

Oscar Fabricio Zuleta Inch

INFLUÊNCIA DA VISCOELASTICIDADE E DO CISALHAMENTO NA ESTABILIDADE DINÂMICA DE VIGAS E TUBOS

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio.

Orientador: Raul Rosas e Silva

Rio de Janeiro, novembro de 2013

Oscar Fabricio Zuleta Inch

INFLUÊNCIA DA VISCOELASTICIDADE E DO CISALHAMENTO NA ESTABILIDADE DINÂMICA DE VIGAS E TUBOS

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Raul Rosas e Silva Orientador Departamento de Engenharia Civil - PUC-Rio

> Prof^a. Deane de Mesquita Roehl Departamento de Engenharia Civil - PUC-Rio

Prof. Paulo Batista Gonçalves Departamento de Engenharia Civil - PUC-Rio

Prof. Rodolfo Luiz Martins Suanno Universidade do Estado do Rio de Janeiro

Prof. Sergio Persival Baroncini Proença Universidade de São Paulo

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 8 de novembro de 2013

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Oscar Fabricio Zuleta Inch

Gradou-se em Engenharia Civil pela Universidad Mayor de San Andrés. Obteve grau de Mestre em Engenharia Civil pela PUC-Rio.

Ficha Catalográfica

Zuleta Inch, Oscar Fabricio

Influência da viscoelasticidade e do cisalhamento na estabilidade dinâmica de vigas e tubos / Oscar Fabricio Zuleta Inch ; orientador: Raul Rosas e Silva – 2013.

131 f. il. (color.) ; 30 cm

Tese (doutorado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil, 2013. Inclui bibliografia

 Engenharia civil – Teses. 2. Instabilidade dinâmica.
 Amortecimento. 4. Viscoelasticidade. 5. Vigas. 6. Tubos.
 Silva, Raul Rosas e. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. III. Título.

CDD: 624

PUC-Rio - Certificação Digital Nº 0812430/CA

Aos meus pais Oscar Zuleta e Carmen Inch.

Agradecimentos

A Deus porque tudo que conseguimos é com sua bênção.

Aos meus pais Oscar e Carmen, às minhas irmãs Mónica e Fátima e ao meu avô Alberto pelo constante incentivo e apoio ao longo de toda a minha vida.

À minha esposa Gricel pelo apoio nestes anos de doutorado. À minha filha Maria Alessandra que com sua chegada me deu a alegria e a força necessária nos últimos meses do desenvolvimento da tese.

Ao professor Raul Rosas e Silva pela inesgotável paciência. No mestrado e no doutorado me senti honrado de receber a sua orientação e ensinamentos, que permitem agora a concretização deste trabalho.

Ao professor João Luis Pascal Roehl, um exemplo para os que tivemos a sorte de sermos seus alunos.

Aos professores do Departamento de Engenharia Civil, Deane de Mesquita Roehl, Paulo Batista Gonçalves e Ney Augusto Dumont.

Aos Professores integrantes da Banca Examinadora pelas importantes contribuições a este trabalho.

Ao D.Sc. engenheiro civil Gilberto de Barros Rodrigues Lopes pelas interessantes conversas e ensinamentos na área de engenharia, que me permitiram aproveitar ainda mais os cursos de pós-graduação.

Aos meus amigos da PUC: Carlos Aguilar Marón, Jackeline Castañeda Huertas e Leninaldo Severino da Silva. Aos amigos e colegas de trabalho: Marcela Torno de Azeredo Lopes, Luiz Octavio de Souza Bueno Oliveira e Rodolfo de Lima Paula.

À secretária Rita de Cássia do Nascimento Leite por estar sempre prestes a ajudar a todos os alunos da pós-graduação.

Ao Brasil e ao CNPQ pelo auxilio financeiro.

Resumo

Oscar Fabricio Zuleta Inch; Raul Rosas e Silva. **Influência da Viscoelasticidade e do Cisalhamento na Estabilidade Dinâmica de Vigas e Tubos.** Rio De Janeiro, 2013. 122p. Tese de Doutorado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

As estruturas com cargas não conservativas podem perder a estabilidade por divergência, quando a amplitude da resposta estática se incrementa monotonamente, ou por "flutter", através de oscilações com amplitudes exponencialmente crescentes. Neste trabalho estudam-se vários aspectos sobre o efeito do amortecimento e da deformação cisalhante na estabilidade dinâmica de vigas e tubos. Um programa computacional que permite obter cargas críticas e respostas no domínio do tempo é implementado, formulando as equações através do método dos elementos finitos. Comparam-se os resultados de vigas de Euler-Bernoulli e vigas de Timoshenko, considerando várias alternativas para a aplicação do amortecimento proporcional e viscoelástico. Tubos são modelados elementos tridimensionais enriquecidos modos adicionais com com incompatíveis. O amortecimento viscoelástico é introduzido na relação constitutiva do material, atuando sobre as deformações desviadoras. As cargas críticas dinâmicas são calculadas a partir do problema de autovalor característico, obtido aplicando a transformada de Laplace às equações de conservação de momentum. Nas análises dinâmicas um método implícito é utilizado para a integração do tempo e um algoritmo de segunda ordem na integração das relações constitutivas viscoelásticas. Os resultados mostram que para algumas formas de amortecimento, as respostas obtidas considerando a deformação cisalhante mudam qualitativamente o comportamento da carga crítica dinâmica, incluindo alguns paradoxos, conforme o amortecimento é incrementado.

Palavras-chave

Instabilidade Dinâmica; Amortecimento; Viscoelasticidade; Vigas e Tubos

Abstract

Oscar Fabricio Zuleta Inch; Raul Rosas e Silva. **Influence of Viscoelasticity and Shear on the Dynamic Stability of Beams and Tubes.** Rio De Janeiro, 2013. 112p. D.Sc. Thesis - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Structures with non-conservative loads can lose stability either by divergence, when static response amplitude increases monotonically, or by flutter, through oscillations with exponentially increasing amplitudes. Several aspects concerning the influence of damping and shear on the dynamic stability of beams and tubes are studied. A special-purpose computer program has been developed, enabling critical loads and time history responses to be obtained applying the finite element method to formulation of the equations. Results of Euler-Bernoulli and Timoshenko beams are compared for a number of alternative formulations of proportional and viscoelastic damping. Tubes are modeled with tridimensional elements implemented with additional incompatible modes. Viscoelastic damping is introduced in the constitutive relations of the material, acting on deviatoric strains. Flutter loads are calculated through the characteristic eigenvalue problem obtained applying the Laplace's transform to the momentum equation. In the dynamic analysis an implicit method is used for time integration and a second order algorithm is used in the integration of viscoelastic constitutive relations. The results show that, for some types of damping, the responses obtained taking into account shear strains change qualitatively the behavior of the flutter load, including certain paradoxical phenomena, as damping is increased.

PUC-Rio - Certificação Digital Nº 0812430/CA

Keywords

Dynamic Stability; Damping; Viscoelasticity; Beams and Tubes

Sumário

1 Introdução	20
1.1. Introdução	20
1.2. Objetivo	25
1.3. Metodologia	25
1.4. Organização do trabalho	26
2 Amortecimento	27
2.1. Amortecimento viscoso ou proporcional	27
2.1.1. Sistemas de um grau de liberdade	27
2.1.2. Sistemas com vários graus de liberdade	30
2.2. Amortecimento viscoelástico	30
2.2.1. Modelo Maxwell	31
2.2.2. Modelo Kelvin	32
2.2.3. Modelo Sólido Padrão	33
2.2.4. Modelo Maxwell Generalizado	35
2.3. Módulo dinâmico e ângulo de fase	36
2.4. Energia dissipada	39
2.5. Equações de equilíbrio dinâmico	41
2.6. Modelo viscoelástico em sistemas discretos	45
2.7. Amortecimento viscoelástico em sistemas contínuos	46
3 Metodologia de análise	47
2.1. Formulação Lagrongoono Totol	47
2.1.1. Formulação Lagrangeana Total	40
3.1.1. Equação de conservação de momentum	48
3.1.2. Integração no tempo	48
3.1.3. Método de Newton	49
3.2. Formulação para pequenos deslocamentos	51

3.3. Elemento de Viga de Euler-Bernoulli	51
3.4. Elemento de Viga de Timoshenko	56
3.5. Coluna de Beck com amortecimento proporcional	59
3.6. Elemento finito tridimensional incompatível	61
3.7. Força seguidora no elemento tridimensional	66
3.8. Matriz de carga para carga seguidora	67
4 Implementação do modelo viscoelástico	69
4.1. Modelo Maxwell generalizado	69
4.2. Modelos Tridimensionais	70
4.3. Algoritmo de integração	72
4.4. Matriz constitutiva	74
4.5. Elemento de viga de Timoshenko	74
4.5.1. Viscoelasticidade aplicada na deformação desviadora	74
4.5.2. Viscoelasticidade aplicada na deformação cisalhante	77
5 Exemplos	78
5.1. Viga retangular engastada	78
5.2. Viga retangular engastada com carga seguidora	81
5.2.1. Viga com amortecimento proporcional	82
5.2.2. Viga com amortecimento viscoelástico	99
5.3. Carga crítica de vigas de material viscoelástico	104
5.4. Tubo biengastado com carga transversal estática	107
5.5. Carga crítica estática com elementos tridimensionais de oito nós	110
5.6. Tubo elástico não linear em balanço com carga seguidora	111
5.7. Tubo viscoelástico com carga seguidora	114
6 Conclusões e sugestões	119
6.1. Conclusões	119
6.2. Sugestões para trabalhos futuros	122
7 Referências bibliográficas	123
	400
8 Anexo	126

8.1. Matrizes para o elemento viga de Timoshenko	126
8.2. Funções de forma do elemento tridimensional de oito nós	128
8.3. Matrizes deformação deslocamento elemento tridimensional	128

Lista de figuras

Figura 2.1 Curva de histerese.	29
Figura 2.2 Modelo Maxwell.	31
Figura 2.3 Modelo Maxwell (a) Função de deformação lenta, (b) Função) de
relaxação.	32
Figura 2.4 Modelo Kelvin.	32
Figura 2.5 Modelo Kelvin (a) Função de deformação lenta, (b) Função	de
relaxação.	33
Figura 2.6 Modelo sólido padrão.	34
Figura 2.7 Modelo Sólido Padrão (a) Função de deformação lenta, (b) Função	o de
relaxação.	34
Figura 2.8 Modelo Maxwell Generalizado.	35
Figura 2.9 Módulo de armazenamento e perda do modelo sólido padrão.	38
Figura 2.10 Módulo dinâmico do modelo Kelvin e do modelo sólido padrão.	39
Figura 2.11 Tangente do ângulo de fase δ do modelo Kelvin e do modelo só	lido
padrão.	39
Figura 2.12 Modelo Kelvin com massa concentrada.	41
Figura 2.13 Modelo sólido padrão com massa concentrada.	41
Figura 2.14 Parâmetros viscoelásticos dos modelos SLS_1 e SLS_2.	43
Figura 2.15 Resposta dos modelos SLS_1 e SLS_2 em vibração livre. Condi	ição
inicial: deslocamento unitário.	44
Figura 2.16 Resposta dos modelos SLS_1 e SLS_2 em vibração livre. Condi	ição
inicial: velocidade unitária.	44
Figura 2.17 Resposta dos modelos SLS_1 e SLS_2 em vibração livre. Condi	ição
inicial: aceleração unitária.	44
Figura 3.1 Elemento finito de viga segundo as hipóteses de Euler-Bernoulli.	52
Figura 3.2 Frequências vs. carga, problema de Beck com um elemento finito.	54
Figura 3.3 Viga com dois elementos finitos e duas massas concentradas.	55
Figura 3.4 Viga com dois elementos finitos e matriz de massa consistente.	56
Figura 3.5 Elemento finito de viga segundo as hipóteses de Timoshenko.	57

Figura 3.6 Viga com dois elementos finitos cúbicos.	59
Figura 3.7 Carga crítica dinâmica em função da esbeltez.	59
Figura 3.8 Elemento finito tridimensional de oito nós.	61
Figura 3.9 Seção transversal com dois materiais.	62
Figura 3.10 Função de forma quadrática incompatível ϕ_1 .	64
Figura 4.1 Modelo Maxwell generalizado.	69
Figura 4.2 Modelo Maxwell generalizado aplicado às deformações desviadoras	3.71
Figura 5.1 Discretização da viga e carregamento transversal.	78
Figura 5.1 Parâmetros viscoelásticos aplicados à parcela desviadora	das
deformações.	79
Figura 5.2 Resposta da viga com amortecimento viscoelástico na par	cela
desviadora e com amortecimento proporcional.	80
Figura 5.3 Parâmetros viscoelásticos aplicados à deformação cisalhante.	80
Figura 5.4 Resposta da viga com amortecimento viscoelástico aplicado	o à
deformação cisalhante e com amortecimento proporcional.	80
Figura 5.5 Carga seguidora na extremidade livre da viga engastada.	81
Figura 5.6 Carga crítica dinâmica de vigas com a teoria de Euler-Bernoul	li e
Timoshenko.	83
Figura 5.7 Carga crítica dinâmica, (a) pontos da viga de Euler-Bernoulli,	(b)
pontos da viga de Timoshenko.	84
Figura 5.8 Forças aplicadas na extremidade livre da viga engastada.	85
Figura 5.9 Força seguidora, número complexo s e deslocamento da extremic	lade
para $\eta = 0$, teoria de Euler-Bernoulli (B0).	87
Figura 5.10 Força seguidora, número complexo s e deslocamento da extremic	lade
para $\eta = 0$, teoria de Timoshenko (T0).	88
Figura 5.11 Modos de vibração com maior parte real de s para $\eta = 0$, teoria	ı de
Euler-Bernoulli (B0).	89
Figura 5.12 Modos de vibração com maior parte real de s para $\eta = 0$, teoria	ı de
Timoshenko (T0).	89
Figura 5.13 Força seguidora, número complexo s e deslocamento da extremic	lade
para $\eta = 9,55 \times 10^{-3}$, teoria de Euler-Bernoulli (B1).	90
Figura 5.14 Força seguidora, número complexo s e deslocamento da extremic	lade
para $\eta = 9,55 \times 10^{-3}$, teoria de Timoshenko (T1).	91

Figura 5.15 Modos de vibração com maior parte real de s para $\eta=9,55\times$	10 ⁻³ ,
teoria de Euler-Bernoulli (B1).	92
Figura 5.16 Modos de vibração com maior parte real de s para $\eta=9,55\times$	10 ⁻³ ,
teoria de Timoshenko (T1).	92
Figura 5.17 Força seguidora, número complexo s e deslocamento da extremit	dade
para $\eta = 2,39 \times 10^{-1}$, teoria de Euler-Bernoulli (B2).	93
Figura 5.18 Força seguidora, número complexo s e deslocamento da extremit	dade
para $\eta = 2,39 \times 10^{-1}$, teoria de Timoshenko (T2).	94
Figura 5.19 Modos de vibração com maior parte real de s para $\eta = 2,39 \times$	10 ⁻¹ ,
teoria de Euler-Bernoulli (B2).	95
Figura 5.20 Modos de vibração com maior parte real de s para $\eta = 2,39 \times$	10 ⁻¹ ,
teoria de Timoshenko (T2).	95
Figura 5.21 Força seguidora, número complexo s e deslocamento da extremit	dade
para $\eta = 5,73 \times 10^{-1}$, teoria de Euler-Bernoulli (B3).	96
Figura 5.22 Força seguidora, número complexo s e deslocamento da extremit	dade
para $\eta = 5,73 \times 10^{-1}$, teoria de Timoshenko (T3).	97
Figura 5.23 Modos de vibração com maior parte real de s para $\eta=5,73\times$	10 ⁻¹ ,
teoria de Euler-Bernoulli (B3).	98
Figura 5.24 Modos de vibração com maior parte real de s para $\eta=5,73\times$	10 ⁻¹ ,
teoria de Timoshenko (T3).	98
Figura 5.25 Parâmetros viscoelásticos para o modelo sólido padrão SLS.	100
Figura 5.26 Carga crítica dinâmica da viga com amortecimento viscoelástico.	100
Figura 5.27 Resposta no tempo das análises V1, V2 e V3, escala de deslocam	ento
$[-1.5 \times 10^{-7}, 1.5 \times 10^{-7}]$ m.	102
Figura 5.28 Resposta no tempo das análises V1, V2 e V3, escala de deslocam	ento
$[-1.0 \times 10^{-3}, 1.0 \times 10^{-3}]$ m.	103
Figura 5.29 Tubo engastado-livre.	104
Figura 5.30 Parâmetros viscoelásticos aplicados à deformação desviadora.	105
Figura 5.31 Resposta do carregamento transversal.	105
Figura 5.32 Resposta com carregamento conservativo.	106
Figura 5.33 Resposta com carregamento não conservativo, $P = 2451,66$ KN.	106
Figura 5.34 Resposta com carregamento não conservativo, $P = 12748,64$ KN.	107
Figura 5.35 Tubo biengastado com carga transversal pontual.	108

Figura 5.36 Tubo biengastado deformado (a) análise linear (b) análise não lin	near.
	109
Figura 5.37 Tubo engastado-livre.	111
Figura 5.38 Carga crítica estática de tubo engastado-livre.	111
Figura 5.39 Tubo elástico em balanço com carregamento na extremidade livre	.112
Figura 5.40 Força seguidora, frequência $\omega = \text{Im}(s)$ e deslocamento da extremi	dade
do tubo elástico engastado-livre.	113
Figura 5.41 Tubo viscoelástico engastado-livre.	114
Figura 5.42 Carga seguidora e transversal em função do tempo.	114
Figura 5.43 Parâmetros do material viscoelástico.	115
Figura 5.44 Resposta no tempo do tubo viscoelástico.	115
Figura 5.45 Configuração deformada (a) em $t = 0,5961$ s (b) em $t = 0,6019$ s.	116
Figura 5.46 Modos de vibração com material elástico.	117
Figura 5.47 Modos de flambagem com material elástico (problema de autov	valor
linear).	117

Lista de tabelas

Tabela 2	2.1 Pa	râmetros	viscoelás	ticos dos mo	delos S	LS_1 e S	LS_2	· ·	43
Tabela :	5.1 Ca	rga crític	a dinâmic	a sem amort	ecimen	to.			83
Tabela	5.2	Cargas	críticas	dinâmicas	para	valores	de	amortecin	nento
esp	ecific	ados.							85
Tabela :	5.3 Ca	rgas crítio	cas dinâm	icas da viga	viscoel	lástica.			101
Tabela :	5.4 De	eslocamer	nto no por	to de aplicaç	ção da o	carga, aná	lise l	inear.	109
Tabela :	5.5 De	slocamer	nto no por	nto de aplicaç	ção da (carga, aná	ilise r	não linear.	110

Lista de símbolos

a_1	constante de amortecimento relativa à rigidez
a_0	constante de amortecimento relativa à massa
С	constante de amortecimento
Ci	constante de amortecimento de um arranjo tipo Maxwell ($i = 1, 2,$)
f	força interna
f_{ext}	força externa
\bar{f}	amplitude da força harmônica
h	altura da viga
h_i	funções de forma
\hat{h}_i	variáveis internas do algoritmo de integração
i	unidade imaginária
k	rigidez
k_i	rigidez de um arranjo tipo Maxwell (i = 1,2,)
k_{∞}	rigidez de longo prazo
ƙ	rigidez complexa
т	massa
\overline{m}	massa por comprimento unitário de viga
n	vetor unitário normal à superfície
р	pressão
$q_{ m i}$	variáveis internas do material
$t + \Delta t r$	resíduo no tempo $t + \Delta t$
S	expoente característico
t	tempo
ī	vetor de tensões de superfície
и	deslocamento
${}^{t}\tilde{u}_{i}$	deslocamentos incompatível no tempo t
${}^{t}u_{i}$	deslocamentos incompatível no tempo t
W	deslocamento vertical da viga
${}^{0}x_{i}$	coordenadas de um ponto no tempo $t = 0$

t_{x_i}	coordenadas de um ponto no tempo <i>t</i>
${}^{t}x_{i}^{k}$	coordenadas do nó k no tempo t
Α	Área
A	matriz Jacobiana
В	módulo volumétrico
$_{0}\mathbf{B}_{L}$	matriz de deformação-deslocamento linear
$_{0}\mathbf{B}_{NL}$	matriz de deformação-deslocamento não linear
С	matriz de amortecimento
\mathbf{O}_{0}	matriz constitutiva incremental
D	gradiente de deslocamentos
D	parte incompatível do gradiente de deslocamentos
Ε	módulo de elasticidade
E_D	energia dissipada
\overline{E}^{*}	constante de amortecimento interno viscoso
E	tensor unitário de quarta ordem
${}^{t+\Delta t}_{0}$ F	vetor de forças nodais internas no tempo $t+\Delta t$
G	módulo de cisalhamento
G_i	módulo de cisalhamento de um arranjo tipo Maxwell ($i = 1, 2,$)
G_0	módulo de cisalhamento inicial
G_∞	módulo de cisalhamento de longo prazo
$_{0}\mathbf{G}_{L}^{\boldsymbol{\varphi}^{T}}$	matriz de deformação-deslocamento incompatível linear
${}_{0}\mathbf{G}_{NL}^{\boldsymbol{\varphi}^{T}}$	matriz de deformação-deslocamento incompatível não linear
Н	vetor com as funções de Hermite
Ι	momento de inercia da seção
I	matriz identidade
$J_{(t)}$	função de fluência
K	matriz de rigidez
K _G	matriz geométrica
$_0\mathbf{K}_L$	matriz de rigidez linear
$_{0}\mathbf{K}_{NL}$	matriz de rigidez não linear
$_{0}\mathbf{K}_{NC}$	matriz de rigidez de carga

$L^{\rm e}$	comprimento do elemento
Μ	matriz de massa
Р	carga seguidora tangencial
P_{cd}	carga crítica dinâmica
R	vetor de forças
^t R	vetor de carga nodal aplicada no tempo t
₀ R _{NC}	vetor de carga não conservativa
₀ S	tensor de esforços de Piola-Kirchhoff II
S_d	tensor desviador de tensões
0 S	matriz de esforços de Piola-Kirchhoff II
${}_{0}\mathbf{\hat{S}}$	vetor de esforços de Piola-Kirchhoff II
U	vetor de deslocamentos
^t U	vetor de deslocamentos no tempo t
${}^t\widetilde{\mathbb{U}}$	vetor de deslocamentos incompatíveis no tempo t
W	energia de deformação
W^0	energia de deformação instantânea
W_{v}^{0}	componente volumétrica da energia de deformação instantânea
W_d^0	componente desviadora da energia de deformação instantânea
^t X	vetor de coordenadas no tempo t
$_{0}^{t}\mathbf{X}$	gradiente de deformações
α	variável interna do material
β	rotação de uma seção plana
β_N	parâmetro do método de Newmark β
eta_ω	razão entre a frequência de solicitação e a frequência natural
β_1	constante de amortecimento externo
γ	distorção angular constante equivalente
γ_N	parâmetro do método de Newmark β
δ	ângulo de fase
δ_l	decremento logarítmico
$\delta_{(t)}$	função delta de Dirac
Е	tensores de deformações
ε^{v}	tensores de deformações volumétricas

tensores de deformações desviadoras
tensor de deformações de Green-Lagrange
amortecimento histerético
número adimensional de amortecimento interno
constante de amortecimento de um arranjo tipo Maxwell ($i = 1, 2,$)
ângulo de fase entre a resposta e a solicitação
coeficiente de Poisson
coeficiente de amortecimento crítico
amplitude da resposta harmônica
amplitude máxima da resposta
massa específica
tensão cisalhante equivalente
tempo de relaxação (i = 1,2,)
tempo de retardo
frequência natural
frequência da solicitação
incremento
função de relaxação
módulo de armazenamento
módulo de perda