning Service (APS), and Control and Exe-

cuting Service (CES).

The MS collects data from any computing resources within SDDL, such as

Gateways or PNs. The monitoring is applied to properties (e.g. CPU load, amount

of memory available, network bandwidth and latency or number of Slices as-

signed to each PN) of these resources. Each property is associated with a set of

operation ranges, which are defined by the MAPE-SDDL user. For example, one

could use the following operation ranges for monitoring the CPU usage: [0%,

30%], [30%, 70%] and [70%, 100%]. The MS then notifies the LES (located at

the same node of MS) whenever the monitored property switches its operation

range, which might indicate a significant change on resource usage.

The LES receives these range change events from the MS and publishes

higher level event notifications to subscribed components. Events are occurrences

DBD
PUC-Rio - Certificação Digital Nº 1112660/CB

 41

which indicate that a resource availability condition changed for a specified period

of time, i.e. its duration time. Event evaluation is based on regular expressions

written by application developers or operators, as part of each event definition.

For an event notification to be triggered, the corresponding expression must re-

main valid during the specified duration time. This avoids generating events for

short-lived situations (e.g. a CPU load peak on a PN during few seconds).

The APS analyzes the received event notifications from LES and makes a

diagnosis of the problems to be solved (e.g. load unbalance between PNs). After

diagnosis, the APS seeks the dynamic reconfiguration actions to resolve the prob-

lem, and then builds an appropriate Action Plan. The decision-making for build-

ing the plan is defined by the user through the use of rules and a rule processing

engine (i.e. the Load Balancer in the DPSLB prototype). Each type of reconfigura-

tion Action supported by CES receives an ID. This identifier is included in the Ac-

tion Plan in order to allow the CES instances to know what reconfiguration Ac-

tions must be performed. Specifically for Load Balancing, the Action Plan is the

sequence of Actions to be executed by the PNs that have been selected for moving

Slices.

Finally, CES is the adaptation engine that applies the corresponding recon-

figuration Actions at the resources in response to their changes (e.g. availability or

load variation). The capability of moving Slices from a PN to another is one ex-

ample among the types of dynamic reconfiguration actions supported.

The main advantages of using the MAPE-SDDL to implement the DPSLB

prototype are a well-defined model (MAPE-K) and framework that easy the moni-

toring of the PNs, analyzing/planning of the resources and execution of the Ac-

tions. One of the most import feature for the implementation of the DPSLB proto-

type is the MAPE-SDDL´s capability of controlling the Action executions, which

facilitates the Load Balancer synchronizes the PNs while they are in Load Balanc-

ing Session.

4.2
Load Balancer

Roughly speaking, the Load Balancer receives Monitoring Event Notifica-

tions through MAPE-SDDL, analyzes them, possibly generates an Action Plan

and sends the corresponding commands through MAPE-SDDL. An Action Plan is

DBD
PUC-Rio - Certificação Digital Nº 1112660/CB

 42

generated and sent in response to a detection of unbalance load. The Load Balanc-

er executes the APS and CES services of the MAPE-SDDL, and only the Control

Service of the CES since it has no local dynamic reconfiguration to perform. The

Control Service does not explicitly interact with the Load Balancer since it trans-

parently controls the remote Actions executed at the PNs.

Each Action must be executed in the order that it appears in the Action Plan,

e.g. if an Action Plan consists of the sequence of Actions [A, C, B], then Action B

will only be executed after C, which in turn will wait until A is executed. Hence,

the successful execution of each Action, on each PN, will confirmed to CES,

which will only be able to send the next Action contained in Action Plan after the

previous action has been confirmed.

The Load Balancer holds a mapping that contains all PNs and their last five

Monitoring Event Notification. In fact, the number of Monitoring Event Notifica-

tion kept by LB is a parameter which can be adjusted in the LB to configure the

size of historical data. When a new PN is detected by the Load Balancer, it noti-

fies the Load Balancing Algorithm about the presence of this new PN. It is be-

lieved that this behavior can be useful for many load balancing algorithms and can

facilitate the development of new algorithms since developers can focus on the

development of new load balancing algorithms. After receiving a Monitoring

Event Notification, LB calls the Load Balancing Algorithm in order to analyze the

system load and decide if any Slice should be moved to another PN. With the re-

sult of the Load Balancing Algorithm, the Load Balancer generates the Action

Plan and sends it through the MAPE-SDDL to the PNs involved in the Load Bal-

ancing Process. As explained, LB executes CES of MAPE-SDDL, which controls

the execution of the entire Action Plan, so to guarantee that all Actions are cor-

rectly executed by all PNs.

Figure 17 – LoadBalancingAlgorithm interface

Concepts such as Action and Action Plan are completely transparent to the

Load Balancing Algorithm. Instead, this module only executes the logic for ana-

DBD
PUC-Rio - Certificação Digital Nº 1112660/CB

 43

lyzing the system load, deciding which will be the Slice-giving and Slice-taking

PNs and how many Slice should be moved from the first to the latter. In order to

enable this separation of concerns, the Load Balancing Algorithm must implement

the LoadBalancingAlgorithm interface, shown in Figure 17, that consists of two

methods: onNewProcessingNode() and analyzeLoad(). The method onNewPro-

cessingNode() is called when the Load Balancer detects that a new PN arrived in

the system and analyzeLoad() is called every time that a new Monitoring Event

Notification is received from a PN. This last method returns a collection of Slice-

Movement objects, which contains the Slice-giving and Slice-taking PN and how

many Slices should be moved to the Slice-taker.

The LoadBalancingAlgorithm interface allows the Load Balancer to have its

Load Balancing Algorithm changed dynamically. Moreover, the Load Balancing

Algorithm is a black box for the LB, which is concerned only about managing the

PNs, generating and controlling the execution of the Actions in the Action Plan.

Hence, through a clear separation of concerns, this interface facilitates the devel-

opment and integration of new load balancing algorithms into the Load Balancer.

It is worth to recall that the Load Balancing Algorithm does not need to manage

the PNs and their monitoring resources (e.g. CPU and memory utilization) since

this work is done by the Load Balancer. To do so, the Load Balancer provides its

mapping of PNs every time the Load Balancer call the onNewProcessingNode()

method. The Load Balancing Algorithm module is set as a parameter of the Load

Balancer´s constructor, thus facilitating the deployment of other Load Balancer

instances that may use different Load Balancing Algorithms.

After receiving the collection of Slices that should be moved as result of

calling the Load Balancing Algorithm, the Load Balancer generates the Actions

that will be executed by the PNs involved in the Load Balancing Process. Each

single SliceMovement object, unfolds to five Actions, which are lower level ab-

stractions on DPSLB, and are executed by the Slice-taking and Slice-giving PNs

as described in section 3.4. These Actions. for all the necessary Slice Moves, con-

stitute the Action Plan.

DBD
PUC-Rio - Certificação Digital Nº 1112660/CB

 44

4.3
Processing Node

The PN (Processing Node) is the managed resource from the perspective of

MAPE-K model used in the DPSLB prototype developed by this thesis. Each PN

executes the MS, LES and CES services of MAPE-SDDL, but concerning the lat-

ter, only its Executing Service since the Control Service is executed by the Load

Balancer. In addition to the data processing, which is intrinsically determined by

the application build upon DPSLB, each PN periodically verifies its monitored

properties and, depending of their operation ranges, notifies the LES that evalu-

ates these values against the specified expression. Hence, LES eventually sends a

Monitoring Event Notification, which holds all monitored data, to the Load Bal-

ancer through APS. The current version of this prototype periodically checks the

PN´s monitored properties every two seconds and then sends a Monitoring Event

Notification to Load Balancer.

The PN was not implemented using DDS’ Content Filtered Topics due to

CoreDX DDS´ impossibility of updating the Content Filtered Topic´s filter ex-

pression parameters1, which is required for the Load Balancing Process. It is im-

portant to recall that the PNs must update their filters to start/stop receiving data

items assigned to some Slices. To work around this CoreDX DDS limitation the

filtering was implemented within the PN code, instead of the DDS layer. The

drawback of this workaround is a higher network utilization: all data items are de-

livered to all PNs , but all the data items that are from Slices not assigned to the

PN are discarded. The advantage of this implementation strategy is that the cur-

rent DPSLB prototype can be used also for applications where data processing

depends correlating data items of different Slices, e.g. in order to process a data

item A the PN needs a data item B assigned to another Slice than A.

The local cache for each Slice is stored as a map indexed by the Slice ID.

Thus, each entry in this mapping stores a collection of data items assigned to the

same Slice. To avoid misinterpretations, throughout the next sections this mapping

will be called local cache, and a single entry will be called local Slice cache.

1 Apparently this is a CoreDX DDS bug, since the OMG DDS standard determines such capability.

DBD
PUC-Rio - Certificação Digital Nº 1112660/CB

 45

Figure 18 – Application listener interface

To inform the application when some delivered data item should be pro-

cessed – and when it should not – the PN has two callbacks to the application,

one to inform a normal data item data must be processed – named onNewData() –

and another to inform a data item that would be discarded by the PN but may be

useful for the application for data correlation – named onNewCorrelatingData().

Figure 18 shows the listener interface that is used by the PN layer to notify the

application. Both methods, onNewData() and onNewCorrelatingData(), have a

parameter named topicSample that contains the data item received. The Applica-

tionDataReaderListener uses the technique of Java Generics [53] [54], allowing

the ApplicationDataReaderListener to manipulate objects of various types while

providing compile-time type safety and to eliminate the drudgery of casting [55].

Figure 19 – Methods to create a Topic, Content Filtered Topic and Data Reader

Three most important methods at PN, shown in Figure 19, are: createTop-

ic(), createContentFilteredTopic() and createDataReader(). The createTopic()

creates a DDS Topic of the class typeName (e.g. “br.puc.rio.inf.lac.FooTopic”)

with the name topicName (e.g. “My Example Topic”), and where parameter bal-

anceTopic determines if this topic should, or should not, be balanced by the

DPSLB solution. Apart from typeName, topicName and balanceTopic parameters,

that are the same as with createTopic() method, the createContentFilteredTopic()

creates a Content Filtered Topic from an original topic using the filter expression

logicalExpression and the filter expression´s parameters named parameters. The

last method, createDataReader(), subscribes the PN to the Topic topicDescription

using the applicationDataReaderListener as the listener that the PN uses to notify

DBD
PUC-Rio - Certificação Digital Nº 1112660/CB

 46

the application. In order to correctly notify the application, PNs hold a mapping

that stores all Application Data Reader Listeners indexed by theirs Topic´s name.

After creating the Data Reader (i.e. a subscription to a Topic), the PN is able

to receive and notify the application about data items. The DPSLB solution is

completely transparent to the application developer as he/she has no further con-

figurations to do. In fact, he/she only needs to inform whether the topic should be

balanced by the DPSLB, or not.

When a PN receives a data item (or sample in DDS jargon), PN checks

whether the data item is assigned to a valid Slice. In other words, it checks wheth-

er it is responsible for processing data items for this Slice and then, in case of a

valid Slice, the PN notifies the application through onNewData() method. Other-

wise, PN checks whether the Slice is In Load Balancing Session state, which

means that data items of this Slice are to be cached because the PN is involved in

a Load Balancing Process. Finally, if the Slice is not in Load Balancing Process

it means that this data item should not be processed by the application, in which

case PN notifies the application about a data item that may be discarded through

onNewCorrelatingData().

4.3.1
MS and LES

As aforesaid, PNs utilizes MS to periodically monitor its resources and it is

configured to check its CPU and Memory usage every two seconds, but this pa-

rameter can be easily modified. MAPE-SDDL is able to monitor other resources

such as Disk free space or Swap Memory utilization. However, for the sake of

simplicity, in the DPSLB prototype only CPU and Memory monitors were de-

ployed.

LES is configured to notify the APS in the Load Balancer every time that

occurs any change on the monitored resources. Even though a more complex utili-

zation of MAPE-SDDL is possible, the main goal in this work was simply to vali-

date the proposed DPSLB solution, instead of developing sophisticated monitor-

ing and notification mechanisms.

DBD
PUC-Rio - Certificação Digital Nº 1112660/CB

 47

4.3.2
CES and Load Balancing Process

As mentioned in section 4.3, a PN executes the Executing Service of the

CES while the Control Service is executed by the Load Balancer. CES is the adap-

tation engine that enables PNs to receive Actions for moving Slices as a conse-

quence of a load redistribution ActionPlan produced by the Control Service. The

Executing Service is the Effector in the MAPE-K loop, described in section 2.4.1.

The Actions supported by PN are: addSlice, removeSlice, updateSliceState and

sendCacheToNode. Figure 20 illustrates the possible transitions between the Slice

states on each PN and their interaction with the Action. The Slice state Not In Use

means that data items assigned to this can be discarded by the PN because another

PN is processing these data items. But due to the CoreDX DDS´ limitation, men-

tioned in section 4.3, each PN has access to all Slices. Therefore the addSlice and

removeSlice Actions do not actually add or remove a Slice, but only change the

Slice state.

Figure 20 – Slice transitions on a PN

The addSlice Action has two parameters, the Slice State and a collection of

Slices to be added. This Action changes the Slice state from Not In Use either to

state Available or to state In Load Balancing Session. The first PN that shows up

in the system has its Slice states changed from Not In Use to Available by the

Load Balancer since there is no other PN to start a Load Balancing Process. The

following PNs that shows up receives by the Load Balancer a updateSliceState

DBD
PUC-Rio - Certificação Digital Nº 1112660/CB

 48

informing that it has to change the Slice states involved in the Load Balancing

Process to In Load Balancing Session.

The removeSlice action, accordingly, informs that a PN should stop pro-

cessing data items for the specified Slice. This Action has only one parameter,

which is a collection of Slices that must be removed. This Action is sent to the

Slice-giving PN after the Slice-taking Processing adds its Slice. It is not a valid

transition to switch from Available state to Not In Use state since a Slice needs to

be securely moved to another PN while the Slice is in the Load Balancing Session

state.

In Load Balancing Process, both Slice-giving and Slice-taking PNs should

update the state of the involved Slices to In Load Balancing Session. The up-

dateSliceState Action has a parameter that informs the new Slice state and another

that is a collection of Slice that will be updated. After the Slice-giving PN updates

and removes the Slices, the Slice-taking PN can proceed with the update action.

Finally, the sendCacheToNode is the Action that sends the local Slice cache

from Slice-giving to Slice-taking PN. This Action has two parameters: the Slice-

taking PN ID and the set of Slice local cache that are to be sent. After the send op-

eration, the Slice-giving PN also cleans its local cache that stored the data items

assigned to the specified Slice. When the Slice-taking receives the local cache

from Slice-giving, it merges its local cache with the remote cache received, as de-

scribed in section 3.4.

Figure 21 – Interface Description Language (IDL) of the CacheTopic

The data items of a Slice cache are sent through a DDS Topic named Ca-

cheTopic, illustrated in Figure 21. This IDL can be compiled for many program-

ming languages. After compiled, CoreDX DDS generates the Java Class shown in

Figure 22. The CacheTopic carries fields to inform the Slice ID (sliceId), Slice-

giving PN ID (leastSignificantBitsSenderId and mostSignificantBitsSenderId),

DBD
PUC-Rio - Certificação Digital Nº 1112660/CB

 49

Slice-taking PN ID (leastSignificantBitsReceiverId and mostSignifi-

cantBitsReceiverId) and the data items (dataItemCollection). The Slice-giving and

Slice-taking IDs are each composed of a Java UUID (Immutable Universally

Unique Identifier). This UUID represents a 128-bit value that is separated into two

Java long variables to be sent through the DDS Domain. The collection carrying

the data items is serialized into a byte array.

Figure 22 – Generated CacheTopic Java Class

The Slice-taking PN, after receiving a CacheTopic sample, deserializes the

dataItemCollection and gets its Slice local cache. With both local and remote

caches, the Slice-taking PN uses a Java Set in order to generate the Merged Cache,

which is a set that has no duplicated data items. With the aim of uniquely identify-

ing each data item, it is mandatory that all data items hold an ID field, that can be

a Java int or long. This ID is utilized by the Java Set to avoid the insertion of a

data item already added in the Merged Cache. After generating the Merged Cache,

the Slice-taking PN removes its local Slice cache and delivers the data items to the

application through their Application Data Reader Listeners.

The prototype implementation does not transfer any application state of the

PNs associated with the moved Slices, but only the data items that were cached.

Such state may be a history and statistics about the processing data items that

were generated by the application. However, the lack of such state transfer is not a

limitation of the DPSLB approach per se, but has been avoided only in the proof

of concept prototype, for the sake of simplicity.

4.4
Load Balancing Algorithms

In order to validate the proposed solution, one load balancing algorithm –

which implements the LoadBalancingAlgorithm interface – was developed to be

used by the Load Balancer. Since the Load Balancing Algorithm needs not take

DBD
PUC-Rio - Certificação Digital Nº 1112660/CB

 50

into account how to monitor the PNs, generate and control the ActionPlan execu-

tion and manage a data structure that stores the PN information and their Monitor-

ing Event Notifications, its development quite easy.

Since the goal was only a proof of concept, the implemented algorithm is

quite simple. The idea is to assign always more/less the same number of Slices to

each PN. To do so, the algorithm calculates the average number of Slices per PNs

and then classifies each PN in one of two groups: PNs that have more Slices that

the average (Slice-giving PNs) and PNs that have less Slices that the average

(Slice-taking PNs). If there is a single PN, all Slices are assigned to it, otherwise

the algorithm gets the first Slice-taking PN and Slice-giving PN and checks how

many Slices can be moved to the Slice-taker, thus generates and adds on its own

list of Slices to move that informs Slices to be moved from Slice-giving to Slice-

taking PN. After this step, the Slice-giving/taking PN that has no more Slice to be

moved/received is removed from its list. When there is no more Slice-

giving/taking PN, the algorithm returns the collection of Slice Movements to the

Load Balancer, which in turn will generate the ActionPlan and send the Actions to

the corresponding PNs.

In a scenario where there are two PNs, A and B, and ten Slices (A and B

have five Slices each one), the following steps would be executed if a new PN C

showed up:

 Calculate the average number of Slices for each PN (10 / 3 ≈ 3);

 Classify the PNs in Slice-giving PNs [A, B] and Slice-taking PNs [C];

 Check that A can give two Slices (5 – 3 = 2), thus move two Slices to C;

 Remove A from Slice-giving list [B];

 Check that B can give two Slices (5 – 3 = 2), thus move two Slices to C;

 Remove B from Slice-giving list [ø] and C from Slice-taking list [ø];

 Return two Slice Movements, one to move two Slices from A to C and an-

other to move two Slices from B to C.

In the given example, A and B would be assigned to three Slices and C to

four Slices.

DBD
PUC-Rio - Certificação Digital Nº 1112660/CB

