

Sérgio Bragantine Germano

Confiabilidade Metrológica do Banco Dinamométrico para Ensaio de Motores do CTEx

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Metrologia (Área de concentração: Metrologia para Qualidade e Inovação) da PUC-Rio.

> Orientador: Prof. Carlos Roberto Hall Barbosa Co-orientador: Prof. Alcir de Faro Orlando

Rio de Janeiro Setembro de 2013

Sérgio Bragantine Germano

Confiabilidade Metrológica do Banco Dinamométrico para Ensaio de Motores do CTEx

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Metrologia (Área de concentração: Metrologia para Qualidade e Inovação) da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Carlos Roberto Hall Barbosa Orientador Programa de Pós-graduação em Metrologia - PUC-Rio

Prof. Alcir de Faro Orlando

Co-orientador Programa de Pós-Graduação em Metrologia - PUC-Rio

Prof. Mauricio Nogueira Frota Programa de Pós-Graduação em Metrologia - PUC-Rio

Profa. Elisabeth Costa Monteiro Programa de Pós-Graduação em Metrologia - PUC-Rio

> José Eugenio Leal Coordenador Setorial de Pós-graduação do Centro Técnico Científico (PUC-Rio)

Rio de Janeiro, 20 de setembro de 2013

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Sérgio Bragantine Germano

Formado em engenharia elétrica com ênfase em eletrônica, graduou-se em 1986 pelas Faculdades Reunidas Professor Roberto Lisboa. É engenheiro do Centro Tecnológico do Exército (CTEx) no cargo de Tecnologista Sênior III, na Seção de Blindados e Veículos Militares.

Ficha Catalográfica

Germano, Sérgio Bragantine

Confiabilidade metrológica do banco dinamométrico para ensaio de motores do CTEx / Sérgio Bragantine Germano ; orientador: Carlos Roberto Hall Barbosa ; coorientador: Alcir de Faro Orlando. – 2013.

205 f.; 30 cm

Dissertação (mestrado)–Pontifícia Universidade Católica do Rio de Janeiro, Programa de Pós-Graduação em Metrologia para a Qualidade e Inovação, 2013.

Inclui bibliografia

1. Metrologia – Teses. 2. Dinamômetro. 3. Incerteza de medição. 4. Torque. 5. Temperatura. 6. Pressão. 7. Deformação elástica. 8. Wheatstone. 9. Chauvenet. 10. Mann-Whitney. I. Barbosa, Carlos Roberto Hall. II. Orlando, Alcir de Faro. III. Pontifícia Universidade Católica do Rio de Janeiro. Programa de Pós-Graduação em Metrologia para a Qualidade e Inovação. IV. Título.

CDD: 389.1

Dedico esta Dissertação à minha filha, Carolina Carvalho Germano, à minha esposa, Mary Augusta Carvalho Germano, à minha mãe, Therezinha Bragantine Germano à memória de meu pai, José Germano e à memória de meu avô, Adelino Baptista Bragantine.

Agradecimentos

A Deus, a Quem louvo e agradeço;

Aos meus Orientadores, Professor Carlos Roberto Hall Barbosa, pela imensa ajuda na elaboração, sugestões e revisão desta Dissertação; Professor Alcir de Faro Orlando, pela atenção dispensada e pelos conhecimentos de cálculo da incerteza de medição, base para esta dissertação.

À PUC-Rio, pela bolsa de estudos concedida no âmbito do convênio PUC-Rio – CTEx para capacitação de profissionais.

Ao Centro Tecnológico do Exército – CTEx, por possibilitar a realização deste curso;

À minha esposa, Mary Augusta Carvalho Germano, por estar sempre ao meu lado, pelo amor e pelo carinho;

À minha filha, Carolina Carvalho Germano, por existir, pela compreensão, incentivo e pela imensa ajuda nos ensaios laboratoriais;

À minha mãe, Therezinha Bragantine Germano, por todas as noites em claro que passou cuidando de mim, na minha infância, pelas suas orações, amor e preocupação.

Ao Professor Maurício Nogueira Frota, pelo apoio, compreensão, dedicação e pelo carinho para com os alunos da Metrologia;

À Professora Elisabeth Costa Monteiro, pelos conhecimentos em Metrologia, pela atenção, crítica e ajuda com as dúvidas e equipamentos de medição de temperatura;

À Professora Maria Fátima Ludovico de Almeida, pelos conhecimentos em Metodologia da Pesquisa, pela dedicação aos seus alunos e pela imensa ajuda, em muitos momentos, a mim prestada;

Ao Professor Reinaldo Castro Souza, pela ajuda, sugestões e pelos conhecimentos em Estatística;

Ao Professor Fabrício Casarejos Lopes Luiz, pelas grandes ideias em Sustentabilidade;

Ao Bruno Felippe Silva, pela ajuda no desenvolvimento dos métodos de ensaio, pela orientação em Mecânica, pelo apoio no desenvolvimento desta dissertação e pelo incentivo;

À equipe de apoio do Programa de Pós-Graduação em Metrologia, Jaime Mamani Ticona, Márcia Ribeiro Teixeira e Paula Molinari, pela atenção e dedicação;

Aos amigos Antenor Oraldo Chaves Davila e Jose Daniel Hernandez Vasquez, pela paciência e grande ajuda em Estatística;

Ao Antônio Fernando Maciel Mendonça, pelo apoio e amizade;

ao Anderson Viana Neves pela apoio na calibração de instrumentos;

Ao Reinaldo Gomes Santana, pela ajuda no preparo da defesa do Tema da Dissertação;

Ao Victor Santoro Santiago e Antonio Marcos Yuan, pela indicação para o Mestrado e pelo apoio no transcorrer do curso; Ao Theógenes de Oliveira Maia, pela ajuda no equacionamento de soluções dos ensaios laboratoriais;

Ao Evandro Maya Caldeira, José Carlos dos Santos e Antônio Florêncio da Costa, pela ajuda nos ensaios no Banco Dinamométrico;

Aos amigos Evaldo Rocha, Marcelo Ferreira da Costa, Marcelo Gonçalves, Marcos Luis Alves e Vilter Luis Ferreira, pelo apoio nos serviços de usinagem dos componentes mecânicos para os ensaios de laboratório;

Aos amigos Luciney Lima Torres, Roberto Lopo Amaral e Waldir da Silva Goulart, pelo apoio em tarefas que possibilitaram a realização desta Dissertação;

Aos meus irmãos Sydney Bragantine Germano e Selma Bragantine Germano Dibo, pelo incentivo na decisão de iniciar o mestrado;

Aos meus tios Geraldo Baptista Bragantin e Uene Rocha Bragantin, pelo incentivo e Carinho;

Aos meus primos, e amigos, Alexandre Rocha Bragantin, Cláudio Lopes Alves e Cristiane Rocha Bragantin Alves, pelo incentivo, carinho, amizade e compreensão com a minha ausência.

Aos amigos das Turmas de Metrologia, Andréia, Audrya, Bernadete, Carmen, Laura, Mauro, Norma, Tatiane, Alex, Aguinaldo, Cícera, Danilo, Ibáñez, Khrissy, Ruan, Tiago e Vagner, pelos momentos de alegria, companheirismo e carinho.

À Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro – FAPERJ, por possibilitar a aquisição de equipamentos necessários à realização dos ensaios laboratoriais;

A todos que, de alguma forma, se fizeram presentes em minha vida.

PUC-Rio - Certificação Digital Nº 1013882/CA

"Tudo é possível àquele que crê!" Marcos 9:23.

Resumo

Germano, Sérgio Bragantine; Barbosa, Carlos Roberto Hall. *Confiabilidade Metrológica do Banco Dinamométrico para Ensaio de Motores do CTEx.* Rio de Janeiro, 2013. 205 p. Dissertação de Mestrado – Programa de Pós-Graduação em Metrologia. (Área de concentração: Metrologia para Qualidade e Inovação), Pontifícia Universidade Católica do Rio de Janeiro.

Nesta dissertação buscou-se avaliar metrologicamente um banco de ensaios dinamométricos específico, utilizado para analisar a eficiência de motores, lubrificantes e combustíveis, por meio de métodos de comparação dos valores medidos com valores padrões. As grandezas mensuradas foram: velocidade de rotação do eixo de um motor, torque neste eixo, temperaturas e pressões no motor e no dinamômetro, elemento que atua como freio do motor para proporcionar uma simulação das condições reais de trabalho. Foi necessário utilizar dois métodos distintos para avaliação de cada uma das grandezas mensuradas. Foram mensuradas velocidades do motor funcionando e velocidades simuladas, tanto inferiores como superiores às velocidades de operação do motor, determinando os limites superior e inferior de resposta do sistema de medição. Para avaliar a foram produzidos torques conhecidos medição de torque, (padrão), correlacionados com torques medidos no motor funcionando. Temperaturas foram produzidas por um banho termostático, mensuradas com equipamentos calibrados e em seguida comparadas com as indicadas pelo sistema de medição, sendo também utilizado um método simulador de informações de temperaturas, chegando a ser simuladas de -200°C a 650°C. Pressões foram geradas por uma bomba de pressão padrão e lidas pelo sistema de medição, sendo detectado funcionamento inapropriado de 2 canais. Os resultados de cada grandeza foram tratados estatisticamente sendo validadas suas utilizações nos cálculos executados. Confirmadas estatisticamente as validades dos resultados, as incertezas de medição foram calculadas, sendo utilizadas também informações dos certificados de calibração dos equipamentos usados nas medições realizadas. Sugestões foram apresentadas para que melhoria sejam incrementadas ao sistema de medição que demonstrou estar funcionando de forma satisfatória, apresentando, no entanto, algumas oportunidades de melhorias.

Palavras-chave

Metrologia;Dinamômetro; Incerteza de medição; Torque; Temperatura; Pressão; Deformação Elástica; Wheatstone; Chauvenet;

Abstract

Germano, Sérgio Bragantine; Barbosa, Carlos Roberto Hall (Advisor). *Metrological Reliability of the Dynamometric Bench for Engine Testing of CTEx.* Rio de Janeiro, 2013. 205 p. MSc. Dissertation – Programa de Pós-Graduação em Metrologia. (Área de concentração: Metrologia para Qualidade e Inovação), Pontifícia Universidade Católica do Rio de Janeiro.

This work intended to evaluate, metrologically, a specific bench of dynamometric tests, used to analyze the efficiency of engines, lubricants and fuels, through methods that compare the measured values with standards. The measured quantities were: rotation speed of the engine shaft, torque on this same shaft, temperature and pressure of both engine and dynamometer, element that acts as the engine brake so it can simulate a real work condition. It was necessary to use two different methods to evaluate each measured quantity. It was measured the working engine speed and simulated speeds, both higher and lower than the engine operating speeds, establishing the higher and the lower limits of the measurement system. To evaluate the torque measurement, known torques (standards), were produced, and related to the measured torques in the working engine. Temperatures were produced by a thermal bath, measured with calibrated equipment, and then compared with the temperatures indicated by the measuring system, being also used a simulated method for temperatures information, with a range of simulation between -200°C and 650°C. The pressures were created by a standard pressure pump and read by the measuring system, being detected an inappropriate operation of 2 channels. The results were treated statistically, being validated the utilizations on the executed calculations. Having been statistically confirmed the validity of the results, the measurement uncertainties were calculated, being also used the information from the equipment calibration certificate. Suggestions were presented so that improvements can be made to the Measuring System.

Keywords

Metrology; Dynamometer; Measurement Uncertainty; Torque; Temperature; Pressure; Elastic Deformation; Wheatstone bridge; Chauvenet;

Sumário

1 Introdução	21
1.1. Contexto	23
1.2. Objetivo	24
1.3. Estrutura da dissertação	24
2 Bancos Dinamométricos	27
2.1. Princípio de funcionamento do dinamômetro	27
2.2. Dinamômetro automotivo	28
2.2.1. Dinamômetro de motor	30
2.2.2. Dinamômetro de chassis ou rolo	30
2.3. Classes dinamométricas	31
2.3.1. Dinamômetros ativos ou dinâmicos	32
2.3.1.1. Dinamômetro a corrente de foucault ou eddy-current	33
2.3.2. Dinamômetros hidráulicos	34
2.3.2.1. Curva característica - análise	35
2.3.3. Equipamentos e automação de um banco de ensaios dinamométricos	38
3 Avaliação do banco de ensaios dinamométricos do CTEx.	40
3.1. Configuração do dinamômetro	40
3.2. Sensores do banco dinamométrico	42
3.2.1. Sensor de velocidade de rotação do eixo do dinamômetro	42
3.2.2. Sensor de torque	43
3.2.3. Sensor de temperatura	47
3.2.4. Sensor de pressão	49
3.3. Sistema de aquisição dados	50
3.3.1. Características gerais dos canais de medição	50
4 Medições no banco de ensaios dinamométrico do CTEx	52
4.1. Medição de velocidade de rotação	52
4.1.1. Calibração do sistema de medição para velocidade de rotação	53
4.1.2. Velocidade de rotação mínima detectada – medição com	

bluetoooth	56
4.1.3. Análise estatística da resposta do sistema de medição.	60
4.2. Medição de torque	63
4.2.1. Principais equipamentos e software utilizados	64
4.2.2. Calibração estática do sistema de medição de torque	64
4.2.2.1. Considerações e preparativos	64
4.2.2.2. Verificação do funcionamento e coleta de dados	71
4.2.2.3. Observações que antecederam a calibração	73
4.2.2.4. Novos ensaios	74
4.2.2.5. Escolha de um padrão de torque	77
4.2.3. Medição dinâmica de torque pela deformação elástica de eixo com o motor em funcionamento	84
4.2.3.1. Procedimentos no pré-ensaio	84
4.2.3.2. Transmissão por bluetooth dos dados do ensaio	85
4.2.3.3. Cálculo do torque	88
4.2.3.4. Efeitos indesejados - Vibração do conjunto	89
4.2.3.5. Conclusão sobre a medição de torque	90
4.3. Medição de potência	90
4.3.1. Determinação da potência no ensaio dinâmico	93
4.4. Medição de temperatura	93
4.4.1. Calibração do sistema de medição de temperatura	97
4.4.2. Calibração dos canais de medição de temperatura	102
4.4.2.1. Temperatura do Combustível	102
4.4.2.2. Temperatura do óleo lubrificante do motor	105
4.4.2.3. Temperatura do bloco do motor	107
4.4.2.4. Temperatura da água de entrada do motor	109
4.4.2.5. Temperatura dos gases no escapamento	110
4.4.2.6. Temperatura ambiente	111
4.4.2.7. Temperatura do ar de admissão pré-aftercooler	112
4.4.2.8. Temperatura do ar de admissão após o aftercooler	113
4.4.2.9. Temperatura da água de saída do dinamômetro	114
4.4.2.10. Temperatura da água de saída do motor	115
4.4.3. Determinação dos limites superior e inferior da medição de temperatura	116
4.4.4. Conclusão sobre o sistema de medição de temperatura	121

4.5. Medição de pressões no banco de ensaios dinamométrico	121
4.5.1. Calibração dos canais de pressão	123
4.5.1.1. Pressão do Combustível do motor	123
4.5.1.2. Pressão do ar de entrada do motor	125
4.5.1.3. Pressão do óleo de lubrificação do motor	127
4.5.2. Conclusão sobre o sistema de medição de pressão	129
5 Expressão da incerteza de medição	130
5.1. Sobre o cálculo da incerteza de medição	130
5.2. Incerteza de medição do torque padrão	135
5.3. Incerteza de medição da velocidade de rotação do motor	139
5.4. Incerteza de medição para a potência mensurada	140
5.5. Incerteza de medição da temperatura	141
5.5.1. Incerteza de medição da temperatura do combustível	144
5.5.2. Incerteza de medição da temperatura do óleo lubrificante	145
5.5.3. Incerteza de medição da temperatura do bloco do motor	146
5.5.4. Incerteza de medição da temperatura da água de entrada do motor	147
5.5.5. Incerteza de medição da temperatura dos gases de escapamento	149
5.5.6. Incerteza de medição da temperatura ambiente	149
5.5.7. Incerteza de medição da temperatura do ar de admissão pré-aftercooler	151
5.5.8. Incerteza de medição da temperatura do ar de admissão pós- <i>aftercooler</i>	152
5.5.9. Incerteza de medição da temperatura da água de saída do dinamômetro	153
5.5.10. Incerteza de medição da temperatura da água de saída do motor	154
5.6. Incerteza de medição da pressão	155
5.6.1. Incerteza de medição da pressão do combustível do motor	157
5.6.2. Incerteza de medição da pressão do ar de entrada do motor	158
5.6.3. Incerteza de medição da pressão do óleo de lubrificação do motor	159
6 Conclusões e Recomendações	161
6.1. Medição de velocidade de rotação do eixo do motor	161

6.2. Sistema de medição de torque	161		
6.3. Sistema de medição de potência	162		
6.4. Sistema de medição de temperatura	162		
6.5. Sistema de medição de pressão	162		
6.6. Recomendações gerais	162		
6.7. Sugestão para desdobramento do trabalho	164		
7 Referências Bibliográficas	165		
Apêndices	167		
Apêndice A – Multiplicadores decádicos.	167		
Apêndice B – Determinação do raio do eixo Cardan	168		
Apêndice C – Análise de erros do osciloscópio	171		
Apêndice D – Elementos das amostras de medição de rpm.	172		
Apêndice E – Gráfico do torque			
Apêndice F – Cálculo do coeficiente de correlação	174		
Apêndice G – Aplicação do método dos mínimos quadrados	175		
Apêndice H – Incertezas dos Instrumentos utilizados	176		
Anexos	178		
Anexo A – Escala Internacional de Temperatura de 1990	178		
Anexo B – Certificados de calibração do osciloscópio	180		
Anexo C – Frequências utilizadas no segundo método de ensaio para análise da resposta do sistema de medição para velocidade			
de rotação	185		
Anexo D – Valores críticos para o Teste K-S	189		
Anexo E – Certificado de calibração do multímetro Agilent 3458A	190		
Anexo F – Avaliação metrológica do conjunto braço - flange	196		
Anexo G – Calibração do multímetro U1253B	203		
Anexo H – Certificado de calibração do banho termostático	204		

Lista de figuras

Figura 1 – Utilização de um dinamômetro.	27	
Figura 2 – Acoplamento mecânico dinamômetro - motor.		
Figura 3 – Dinamômetro de ensaio de motores.		
Figura 4 – Dinamômetro de rolo ou chassis.		
Figura 5 – Avaliação de consumo de combustível de um veículo completo.	30	
Figura 6 – Placa metálica submetida a um campo magnético.	33	
Figura 7 – Disco metálico submetido a campo magnético.	34	
Figura 8 – Curva característica de um dinamômetro hidráulico.	35	
Figura 9 – Dinamômetro hidráulico – Schenck.	36	
Figura 10 – Acoplamento entre dinamômetro e motor.	37	
Figura 11 – Abastecimento de água para o dinamômetro hidráulico do CTEx.	38	
Figura 12 – Digrama de blocos de medição e controle do banco de ensaios.	41	
Figura 13 – Configuração do banco de ensaios dinamométricos.	42	
Figura 14 – Sensor de rotação.		
Figura 15 – Célula de carga acoplada ao dinamômetro.	43	
Figura 16 – Braço de medição de torque.	46	
Figura 17 – Tipos especiais de termorresistência.	48	
Figura 18 – Tipos diversos de termorresistências.	48	
Figura 19 – Sensor de pressão.	50	
Figura 20 – Configuração para medição da velocidade de giro do motor.	53	
Figura 21 – Sinal bruto de saída do sensor de rotação.	53	
Figura 22 – Gráfico de ajuste das velocidades padrão e indicada no sistema de medição.	56	
Figura 23 – Set-up de equipamentos para medição do sinal de rotação.	57	
Figura 24 – Circuito eletrônico de comutação.	57	
Figura 25 – Set-up de equipamentos para substituição do sensor de rpm.	58	
Figura 26 – Aplicação de onda quadrada ao sistema de medição de velocidade.	58	

Figura 27 – IHM do sistema de medição - Indicação de rpm.	59
Figura 28 – Limites de Z _{cal} para que Ho seja aceita.	62
Figura 29 – Binário força x distância.	65
Figura 30 – Configuração de equipamentos para realização do ensaio.	65
Figura 31 – Set-up de equipamentos para medição de torque.	66
Figura 32 – Instalação de flange entre o eixo Cardan e o dinamômetro.	67
Figura 33 – Instalação de flange, braço móvel e suporte.	67
Figura 34 – Inserção de rótula sob o braço móvel.	68
Figura 35 – Strain gauges colados na superfície do eixo Cardan.	68
Figura 36 – Circuito de alimentação elétrica da Ponte de Wheatstone.	69
Figura 37 – Placa de fixação dos eixos do motor e Cardan.	70
Figura 38 – Equipamentos utilizados para o ensaio.	70
Figura 39 – Interconexão de equipamentos.	71
Figura 40 – Comportamento da deformação em função da força aplicada.	73
Figura 41 – Modificação no braço de alavanca devido à deformação plástica.	74
Figura 42 – Torques obtidos por processos distintos, em função de uma mesma força aplicada.	76
Figura 43 – 95 % - intervalo de confiança.	79
Figura 44 – Curva da relação entre os torques.	81
Figura 45 – Curva da relação do torque pela deformação e os erros %.	82
Figura 46 – (a) Lastro (b) Multímetro e transmissor.	84
Figura 47 – Conjunto para medição da deformação do eixo, fixado ao mesmo.	85
Figura 48 – Recepção de dados por bluetooth.	87
Figura 49 – Síntese do comportamento da deformação do eixo Cardan durante o experimento.	88
Figura 50 – Representação da distância entre força aplicada e o centro do eixo.	91
Figura 51 – Relação entre a potência real no eixo e a potência indicada - kW.	92
Figura 52 – Pt -100 a 3 fios.	93
Figura 53 – Conexão do Pt-100 ao circuito de medição.	95

Figura 54 – (a) Banho Termostático e (b) Bloco Homogeneizador.		
Figura 55 – Incerteza de medição do bloco de cobre		
Figura 56 – Sensores Pt-100 inseridos no banho termostático	99	
Figura 57 – Curva de ajuste da temperatura por uma equação do primeiro grau.	102	
Figura 58 – Curva de ajuste da temperatura por uma equação do segundo grau.	103	
Figura 59 – Curva de ajuste da temperatura do combustível por uma uma equação do terceiro grau.	103	
Figura 60 – Curva de ajuste para correção da indicação da temperatura do combustível.	105	
Figura 61 – Curva de ajuste para correção da indicação da temperatura do bloco do motor	107	
Figura 62 – Curva de ajuste para correção da indicação da temperatura da água de entrada do motor.	109	
Figura 63 – Curva de ajuste para correção da indicação da temperatura dos gases no escapamento.	110	
Figura 64 – Curva de ajuste para correção da indicação da temperatura ambiente.	111	
Figura 65 – Curva de ajuste para correção da indicação da temperatura do ad de admissão pré- <i>aftercooler.</i>	112	
Figura 66 – Curva de ajuste para correção da indicação da temperatura do ar de admissão após o <i>aftercooler.</i>	113	
Figura 67 – Curva de ajuste para correção da indicação da temperatura da água de saída do dinamômetro.	114	
Figura 68 – Curva de ajuste para correção da indicação da temperatura da água de saída do motor.	115	
Figura 69 – Década Resistiva acoplada ao sistema de medição	116	
Figura 70 – Pressão sendo aplicada ao sensor e ao sistema de medição	122	
Figura 71 – Configuração de equipamentos para ensaio de pressão	123	
Figura 72 – Curva de ajuste do canal de indicação da pressão do combustível.	125	
Figura 73 – Curva de ajuste do canal de indicação da pressão do ar de entrada.	127	
Figura 74 – Curva de ajuste do canal do sensor do óleo de lubrificação	129	
Figura 75 – Cálculo do coeficiente t de Student	145	

Lista de tabelas

Tabela 1 – Vantagens x Desvantagens - Dinamômetros para motores	30
Tabela 2 – Vantagens x Desvantagens - Dinamômetro de chassis	31
Tabela 3 – Características da célula de carga utilizada no	
dinamômetro	45
Tabela 4 – Pressões e faixas de trabalho	49
Tabela 5 – Números dos canais das grandezas variáveis	51
Tabela 6 – Faixa de medição de cada variável mensurada	51
Tabela 7 – Correção da frequência, cálculo do erro e indicação da incerteza	54
Tabela 8 – Ajuste da frequência indicada pelo sistema de medição	55
Tabela 9 – Frequências das rotações ensaiadas	59
Tabela 10 – Peças usinadas	66
Tabela 11 – Resultados da primeira medição – Primeiro ensaio	72
Tabela 12 – Resultado da primeira medição - Segundo ensaio	75
Tabela 13 – Comparação entre as leituras dos torques	76
Tabela 14 – Comparação entre os métodos de medição de torque e a indicação do sistema de medição para cada método.	77
Tabela 15 – Correspondência entre os torques obtidos nos ensaios.	80
Tabela 16 – Comparação entre os coeficientes de variação	83
Tabela 17 – Resultado da medição dinâmica de torque	86
Tabela 18 – Comparação entre torques calculados e os torques indicados no S.M	89
Tabela 19 – Comparação entre os torques mensurados e os torques indicados.	89
Tabela 20 – Resultado do ensaio para medição de potência	91
Tabela 21 – Cálculo da potência no eixo Cardan com o motor em funcionamento	93
Tabela 22 – Resistência elétrica do condutor do conector ao condicionador de sinais	96
Tabela 23 – Resistência elétrica do condutor do conector ao sensor	96
Tabela 24 – Resultado do estudo de homogeneidade térmica do bloco de cobre	98
Tabela 25 – Temperaturas ensaiadas segundo o sentido de	

variação da mesma.	100
Tabela 26 – Resultados do método do banho termostático - crescente	100
Tabela 27 – Resultados do método do banho termostático - decrescente	101
Tabela 28 – Comparação do desvio padrão obtido por equações de graus diferentes.	104
Tabela 29 – Calibração do canal de medição de temperatura do óleo lubrificante	105
Tabela 30 –Cálculo do desvio padrão amostral	106
Tabela 31 – Calibração do canal de medição de temperatura do bloco do motor.	107
Tabela 32 – Cálculo do desvio padrão amostral	108
Tabela 33 – Calibração do canal de medição de temperatura da água de entrada do motor.	109
Tabela 34 – Calibração do canal de medição de temperatura dos gases no escapamento.	110
Tabela 35 – Calibração do canal de medição de temperatura ambiente.	111
Tabela 36 – Calibração do canal de medição de temperatura do ar de admissão pré-aftercooler.	112
Tabela 37 – Calibração do canal de medição de temperatura do ar de admissão após o aftercooler.	113
Tabela 38 – Calibração do canal de medição de temperatura da água de saída do dinamômetro.	114
Tabela 39 – Calibração do canal de medição de temperatura da água de saída motor.	115
Tabela 40 – Medição de temperaturas simuladas pela década resistiva, segundo ITS-90.	118
Tabela 41– Resultado da medição da pressão do combustível	124
Tabela 42 – Resultado da medição da pressão do ar de entrada do motor	126
Tabela 43 – Resultado da medição de pressão do óleo de Iubrificação	128
Tabela 44 – Incerteza Combinada dos instrumentos e equipamentos utilizados	134
Tabela 45 – Variáveis para o cálculo da incerteza de medição combinada	144
Tabela 46 – Incertezas obtidas	144
Tabela 47 – Variáveis utilizadas no cálculo da incerteza do canal	145
Tabela 48 – Incertezas obtidas para cada temperatura do canal de medição	146

Tabela 49 – Variáveis utilizadas no cálculo da incerteza do canal	147
Tabela 50 – Incertezas obtidas para cada temperatura do canal de	4 4 7
	147
l abela 51 – Variáveis utilizadas no cálculo da incerteza do canal	148
Tabela 52 – Incertezas obtidas para cada temperatura do canal de medição	148
Tabela 53 – Variáveis utilizadas no cálculo da incerteza do canal	149
Tabela 54 – Variáveis utilizadas no cálculo da incerteza do canal	150
Tabela 55 – Incertezas obtidas para cada temperatura do canal de medição	150
Tabela 56 – Variáveis utilizadas no cálculo da incerteza do canal	151
Tabela 57 – Incertezas obtidas para cada temperatura do canal de medicão	151
Tabela 58 – Variáveis utilizadas no cálculo da incerteza do canal	152
Tabela 59 – Incertezas obtidas para cada temperatura do canal de	
medição	152
Tabela 60 – Variáveis utilizadas no cálculo da incerteza do canal	153
Tabela 61 – Incertezas obtidas para cada temperatura do canal de medicão	153
Tabela 62 – Variáveis utilizadas no cálculo da incerteza do canal	154
Tabela 63 – Incertezas obtidas para cada temperatura do canal de	15/
Tabela 64 – Variáveis utilizadas no cálculo da incerteza do canal	157
Tabela 65 – Incertezas obtidas para cada pressão do canal de	107
medição	157
Tabela 66 – Variáveis utilizadas no cálculo da incerteza do canal	158
Tabela 67 – Incertezas obtidas para cada pressão do canal de	
	158
Tabela 68 – Variáveis utilizadas no cálculo da incerteza do canal	159
Tabela 69 – Incertezas obtidas para cada pressão do canal de medição	160
Tabela 70 – Resistência elétrica dos multiplicadores decádicos.	167
Tabela 71 – Medições do diâmetro do eixo Cardan	168
Tabela 72 – Erros relatados no certificado de calibração do osciloscópio – canal 1	171
Tabela 73 – Atribuição de pesos aos elementos das amostras,	
segundo Mann–Whitney	172
Tabela 74 – Coeficientes de correlação	174
Tabela 75 – Valores críticos da Distribuição para o teste K-S	189

1 Introdução

A avaliação de desempenho de um motor, elétrico ou a combustão interna, pode ser realizada pelo acoplamento ao eixo girante de um dispositivo capaz de oferecer uma dificuldade controlada a esse giro, isto é, uma carga controlada de modo que medições dos parâmetros do motor possam ser realizadas. Este procedimento é denominado de "ensaio do motor" e o dispositivo que pode ser acoplado para proporcionar a dificuldade ao giro é o freio dinamométrico ou "dinamômetro". Ao conjunto de equipamentos de comando, controle e de aquisição de dados de um motor sob ensaio, instalados em um ambiente onde as condições atmosféricas podem, ou não, ser controladas, é dado o nome de "banco de ensaios dinamométricos" ou simplesmente dinamômetro. Este banco de ensaios pode fornecer uma carga ativa ou passiva para o motor, e o objetivo é reproduzir as condições como se o mesmo estivesse instalado em um veículo, possibilitando avaliar seu funcionamento em situações pré-determinadas.

Ensaio dinamométrico é um procedimento indispensável para avaliar a eficiência de motores, lubrificantes, combustíveis e de emissões de gases, funcionando como agente facilitador para qualquer outra análise que necessite de parâmetros de motores como subsídios em tomadas de decisões, quer sejam elas de caráter técnico, de implementação, normalização ou legislação, visando ao bem estar comum, melhoria de eficiência e qualidade do produto; auxilia, ainda, na análise de componentes periféricos de motores durante a partida ou sob regime contínuo de trabalho.

Cabe ressaltar que carga passiva, citada no parágrafo acima, é aquela que funciona somente como freio, isto é, como elemento consumidor de energia. A carga ativa é capaz de produzir Trabalho, introduzindo energia no conjunto; em termos simples, é uma carga capaz de movimentar o motor em avaliação; seu comportamento assemelha-se à condição de um veículo engrenado descendo uma ladeira, sem que o motor seja acelerado pelo motorista do veículo.

Como apoio a esta dissertação foram realizados ensaios dinamométricos em um motor a combustão interna, de ciclo diesel. Os resultados numéricos dos ensaios foram analisados sob um aspecto estatístico aplicado, obtendo-se a incerteza de medição e buscando a maior proximidade ao valor de verdadeiro de cada grandeza. Como no resultado de toda medição está embutido um erro composto por uma parcela de erro sistemático, que pode ser compensada para eliminá-lo, e outra parcela de erro aleatório, que embora não possa ser corrigida, pode ser estimada, possibilitando expressar o quanto o resultado da medição se aproxima, ou difere, do valor real do mensurando.

Para ressaltar a importância dos ensaios dinamométricos pode-se citar a Resolução CONAMA Nº 018/1986 [1] – que "dispõe sobre a criação do Programa de Controle de Poluição do Ar por veículos Automotores – PROCONVE – publicada no Diário Oficial da União em 17/06/1986, alterada pelas Resoluçãos nº 15 de 1995, nº 315, de 2002, nº 414, de 2009 e complementada pela Resolução nº 8 de 1993 para limites de emissão de poluentes para os motores destinados a veículos pesados novos, nacionais e importados". Todas estas exigências não existiriam se não houvesse conhecimento técnico-científico e equipamentos capazes de respaldá-las. Todos estes dados podem ser avaliados em bancos de ensaios dinamométricos durante o projeto, o desenvolvimento ou o ensaio de um motor. Outro exemplo da importância dos ensaio de motores de combustão interna é a obtenção das curvas características de torque x giro (rpm) ou potência x rpm, curvas estas que demonstram o comportamento do motor quando seu eixo é submetido a esforços sob condições de rotação variável (rpm).

Para que os ensaios dinamométricos sejam sempre uniformes e as condições de ensaio possam sempre ser replicadas, existe a necessidade de seguir um procedimento padrão, que, neste caso, é definido pela norma técnica a seguir citada. Para a obtenção de curvas de potência líquida de motores a combustão interna, é utilizada a norma técnica NBR ISO 1585 [2]. Os ensaios realizados para esta dissertação utilizaram como referência também o ISO GUM (2003) [3] e a Escala Internacional de Temperatura de 1990 (ITS-90) [4].

1.1. Contexto

Esta dissertação se insere no contexto de uma ação de melhoria contínua do Laboratório de Motores do Centro Tecnológico do Exército – CTEx, o qual é subordinado à Seção de Blindados e Veículos Militares (SBVM), onde se realizam ensaios em motores de combustão interna para projetos do CTEx ou de apoio a projetos externos, financiados por programas de apoio à pesquisa.

O Laboratório possui um freio dinamométrico capaz de avaliar motores quanto às suas características de consumo de combustíveis, pressões internas, temperaturas, torque, aceleração, velocidade de rotação, emissões dos gases da combustão e outros parâmetros. Considerando que o sistema original foi construído na década de 1980, que os equipamentos de controle do dinamômetro e aquisição de dados começaram a apresentar alto índice de defeitos na década seguinte e considerando ainda a escassez de recursos financeiros na década de 2000 e os altos preços dos fabricantes internacionais de equipamentos de controle dinamométrico, adotou-se a estratégia de contratar uma microempresa brasileira para desenvolver equipamentos de controle e de aquisição de dados para o banco de ensaios dinamométricos.

No sistema de aquisição de dados desenvolvido e instalado pela empresa acima mencionada, após a realização dos ensaios de alguns motores, e com base nas recomendações do ISO GUM [3], foi diagnosticada a necessidade de refinamento dos procedimentos para análise metrológica dos dados obtidos, de forma que pudesse ser expressa, nos relatórios de ensaios, a incerteza de medição correspondente a cada medição realizada pelo sistema de medição.

Como a empresa que projetou, montou e instalou o sistema de aquisição de dados não comprovou que o mesmo apresenta uma resposta estatisticamente fiel aos valores reais mensurados, tornou-se necessário adotar um procedimento para obter estas características. Devido ao seu grau de complexidade e necessidade de um estudo aprofundado, foi escolhido o tema desta dissertação para este fim.

1.2. Objetivo

O objetivo desta dissertação é avaliar metrologicamente o sistema de medição do banco dinamométrico de ensaio de motores do CTEx.

A dissertação tem os seguintes objetivos específicos:

- Caracterizar os principais modelos de dinamômetros automotivos, buscando situar o freio dinamométrico do Laboratório de Motores do Centro Tecnológico do Exército - CTEx dentre esses modelos;
- Testar a transmissão por *bluetooth* para ser utilizada como ferramenta de transferência de dados de variáveis do processo no Laboratório de Motores do CTEx
- Estimar a incerteza associada à medição de cada grandeza relacionada, de maneira que possam ser consideradas nos procedimentos descritos na norma técnica NBR ISO 1525 [2] e proporcionem correções quantitativas, necessárias na obtenção dos resultados. As grandezas mensuradas são:
 - a. velocidade de rotação do eixo do motor ensaiado;
 - b. torque do motor ensaiado;
 - c. potência do motor;
 - d. temperatura do combustível;
 - e. temperatura do óleo lubrificante do motor;
 - f. temperatura do bloco do motor;
 - g. temperatura da água de entrada do motor;
 - h. temperatura dos gases no escapamento;
 - i. temperatura ambiente;
 - j. temperatura do ar de admissão pré-aftercooler;
 - k. temperatura do ar de admissão após o aftercooler;
 - 1. temperatura da água de saída do dinamômetro;
 - m. temperatura da água de saída do motor;
 - n. pressão do combustível do motor;
 - o. pressão do ar de entrada do motor;
 - p. pressão do óleo de lubrificação do motor.
- Propor recomendações para o Laboratório de Motores do CTEx, visando à sua acreditação futura para ensaios de motores a combustão interna.

1.3. Estrutura da dissertação

Esta dissertação possui 6 capítulos, 9 apêndices e 8 anexos, cujos conteúdos são resumidamente descritos a seguir.

No Capítulo 1 – Introdução – O conceito de dinamômetro e bancos dinamométricos, é apresentado como também sua composição, utilidade e a realização dos ensaios. Carga dinamométricias são conceituadas. Os objetivos do trabalho são relatados assim como as condições que os originaram.

No Capítulo 2 – Bancos Dinamométricos - Aprofunda-se a descrição dos bancos dinamométricos, citam-se alguns tipos e as classes que se subdividem. Curvas características são analisadas e os detalhes de construção de um dinamômetro hidráulico são mostrados. Os equipamentos utilizados para automação de um dinamômetro são citados.

No Capítulo 3 – Bancos de ensaios dinamométricos do CTEx – A configuração deste Banco de ensaios é descrita utilizando o diagrama de blocos do equipamento. São mostrados os sensores e descrevem-se seus funcionamentos de forma detalhada. Iniciando pelo sensor de rotação, seguindo pelo de torque, onde as características de uma célula de carga são apresentadas e dando sequência aos sensores de temperatura (Pt-100) e suas características. O sensor de pressão é o último a ser mencionado. As características do sistema de aquisição de dados e sistema de medição são apresentadas, mostrando detalhes de configuração e de conversão de dados.

No Capitulo 4 – Resultados Experimentais – São apresentados os ensaios realizados e os resultados obtidos. Cada ensaio é comentado, a começar pela medição da velocidade de rotação do eixo do motor, realizado por dois métodos. Em seguida são relatados os ensaios de medição de torque, onde sensores *strain gauges* foram montados sobre o eixo do dinamômetro, podendo ser observados os fenômenos de deformação elástica. Na sequência são detalhados os ensaios de medição de temperatura para cada canal do sistema de aquisição de dados. Os métodos são comentados e apresentados em tabelas. Por fim, é apresentado o método de ensaio de pressão e os resultados obtidos também para este método.

No capítulo 5 – Expressão da incerteza de medição– A importância da indicação das incertezas de medição e as recomendações do ISO GUM [3] são mencionadas. São apresentados os métodos de cálculo para cada tipo de incerteza, como também se apresentam os cálculos, expressando-se as incertezas por grandezas.

No capítulo 6 – Conclusões e recomendações – São apresentadas as conclusões sobre os ensaios realizados e os resultados obtidos. Também são feitas

recomendações de melhorias para os sistemas de medição e controle do dinamômetro. A sugestão de trabalhos futuros também está contida neste capítulo.

No Apêndice A – Multiplicadores decádicos – Estão as tabelas resultantes do estudo da resistência total apresentada por cada elemento decádico da década resistiva utilizada no segundo método de avaliação do Sistema de medição de temperaturas.

No Apêndice B – Determinação do raio do eixo Cardan – Está demonstrada a aplicação do método de Chauvenet, para determinação do raio do eixo Cardan.

No Apêndice C – Análise de erros do osciloscópio – São apresentados a tabela de erros relatados no certificado de calibração do instrumento e o gráfico gerado para estes dados.

No apêndice D – Elementos das amostras de medição de rpm – São apresentadas as velocidades de rotação organizadas em tabela, onde foram atribuídos pesos às mesmas para o emprego do método de Mann-Whitney.

No apêndice E – Gráfico do torque – Apresenta o gráfico gerado pelos resultados obtidos no ensaio dinâmico de torque.

No apêndice F – Cálculo do coeficiente de correlação – Apresenta a planilha com os valores calculados de variáveis que possibilitaram o cálculo do coeficiente de correlação entre o torque medido pelo sistema de medição e o torque gerado e utilizado como padrão.

No apêndice G – Aplicação do método dos mínimos quadrados – São apresentados os valores das variáveis utilizadas no método dos mínimos quadrados, utilizado para encontrar a equação que compatibiliza o torque medido com o torque padrão.

No Anexo A – Escala Internacional de Temperatura de 1990;

No Anexo B - Certificados de calibração;

No Anexo C – Frequências utilizadas para avaliação da medição de velocidade de rotação do eixo;

No Anexo D – Valores críticos para o Teste K-S;

No Anexo E - Certificado de Calibração do Multímetro Agilent 3458A;

No Anexo F – Certificado de Avaliação Metrológica do Conjunto Braço – Flange;

No Anexo G – Planilha de calibração do multímetro Agilent U1253 B.

2 Bancos Dinamométricos

2.1. Princípio de funcionamento do dinamômetro

O dinamômetro, inventado por Isaac Newton, é um dispositivo simples, constituído por uma mola, uma escala graduada e calibrada, hastes laterais e uma caixa que abriga todo o conjunto. É utilizado para medir a intensidade de uma força. A Figura1 mostra um dinamômetro sendo utilizado para mensurar a força necessária para deslocar um bloco.

Figura 1 – Utilização de um dinamômetro

Ele tem emprego em diversas áreas, das mais variadas, nas quais a busca de informações que envolvam utilização de força, torque ou potência seja o objetivo. O princípio básico do dinamômetro deu origem a dispositivos que, agregados de tecnologia, passaram a ser utilizados em auxílio a diversas atividades. Como exemplos imediatos podem ser citadas as áreas de saúde humana e de tecnologia automotiva. Na primeira, os dinamômetros são empregados para fins fisioterápicos e de avaliação de atletas e na segunda, à qual esta dissertação é dedicada, existe uma infinidade de empregos, tanto na área de manutenção corretiva de motores como de desenvolvimento automotivo em geral, passando pela obtenção de características de combustíveis, desempenho de motores, avaliação de emissão de gases, etc. Ao arranjo do dinamômetro associado a dispositivos metrológicos auxiliares, interfaces Homem-Máquina, etc., foi dado o nome de Banco de Ensaios Dinamométricos. Como esta dissertação destina-se à análise metrológica de um Sistema de Medição de um dinamômetro automotivo, os demais tipos de dinamômetros não serão aqui analisados ou estudados.

2.2. Dinamômetro automotivo

É constituído basicamente por um elemento que oferece carga ao motor ensaiado (dinamômetro), por sensores ou transdutores (de temperatura, pressão, vazão, torque e outros), de condicionadores de sinais, de um multiplexador, de conversores de valores analógicos para valores digitais, de um controlador do processo e de um computador.

O dinamômetro é acoplado mecanicamente ao motor que está sendo ensaiado através de um eixo metálico Cardan, com 2 graus de liberdade, sendo 1 grau longitudinal e 1 grau em giro circular, como mostrado na Figura 2. O movimento de rotação do eixo do motor é transmitido ao eixo do dinamômetro.

Figura 2 - Acoplamento mecânico dinamômetro - motor

Diversos são os tipos de dinamômetros utilizados para avaliar os conjuntos propulsores e tracionadores que compõem os veículos automotores. Dentre os mais utilizados, dois grupos destacam-se em função do emprego desejado. Quando o objetivo de um ensaio automotivo é avaliar o comportamento de um motor, isoladamente de seus periféricos, como por exemplo, separado da embreagem e da caixa de marcha ou de qualquer outro componente, é utilizado o dinamômetro de motor, ilustrado na Figura 3.

Figura 3 – Dinamômetro de ensaio de motores

Se o ensaio objetiva avaliar o comportamento conjunto do motor com algum periférico instalado no veículo, é empregado o *Dinamômetro de Chassis*, também denominado de Dinamômetro de Rolo, ilustrado na Figura 4.

Figura 4 – Dinamômetro de rolo ou chassis

A Figura 5 ilustra os resultados de ensaio dinamométrico obtidos em um dinamômetro de chassis. Este é um exemplo de utilidade de um dinamômetro de chassis, que avaliou o consumo de combustível de um veículo.

Figura 5 - Avaliação de consumo de combustível de um veículo completo [5]

2.2.1. Dinamômetro de motor

Caracteriza-se pela propriedade de possibilitar ensaiar o motor isoladamente, acoplando-o diretamente ao seu eixo. Pode ser hidráulico, elétrico de corrente alternada ou elétrico de corrente contínua.

Na Tabela 1 a seguir apresentam-se as vantagens e desvantagens de um banco de ensaios dinamométricos para motores.

Tahela 1 _	Vantagens v	Desvantagens -	. Dinamômetros	nara motores
	vaniayens x	Desvanayens -		para molores

Vantagens	Desvantagens
Mensura somente as características do motor, sem a influência de outros elementos de transmissão.	Requer uma infraestrutura externa ao veículo para que o motor funcione.
O motor pode ser ensaiado em condições controladas.	Somente são obtidas informações do motor, o que pode ser uma desvantagem para algumas aplicações.

2.2.2. Dinamômetro de chassis ou rolo

É assim denominado devido ao método de ensaio, no qual as rodas do veículo completo são colocadas sobre rolos metálicos que são acoplados a motores elétricos ou sistemas hidráulicos de frenagem.

Vantagens	Desvantagens	
Rapidez para a montagem e desmontagem do veículo. Permite ensaiar muitos veículos em pouco tempo ou muitas mudanças em pouco tempo;	Pouco exato quando se deseja medir a potência do motor, já que é impossível determinar as perdas reais entre motor e as rodas;	
Mede a potência efetiva que chega às rodas;	Sem um dinamômetro acoplado é difícil de calibrar;	
Mede ao mesmo tempo motor e transmissão;	Influência dos componentes do veículo no resultado da medição (em rolos sem dinamômetro);	
É possível estimar (com baixa exatidão) o desempenho da transmissão separadamente (ensaio de desaceleração)	Custo elevado em relação a um dinamômetro de motor;	
	Requer maior área de laboratório para sua instalação.	

Tabela 2 - Vantagens x Desvantagens - Dinamômetro de chassis

2.3. Classes dinamométricas

Os subsistemas de um dinamômetro, seja ele de chassis ou de motor, são compostos por dispositivos somente de inércia de frenagem ou também acrescidos de dispositivos tratores, sensores e atuadores.

Dispositivo de inércia de frenagem é o componente responsável por oferecer somente uma dificuldade ao giro do motor que está sendo ensaiado. Sua função é oferecer uma "carga" para esse motor, sendo esta carga inercial variável e controlada. Neste caso, o dinamômetro é denominado Passivo.

Quando um motor elétrico é utilizado como dinamômetro, ele pode também tracionar o motor ensaiado ou atuar somente como um dispositivo de carga passiva. Dependendo do tipo de motor elétrico empregado como dinamômetro, existe a possibilidade de ser utilizado simultaneamente como dinamômetro e gerador de energia elétrica. Empregado como gerador, comportar-se-á como uma carga inercial que gera energia elétrica, a qual poderá ser negociada com a concessionária de energia local ou mesmo perdida, se for direcionada para absorvedores do tipo resistência elétrica ou para cargas dinâmicas. Quando esse dispositivo funciona como um motor, ele fornece energia cinética para o motor que está sendo ensaiado, possibilitando ensaios de grande utilidade, como explicado nos parágrafos seguintes. Esta versatilidade caracteriza o dinamômetro como Ativo ou Dinâmico.

Os mais utilizados são os dinamômetros hidráulicos (passivos), os dinamômetros de motores de corrente contínua (ativos) e os dinamômetros de corrente de Foucault (ativos). Os dinamômetros de corrente contínua eram bastante utilizados devido a sua característica de controle em baixa velocidade com alto torque. Com o desenvolvimento de controle de velocidade em motores de corrente alternada, estes os estão substituindo.

2.3.1. Dinamômetros ativos ou dinâmicos

Os dinamômetros que utilizam como elemento trator um motor de corrente alternada são utilizados em ensaios altamente dinâmicos, nas áreas de pesquisa e desenvolvimento, onde condições reais e dinâmicas necessitam ser ensaiadas. Neste tipo de equipamento a carga é aplicada por um motor, que pode ser elétrico, controlado em tempo real por um computador.

Adicionalmente ao torque resultante da inclinação da pista, da resistência à rodagem, da resistência do ar e da aceleração, são simuladas as características de elasticidade e amortecimento da linha de acionamento veicular, consistindo de motor, embreagem, eixo Cardan, eixo traseiro e rodas. Também podem ser simuladas as trocas de marchas.

São empregados em ensaios de análise de gases, de certificação de motores diesel, de otimização de sistemas de injeção de combustível, de desenvolvimento de sistemas eletrônicos de controle de motor, de testes acústicos de motor e escapamento, de teste de motores turbinados e diversos outros testes. A principal vantagem de um banco de ensaios dinâmicos é a possibilidade de transferir testes de estrada para o banco de teste de motores, com as seguintes vantagens:

 baixo custo para realizar o teste de estrada, pois somente é necessário o motor, sendo dispensados o veículo e o motorista ;

- flexibilidade para configurar as características do veículo (relação de câmbio, peso, tamanho de pneus, etc.), e

- possibilidade de testar o motor de um projeto novo, antes mesmo de se dispor de um veículo pronto.

2.3.1.1. Dinamômetro a corrente de foucault ou eddy-current

A indução eletromagnética que se processa em um condutor em forma de fio, colocado num campo magnético, também existe quando um bloco metálico é inserido em um campo magnético variável. Se o bloco com a face plana ABCD (Figura 6a) for colocado perpendicularmente ao campo magnético variável, e esta face for atravessada pelo fluxo $\Phi=S.|\vec{B}|$ variável, sendo S sua área, o bloco de ferro sofrerá indução eletromagnética e aparecerão nele correntes elétricas induzidas circulares, situadas em planos perpendiculares à indução magnética \vec{B} isto é, planos paralelos a ABCD.

Figura 6 – Placa metálica submetida a um campo magnético

Estas correntes que surgem no bloco são chamadas de correntes de Foucault ou *eddy currents* – correntes de redemoinho.

Para diminuir as perdas de energia por correntes de Foucault, as partes de ferro das máquinas elétricas são sempre laminadas, e nunca são blocos maciços. Assim são os núcleos de ferro dos transformadores, do cilindro do rotor dos motores, do estator dos motores, etc (Figura 6b).

Para verificar a atuação das correntes de Foucault, um disco metálico, como mostrado na Figura 7, é inserido no campo magnético de um eletro-ímã. Se a bobina do eletroímã estiver desligada, o disco poderá girar facilmente quando a manivela for acionada. Ao ser energizada a bobina, o movimento do disco começa a ser dificultado, aumentando a dificuldade se a tensão da bobina for aumentada. Isto se dá devido ao aparecimento das correntes de Foucault no disco, em função

da indução magnética no mesmo. Haverá também um aquecimento desse disco metálico, em função do efeito Joule que surge devido às correntes que nele circulam.

Figura 7 – Disco metálico submetido a campo magnético

2.3.2. Dinamômetros hidráulicos

O movimento de rotação do eixo do motor é transmitido ao eixo do dinamômetro hidráulico, que requer abastecimento de água para funcionar. O seu funcionamento é baseado no princípio de Föttinguer [6]. De acordo com este princípio, a potência de um eixo aletado que gire, acionado por um motor, pode ser transmitida para outro eixo, também aletado, acoplados entre si por um fluido qualquer, de forma que este segundo eixo também terá um movimento giratório. Supondo os dois eixos concêntricos, inseridos em uma carcaça, acoplados hidraulicamente entre si, sendo o segundo eixo acoplado mecanicamente à carcaça, pode-se imaginar que esta carcaça também tenderá a girar.

Este tipo de dinamômetro é caracterizado pelo seu baixo custo, por poder ser utilizado em altas potências e por possuir baixa inércia. Permite realizar ensaios com carga estabilizada por tempo indefinido (limitado só pela capacidade de dissipação de calor da torre de resfriamento da água de acoplamento entre os eixos). Tem como desvantagem a característica de somente conseguir fornecer baixo torque ao motor ensaiado se a rotação for baixa, devido a sua baixa capacidade de dissipação térmica. Sua infraestrutura possui custo elevado em função de todos os dispositivos necessários ao fornecimento da água de refrigeração, a qual também atua como elemento de frenagem.

2.3.2.1. Curva característica - análise

A Figura 8 a seguir apresenta a curva característica de um dinamômetro hidráulico. Os trechos a, b, c, d e e desta curva têm os seguintes significados:

Figura 8 – Curva característica de um dinamômetro hidráulico

- a. esta linha é determinada pela máxima quantidade de água que poderá estar contida no dinamômetro;
- b. linha do torque máximo, determinada por resistências mecânicas;
- c. linha da potência máxima em função da capacidade do dinamômetro absorver e dissipar a energia gerada.
- d. determina a rotação máxima, em função dos rolamentos, velocidade circunferencial e rotação crítica;
- e. linha que poderá ser alcançada com pouca, ou até a metade da rotação máxima sem água.

A Figura 9 ilustra os componentes de um dinamômetro hidráulico. Ele é composto por um rotor (1) que possui aletas metálicas e fica inserido em uma carcaça cilíndrica estática (8), a qual fica apoiada sobre 4 suportes flexíveis metálicos (7) que funcionam como amortecedores da estrutura dinamométrica. O eixo (14) do rotor é concêntrico ao próprio rotor, à carcaça e aos rolamentos (15) existentes em suas extremidades; os rolamentos têm como mancais os alojamentos existentes na carcaça. Nesta configuração o rotor pode girar livremente no interior do dinamômetro quando ele está sem água.

Leg	enda		
1	Rotor Duplo	2	Câmara de turbilhão
3	Flange do mancal	4	Selos
5	Flange de Acoplamento	6	Disco dentado com sensor de velocidade
7	Suportes Flexíveis	8	Carcaça
9	Válvula de controle	10	Eixo do controle de carga
11	Motor da válvula de control	12	Célula de carga
13	Correia dentada do motor	14	Eixo do rotor
15	Rolamento de giro	16	Câmara anular
17	Carcaça	18	Saída da água da câmara
19	Entrada de Água		

Figura 9 – Dinamômetro hidráulico – Schenck

A Figura 10 é uma foto complementar à figura 9, ilustrando os componentes do dinamômetro hidráulico do CTEx.

Figura 10 - Acoplamento entre dinamômetro e motor

O conjunto carcaça-rotor (Figura 10) está apoiado sobre os quatro suportes metálicos citados acima, que estão fixados sobre uma base metálica (22) presa ao solo.

A carcaça do dinamômetro possui três aberturas, duas superiores (20) e outra inferior (7), que se comunicam através de uma válvula (9), pelo seu espaço interno, preenchido pelo rotor que fica imerso em água.

As aberturas superiores estão ligadas a uma tubulação hidráulica (19) e recebem a água fornecida por um reservatório instalado a 6 (seis) metros de altura em relação ao dinamômetro, conforme mostrado na Figura 11.

A abertura inferior tem como função controlar a vazão da água que penetra pela abertura superior. O controle se dá por uma placa móvel que está acoplada ao eixo de um motor elétrico auxiliar (11). O acionamento deste motor movimenta a placa de uma válvula (9) aumentando ou diminuindo a abertura e, desta forma, controlando a vazão da água. Quanto menor for a vazão, maior será a carga que o dinamômetro apresentará para o motor que estiver sendo ensaiado. Isto ocorre pelo fato de que as aletas do rotor são freadas pela água, surgindo uma resistência mecânica ao movimento de rotação do rotor. Esta resistência mecânica é transmitida ao movimento de giro do motor que está acoplado ao dinamômetro. A energia utilizada para sobrepor a resistência da água é transformada em calor, limitando a capacidade deste tipo de dinamômetro.

No banco de ensaios dinamométricos, o dinamômetro é acoplado mecanicamente ao motor que está sendo ensaiado através de um eixo metálico Cardan, com 2 graus de liberdade, sendo 1 grau longitudinal e um grau circular.

O reservatório superior de água é alimentado por bombas hidráulicas de recalque que o mantêm sempre cheio, proporcionando uma coluna de água constante para o interior do dinamômetro. Os detalhes do sistema de abastecimento de água do dinamômetro estão apresentados na Figura 11.

Figura 11 – Abastecimento de água para o dinamômetro hidráulico do CTEx

2.3.3. Equipamentos e automação de um banco de ensaios dinamométricos

A configuração de um banco de ensaios dinamométricos pode ser realizada de uma forma bastante variada. Isto se dá devido às várias possibilidades que existem de realização de ensaios e para o que se destinam. Um exemplo de ensaio a ser realizado é o da avaliação de durabilidade de um determinado periférico do motor em função do emprego de um novo combustível, como o comportamento da bomba injetora mediante o emprego do biodiesel, por exemplo. Neste caso pode não ser significativo avaliar os gases de emissão, pois se deseja saber somente se a citada bomba terá um funcionamento normal ou não, se apresentará desgastes ou defeitos mais rapidamente do que se for utilizado o diesel de petróleo puro. Assim sendo, os equipamentos de avaliação dos gases de emissão não serão necessários, tornando a configuração do banco de ensaios mais simples. Da mesma forma, uma avaliação de potência em função de um reparo realizado no motor pode não requerer uma configuração mais complexa. No entanto, existem ensaios nos quais a avaliação ou comportamento de todas as grandezas do motor, do combustível, dos fluidos de refrigeração e de lubrificação, assim como as grandezas ambientais, deverão ser monitoradas. Neste caso, periféricos como condicionadores de óleo de lubrificação e do fluido de refrigeração, analisador de gases, dinamômetro ativo, sensores de temperatura, de pressão, vazão, de velocidade de giro, atuadores de aceleração e software de controle e aquisição de dados elaborados, por exemplo, são de grande importância.

As características do dinamômetro e a configuração do banco de ensaios são fatores determinantes da capacidade de um laboratório realizar, ou não, um ensaio dinamométrico. Um dinamômetro com potência máxima de 300 kW não poderá realizar um ensaio de plena carga para um motor de 500 kW.

No próximo Capítulo serão apresentadas as principais características técnicas do dinamômetro que compõem o banco de ensaios dinamométricos do CTEx.

3 Avaliação do banco de ensaios dinamométricos do CTEx.

3.1. Configuração do dinamômetro

O banco de ensaios dinamométricos do Laboratório de Motores do CTEx possui um dinamômetro hidráulico, passivo, com potência de ensaio de 630 kW (844,50 hp), equipamentos para análise das emissões dos gases de descarga do motor ensaiado, condicionadores de sinais que recebem informações de sensores de temperaturas e de torque e outros componentes de medição e controle. Cabe ressaltar que a medição de torque é feita de forma indireta, por meio de uma célula de carga acoplada à carcaça estática do dinamômetro, e não diretamente no eixo do motor ou do dinamômetro.

A Figura 12 ilustra o diagrama de blocos deste banco de ensaios, onde as setas azuladas indicam que os valores das grandezas vazão de combustível, temperaturas, velocidade de giro do motor, torque aplicado ao dinamômetro e pressões desenvolvidas no motor, são monitoradas por sensores específicos para cada uma delas. As saídas de alguns sensores são levadas a condicionadores de sinais para que possam ser convertidas em uma grandeza única, no caso tensão elétrica (0 a 2,50 V), sendo esta fornecida ao conversor A/D através do multiplexador e do circuito amostrador. O bloco denominado Controlador tem como função enviar os dados de forma sincronizada ao computador do sistema de medição e do computador ao sistema de controle. Este computador também é o responsável pelo envio de comandos de partida, parada e aceleração do motor que está sendo ensaiado; controla a intensidade de carga do dinamômetro para o motor (setas amarelas) e registra os *set-points* do processo de ensaio, inseridos pelo teclado.

Figura 12 – Digrama de blocos de medição e controle do banco de ensaios

O banco de ensaios de motores real pode ser visto na Figura 13. Neste caso o motor ensaiado é um motor a combustão interna, mas este tipo de banco de ensaios pode executar provas de motores elétricos ou qualquer outro dispositivo que necessite de uma carga que se comporte como um freio ou que ofereça uma resistência mecânica a seu giro.

1 – Dinamômetro;
2 – Eixo Cardan – acoplamento do dinamômetro ao motor ensaiado;
3 – Acoplamento elástico – diminui as vibrações do motor para o dinamômetro;
4 – Sensor – exemplo de sensor do conjunto;
5 – Motor ensaiado;
6 – Célula de carga – sensor para medição de torque.

Figura 13 – Configuração do banco de ensaios dinamométricos

3.2. Sensores do banco dinamométrico

Para monitorar o desempenho do motor de combustão interna, diversos tipos de transdutores são acoplados a ele, como mostrado na Figura 12.

3.2.1. Sensor de velocidade de rotação do eixo do dinamômetro

Embora existam diversos tipos de sensor de rotação, neste caso foi utilizado um sensor indutivo para o transdutor, o qual é fixado na estrutura da carcaça do dinamômetro, próximo ao eixo do rotor (Figura 14). A este eixo é acoplado um ressalto metálico que, quando detectado pelo sensor, a cada giro do eixo, faz com que ele forneça uma saída de tensão elétrica de 24 V. Como o ressalto passa somente uma vez pelo local onde o sensor está fixado, a cada volta, basta mensurar o período de um pulso para obter a frequência de rotação do motor.

Figura 14 - Sensor de rotação

A velocidade de rotação do eixo do dinamômetro é expressa na tela do computador de controle em rotações por minuto (rpm), unidade comumente empregada na área de ensaios dinamométricos.

3.2.2. Sensor de torque

A célula de carga mostrada na Figura 15 é um transdutor utilizado para mensurar o torque aplicado pelo motor ao dinamômetro. Baseia-se no princípio de que ocorre deformação ($\mathbf{\epsilon}$) em um corpo quando este é submetido a uma força. Se a força aplicada não exceder um valor que provoque somente deformação elástica no corpo, esta deformação pode ser utilizada para mensurar a intensidade da força aplicada, isto é, se a deformação se mantiver dentro de um limite proporcional à força aplicada, ao cessar a força o corpo volta à sua forma original.

Figura 15 – Célula de carga acoplada ao dinamômetro

A deformação ($\boldsymbol{\epsilon}$) é uma quantidade adimensional, definida pela razão entre dois comprimentos de um corpo submetido a uma tensão, o comprimento final e o comprimento inicial, conforme indicado na Eq. 1. Apesar disso, é prática comum expressá-la em termos de unidades de comprimento. No Sistema Internacional (SI) as unidades básicas são metro/metro (m/m). Na maioria das aplicações de engenharia a deformação ($\boldsymbol{\epsilon}$) será muito pequena, portanto as medições de deformações são expressas pela razão micrometro/metro (µm/m), podendo ser expressa também em porcentagem. Como exemplo, uma deformação normal de 480 x 10⁻⁶ poderá ser expressa como 480 µm/m ou expressa por 0,0480% ou ainda simplesmente como 480 µ $\boldsymbol{\epsilon}$ (480 micro strains) [7].

$$\varepsilon = \frac{\Delta L}{L_0}$$
 Eq. 1

Muitas estruturas em engenharia são projetadas para sofrer deformações relativamente pequenas, que envolvam somente a parte reta do correspondente diagrama tensão-deformação. Para essa parte inicial deste diagrama a tensão σ é diretamente proporcional à deformação específica **E** e se pode escrever [8]

$$\sigma = E. \epsilon$$
 Eq. 2

 σ – tensão mecânica aplicada – Pa (pascal)

E – Deformação elástica longitudinal - percentual (%)

E – módulo de elasticidade ou módulo de Young- Pa (pascal)

Esta relação é conhecida como *lei de Hooke*, em homenagem a Robert Hooke. O coeficiente **E** é chamado de módulo de elasticidade do material, ou também de módulo de young, em homenagem a Thomas Young. Como a deformação específica $\boldsymbol{\varepsilon}$ é uma quantidade adimensional, o módulo **E** é expresso nas mesmas unidades da tensão $\boldsymbol{\sigma}$, ou seja, em pascal ou um de seus múltiplos, se forem utilizadas unidades do SI [8].

$$E = \frac{\sigma}{\varepsilon}$$
 Eq. 3

e portanto

onde

 σ – tensão mecânica aplicada – Pa (pascal)

E – Deformação elástica longitudinal - percentual (%)

E – módulo de elasticidade ou módulo de Young- Pa (pascal)

F – força aplicada – N (newton)

A – área na qual a força é aplicada – m^2

 Δl – comprimento após a deformação – m

lo – comprimento inicial, antes da deformação – m

A Tabela 3 a seguir apresenta as características técnicas da célula de carga utilizada no banco de ensaios dinamométricos do CTEx.

Características da célula de carga	Valor
Tensão de saída	2 mV/V
Excitação recomendada (tensão C	10 V
Excitação máxima (tensão CC)	15 V
Não linearidade máxima	0,05%
Histerese máxima	0,02%
Não repetitividade	0,02%
Zero inicial	< 1 %
Faixa de temperatura compensad	- 10 °C a + 60 °C
Faixa de temperatura útil	- 10 °C a + 80 °C
Efeito da temperatura no zero	0,001 % / °C
Efeito da temperatura na sensitivi	0,001 % / °C
Sobrecarga permitida sem descali	150 %
Limite de segurança para ruptura	300 %
Isolação da carcaça	5 GΩ
Resistência de entrada	$350 \Omega \pm 1 \%$
Resistência de saída	351Ω±1%

Tabela 3 - Características da célula de carga utilizada no dinamômetro

A medição de torque neste banco de ensaios é realizada de uma forma indireta. O torque é importante não só por se relacionar diretamente com a potência, mas também pelos cuidados que devem ser observados para sua medição. Embora já existam sensores que podem ser aplicados no eixo do motor para medir o torque diretamente, no caso do dinamômetro do Laboratório de Motores do CTEx a medição se dá através de um braço mecânico acoplado à carcaça do dinamômetro por uma de suas extremidades, estando a outra extremidade deste braço acoplada a uma célula de carga, comprimindo-a. Por meio de uma simples operação matemática de multiplicação do valor do comprimento do braço, conforme a Figura 16, pela intensidade da força aplicada, medida pela célula de carga, o valor do torque passa a ser conhecido.

Figura 16 - Braço de medição de torque

No entanto, três observações deverão ser consideradas. A primeira é que o dinamômetro encontra-se apoiado, como descrito acima, sobre quatro molas e isto poderá introduzir uma absorção de força pelas molas, interferindo diretamente sobre a força aplicada à célula de carga e gerando um erro sistemático que pode estar sendo introduzido no sistema de medição. A segunda observação relaciona-se com a primeira. Como o fabricante do banco de ensaios dinamométricos forneceu também o sistema de medição, é suposto que este sistema contemple a

correção do erro sistemático citado. A terceira e última diz respeito ao atual sistema de medição, o qual substituiu o antigo sistema fornecido pelo fabricante do dinamômetro e pode não estar corrigindo a medição quanto ao erro sistemático introduzido. Uma das formas encontradas para sanar esta dúvida envolve a construção de um sensor baseado em *strain gauges* para emprego dinâmico da medição, conforme será detalhado no Capítulo 4.

3.2.3. Sensor de temperatura

Existem diversos tipos de transdutores que podem ser utilizados para medição de temperatura. No banco de ensaios de motores do CTEx são empregados resistores de liga metálica (termorresistências) de platina, que utilizam o efeito termorresistivo, baseando-se na variação da resistência elétrica de um condutor elétrico metálico em função da temperatura.

A platina é utilizada para medição de temperatura na faixa de 25 K a 1235 K (-248°C a 962°C). É o metal mais utilizado na construção de termômetros de resistência devido a sua ampla faixa de utilização, boa linearidade, melhor resistência à oxidação, alto coeficiente de variação de resistência com a temperatura, boa linearidade resistência x temperatura. Como em 0 °C apresenta uma resistência elétrica de 100 ohms, o sensor de platina é comumente denominado de Pt-100. A Escala Internacional de Temperatura de 1990 (ITS-90) padronizou seu uso até aproximadamente 962 °C [9]. Os limites de erro do Pt-100 são relatados nas normas DIN-IEC-751/85. Para a utilização industrial o Pt-100 é um sensor de inigualável precisão, estabilidade e sensibilidade. A quantidade de platina na liga de formação do fio determina a pureza e, consequentemente, a classe do sensor.

A resistência elétrica do Pt-100 pode ser representada, de uma forma aproximada, não muito longe da real, pela expressão simplificada [9]

$$R(t) = Ro(1 + at)$$
Eq. 5

sendo

R(t): resistência elétrica à temperatura "t";

*R*o: resistência elétrica à temperatura de 0 °C;

- *a*: coeficiente de variação da resistência elétrica em função da temperatura, medida em graus Celsius;
- t: temperatura, medida em graus Celsius.

Na Figura 17, o sensor da esquerda é uma termorresistência de película delgada, o do centro é uma termorresistência bobinada, encapsulada em vidro e o da direita está encapsulado em cerâmica. O encapsulamento metálico é o mais utilizado industrialmente, devido à rigidez mecânica (Figura 18).

Figura 17 – Tipos especiais de termorresistência

Figura 18 – Tipos diversos de termorresistências

O coeficiente de temperatura (α) determina a variação da resistência com a temperatura, sendo especificado como a média da variação da resistência entre 0 °C e 100 °C. Este coeficiente, de acordo com a norma IEC 60751 é igual a 0,00385055 °C⁻¹ [10], significando que a resistência varia 0,385055 Ω / °C.

Quando uma tolerância pequena é necessária ao longo de uma faixa grande de temperaturas, um ajuste pelo método dos mínimos quadrados pode ser feito para determinar os coeficientes da conhecida equação de Callendar-Van Dusen, expressa da forma [9]:

• Para a faixa de -200 ° a 0 °C

$$R_t = R_0 [1 + At + Bt^2 + C (t - 100) t^3]$$
 Eq. 6

$$A = 3,9083 \ x \ 10^{-3} \ ^{\circ}C^{-1},$$

$$B = -5,775. \ x \ 10^{-7} \ ^{\circ}C^{-2} \ ^{\circ}C^{-2},$$

$$C = -4,183. \ x \ 10^{-12} \ ^{\circ}C^{-4}.$$

• Para a faixa de 0 °C a 850 °C [9],

$$R_{t} = R_{0} \left[1 + At + Bt^{2} \right]$$
Eq. 7

3.2.4. Sensor de pressão

Para monitorar a pressão nos diferentes pontos de teste do motor ensaiado são utilizados diferentes sensores de pressão. As características de cada sensor devem ser compatíveis com o emprego específico para cada ponto de medição.

Na Tabela 4 podem ser vistos quais são os pontos de medição de pressão para os ensaios dinamométricos realizados pelo Laboratório de Motores do CTEx.

		F.S Banco		
Item	Variável (unidade)	Unidade *	Unidade S.I (Pa)	Referência
1	Pressão do ar de admissão (bar)	3	100000	absoluta
2	Pressão barométrica (mmHg)	760	101325,024	absoluta
3	Pressão da água do dinamômetro (mmH ₂ O)	4000	39225,53	relativa
4	Pressão do óleo lubrificante (bar)	4,3	430000	relativa
5	Pressão do combustível (bar)	6	170000	relativa

Tabela 4 - Pressões e faixas de trabalho

* - Unidade usual no banco de ensaios dinamométrico

Somente os itens 1, 4 e 5 da tabela acima passam pelo sistema de aquisição de dados, sendo os demais medidos manualmente por instrumentos analógicos.

Para estas medições são utilizados sensores de pressão com saída analógica em corrente elétrica de 4 a 20 mA, como visto na Figura 19.

Figura 19 - Sensor de pressão

3.3. Sistema de aquisição dados

3.3.1. Características gerais dos canais de medição

Estão disponíveis 38 canais, dentre analógicos e digitais, para o sistema de aquisição de dados. A leitura completa do conjunto de canais ocorre a cada segundo. Pode-se calcular o tempo de aquisição e processamento de informação para cada canal, que é de 26,3 ms, compatível com o conversor A/D utilizado que, segundo informações do fabricante, tem capacidade de frequência de aquisição de 300 kHz, correspondendo a um tempo de conversão de 3,33 µs. O valor máximo de erro de conversão está em 0,2 % do valor convertido, correspondendo a um conversor A/D com 12 bits e que não considera valores negativos de tensão elétrica. Os resultados apresentados pelo sistema de aquisição, também em formato de arquivo texto, são expressos em números compostos por 6 dígitos inteiros e mais 3 casas decimais. No entanto, na IHM, as temperaturas são expressas somente por números inteiros, não sendo apresentadas as casas decimais. Para pressão, somente 2 casas decimais são utilizadas. Dos 38 canais disponíveis somente 14 são atualmente utilizados. As variáveis mensuradas são organizadas nos canais conforme indicado na Tabela 5. Os canais que não foram utilizados apresentam resultados zerados. Eles foram suprimidos, porém a numeração dos canais foi mantida para evitar equívocos em relação às variáveis adquiridas.

Sensores	N° do Canal
Toque	1
Vazão de Combustivel - Não mensurada	8
Pressão do Óleo Lubrificante	9
Pressão do Combustivel	10
Pressão do Ar de Admissão	11
Temperatura do combustivel	24
Temperatura do óleo lubrificante	23
Temperatura do bloco do motor	17
Temperatura da água de entrada do motor	25
Temperatura dos gases de escapamento	21
Temperatura ambiente	22
Temperatura do ar de adm. pré-after cooler	20
Temperatura do ar de adm. pós-after cooler	19
Temperatura de saída da água do dinam.	26
Temp. águ a s aída motor	18

Tabela 5 – Números dos canais das grandezas variáveis

Cada variável medida é processada segundo uma função matemática específica por canal. Isto se faz necessário em função da aquisição ocorrer para amplitudes e grandezas distintas. O sistema de conversão A/D utilizado é único para os canais analógicos que dele necessitam. Os canais que não passam pelo conversor A/D também utilizam funções matemáticas para ajuste.

A faixa de medição para cada grandeza e função do sensor estão relacionadas na Tabela 6.

Sensores	Faixa de Medição	Unidade
Torque - *	0 a 3458,09	N·m
Vazão do combustível	Não mensurada	х
Pressão do óleo lubrificante do motor	0 a 3	bar
Pressão do combustível	0 a 6	bar
Pressão do ar de adimissão	0 a 3	bar
Temperatura do combustível	0 a 60	°C
Temperatura do óleo lubrificante do motor	0 a 100	°C
Temperatura do bloco do motor	0 a 110	°C
Temperatura da água de entrada do motor	0 a 60	°C
Temperatura dos gases de escapamento	0 a 660	°C
Temperatura ambiente	0 a 60	°C
Temperatura do ar de admissão pré-aftercooler	0 a 400	°C
Temperatura do ar de admissão pós-aftercooler	0 a 60	°C
Temperatura da água de saída do dinamômetro	0 a 100	°C

Tabela 6 – Faixa de medição de cada variável mensurada

* - Considerando a célula de carga de 9806 N e um braço com comprimento de 0,3655 m.

No próximo Capítulo apresentam-se os resultados dos ensaios realizados.

4 Medições no banco de ensaios dinamométrico do CTEx

Para planejar e realizar as medições necessárias para os cálculos de incertezas do sistema de medição foi considerado:

- que os problemas fundamentais desta pesquisa concentram-se na obtenção de dados coletados de sensores que monitoram um equipamento de medição;
- que estes dados devem informar um valor o mais próximo possível do valor real da grandeza a ser mensurada; e
- que os sensores que estavam instalados já apresentavam informações não confiáveis, devido ao longo tempo de uso e da falta da incerteza de medição de sua calibração.

Pelo exposto, foram feitas calibrações de alguns sensores e aquisições de outros, assim como de instrumentos de medição para auxiliarem nos procedimentos de levantamento dos valores das grandezas a serem mensuradas.

Os sensores e equipamentos adquiridos foram enviados para calibração em laboratórios acreditados pelo INMETRO. Os certificados de calibração estão nos Anexos respectivos a cada tipo de medição realizada. Para medição de torque foram calibrados instrumentos e sensores no Laboratório de Ensaios Mecânicos da PUC, estando a planilha de calibração também inserida no anexo respectivo.

As respostas do sistema de controle do dinamômetro foram observadas com o objetivo de avaliação da sua interferência na estabilidade das grandezas (variáveis) mensuradas e na qualidade dos resultados dos ensaios realizados.

4.1. Medição de velocidade de rotação

Para avaliação metrológica da velocidade de rotação foi feita a calibração do sistema de medição do banco de ensaios dinamométricos com o motor em

funcionamento, sendo utilizados sinais de rotação vindos do sensor. Para determinar os limites inferior e superior de resposta do sistema de medição, o sensor foi substituído por um gerador de sinais, o que possibilitou simular um amplo espectro de velocidades de rotação. Também foi verificado o funcionamento da transmissão de dados *bluetooth*, utilizada para a medição de torque e transmissão do resultado da medição da deformação do eixo Cardan.

4.1.1. Calibração do sistema de medição para velocidade de rotação

O osciloscópio marca Tektronix modelo TDS2024, calibrado, mensurou a frequência dos pulsos gerados pelo sensor de rotação e o resultado foi comparado com a indicação dada pelo sistema de medição. A Figura 20 ilustra a interligação dos equipamentos ao sensor de rotação, o que possibilitou a calibração do sistema de medição para velocidade de rotação.

Figura 20 - Configuração para medição da velocidade de giro do motor

O osciloscópio foi conectado ao sensor de rotação e o motor ensaiado foi ligado. Foi obtida a forma de onda mostrada na Figura 21 para a frequência de 14,6906 Hz, correspondendo a 881,44 rpm.

Figura 21 - Sinal bruto de saída do sensor de rotação

Os valores das frequências medidas foram convertidos para rpm e relacionados na Tabela 7.

A Série (leitura)	Frequência ajustada no Gerador (Hz)	Erro relat. Certificado (Hz)	Frequência corrigida (Hz)	Velocidade correspondente (rpm)	Velocidade Indicada no S.M (rpm)	Erro de Indicação do S.M	U	k
1	13,333	0,032	13,301	798,06	796	-2,06	0,0023	2,00
2	13,336	0,032	13,304	798,24	800	1,76	0,0023	2,00
3	13,319	0,032	13,287	797,22	799	1,78	0,0023	2,00
4	13,303	0,032	13,271	796,26	799	2,74	0,0023	2,00
5	13,319	0,032	13,287	797,22	799	1,78	0,0023	2,00
			Média	797,4				
			S	0,791				

Tabela 7 - Correção da frequência, cálculo do erro e indicação da incerteza

B Série (leitura)	Frequência ajustada no Gerador (Hz)	Erro relat. Certificado (Hz)	Frequência corrigida (Hz)	Velocidade correspondente (rpm)	Velocidade Indicada no S.M (rpm)	Erro de Indicação do S.M	U	k
1	16,792	0,032	16,760	1005,6	1006	0,4	0,0023	2,00
2	16,718	0,032	16,686	1001,16	1000	-1,16	0,0023	2,00
3	16,667	0,032	16,635	998,1	1000	1,9	0,0023	2,00
4	16,699	0,032	16,667	1000,02	1000	-0,02	0,0023	2,00
5	16,714	0,032	16,682	1000,92	1000	-0,92	0,0023	2,00
			Média	1001,16				
			S	2,758]			

C Série (leitura)	Frequência ajustada no Gerador (Hz)	Erro relat. Certificado (Hz)	Frequência corrigida (Hz)	Velocidade correspondente (rpm)	Velocidade Indicada no S.M (rpm)	Erro de Indicação do S.M	U	k
1	19,994	0,0008	19,993	1199,59	1198	-1,592	0,0024	3,31
2	20,141	0,0008	20,140	1208,41	1206	-2,412	0,0024	3,31
3	20,066	0,0008	20,065	1203,91	1202	-1,912	0,0024	3,31
4	20,085	0,0008	20,084	1205,05	1202	-3,052	0,0024	3,31
5	20,075	0,0008	20,074	1204,45	1202	-2,452	0,0024	3,31
			Média	1204,28				
			S	3,155]			

D Série (leitura)	Frequência ajustada no Gerador (Hz)	Erro relat. Certificado (Hz)	Frequência corrigida (Hz)	Velocidade correspondente (rpm)	Velocidade Indicada no S.M (rpm)	Erro de Indicação do S.M	U	k
1	21,771	0,0014	21,770	1306,18	1305	-1,176	0,0024	3,31
2	21,754	0,0014	21,753	1305,16	1303	-2,156	0,0024	3,31
3	21,752	0,0014	21,751	1305,04	1303	-2,036	0,0024	3,31
4	21,647	0,0014	21,646	1298,74	1304	5,264	0,0024	3,31
5	21,763	0,0014	21,762	1305,70	1304	-1,696	0,0024	3,31
			Média	1304,16				
			S	3,066]			

E Série (leitura)	Frequência ajustada no Gerador (Hz)	Erro relat. Certificado (Hz)	Frequência corrigida (Hz)	Velocidade correspondente (rpm)	Velocidade Indicada no S.M (rpm)	Erro de Indicação do S.M	U	k
1	23,341	0,0014	23,340	1400,38	1397	-3,376	0,0018	3,31
2	23,426	0,0014	23,425	1405,48	1404	-1,476	0,0018	3,31
3	23,450	0,0014	23,449	1406,92	1404	-2,916	0,0018	3,31
4	23,398	0,0014	23,397	1403,80	1404	0,204	0,0018	3,31
5	23,436	0,0014	23,435	1406,08	1404	-2,076	0,0018	3,31
			Média	1404,53				
			S	2,587				

Foram feitas 5 medições para cada valor de rotação, sendo a velocidade limitada a 1400 rpm devido a algumas vibrações do conjunto. A frequência lida pelo osciloscópio teve seu valor corrigido em função dos erros relatados na página 3 do certificado de calibração número 122432-101, emitido pelo IPT para o canal n° 1 do osciloscópio. Além das informações de erro, também são relacionadas as informações de incerteza de medição expandida (U) e o fator de abrangência (k), mostrados para cada frequência ensaiada. Para o quadro A da Tabela 8 foi relatado um erro de 0,032 Hz e uma incerteza expandida de 0,0023 Hz com um fator de abrangência k = 2,00.

Para simplificar a análise foi montada a Tabela 9, onde estão relacionadas em ordem crescente a rotação considerada como padrão (lida pelo osciloscópio calibrado) e a respectiva indicação dada pelo sistema de medição.

	Y	Х	Incerteza de	Ajuste	Erro	
	Padrão	Sist. Med	leitura	X _{aiustado}	(ajustado-Padrão)	$(Erro)^2$
1	796,26	799	1	799,950	3,690	13,612
2	797,22	799	1	799,950	2,730	7,450
3	797,22	799	1	799,950	2,730	7,450
4	798,06	796	1	796,964	-1,096	1,201
5	798,24	800	1	800,945	2,705	7,315
6	998,10	1000	1	999,985	1,885	3,552
7	1000,02	1000	1	999,985	-0,035	0,001
8	1000,92	1000	1	999,985	-0,935	0,875
9	1001,16	1000	1	999,985	-1,175	1,381
10	1005,60	1006	1	1005,956	0,356	0,127
11	1199,59	1198	1	1197,034	-2,558	6,542
12	1203,91	1202	1	1201,015	-2,897	8,392
13	1204,45	1202	1	1201,015	-3,437	11,812
14	1205,05	1202	1	1201,015	-4,037	16,297
15	1208,41	1206	1	1204,996	-3,416	11,670
16	1298,74	1304	1	1302,526	3,790	14,360
17	1305,04	1303	1	1301,530	-3,506	12,290
18	1305,16	1303	1	1301,530	-3,626	13,146
19	1305,70	1304	1	1302,526	-3,171	10,052
20	1306,18	1305	1	1303,521	-2,655	7,051
21	1400,38	1397	1	1395,079	-5,297	28,057
22	1403,80	1404	1	1402,046	-1,751	3,064
23	1405,48	1404	1	1402,046	-3,430	11,768
24	1406,08	1404	1	1402,046	-4,031	16,245
25	1406,92	1404	1	1402,046	-4,870	23,722

Tabela 8 – Ajuste da frequência indicada pelo sistema de medição

Σ	237,433
S ²	9,893
S	3,145

Em função dos resultados obtidos foi traçado o gráfico ilustrado na Figura 22, que possibilita ajustar o valor da rotação indicada pelo sistema de medição ao valor padrão. Ao ser traçada a linha de tendência das frequências, foi gerada a Equação 8, que possibilitou este ajuste.

$$y = 0,9952 x + 4,7847$$
 Eq. 8

Figura 22 - Gráfico de ajuste das velocidades padrão e indicada no sistema de medição

A incerteza de medição foi calculada, sendo a demonstração apresentada no Capítulo 5.

4.1.2. Velocidade de rotação mínima detectada – medição com *bluetoooth*

Para obter a velocidade mínima detectada pelo sistema de medição o sensor foi desconectado e em sua substituição foi conectado um gerador de funções marca Agilent, modelo 33220, para fornecer um sinal elétrico de frequência variável e conhecida. Este sinal, após passar por um circuito eletrônico de comutação, foi medido pelo osciloscópio Tektronix e conectado a um notebook Dell Precision M4500 i7, que utilizava, simultaneamente, 2 softwares de medição de sinais: o Signal Express (SE), da National Instruments, que possibilita ler no *notebook* a medição feita pelo osciloscópio, através de uma conexão Ethernet e o software GUI

Data Logger, fornecido pela Agilent, que permite visualizar no notebook a medição feita pelo multímetro e transmitida por *bluetooth*.

Em paralelo com o osciloscópio foi conectado o multímetro marca Agilent, modelo U1253B acoplado a um transmissor *bluetooth*, marca Agilent, modelo U1177A. Desta forma foi possível comparar a leitura feita pelo osciloscópio com a leitura feita pelo multímetro, avaliando a qualidade das duas medições.

A interconexão dos equipamentos ao sistema de medição (*set-up*), utilizada para este ensaio, pode ser observada na Figura 23, que mostra o diagrama de blocos e na Figura 24, que mostra o diagrama elétrico.

Figura 23 – Set-up de equipamentos para medição do sinal de rotação

O circuito eletrônico comutador foi utilizado para possibilitar que o sinal vindo do gerador de funções pudesse ter sua amplitude variada entre +10 V e -10 V, simulando o comportamento do sinal original, oriundo do sensor de rotação. A interligação real dos equipamentos é mostrada na Figura 24 que exibe o diagrama elétrico.

Figura 24 - Circuito eletrônico de comutação

A Figura 25 ilustra o *set-up* real de equipamentos, montados para simular os impulsos de velocidade do sensor de rotação, como também para fazer as medições destas velocidades.

Figura 25 - Set-up de equipamentos para substituição do sensor de rpm

Uma onda quadrada com frequência de 10 Hz (600 rpm) e amplitude de 10 volts pico a pico foi aplicada pelo gerador de funções ao circuito eletrônico comutador, como ilustra a Figura 26, que resultou em uma resposta positiva do sistema de medição.

Figura 26 – Aplicação de onda quadrada ao sistema de medição de velocidade

Para uma frequência de 10 Hz (600 rpm) o indicador de rotação do sistema de medição respondeu corretamente, como ilustrado na Figura 27.

Figura 27 - IHM do sistema de medição - Indicação de rpm

Inicialmente este procedimento se repetiu por um espectro de frequências que se estendeu de 1,00 Hz até 65,23 Hz, com o objetivo de descobrir quais eram as frequências extremas lidas pelo Sistema de Medição. Foi verificado experimentalmente que o sistema somente está limitado a uma frequência inferior, que é de 1,66667 Hz (100 rpm) e o limite superior ao número de dígitos. Seguindo a tabela do certificado de calibração do osciloscópio, foram feitas as tentativas de medição de todas as frequências da Tabela 9, porém o sistema de medição somente respondeu a partir de 100 rpm.

Frequência (Hz)	Rotação (rpm)
1,0	60
1,5	90
2,3	138
2,5	150
4,0	240
5,0	300
20,0	1 200
28,0	1 680
35,0	2 100
45,2	2 712
52,5	3 150
65,2	3 914

Tabela 9 – Frequências das rotações ensaiadas

As frequências relacionadas na Tabela 9 foram também injetadas no canal 1 do osciloscópio e comparadas com os sinais indicados pelo software SE da National Instruments no *notebook*. A amplitude foi de 20 volts em onda quadrada. Pela

resposta do SE foi verificado que o software indica no computador o mesmo valor lido pelo osciloscópio, sendo confiável em sua indicação.

Feitas as verificações com as frequências da Tabela 9 e confirmado o funcionamento do sistema de simulação do sinal de rotação do motor, foram geradas pelo gerador de sinais as demais frequências constantes da primeira coluna da tabela constante do Anexo C, sendo as mesmas aplicadas ao sistema de medição do banco de ensaios, através do *set-up* da Figura 25. Estes sinais foram repetidos por 3 vezes cada um em sua aplicação ao sistema de medição. O objetivo inicial era de fazer até 10 leituras, mas como os resultados obtidos estavam bem definidos e repetitivos para cada frequência, o número de repetições foi reduzido para 3.

As leituras realizadas com o osciloscópio foram corrigidas em função do certificado de calibração. Para a correção das frequências não discriminadas no certificado de calibração, foi feita a interpolação dos erros relatados. Os valores interpolados foram inseridos entre os erros obtidos na calibração, formando a coluna "Erro do osciloscópio", na tabela do Anexo C.

4.1.3. Análise estatística da resposta do sistema de medição.

Para verificar se os pulsos gerados pelo sensor de rotação correspondiam à indicação do sistema de medição ao nível de confiança de 95,45% do valor verdadeiro, os dois conjuntos foram submetidos ao Teste de Mann-Whitney [10] (teste não paramétrico).

Para a realização do teste, foi construída a Tabela 73, colocada no Anexo D, que mostra o tamanho das amostras (194 elementos) e os respectivos somatórios dos valores dos pesos atribuídos a cada elemento, que são:

 $R_1 = 37658,50$ e $R_2 = 37807,50$

Teste de Mann-Whitney

Quando variáveis independentes necessitam ser testadas e não seguem uma distribuição Normal, o teste de Mann-Whitney pode ser utilizado para a validação da distribuição estatística de comportamento de ambas [11].

Tamanho da amostra Padrão: $n_1 = 194$ (n° de frequências mensuradas pelo Padrão) Tamanho da amostra R.S: $n_2 = 194$ (n° de frequências mensuradas pelo S.M)

Logo,

 $n_1 = 194 \implies R_1 = 37658,5.$ $n_2 = 194 \implies R_2 = 37807,5$ Hipótese Nula: $H_0: Não há diferença entre as amostras$ Hipótese Alternativa: $H_1: As$ amostras são diferentes

Como $R_1 < R_2$, segue que

$$\mu_1 = n_1 \cdot n_2 + n_1 \left(\frac{n_1 + 1}{2}\right) - R_1$$
 Eq. 9

Estatística do Teste:

$$\mu(u) = \frac{n_1 \cdot n_2}{2}$$
 Eq. 10

$$Z_{Calc} = \frac{\mu - \mu(u)}{\sigma(u)}$$
 Eq. 11

$$\sigma(u) = \sqrt{\frac{n1.n2 (n1+n2+1)}{12}}$$
 Eq. 12

Para 95,45% de nível de confiança $z = \pm 2,11$. Com estes parâmetros pode ser determinado o limite de confiança, dentro do qual H₀ é aceita como verdadeira.

PUC-Rio - Certificação Digital Nº 1013882/CA

Figura 28 – Limites de Z_{cal} para que Ho seja aceita

Empregando a estatística do Teste, foram obtidos

Pela Eq. 9 $\mu_1 = 194.194 + 194 \left(\frac{194+1}{2}\right) - 38658,50$ $\mu_1 = 17\ 892,5$

Pela Eq. 10 $\mu = 18\,818$

Pela Eq.12 $\sigma(u) = 819,25$

Pela Eq. 1 $Z_{Calc} = 1,13$

Como Z_{calc} está dentro do limite de aceitação, a Hipótese H₀ é aceita, sendo portanto, a resposta do sistema de medição considerada estatisticamente igual ao valor do padrão ao nível de confiança de 95,45%. Isto indica que o sistema não apresenta variação em sua indicação referente à grandeza velocidade de rotação, possuindo apenas um pequeno erro sistemático que deverá ser corrigido para que a indicação se aproxime ainda mais do valor verdadeiro. Este procedimento é realizado utilizando na equação 8 o valor da velocidade lida no sistema de medição como a variável x.

4.2. Medição de torque

Para calibrar o sistema de medição de torque foi necessário encontrar uma forma de gerar um valor padrão desta grandeza que pudesse ser comparado com o valor apresentado na IHM do sistema de medição. Assim, forças conhecidas foram aplicadas a um braço de alavanca, de comprimento também conhecido, solidário ao eixo de acoplamento entre o motor ensaiado e o dinamômetro (eixo Cardan), produzindo torques calculados multiplicando o módulo de cada força pela distância entre o ponto de sua aplicação e o centro do eixo (0,3655 m). Os valores dos torques foram comparados com cada respectivo valor do torque indicado pelo sistema de medição, possibilitando a calibração.

Antecedendo a este procedimento, extensômetros lineares (*strain gauges*) foram colados sobre o eixo, em uma configuração de Ponte completa de Wheatstone, para que medissem as deformações elásticas causadas no eixo pela aplicação dos torques padrão citados no parágrafo anterior. De posse destas deformações, os torques produzidos no eixo também puderam ser calculados utilizando as deformações elásticas produzidas e foram comparados com os valores padrão correspondentes, possibilitando relacionar o torque indicado pelo sistema de medição com o torque respectivo produzido no eixo Cardan e este com o torque padrão, havendo assim uma dupla calibração.

O torque estático (sem o giro do eixo) foi obtido pelo método de cálculo da deformação elástica sofrida em função das tensões de cisalhamento internas, utilizando as fórmulas apresentadas na seção 4.2.2.4.

Para medir o torque com o eixo girando (dinâmico) um transmissor de sinais foi fixado sobre o eixo, de modo que girasse conjuntamente ao mesmo, transmitindo as informações da medição das deformações nos *strain gauges*. Estas informações foram recebidas por um equipamento de telefonia celular móvel, com software específico, possibilitando o cálculo do torque e sua comparação com a indicação respectiva do sistema de medição do banco de ensaios.

Sinais de frequências conhecidas foram introduzidos na entrada do sistema de medição, simulando a informação de velocidade de giro vinda do sensor de rotação. Com isso foi possível obter a leitura da potência indicada pelo sistema de medição

para cada torque mensurado durante a calibração, possibilitando também a calibração da indicação de potência pelo sistema de medição. A simulação de potência foi feita da mesma forma indicada no item 4.3 adiante.

4.2.1. Principais equipamentos e software utilizados

Os principais equipamentos foram o multímetro marca Agilent, modelo U1253B juntamente com o transmissor *bluetooth*, da mesma marca, modelo U1177A, operando este conjunto com o software para aquisição de dados, o GUI Data Logger. Como o objetivo era fazer uma calibração, o multímetro foi calibrado (certificado de calibração no Anexo E) e foram realizados alguns ensaios e análise metrológica dos resultados obtidos. Esta análise consistiu em mensurar algumas tensões de referência com o U1253B e comparar com as mesmas tensões lidas, simultaneamente, pelo multímetro 3457A, também previamente calibrado. Esta comparação mostrou que as medições realizadas pelo conjunto Agilent U1253B, U1157A e GUI Data Logger eram fiéis às lidas pelo 3457A, com a limitação do número de dígitos do U1253B.

Para medir a inclinação do braço onde foram aplicadas as forças, foi utilizado o nível eletrônico (clinômetro) marca Digital Protractor, modelo 82201C-00, com incerteza declarada de 0,1 graus.

4.2.2. Calibração estática do sistema de medição de torque

4.2.2.1. Considerações e preparativos

Na Figura 29 o torque no ponto O é definido como,

$$\tau = F.r.\cos\theta = F.\cos\theta.r$$
 Eq. 13

 $\tau-torque \;gerado\;(N{\boldsymbol{\cdot}}m)$

F – Força aplicada (N)

r – distância do ponto de aplicação da força ao ponto de torque (m)

Figura 29 – Binário força x distância

Para a realização da calibração foi necessário montar o *set-up* de equipamentos ilustrado pela da Figura 30.

Figura 30 - Configuração de equipamentos para realização do ensaio

As peças de aço, necessárias para a montagem, foram usinadas e constam da Tabela 10. Após a usinagem de cada peça elas foram mensuradas pelo setor de metrologia do CTEx e suas dimensões relatadas, conforme documento no Anexo F.

Descrição	Utilização			
Flange de aço	Necessário para o acoplamento entre o eixo Cardan e o dinamômetro;			
Braço móvel, em aço	Necessário para aplicação de uma força conhecida para produzir o torque;			
Placa retangular, em aço	Flange para fixação entre eixo Cardan e o motor ensaiado;			
Caixa em nylon	Acomodar o multímetro e o transmissor, acoplando- os fisicamente ao eixo Cardan;			
Rótula em aço	Acoplamento mecânico entre o braço móvel e a célula de carga, definindo um ponto exato de aplicação da força de ensaio.			

Tabela 10 – Peças usinadas

A Figura 31 mostra a montagem física ilustrada pela Figura 30, destacando em vermelho os equipamentos extras agregados ao conjunto para as medições necessárias e em amarelo os elementos agregados ao dinamômetro para possibilitar a aplicação de um torque e seu cálculo.

Figura 31 - Set-up de equipamentos para medição de torque

O braço móvel foi acoplado ao flange de aço, instalado entre o eixo e o dinamômetro, e nivelado a zero grau com auxílio de um nível eletrônico (clinômetro) marca Digital Protractor, modelo 82201C-00.

Figura 32 - Instalação de flange entre o eixo Cardan e o dinamômetro

Sob o braço metálico móvel, a uma distância de 0,3655 metros do centro do eixo Cardan, foi posicionado um suporte de aço, com altura ajustável. Uma célula de carga calibrada foi apoiada no suporte e ajustada sob o braço móvel, mantendo o contato físico com as duas peças, conforme mostrado em detalhe na Figura 33. A célula de carga foi interligada ao sistema de aquisição de dados da HBM, o MX840A.

Figura 33 - Instalação de flange, braço móvel e suporte

Houve a necessidade de melhorar o acoplamento mecânico entre o braço móvel, a célula de carga e o suporte de altura ajustável. Para isto foi usinado um conjunto mecânico rotular, composto de uma base de aço e duas esferas de aço, ilustrados na Figura 34. O propósito principal deste conjunto foi o de diminuir a incerteza da distância entre o ponto de aplicação de força e o centro do eixo Cardan.

Figura 34 – Inserção de rótula sob o braço móvel

Na superfície do eixo Cardan foram colados os *strain gauges*, como ilustra a Figura 35, na configuração de ponte completa de Wheatstone. Os *strain gauges* foram fixados ao eixo pelo processo de colagem, segundo as instruções específicas do fabricante. Com o objetivo de proteção mecânica dos mesmos e isolamento elétrico, eles foram cobertos por uma camada de parafina.

Figura 35 - Strain gauges colados na superfície do eixo Cardan

A Ponte de Wheatstone foi alimentada eletricamente por um conjunto de duas baterias de 9 volts, ligadas em série (18 volts) e alimentando um circuito integrado 7809, cujo objetivo foi manter uma tensão de 9 volts estável para a ponte, conforme visto na Figura 36.

Figura 36 - Circuito de alimentação elétrica da Ponte de Wheatstone

Ao analisar a Ponte de Wheatstone ilustrada na Figura 36, foi verificado que a condição mais favorável para a medição de uma deformação se dá quando as resistências elétricas dos *strain gauges* R1 e R4 diminuem e as resistências de R3 e R2 aumentam, proporcionando uma maior tensão elétrica entre os pontos "C" e "D". Para isto foram utilizados 2 pares de sensores, alocados cada par em uma configuração "Y", estando dispostos de maneira que, quando submetido a uma tensão mecânica, um sensor do par tem sua resistência aumentada e o outro a resistência diminuída. O primeiro par formou o braço ACB da Ponte da Figura 36 e o outro par formou o braço BDA (em oposição de fase). A variação do potencial elétrico entre os pontos C e D pode ser descrita analiticamente pela Equação 14.

$$V_{CD} = V_{AB} \left(\frac{R_3}{R_3 + R_4} - \frac{R_1}{R_1 + R_2} \right)$$
 Eq. 14

Para fixar o eixo Cardan na extremidade oposta à extremidade de aplicação do torque, uma placa de fixação foi acoplada ao flange do motor e apoiada em um suporte metálico, mantendo o eixo do motor e o eixo Cardan imobilizados nesta extremidade, conforme mostrado na Figura 37.

Figura 37 - Placa de fixação dos eixos do motor e Cardan

Após a montagem e interconexão de equipamentos, ilustrados pela Figura 38 e pela Figura 39, foram ensaiadas variações na altura do suporte ajustável de modo a aplicar uma força ao braço móvel, a qual foi mensurada instantaneamente pela célula de carga conectada ao MX840 A que, com o auxílio do *software* Catman E da HBM, instalado no notebook, mediu e indicou a intensidade da força aplicada.

Figura 38 – Equipamentos utilizados para o ensaio

Conforme a altura do suporte aumentava, a força aplicada ao braço móvel também aumentava, assim como o torque no flange e, consequentemente, também no eixo Cardan.

Figura 39 – Interconexão de equipamentos

4.2.2.2. Verificação do funcionamento e coleta de dados

Para verificar se o sistema montado estava funcionando corretamente foi feito um ensaio de teste. Como funcionou corretamente, os resultados obtidos foram considerados, sendo montada a Tabela 11 com os primeiros resultados e construídos os gráficos da Figura 40. Pode ser observado que foram utilizados números com muitas casas decimais, devido ao fato de que a alteração de cada algarismo implica em alterações significativas nos resultados, daí a necessidade da indicação com o número de casas decimais apresentado.

Tensão de aliment. da Ponte (V)		9,10832	9,10832		Coeficiente de Poisson (v)				
Tensão de saída inicial (V)		-0,00101988	Raio do Eixo - r - (m)			0,04761			
Ângulo inicial do Braço (graus)		1,7		Número de strain gauges ativos - N			4		
Distância do ponto de aplicação da força ao		0.2655	0.2655		Gauge factor - GF				
centro do eixo	centro do eixo (m)		0,3033		Módulo de Elasticidade do aço - E - (Pa)			20000000000	
Torque no eixe	Torque no eixo calculado pela deformação		Τε	ļ	Deformação do eixo (m/m)		3		
					_				
				Força				Torque	
Força aplicada (N)	Ângulo do braço (graus)	Correção da força devido ao ângulo (N)	Erro do MX840A (N)	Correção pelo ângulo e MX840A - (N)	Leitura (V) no U1253B	Deformação produzida no eixo (E)	(A) Força x dist. (N∙m)	(B) Calculado pela deformação (N·m)	Relação entre indicações (A) e (B)
3057	2,60	3053,85	5,424	3048,43	-0,00030992	0,0000380	1114,20	991,61	12,36%
4630	2,90	4624,07	7,206	4616,86	0,00014416	0,0000623	1687,46	1625,84	3,79%
5970	3,30	5960,10	2,702	5957,40	0,00053654	0,0000834	2177,43	2173,88	0,16%
7300	3,70	7284,78	2,936	7281,85	0,00094318	0,0001051	2661,52	2741,84	-2,93%
7920	3,90	7901,66	3,907	7897,75	0,00112478	0,0001149	2886,63	2995,49	-3,63%
8490	4,30	8466,10	3,109	8462,99	0,00130652	0,0001246	3093,22	3249,33	-4,80%
2400	4,90	2391,23	10,286	2380,94	0,0012860	0,0001235	870,23	3220,66	72,98%

Tabela 11 - Resultados da primeira medição - Primeiro ensaio

No primeiro gráfico foi observado que o comportamento da tensão elétrica à saída da Ponte de Wheatstone era linear, seguindo a deformação elástica do eixo, vista no segundo gráfico. A deformação ocorreu devido à aplicação de força no braço móvel, acoplado ao flange metálico interposto ao eixo e ao dinamômetro. O comportamento da deformação pode ser observada no terceiro gráfico da Figura 40.

Figura 40 - Comportamento da deformação em função da força aplicada

4.2.2.3. Observações que antecederam a calibração

Durante o ensaio de teste ocorreu uma deformação plástica no braço móvel quando a intensidade da força aplicada foi demasiadamente elevada. Isto foi percebido no instante em que a tensão elétrica na saída da Ponte de Wheatstone ficou menor do que a tensão elétrica produzida pela força aplicada, no instante imediatamente anterior. Para comprovar o ocorrido, o suporte móvel foi retirado e o ângulo de repouso do braço, sem força aplicada foi lido, sendo observado que havia aumentado, fato que confirmou a suposição de ocorrência de deformação plástica. Fazendo uma inspeção visual no braço móvel foi encontrado o ponto de deformação, que se deu exatamente no acoplamento entre o braço e o flange de torque. Na Figura 41 pode ser observado, comparando as fotos (a) e (b), que foi feito um reforço no braço, sendo acrescentada outra barra de aço na parte inferior, e o braço foi soldado ao flange. A foto (a) mostra a configuração antes da deformação e a foto (b) após o reforço.

Figura 41 – Modificação no braço de alavanca devido à deformação plástica

4.2.2.4. Novos ensaios

Feito o reforço do braço, novo ensaio foi realizado, sendo obtidos novos valores da tensão de saída da Ponte de Wheatstone em função das forças aplicadas, como indicado na Tabela 12. Também foram inseridos sinais de simulação de rotação, de 1500 rpm, e seus efeitos foram relatados no item referente à análise de potência.

75

		Força					Torque			
Força aplicada (N)	Ângulo do braço (graus)	Correção da força devido ao ângulo (N)	Erro do MX840A (N)	Correção pelo ângulo e MX840A - (N)	Leitura no U1253B (V)	Deformação produzida no eixo (E)	(A) Força x dist. (N∙m)	(B) Calculado pela deformação (N·m)	(C) Lido no S. M (N·m)	Erro entre indicações (A) e (B)
1 372	3,70	1 369,14	6,941	1362,20	-0,00065728	0,000019050	497,88395	496,8073	493	0,22%
3 160	4,10	3 151,91	5,541	3146,37	-0,00028646	0,000038914	1149,99901	1014,8493	1158	13,32%
4 560	4,40	4 546,56	7,127	4539,43	0,00010862	0,000060077	1659,16304	1566,7830	1671	5,90%
6 688	4,80	6 664,54	4,118	6660,43	0,00074914	0,000094388	2434,38595	2461,6005	2454	-1,11%
7 600	5,00	7 571,08	3,005	7568,08	0,00102734	0,000109290	2766,13146	2850,2508	2788	-2,95%
8 520	5,20	8 484,94	3,119	8481,82	0,00131380	0,000124635	3100,10392	3250,4404	3129	-4,63%
9 111	5,50	9 069,05	0,165	9068,89	0,00151586	0,000135459	3314,67905	3532,7217	3348	-6,17%

Tabela 12 - Resultado da primeira medição - Segundo ensaio

Durante os ensaios foram comparados os torques, calculados pela multiplicação das forças pela distância fixa de 0,3655 m, com os torques calculados pelas deformações elásticas do eixo. Foram utilizados os parâmetros de leitura da tensão de saída da Ponte de Wheatstone, relacionados como "Leitura no U1253B" na Tabela 13 e na Tabela 14 e aplicados na equação 15.

$$\varepsilon = \frac{4V_0}{GF.V_i.N}$$
 Eq. 15

 ϵ – Deformação do eixo ;

V₀ – Tensão elétrica na saída da Ponte de Wheatstone (V);

GF - Gauge Factor - Fornecido pelo fabricante dos strain gauges;

V_i – Tensão elétrica de alimentação da ponte (V);

N - Número de strain gauges ativos na Ponte de Wheatstone.

Deve ser percebido que, ao executar este procedimento, estava sendo feita uma calibração do torque no eixo Cardan em função do torque padrão e do torque indicado pelo sistema de medição.

Para o cálculo do torque, em função da deformação E do eixo, foi utilizada a equação 16 [8].

$$T = \frac{\pi . E. r^3. \varepsilon}{2(1+\nu)}$$
 Eq. 16

- E Módulo de elasticidade do aço de construção do eixo
- r raio do eixo (m);
- v Coeficiente de Poisson

Relacionando os torques obtidos nos dois primeiros ensaios em um só quadro, foi obtida a Tabela 13.

Força corrigida (N)	(A) Força x dist. (N∙m)	(B) Calculado pela deformação (N·m)
1362,20	498	497
3048,43	1114	992
3146,37	1150	1015
4539,43	1659	1567
4616,86	1687	1626
5957,40	2177	2174
6660,43	2434	2462
7281,85	2662	2742
7568,08	2766	2850
7897,75	2887	2995
8481,82	3100	3250
8462,99	3093	3249
9068.89	3315	3533

Tabela 13 - Comparação entre as leituras dos torques

O gráfico dos resultados, ilustrados na Figura 42, compara os valores dos torques obtidos pela multiplicação das forças pela distância de 0,3655 m com os torques obtidos pela Eq. 16, relacionados à deformação elástica do eixo.

Figura 42 - Torques obtidos por processos distintos, em função de uma mesma força aplicada.

A Tabela 14 mostra as respostas do sistema de medição para os dois métodos de cálculo de torque. As indicações do sistema de medição apresentam menor variação quando a variável de entrada é o torque resultante da multiplicação da força pela distância.

	Torque	9		
Força aplicada (N)	(A) Força x dist. (N∙m)	(C) Lido no S. M (N·m)	Dif. entre (A) e (C) (N·m)	Relação entre (A) e (C)
1362,20	498	493	-4,88	0,99%
3146,37	1150	1158	8,00	-0,69%
4539,43	1659	1671	11,84	-0,71%
6660,43	2434	2454	19,61	-0,80%
7568,08	2766	2788	21,87	-0,78%
8481,82	3100	3129	28,90	-0,92%
9068,89	3315	3348	33,32	-1,00%
	Torque	e		
Força aplicada (N)	(B) Calculado pela deformação (N·m)	(C) Lido no S. M (N•m)	Dif. entre (B) e (C) (N·m)	Relação entre (B) e (C)
1362,20	496,81	493	-3,81	0,77%
3146,37	1014,85	1158	143,15	-12,36%
4539,43	1566,78	1671	104,22	-6,24%
6660,43	2461,60	2454	-7,60	0,31%
7568,08	2850,25	2788	-62,25	2,23%
8481,82	3250,44	3129	-121,44	3,88%
9068,89	3532,72	3348	-184,72	5,52%

Tabela 14 – Comparação entre os métodos de medição de torque e a indicação do sistema de medição para cada método.

Buscando justificativas para as discrepâncias entre os valores de torque obtidos, houve suspeita quanto a erros de leitura da tensão na saída da Ponte de Wheatstone. Para dirimir esta dúvida o multímetro foi novamente calibrado, desta vez exatamente nos valores das tensões obtidas, conforme demostra a tabela de calibração no Anexo G. A correção em função da calibração não forneceu diferença significativa para os cálculos ao ponto de proporcionar a igualdade entre os valores de torque. Foram testados em uma planilha eletrônica valores de tensões elétricas que poderiam proporcionar a exata coincidência entre os torques, sendo verificado que a diferença para os valores lidos estaria na faixa de algumas dezenas de microvolts até a faixa de nanovolts. Como a ponte de Wheatstone foi montada com *strain gauges* de 350 ohms, não houve sensibilidade da mesma para apresentar diferenças de tensões elétricas que poderia ser corrigido sendo usados *strain gauges* de 1000 ohms.

4.2.2.5. Escolha de um padrão de torque

O torque obtido pelo método de multiplicação da força pela distância foi o que mais se aproximou do valor verdadeiro do torque gerado. O fato de menor quantidade de variáveis serem inseridas e também do sistema de medição apresentar uma resposta com os menores erros, quando comparados com este método, levou à escolha deste como método padrão.

Para saber se existia uma dependência entre as variáveis de torque mencionadas foi necessário determinar o coeficiente de correlação entre elas. Quando o torque considerado padrão varia, o torque no eixo também varia, isto é, se o padrão aumenta, o torque no eixo também aumenta. Este fato garantiu que existe uma correlação estatística direta entre as duas variáveis que, portanto, não são independentes [10].

Para estimar o coeficiente de correlação quando "n" pares de dados experimentais estão disponíveis para as variáveis estudadas a seguinte equação é utilizada [11]:

$$r(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 (y_i - \bar{y})^2}}$$
Eq. 17

Os valores de torque padrão compõem a variável Y e os valores de torque obtidos pela deformação elástica do eixo a variável X. Utilizando os cálculos demonstrados no Apêndice F, obtém-se, com base na Tabela do Anexo F:

$\sum (x_i - \overline{x})^2$	$\sum (y_i - \overline{y})^2$	$\Sigma(x_i - \overline{x})(y_i - \overline{y})$
15544393,48	19072113,49	17195216,34

Isto possibilita calcular o coeficiente de correlação direta, resultando em um valor de $r(Y;X) = 0.9987 \equiv 1.$

Além de existir a necessidade de saber se as duas variáveis eram dependentes, o que foi concluído com o cálculo do coeficiente de correlação (*r*), também existia a necessidade de se comprovar que os valores do torque obtidos pelas deformações elásticas seguiam a mesma distribuição do torque padrão. Essa comprovação foi feita por meio da realização de um teste de hipóteses, sendo utilizado o Teste t. Os valores dos dois tipos de torque foram agrupados na Tabela 16 que relaciona os torques obtidos pelos dois métodos, para a mesma força aplicada. Também foram indicadas as médias amostrais (\bar{x}) e as variâncias amostrais (S^2). As hipóteses consideradas foram:

$$H_0: \quad \mu_{x=} \mu_{y} \quad ; \quad H_1: \quad \mu_{x\neq} \mu_{y}$$

Se H_0 for verdadeira, então os valores dos torques obtidos pelo método da deformação do eixo sequem a mesma distribuição de probabilidades do torque padrão e podem ser considerados estatisticamente iguais. De posse desta comprovação, e de posse de uma equação de ajustes, calculada adiante, os torques obtidos no processo de medição em que o eixo do motor está rodando podem ser determinados com 95% de certeza.

Calculando $\alpha = 5 \%$ ($\alpha/2 = 2,5 \%$) e associando a uma distribuição "t" de Student , utilizada para inferência estatística com amostras com tamanhos inferiores a 30 elementos [11], com n-1 graus de liberdade e nível de confiança 1- $\alpha = 95\%$ obtém-se a Figura 45, que mostra a região hachurada, na qual H₀ deverá estar inclusa para ser considerada verdadeira.

Para n = 21, n-1 = 20 \rightarrow |t| (na tabela t Student) = 2,423

Figura 43 – 95 % - intervalo de confiança

	Y	Х		n =	21	
	Padrão	Lido				
Nº da Amostra	(A) Força x dist. (N.m)	(B) Calculado pela deformação (N.m)	Erro (N.m)	Erro % (Lido / Padrão)	(Y) ²	$(X)^{2}$
1	482,8659071	382,0842598	-100,7816473	0,2087	233159,4842	145988,3816
2	497,883951	496,8073289	-1,076622447	0,0022	247888,429	246817,5221
3	945,3241835	841,7029854	-103,6211981	0,1096	893637,8119	708463,9157
4	1019,686439	891,2971032	-128,3893361	0,1259	1039760,435	794410,5262
5	1114,200792	991,6141355	-122,5866565	0,1100	1241443,405	983298,5937
6	1149,999015	1014,849322	-135,1496924	0,1175	1322497,734	1029919,147
7	1266,930128	1152,818761	-114,1113674	0,0901	1605111,95	1328991,096
8	1659,163037	1566,782958	-92,38007861	0,0557	2752821,982	2454808,838
9	1664,032766	1593,857155	-70,175611	0,0422	2769005,047	2540380,631
10	1687,463983	1625,835988	-61,62799499	0,0365	2847534,695	2643342,661
11	2006,228136	1963,927065	-42,30107037	0,0211	4024951,333	3857009,518
12	2177,429151	2173,880321	-3,548830349	0,0016	4741197,71	4725755,651
13	2434,385954	2461,600545	27,2145916	-0,0112	5926234,971	6059477,244
14	2462,39464	2495,073082	32,67844191	-0,0133	6063387,364	6225389,685
15	2474,039872	2519,381185	45,34131254	-0,0183	6120873,29	6347281,555
16	2661,515416	2741,841857	80,32644069	-0,0302	7083664,312	7517696,769
17	2766,131463	2850,250787	84,11932327	-0,0304	7651483,273	8123929,547
18	2886,628678	2995,485903	108,8572256	-0,0377	8332625,122	8972935,796
19	3093,223752	3249,32549	156,101738	-0,0505	9568033,179	10558116,14
20	3100,103920	3249,853645	149,7497243	-0,0483	9610644,317	10561548,71
21	3314,679053	3532,721728	218,0426757	-0,0658	10987097,22	12480122,81
Σ	40864,31024	40790,99161				
Média	1945,919535	1942,428172	-3,491363		$\Sigma(Y)^2$	$\sum (X)^2$
		S =	106,3189275]	95063053,07	98305684,74
S ²	4753152,653	4915284,237		S	2180,17262	2217,044031

Tabela 15 - Correspondência entre os torques obtidos nos ensaios.

Onde,

$$t = \frac{(\bar{x} - \bar{Y}) - (\mu_X - \mu_Y)}{\sqrt{\frac{S_X^2}{n-1} - \frac{S_Y^2}{n-1}}}$$
Eq. 18

Pelos dados da Tabela 16, foi verificado que:

$$\overline{Y} = 1945,92 \ e \ \overline{X} = 1942,43$$

Se H₀ for verdadeira, então $\mu_X - \mu_Y = 0$ e isto se confirmará se "t" estiver na região hachurada [11] da Figura 43, isto é, se

$$-\frac{(\bar{X}-\bar{Y})-0}{\sqrt{\frac{S_X^2}{n-1}-\frac{S_Y^2}{n-1}}} \le t \le \frac{(\bar{X}-\bar{Y})-0}{\sqrt{\frac{S_X^2}{n-1}-\frac{S_Y^2}{n-1}}}$$

Assim, pode-se dizer que:

$$P\left(-t \frac{\alpha}{2} \le t \le t \frac{\alpha}{2}\right) = 1 - \alpha$$
 Eq. 19

Calculando o valor de t pela Eq. 18 e substituindo na Eq.19, obtém-se

$$t = \frac{(1942,43 - 1945,92) - 0}{\sqrt{\frac{4915284,24}{20} - \frac{4753152,65}{20}}}$$
$$t = 0.039$$

$$P(-2,42 \le t = 0,039 \le 2,42) \rightarrow \text{confirmando H}_0$$

Este resultado de "t" dentro do intervalo de confiança acima, indica que os valores dos torques obtidos pelo método da deformação elástica do eixo seguem a mesma distribuição de probabilidades que o método dos torques obtidos pela aplicação de forças a um ponto de um braço de alavanca situado a 0,3655 m do centro de eixo Cardan. Faltava, no entanto, encontrar um coeficiente de ajuste entre as duas variáveis.

Confirmada a dependência das variáveis, dois gráficos foram construídos. No primeiro foram relacionados os valores das variáveis Y e X, obtendo-se a Figura 44.

Figura 44 - Curva da relação entre os torques

Traçada a curva de tendência e gerada a melhor equação de ajuste, obteve-se:

$$y = 0.9016x + 194.65$$
 Eq. 20

Outra opção para obter uma equação de ajuste entre os torques foi analisar o gráfico gerado quando os torques obtidos pelo método da deformação elástica do eixo são relacionados com suas diferenças com cada torque padrão, mostrado na Figura 45.

Figura 45 - Curva da relação do torque pela deformação e os erros %

Traçada a curva de tendência e gerada a melhor equação de ajuste, obteve-se, pelo Anexo G, a equação:

$$y = -8.10^{-5}x + 0,1862$$
 Eq. 21

x – torque mensurado no eixo pelo método da deformação elástica y – erro do torque mensurado no eixo, pela deformação elástica

Para avaliar qual das duas equações de ajuste melhor atenderia ao objetivo, foi construída a Tabela 17, onde se comparam os valores Y em função de X. O parâmetro decisivo foi a análise do coeficiente de variação de cada amostra, obtidas em função dos valores de correção gerados por cada equação. Como a amostra B obteve a menor coeficiente, indicando que a diferença entre os valores de erro da

curva B eram menores que os valores da curva A, a curva B foi adotada para correção da leitura de torque de deformação obtido.

Como esta curva foi calculada em função da diferença de torque, obtido pela deformação do eixo (T_{ϵ}), a correção deverá ser feita pela seguinte equação:

$$Y_{Td} = T_{\varepsilon}[(1+0,00008.x) + 0,1862)]$$
 Eq. 22

 Y_{Td} – Torque dimâmico no eixo – calculado em função da deformação elástica

Tabela 16 - Comparação entre os coeficientes de variação

	Cuiva A	
Torque Yem função de X (pela curva A)	Erro (N.m)	Erro %
539,14	56,27	-11,65%
642,57	144,69	-29,06%
953,53	8,21	-0,87%
998,24	-21,44	2,10%
1088,69	-25,51	2,29%
1109,64	-40,36	3,51%
1234,03	-32,90	2,60%
1607,26	-51,90	3,13%
1631,67	-32,36	1,94%
1660,50	-26,96	1,60%
1965,33	-40,90	2,04%
2154,62	-22,81	1,05%
2414,03	-20,36	0,84%
2444,21	-18,19	0,74%
2466,12	-7,92	0,32%
2666,69	5,18	-0,19%
2764,44	-1,70	0,06%
2895,38	8,75	-0,30%
3124,24	31,02	-1,00%
3124,72	24,61	-0,79%
3379,75	65,07	-1,96%
Média	S	1
1945,94	880,44	1

45,24%

	Curva B	
Torque Yem função de X (pela curva B)	Erro (N.m)	Erro %
441,55	-41,32	8,56%
569,57	71,68	-14,40%
941,75	-3,57	0,38%
993,70	-25,98	2,55%
1097,59	-16,61	1,49%
1121,42	-28,58	2,49%
1261,15	-5,78	0,46%
1662,13	2,97	-0,18%
1687,40	23,37	-1,40%
1717,10	29,64	-1,76%
2021,05	14,82	-0,74%
2200,60	23,17	-1,06%
2435,19	0,81	-0,03%
2461,62	-0,77	0,03%
2480,71	6,67	-0,27%
2650,96	-10,56	0,40%
2731,05	-35,08	1,27%
2835,41	-51,22	1,77%
3009,70	-83,52	2,70%
3010,05	-90,05	2,90%
3192,10	-122,57	3,70%

Média	S				
1929,61	857,86				
CV					

C.V	
44,46%	

4.2.3. Medição dinâmica de torque pela deformação elástica de eixo com o motor em funcionamento

Para colocar o multímetro acoplado ao eixo Cardan e fazê-lo girar a uma velocidade de 1000 rpm, foi necessário planejar procedimentos de balanceamento do conjunto e fixação do multímetro ao eixo. Uma caixa de nylon foi usinada, de forma que pudesse ser presa ao eixo e acomodasse os equipamentos utilizados na medição. A caixa foi fixada por abraçadeiras de aço e, como teste inicial, um lastro com o peso equivalente ao peso dos equipamentos foi colocado em seu interior, como mostrado na Figura 46 (a) pela seta vermelha, sendo fixado por braçadeiras. Simetricamente oposto à caixa, como pode ser visto também na Figura 46 (a), indicado pela seta amarela, foi preso ao eixo Cardan um contrapeso, na tentativa de diminuir o desbalanceamento causado pela introdução destas massas extras.

Figura 46 - (a) Lastro (b) Multímetro e transmissor

4.2.3.1. Procedimentos no pré-ensaio

Procedimentos de segurança para fixação do lastro ao eixo foram seguidos, porém na primeira tentativa de funcionamento o sistema de fixação falhou e o lastro foi arremessado contra o solo, não se danificando devido a suas características construtivas. Novas medidas de fixação foram providenciadas e o teste foi executado com sucesso. Feito isto, o lastro foi substituído pelo conjunto multímetro & transmissor, indicado pela seta laranja na Figura 46 (b), sendo este conjunto devidamente fixado à caixa de nylon. Quando o conjunto foi posto a girar, o sistema

de contrapeso se desprendeu, sendo arremessado contra as paredes do laboratório. Em seguida ele foi substituído e devidamente amarrado, sendo a nova tentativa executada. Desta vez as baterias de alimentação da ponte de Wheststone foram arremessadas contra o solo, sendo uma delas danificada. Substituída a bateria e fixado o conjunto à caixa, novo ensaio teve início e o conjunto funcionou como desejado. Na Figura 47 é visto o conjunto Multímetro & Transmissor, fixado ao eixo Cardan, no instante inicial do ensaio para aquisição de dados.

Figura 47 – Conjunto para medição da deformação do eixo, fixado ao mesmo.

4.2.3.2. Transmissão por *bluetooth* dos dados do ensaio

Dado início ao ensaio e com todos os equipamentos funcionando, o sistema de compensação de carga do dinamômetro e de velocidade de giro do motor em operação manual, as informações transmitidas pelo transmissor *bluetooth* foram captadas por um celular Samgsung, modelo S4, adquirido para esta finalidade e carregado com o software Agilent Data Logger, que demostrou ser mais eficiente do que a versão para notebook, o GUI Data Logger, como pode ser visto na Figura 48. Os dados obtidos estão na Tabela 17.

	Tensão Inicial - V	oi (mV)	-0,001015	
			_	
	Tensão	Elétrica (V)		
	Na saída da	Tensão elétrica	Torque Lido no	Potência Lida
RPM	Ponte (Vof) *	corrigida Vo *	S.M (N·m)	no S.M (kW)
904	-0,0012179	-0,00020330	383	36,30
1000	-0,0012535	-0,00023890	315	33,40
1000	-0,0013506	-0,00033600	478	51,60
1024	-0,0015339	-0,00051930	713	76,30
1069	-0,0014726	-0,00045800	757	х

Tabela 17 - Resultado da medição dinâmica de torque

Tensão da Bateria (V)

9,10933

* - Vo= Vof - Voi

Inicialmente foi colocada uma velocidade de 904 rpm com pouca carga oferecida pelo dinamômetro, produzindo um torque de 383 N·m, lido na interface de vídeo do Sistema de Medição em avaliação. Este torque causou uma deformação elástica no eixo produzindo uma tensão na saída da Ponte de Wheatstone de 0,203 mV, proporcional a esta deformação, como pode ser visto na primeira linha da Tabela 18 A velocidade do motor foi elevada para 1000 rpm, sendo mantida a carga do dinamômetro, resultando em um torque de 315 N·m, lido na interface de vídeo e produzindo na Ponte de Wheatstone a tensão de 0,238 mV. Todos os valores adquiridos, acima citados, estão na Tabela 18.

Figura 48 - Recepção de dados por bluetooth

O gráfico resultante dos valores das tensões elétricas, disponíveis na saída da Ponte de Wheatstone durante o experimento, é ilustrado na Figura 49. Nele são vistos 5 patamares de tensão elétrica, correspondendo às deformações proporcionais às cargas às quais o dinamômetro foi submetido, como mostrado na Tabela 18, onde os valores de tensão das duas primeiras linhas da tabela estão contidos no primeiro patamar do gráfico, pois a variação de um valor para o outro é muito pequena, de 203 mV para 238 mV. Os demais valores estão bem definidos.

Figura 49 - Síntese do comportamento da deformação do eixo Cardan durante o experimento

Com base nestes resultados, foram calculados os torques mensurados pelo método da deformação elástica do eixo. O resultado apresentado gerou conhecimento de grande utilidade e contribuição para ensaios futuros.

4.2.3.3. Cálculo do torque

Os dados da Tabela 18 foram inseridos na equação 15 e a deformação máxima do eixo foi calculada. Este valor de deformação foi inserido na equação 16 e o torque correspondente foi obtido. O resultado pode ser visto na parte inferior da Tabela 19.

Gauge factor - GF	2,05
Módulo de Elasticidade do aço - E - (Pa)	20000000000
Tensão de aliment. da Ponte (V)	9,10933
Tensão de saída inicial (V)	-0,001023
Ângulo inicial do Braço (graus)	1,7
Comprimento do braço (m)	0,3655
Número de strain gauges ativos - N	4
Torque no eixo, calculado pela deformação	T _ε (N·m)
Coeficiente de Poisson (v)	0,3
Raio do Eixo - r - (m)	0,04761

Tabela 18 - Comparação entre torques calculados e os torques indicados no S.M

	Saída da Ponte	E produzida	T _n (Nim)	Torque lido no	Diferença	Diferença
RPM	$V_{o}(V)$	e produzidu	12 (1411)	S.M (N·m)	(kW)	(%)
904	-0,0002033	0,0000108867	283,92	383	99	-34,90%
1000	-0,0002389	0,0000127931	333,64	315	-19	5,59%
1000	-0,000336	0,0000179928	469,25	478	9	-1,87%
1024	-0,0005193	0,0000278085	725,24	713	-12	1,69%
1069	-0,000458	0,0000245259	639,63	757	117	-18,35%

Utilizando a Eq.16 os torques lidos são calculados e mostrados na Tabela 19.

Tabela 19 - Comparação entre os torques mensurados e os torques indicados.

	Força Tangencial	Potência Calculada	Potência Lida	Diferença	Diferença
RPM	ao eixo (N)	(kW)	S.M (kW)	(kW)	(%)
904	6342,08	28,6	36,30	7,72	-26,99%
1000	7424,77	37,0	33,40	-3,62	9,77%
1000	10335,62	51,5	51,60	0,07	-0,14%
1024	15662,11	80,0	76,30	-3,66	4,58%
1069	13905,31	74,1	X	х	х

Logo, o valor indicado pelo Sistema de Medição apresenta diferença em relação ao valor de torque no eixo, contrariando o que se supunha antes da realização dos ensaios. Os valores de -34,90% e -18,35% não foram considerados válidos, pois resultam de impulsos produzidos pelas vibrações de alta amplitude do dinamômetro durante o ensaio, causadas pelo deslocamento do centro de massa do eixo, em virtude da instalação do multímetro sobre o mesmo.

4.2.3.4. Efeitos indesejados - Vibração do conjunto

Pelo motivo de vibração mecânica elevada do dinamômetro, produzida pelo desbalanceamento do eixo Cardan devido à introdução da massa dos equipamentos

de medição, o teste teve uma duração de apenas 5 minutos e 45 segundos. Essa vibração fez com que os parafusos de fixação de uma das molas de sustentação do dinamômetro, indicados pela seta vermelha na Figura 47, se soltassem, aumentando ainda mais a amplitude da mesma, impedindo a continuação do ensaio.

4.2.3.5. Conclusão sobre a medição de torque

O método de medição de torque baseado na deformação elástica do eixo produz informações confiáveis, no entanto em ensaios futuros deverão ser utilizados sensores *strain gauges* com a resistência elétrica não inferior a $1k\Omega$. A Ponte de Wheatstone poderá ter uma configuração composta, formada por 8 sensores ou mais, de forma que produza tensões elétricas mais elevadas, proporcionando menor erro de medição. O instrumento utilizado para a medição deverá possuir maior resolução, isto é, ter pelo menos 8 ½ dígitos e ser calibrado na faixa de nanovolt. O conjunto de medição deverá possuir massa reduzida para que não cause desbalanceamento do eixo ao qual será acoplado.

4.3. Medição de potência

Para a medição de potência foi realizado ensaio estático, utilizando a mesma metodologia do cálculo de torque estático, acrescentando como parâmetro complementar para o sistema de medição, uma simulação de rotação do eixo. Para isto foi injetado um sinal de frequência correspondente a 1500 rpm; possibilitando que o sistema de medição fornecesse também a indicação da potência desenvolvida pelo motor sob ensaio. Para utilizar o mesmo sinal da célula de carga a leitura de força foi feita no Catman E e, em seguida, a conexão da célula de carga foi desacoplada do MX840A e acoplada ao sistema de medição do banco. Os resultados estão apresentados na Tabela 20.

Força				Torque			
Correção pelo ângulo e MX840A - (N)	Leitura no U1253B (V)	Deformação produzida no eixo (E)	(A) Força x dist. (N∙m)	(B) Calculado pela deformação (N·m)	(C) Lido no S. M (N·m)	Potência calculada (kW)	Potência lida no S. M (kW)
6737,06	0,0007731	0,0000957	2462,39	2495,07	2 486	232,1	234,30
1321,11	-0,0007394	0,0000147	482,87	382,08	502	75,8	78,80
2586,39	-0,0004104	0,0000323	945,32	841,70	972	148,5	152,60
2789,84	-0,0003749	0,0000342	1019,69	891,30	1 040	160,2	163,30
3466,29	-0,0001877	0,0000442	1266,93	1152,82	1 302	199,0	204,30
4552,76	0,0001280	0,0000611	1664,03	1593,86	1 703	261,4	267,30
5489,00	0,0003929	0,0000753	2006,23	1963,93	2 038	315,1	320,20
6768,92	0,0007905	0,0000966	2474,04	2519,38	2 518	388,6	395,50
6737,06	0,0007731	0,0000957	2462,39	2495,07	2 497	386,8	392,20
1362,20	-0,00065728	0,0000190	497,88	496,81	493	78,2	77,4
3146,37	-0,00028646	0,0000389	1150,00	1014,85	1158	180,6	181,8
4539,43	0,00010862	0,0000601	1659,16	1566,78	1671	260,6	262,4
6660,43	0,00074914	0,0000944	2434,39	2461,60	2454	382,4	385,4
7568,08	0,00102734	0,0001093	2766,13	2850,25	2788	434,5	437,9
8481,82	0,00131380	0,0001246	3100,10	3250,44	3129	487,0	491,5
9068,89	0,00151586	0,0001355	3314,68	3532,72	3348	520,7	525,9
6737,06	0,0007731	0,000095671	2462,39	2495,07	2 488	464,2	468,90

Tabela 20 – Resultado do ensaio para medição de potência

Para o cálculo da potência foram utilizados os valores de cada força aplicada ao braço móvel, depois de ajustada em função do ângulo de inclinação do braço, sendo então calculada a potência no eixo Cardan. Em seguida o resultado foi comparado com a potência indicada pelo sistema de medição.

Partindo do conhecimento de que potência relaciona energia e tempo, sendo a razão da energia gasta na unidade de tempo, foram realizados os cálculos que podem ser melhor compreendidos quando a Figura 50 é observada.

Figura 50 – Representação da distância entre força aplicada e o centro do eixo.

Momento da força F $(N \cdot m) = F (N) x d (m)$ sendo d = 0,318 m;F = 1358,24 N; r = 0,04761 m. O momento M da força, no centro do círculo, será M = 496,4367 N·m. De posse do mesmo, pode ser calculada a força F' que, atuando tangencialmente ao mesmo, produzirá movimento do eixo ao redor de si mesmo, isto é, Trabalho mecânico. Esta força F' será: F' = 496,4367 N.m / 0,04761 m = 10427,15 N. Quando F' faz o eixo girar, significa que houve consumo de energia para possibilitar este movimento. Essa energia é calculada pela multiplicação de F' pelo perímetro "p" do eixo, sendo p = 0,299 m. Assim, existe uma quantidade de energia de 3119,20 joules para cada rotação do eixo, nestas condições. Se for considerada uma velocidade de rotação de 1.500 rpm, isto é, 25 voltas/segundo, e sabendo que J/s = Watt, obtém-se a potência P = 77,98kW, para estas condições.

Relacionando a potência calculada e a respectiva potência indicada pelo sistema de medição, foi construído o gráfico da Figura 51,

Figura 51 - Relação entre a potência real no eixo e a potência indicada - kW

No final do ensaio, já com a última força aplicada, foi feita uma variação da simulação de velocidade. A primeira variação foi elevar o giro para 1.800 rpm e observar a indicação do sistema de medição para potência. O segundo passo foi reduzir o giro para 900 rpm.

Nos ensaios de motores realizados no laboratório do CTEx, a curva de ajuste da Figura 51 foi utilizada para obtenção da potência real no eixo Cardan, partindo da indicação do sistema de medição.

O ajuste da potência indicada pelo sistema de medição para obter potência real foi obtido pela equação:

$$y = 1,0075 x + 1,5577$$

4.3.1. Determinação da potência no ensaio dinâmico

Para o cálculo da potência no ensaio dinâmico foi utilizada a mesma metodologia citada acima, sendo os resultados ilustrados na Tabela 22.

	Força tangencial	Potên cia Calculada	Potên cia Lida	Erro (kW)	Erro %
RPM	ao eixo (N)	(kW)	S.M (kW)	Life (k ii)	Life //
904	6342,08	28,6	36,30	7,72	-26,99%
1000	7424,77	37,0	33,40	-3,62	9,77%
1000	10335,62	51,5	51,60	0,07	-0,14%
1024	15662,11	80,0	76,30	-3,66	4,58%
1069	13905,31	74,1	Х	Х	Х

Tabela 21 - Cálculo da potência no eixo Cardan com o motor em funcionamento

4.4. Medição de temperatura

Com o objetivo de verificar o método de medição de temperatura do banco de ensaios, foi realizada uma inspeção física e medição elétrica nos circuitos dos sensores Pt-100, sendo constatada a utilização de sensores a 3 fios, como mostra a Figura 52.

Figura 52 - Pt -100 a 3 fios

Com base neste levantamento a primeira suposição foi de que se tratava de um sistema de medição de Pt-100 a 3 fios. Neste método de medição o efeito da resistência elétrica do condutor é compensado em grande parte. O método consiste

93

em medir a resistência elétrica do RTD por T1 e T3, mostrado na Figura 52, e anotar o valor da resistência total 1 (R_{T1}).

$$R_{T1} = R_{C1} + R_{RTD} + R_{C3}$$
 Eq. 23

 R_{T1} – resistência elétrica total 1 R_{C1} – resistência elétrica do condutor T1 R_{RTD} – Resistência do Pt-100 R_{C3} – resistência elétrica do condutor T3

Deve-se notar que a resistência obtida equivale à resistência do condutor 1, mensurada de T1 até o ponto A, somada à resistência do RTD e à resistência do condutor 3, mensurada de ponto B até T3. As resistências de A e B até o RTD possuem valores desprezíveis. Em seguida mede-se a resistência elétrica dos condutores 1 e 2, medindo entre os pontos T1 e T2, obtendo outra resistência total 2 (R_{T2}),

$$R_{T2} = R_{C1} + R_{C2}$$
 Eq. 24

 R_{C3} – resistência elétrica do condutor T3 R_{T2} – resistência elétrica total 2

Para obter o valor da resistência elétrica do RTD, basta subtrair a Eq.24 da Eq.23. Deve-se ter o cuidado de utilizar uma corrente de medição com intensidade baixa, evitando assim que a mesma produza, por efeito joule, um aquecimento na resistência do elemento sensor e induza também a um erro na medição.

Resistência mensurada =
$$\frac{Vm}{I}$$
 = R + 2 RC1 Eq. 25
onde se observa a parcela do erro sistemático = 2RC1

Outra observação importante é que os comprimentos dos condutores 1, 2 e 3 devem ser iguais, assim como o material que os constitui deverá ser o mesmo.

Enquanto não houver variação da temperatura do condutor sua resistência elétrica permanecerá inalterada. O condutor elétrico tem a sua própria sensibilidade de resistência em função da temperatura. A sua resistência equivalente representa um erro que depende do tipo e da sensibilidade do sensor. O Pt-100 tem resistência nominal de 100 Ω a 273,15 K (0 ° C). A norma IEC 751 informa que a sensibilidade à temperatura, da platina, é 0,385 Ω / K entre as temperaturas de 273,15 K e 373,15 K (0 ° C e 100 ° C). Uma resistência de condutor de 10 Ω resulta em um erro positivo, nesta faixa de temperatura, de 26 K (10 Ω /0.385 Ω / K). O efeito da resistência do condutor se torna ainda maior à medida que a temperatura aumenta [9].

A relação entre a resistência elétrica (R) e a temperatura (T) mensurada por um termômetro de resistência elétrica de platina é determinada pela equação de Callendar- Van Dussen, como visto no Capítulo 3.

Para saber a resistência dos condutores elétricos que interligam os sensores Pt-100 ao sistema de medição de temperatura, foi necessário mensurá-las separadamente. Cada canal de medição é composto por duas seções de condutores elétricos. A primeira interliga os condicionadores de sinais ao conector do Pt-100 e a segunda interliga os conectores do Pt-100 ao elemento sensor propriamente dito, como mostrado na Figura 53.

Figura 53 - Conexão do Pt-100 ao circuito de medição

Para realizar estas medições foi utilizado o multímetro Agilent 3458 A com 8 ¹/₂ dígitos, na escala de resistências elétricas. Esta medição foi feita em duas etapas. Na primeira foram medidas as resistências dos cabos que interligam os condicionadores de sinais ao conector do Pt-100, sendo os resultados relacionados Tabela 22Tabela 22. Na segunda etapa foram medidas as resistências dos condutores elétricos que compõem os sensores Pt-100, sendo os resultados relacionados na Tabela 23.

	_		Ckt 2							
Nº D+ 100			Resisté	ència Elétrio	ca do Cond	utor Entre	o Conector	e o Condiciona	dor de sinai:	s - (ohms)
IN FI-100	Canal	Função do Pt-100	Leitura 1	Leitura 2	Leitura 3	Leitura 4	Leitura 5	Leitura 6	Média	S
281336	24	Temperatura do combustível	0,284	0,283	0,283	0,283	0,283	0,283	0,283	0,000197
281332	23	Temperatura do óleo lubrificante	0,340	0,343	0,343	0,339	0,344	0,341	0,342	0,00178
281337	17	Temperatura do bloco do motor	0,335	0,335	0,336	0,337	0,334	0,337	0,336	0,00112
281331	25	Temperatura da água de entrada do motor	0,342	0,343	0,343	0,342	0,342	0,342	0,342	0,000703
281333	21	Temperatura dos gases de escapamento	0,341	0,338	0,339	0,339	0,339	0,339	0,339	0,00100
281334	22	Temperatura ambiente	0,345	0,344	0,345	0,344	0,341	0,340	0,343	0,00200
281335	20	Temperatura do ar de admissão pré-aftercooler	0,290	0,290	0,296	0,287	0,288	0,290	0,290	0,00318
281330	19	Temperatura do ar de admissão pós-aftercooler	0,273	0,276	0,276	0,276	0,274	0,274	0,275	0,00156
31398 -1	26	Temperatura da água de saída do dinamômetro	0,985	0,985	0,986	0,986	0,986	0,986	0,986	0,000246
1032	18	Temperatura da água de saída do motor	0,341	0,340	0,340	0,340	0,339	0,433	0,356	0,0380

Tabela 22 - Resistência elétrica do condutor do conector ao condicionador de sinais

* - Já descontada a resistência elétrica do cabo de conexão ao multímetro = $0,089599 \Omega$

			Ckt 2							
Nº D4 100			Resistência	a Elétrica do	Pt-100 - (ohms)					
N Pt-100	Canal	Função do Pt-101	Leitura 1	Leitura 2	Leitura 3	Leitura 4	Leitura 5	Leitura 6	Média	S
281336	24	Temperatura do combustível	0,448	0,437	0,448	0,437	0,449	0,437	0,443	0,0060
281332	23	Temperatura do óleo lubrificante	0,537	0,536	0,539	0,559	0,527	0,525	0,537	0,0123
281337	17	Temperatura do bloco do motor	0,439	0,439	0,439	0,448	0,449	0,449	0,444	0,0052
281331	25	Temperatura da água de entrada do motor	0,436	0,436	0,437	0,449	0,449	0,448	0,442	0,0067
281333	21	Temperatura dos gases de escapamento	0,609	0,609	0,610	0,601	0,601	0,602	0,605	0,0046
281334	22	Temperatura ambiente	0,436	0,436	0,436	0,449	0,451	0,451	0,443	0,0078
281335	20	Temperatura do ar de adm. pré-aftercooler	0,437	0,449	0,450	0,438	0,437	0,437	0,441	0,0061
281330	19	Temperatura do ar de adm. pós-aftercooler	0,435	0,436	0,438	0,454	0,455	0,454	0,445	0,0098
31398 -1	26	Temperatura da água de saída do dinamôm.	0,194	0,191	0,193	0,190	0,192	0,193	0,192	0,0016

Tabela 23 – Resistência elétrica do condutor do conector ao sensor

* - Já descontada a resistência elétrica do cabo de conexão ao multín

O procedimento inicial da análise do Sistema de Medição de Temperatura (SMT) foi verificar o tipo de Pt-100 instalado e em sequência observar o método de medição utilizado. Como não existia diagrama eletrônico do hardware, a medição da corrente elétrica utilizada nos sensores foi realizada. Para isso o circuito elétrico de um Pt-100 foi seccionado e o microamperímetro do multímetro marca Agilent,

modelo 3458 A, com 8 ¹/₂ dígitos, foi inserido em série. Como a corrente mensurada estava variando muito, de 3 a 12 nA, a conclusão foi de que não havia sido utilizada uma fonte de corrente constante para a medição.

A outra opção que o fabricante do sistema de medição poderia ter utilizado como *hardware* seria uma fonte de tensão constante. Como uma tensão constante também não foi verificada surgiu a dúvida sobre qual método estava sendo utilizado. Ao buscar informações com o fabricante do sistema de medição, o mesmo informou que "o circuito atual é uma adaptação de um sistema de medição que utilizava termopar para o sistema que utiliza termorresistência", não ficando clara a informação.

Mediante a falta de documentação técnica de *hardware*, a não caracterização de circuitos convencionais e da impossibilidade de verificações detalhadas, o que seria impreciso e dispenderia bastante tempo, foi adotado o procedimento de análise do sistema de medição de temperatura baseada em dois métodos de ensaios distintos, conforme descrito a seguir:

4.4.1. Calibração do sistema de medição de temperatura

Este método de ensaio foi realizado com o auxílio de um equipamento denominado "Banho Termostático" (BT) e de um Bloco de Cobre Homogeneizador de Temperaturas (BHT), mostrados na Figura 54

Figura 54 – (a) Banho Termostático e (b) Bloco Homogeneizador de Temperaturas

O BT teve seu termômetro calibrado (conforme certificado de calibração no Anexo H) e para o BHT foi feito um estudo de homogeneidade de temperatura, sendo efetuadas 9000 medições de temperaturas. O estudo consistiu em introduzir dois *SPRT* (Pt-100 padrão) em poços distintos do BHT e fazer leituras para temperaturas conhecidas, estabilizadas pelo BT, em diversas profundidades de inserção nos poços do BHT, alternando os *SPRT* de posição relativa para cada 2 poços. Quando a temperatura conhecida era modificada para um valor prédeterminado, sua estabilização era aguardada para que nova leitura fosse feita, sendo o mesmo procedimento realizado para cada mudança de um *SPRT* para outro poço. A Tabela 24, resultante do estudo do meio térmico de cobre, indicou que a maior dispersão de temperatura que poderia ocorrer no bloco de cobre seria 0,48 °C, enquanto que a maior incerteza foi de 0,71 °C, ocorrendo nas temperaturas de 55 °C e de 80 °C.

-										
Referência / Reference	Uniformidade Radial / Radial Uniformity	Uniformidade Axial / Axial Uniformity	Estabilidade / Stability	Incerteza / Uncertainty	Dispesão / Dispersion					
°C	°C	°C	°C	°C	°C					
30,00	0,06	0,06	0,23	0,25	0,08					
40,00	0,06	0,06	0,33	0,34	0,48					
45,00	0,06	0,06	0,30	0,32	0,16					
50,00	0,06	0,06	0,50	0,50	0,47					
55,00	0,06	0,06	0,71	0,72	0,10					
60,00	0,06	0,06	0,40	0,41	0,08					
70,00	0,06	0,06	0,44	0,45	0,14					
80,00	0,06	0,06	0,71	0,71	0,38					

Tabela 24 – Resultado do estudo de homogeneidade térmica do bloco de cobre Resultado da Calibração / Results calibration

A Figura 55 mostra o gráfico da incerteza expandida do bloco homogeneizador, resultante do estudo realizado.

Feito o estudo da homogeneidade térmica do BHT (Anexo B), sensores Pt-100, calibrados (certificados de calibração no Anexo H), foram introduzidos em cada um dos poços do BHT, em profundidade máxima – posição na qual se observou, no estudo de homogeneização, a menor dispersão de valores de temperatura para o BHT–, sendo que cada um dos sensores Pt-100 estava conectado a um canal do sistema de medição, conforme a Tabela 23 indica. Uma temperatura foi ajustada no controlador do BT e aguardada a sua estabilização, sendo esta comum a todos os Pt-100. Após isto, foi feita a leitura da indicação na IHM de vídeo do sistema de medição para cada Pt-100.

Figura 56 - Sensores Pt -100 inseridos no banho termostático

Seguindo o procedimento acima como padrão, foram ensaiadas algumas temperaturas no sentido crescente e decrescente de variação das mesmas, como indicado na Tabela 25, tendo sido adotado que, se houvesse diferença das indicações na IHM entre os sentidos (histerese) de variação da temperatura, as medições seriam repetidas para todas elas e que; caso não houvesse, o que se constatou, seriam feitas medições de temperaturas no sentido decrescente de forma a complementar as medições com valores de temperaturas realizados no sentido oposto.

99

Figura 55 - Incerteza de medição do bloco de cobre

Temperatura (°C)							
Crescente	Decrescente						
35	80						
40	60						
50	50						
60	40						
80	35						

Tabela 25 – Temperaturas ensaiadas segundo o sentido de variação da mesma.

Os resultados obtidos, não tratados estatisticamente, são mostrados na Tabela 26 e na Tabela 27, onde as discrepâncias entre a temperatura estabilizada e a temperatura indicada pelo sistema de medição estão grifadas.

Média Função do Pt-100 Medição 1 Medição 2 Medição 3 Medição 4 Medição 5 Medição 6 Temperatura do combustível 34,0 34,0 34,0 35,0 35,0 35,0 34,5 Temperatura do óleo lubrificante 35.0 35,0 35,0 35,0 35,0 35,0 35,0 Temperatura do bloco do motor 35,0 35,0 35,0 35,0 35,0 35,0 35,0 34,0 34,0 34,0 35,0 35,0 Temperatura da água de entrada do motor 35,0 34,5 35.0 35.0 35.0 36.0 36.0 36.0 Temperatura dos gases de escapamento 35,5 Temperatura ambiente 35,0 35,0 35,0 36,0 36,0 36,0 35,5 Temperatura do ar de admissão pré-aftercooler 35,0 35,0 35,0 36,0 36,0 36,0 35,5 35,0 Temperatura do ar de admissão pós-aftercooler 35,0 35,0 36,0 36,0 36,0 35,5 Temperatura da água de saída do dinamômetro 35,0 35,0 35,0 36,0 36,0 36,0 35,5 Temperatura da água de saída do motor 34,0 35,0 34,0 34,0 35,0 35,0 34,5

Tabela 26 – Re	sultados do método do banho termostático - crescente
	35 °C

				40 °C			
Função do Pt-100	Medição 1	Medição 2	Medição 3	Medição 4	Medição 5	Medição 6	Média
Temperatura do combustível	39,0	39,0	39,0	39,0	39,0	39,0	39,0
Temperatura do óleo lubrificante	40,0	40,0	40,0	40,0	40,0	40,0	40,0
Temperatura do bloco do motor	39,0	39,0	40,0	40,0	40,0	40,0	39,7
Temperatura da água de entrada do motor	39,0	39,0	39,0	39,0	39,0	39,0	39,0
Temperatura dos gases de escapamento	40,0	40,0	40,0	40,0	40,0	40,0	40,0
Temperatura ambiente	40,0	40,0	40,0	40,0	40,0	40,0	40,0
Temperatura do ar de admissão pré-aftercooler	40,0	40,0	40,0	40,0	40,0	40,0	40,0
Temperatura do ar de admissão pós-aftercooler	40,0	40,0	40,0	40,0	40,0	40,0	40,0
Temperatura da água de saída do dinamômetro	40,0	40,0	40,0	40,0	40,0	40,0	40,0
Temperatura da água de saída do motor	39,0	40,0	39,0	39,0	39,0	39,0	39,2

				50 °C			
Função do Pt-100	Medição 1	Medição 2	Medição 3	Medição 4	Medição 5	Medição 6	Média
Temperatura do combustível	49	49	49	49	49	49	49
Temperatura do óleo lubrificante	50	50	50	50	50	50	50
Temperatura do bloco do motor	49	49	49	49	49	49	49
Temperatura da água de entrada do motor	49	49	49	49	49	49	49
Temperatura dos gases de escapamento	50	50	50	50	50	50	50
Temperatura ambiente	50	50	50	50	50	50	50
Temperatura do ar de admissão pré-aftercooler	50	50	50	50	50	50	50
Temperatura do ar de admissão pós-aftercooler	50	50	50	50	50	50	50
Temperatura da água de saída do dinamômetro	50	50	50	50	50	50	50
Temperatura da água de saída do motor	49	49	49	49	49	49	49

Tabela 27 – Continuação

				60 °C			
Função do Pt-100	Medição 1	Medição 2	Medição 3	Medição 4	Medição 5	Medição 6	Média
Temperatura do combustível	59	59	59	59	59	59	59
Temperatura do óleo lubrificante	60	60	60	60	60	60	60
Temperatura do bloco do motor	59	59	59	59	59	59	59
Temperatura da água de entrada do motor	59	59	59	59	59	59	59
Temperatura dos gases de escapamento	60	60	60	60	60	60	60
Temperatura ambiente	60	60	60	60	60	60	60
Temperatura do ar de admissão pré-aftercooler	60	60	60	60	60	60	60
Temperatura do ar de admissão pós-aftercooler	60	60	60	60	60	60	60
Temperatura da água de saída do dinamômetro	60	60	60	60	60	60	60
Temperatura da água de saída do motor	59	59	59	59	59	59	59

				80 °C			
Função do Pt-100	Medição 1	Medição 2	Medição 3	Medição 4	Medição 5	Medição 6	Méd
Temperatura do combustível	79	79	79	79	79	79	79
Temperatura do óleo lubrificante	80	80	80	80	80	80	80
Temperatura do bloco do motor	79	79	79	79	79	79	79
Temperatura da água de entrada do motor	79	79	79	79	79	79	79
Temperatura dos gases de escapamento	80	80	80	80	80	80	80
Temperatura ambiente	80	80	80	80	80	80	80
Temperatura do ar de admissão pré-aftercooler	80	80	80	80	80	80	80
Temperatura do ar de admissão pós-aftercooler	80	80	80	80	80	80	80
Temperatura da água de saída do dinamômetro	80	80	80	80	80	80	80
Temperatura da água de saída do motor	79	79	79	79	79	79	79

Tabela 27 - Resultados do método do banho termostático - decrescente

				65 °C			
Função do Pt-100	Medição 1	Medição 2	Medição 3	Medição 4	Medição 5	Medição 6	Média
Temperatura do combustível	64	64	64	64	64	64	64
Temperatura do óleo lubrificante	65	65	65	65	65	65	65
Temperatura do bloco do motor	64	64	64	64	64	64	64
Temperatura da água de entrada do motor	64	64	64	64	64	64	64
Temperatura dos gases de escapamento	65	65	65	65	65	65	65
Temperatura ambiente	65	65	65	65	65	65	65
Temperatura do ar de admissão pré-aftercooler	65	65	65	65	65	65	65
Temperatura do ar de admissão pós-aftercooler	65	65	65	65	65	65	65
Temperatura da água de saída do dinamômetro	65	65	65	65	65	65	65
Temperatura da água de saída do motor	64	64	64	64	64	64	64

				55 °C			
Função do Pt-100	Medição 1	Medição 2	Medição 3	Medição 4	Medição 5	Medição 6	Média
Temperatura do combustível	54	54	54	54	54	54	54
Temperatura do óleo lubrificante	55	55	55	55	55	55	55
Temperatura do bloco do motor	54	54	54	54	54	54	54
Temperatura da água de entrada do motor	54	54	54	54	54	54	54
Temperatura dos gases de escapamento	55	55	55	55	55	55	55
Temperatura ambiente	55	55	55	55	55	55	55
Temperatura do ar de admissão pré-aftercooler	55	55	55	55	55	55	55
Temperatura do ar de admissão pós-aftercooler	55	55	55	55	55	55	55
Temperatura da água de saída do dinamômetro	55	55	55	55	55	55	55
Temperatura da água de saída do motor	54	54	54	54	54	54	54

				45 °C			
Função do Pt-100	Medição 1	Medição 2	Medição 3	Medição 4	Medição 5	Medição 6	Média
Temperatura do combustível	44	44	44	44	44	44	44
Temperatura do óleo lubrificante	45	45	45	45	45	45	45
Temperatura do bloco do motor	44	45	45	45	45	45	45
Temperatura da água de entrada do motor	44	44	44	44	44	44	44
Temperatura dos gases de escapamento	45	45	45	45	45	45	45
Temperatura ambiente	45	45	45	45	45	45	45
Temperatura do ar de admissão pré-aftercooler	45	45	45	45	45	45	45
Temperatura do ar de admissão pós-aftercooler	45	45	45	45	45	45	45
Temperatura da água de saída do dinamômetro	45	45	45	45	45	45	45
Temperatura da água de saída do motor	44	44	44	44	44	44	44

4.4.2. Calibração dos canais de medição de temperatura

Com base nos resultados da Tabela 27 foram feitas as calibrações dos canais de medição de temperatura, que utilizou como padrão a indicação do termômetro do banho termostático marca HAAKE, calibrado pela empresa LC Controls (certificado RBC n° C-228/008/13), possibilitando traçar a curva de ajuste para cada canal de medição; porém, para descobrir a equação de melhor ajuste, foram comparados os resultados obtidos ao serem utilizadas as equações de primeiro, de segundo e de terceiro graus, geradas com auxílio dos gráficos construídos para cada canal.

A Tabela 28 apresenta na primeira coluna a temperatura de referência do banho termostático e na segunda coluna a temperatura respectiva, mensurada pelo sistema de medição e extraída da Tabela 26. As colunas seguintes apresentam os valores corrigidos das temperaturas indicadas, obtidas com auxílio das equações geradas pelos gráficos ilustrados nas Figuras 57, 58 e 59. Ao final da tabela está o desvio padrão, obtido pelo somatório do erro médio quadrático para cada grau de equação. Pôde ser visto que o menor desvio ocorreu para a equação do terceiro grau, sendo portanto, a equação adequada para o ajuste da temperatura de medição do canal. A equação do terceiro grau foi a única equação considerada para os demais canais.

Temperatura do Combustível

y = 1,07647828x - 4,08451888

Figura 57 – Curva de ajuste da temperatura por uma equação do primeiro grau..

4.4.2.1.

Figura 58 – Curva de ajuste para correção da indicação da temperatura do combustível segundo a curva de ajuste de uma equação do segundo grau.

Figura 59 – Curva de ajuste da temperatura por uma equação do segundo grau.

	Temper	atura do combustível			
	Tp	Τ _Ι	Desvio médio	Desvio médio	Desvio médio
n	Temperatura -	T	quadrático (°C)	quadrático (°C)	quadrático (°C)
Item	Padrão (°C)	Temperatura Indicada (°C)	aprox. linear	aprox. 2° grau	aprox. 3° grau
1	30	34	6,329	1,251	0,044
2	30	34	6,329	1,251	0,044
3	30	34	6,329	1,251	0,044
4	30	35	12,904	5,988	3,001
5	30	35	12,904	5,988	3,001
6	30	35	12,904	5,988	3,001
7	40	39	4,418	5,526	1,904
8	40	39	4,418	5,526	1,904
9	40	39	4,418	5,526	1,904
10	40	39	4,418	5,526	1,904
11	40	39	4,418	5,526	1,904
12	40	39	4,418	5,526	1,904
13	50	49	1,788	0,018	1,048
14	50	49	1,788	0,018	1,048
15	50	49	1,788	0,018	1,048
16	50	49	1,788	0,018	1,048
17	50	49	1,788	0,018	1,049
18	50	49	1,788	0,018	1,048
19	60	59	0,328	0,910	0,198
20	60	59	0,328	0,910	0,198
21	60	59	0,328	0,910	0,198
22	60	59	0,328	0,910	0,198
23	60	59	0,328	0,910	0,198
24	60	59	0,328	0,910	0,198
25	80	79	0,916	0,063	0,002
26	80	79	0,916	0,063	0,002
27	80	79	0,916	0,063	0,002
28	80	79	0,916	0,063	0,002
29	80	79	0,916	0,063	0,002
30	80	79	0,916	0,063	0,002
	<u> <u> </u> <u></u></u>	$(D*T^2) \cdot (C*T) \cdot (D))^2$	102.200	60.000	28.042
	<u>∑(</u> 1p-((A [°] 1 [°])·	+(D I)+(C I)+(D))	102,396	60,822	28,043
s²	= <mark>∑(T_p -((A*TI</mark> (<mark>n</mark> - n	³)+(B*Tl ²)+(C*T _l)+(D))) ² ° membros equação)	3,657	2,253	1,079
		6	1.912	1.501	1.039
		3	1,012	1,001	1,000

Tabela 28 – Comparação do desvio padrão obtido por equações de graus diferentes.

Segundo a equação de ajuste para o canal de medição da temperatura do combustível, que é do terceiro grau ($y = Ax^3 + Bx^2 + Cx + D$), foram obtidos os coeficientes A, B, C e D da equação .

Para o ajuste da temperatura do combustível foi montada a equação abaixo, com base na equação do terceiro grau:

$$T = 6,2668 \cdot 10^{-4}x^3 - 0,11148296x^2 + 7,39545194x - 117,41087557$$
 Eq. 26

$$T = Temperatura \ corrigida \ (^{\circ}C)$$
 $x = Temperatura \ indicada \ (^{\circ}C)$

4.4.2.2. Temperatura do óleo lubrificante do motor

A Tabela 29 resume os dados de calibração do canal de medição da temperatura do óleo lubrificante.

Temp. Padrão	Temperatura do óleo lubrificante							
(°C)	Aquisição 1	Aquisição 2	Aquisição 3	Aquisição 4	Aquisição 5	Aquisição 6		
30	35	35	35	35	35	35		
40	40	40	40	40	40	40		
50	50	50	50	50	50	50		
60	60	60	60	60	60	60		
80	80	80	80	80	80	80		

Tabela 29 – Calibração do canal de medição de temperatura do óleo lubrificante

A curva de ajuste deste canal de medição está ilustrada na Figura 58.

Figura 60 – Curva de ajuste para correção da indicação da temperatura do combustível.

Temperatura óleo lubrificante						
	Τ _p	T _I	Desvio médio			
n	Temperatura -	Temperatura Indicada (°C)	quadrático (°C)			
Item	Padrão (°C)		aprox. 5° grau			
1	30	35	0,267			
2	30	35	0,267			
3	30	35	0,267			
4	30	35	0,267			
5	30	35	0,267			
6	30	35	0,267			
7	40	40	1,186			
8	40	40	1,186			
9	40	40	1,186			
10	40	40	1,186			
11	40	40	1,186			
12	40	40	1,186			
13	50	50	0,938			
14	50	50	0,938			
15	50	50	0,938			
16	50	50	0,938			
17	50	50	0,938			
18	50	50	0,938			
19	60	60	0,190			
20	60	60	0,190			
21	60	60	0,190			
22	60	60	0,190			
23	60	60	0,190			
24	60	60	0,190			
25	80	80	0,002			
26	80	80	0,002			
27	80	80	0,002			
28	80	80	0,002			
29	80	80	0,002			
30	80	80	0,002			
	$\sum (T_{p}-((A^{*}T_{I}^{3})$	15,491				
s²	_ <mark>Σ(Τ</mark> ρ -((Α*ΤΙ	³)+(B*Tl ²)+(C*T _i)+(D))) ²	0.500			
-	(<mark>n</mark> - n	° membros equação)	0,596			
		s	0 772			

Tabela 30 - Cálculo do desvio padrão amostral

Equação de ajuste:

 $T = 5,6948 \cdot 10^{-4}x^3 - 0,10272805x^2 + 6,9774427x - 112,26867026$ Eq.27

 $T = Temperatura \ corrigida \ (^{\circ}C)$ $x = Temperatura \ indicada \ (^{\circ}C)$

4.4.2.3. Temperatura do bloco do motor

A Tabela 31 resume os dados de calibração do canal de medição da temperatura do bloco do motor.

Tabela 31 – Calibração do canal de medição de temperatura do bloco do motor.

Temp. Padrão	Temperatura do bloco do motor							
(°C)	Aquisição 1	Aquisição 2	Aquisição 3	Aquisição 4	Aquisição 5	Aquisição 6		
30	35	35	35	35	35	35		
40	39	39	40	40	40	40		
50	49	49	49	49	49	49		
60	59	59	59	59	59	59		
80	79	79	79	79	79	79		

A curva de ajuste deste canal de medição está ilustrada na Figura 61.

Figura 61 - Curva de ajuste para correção da indicação da temperatura do bloco do motor

	Temperatura do bloco do motor							
	Τ _p	Τ _Ι	Desvio médio					
n	Temperatura -		quadrático (°C)					
ltem	Padrão (°C)	Temperatura Indicada (°C)	aprox. 3º grau					
1	30	35	0,267					
2	30	35	0,267					
3	30	35	0,267					
4	30	35	0,267					
5	30	35	0,267					
6	30	35	0,267					
7	40	39	6,848					
8	40	39	6,848					
9	40	40	1,186					
10	40	40	1,186					
11	40	40	1,186					
12	40	40	1,186					
13	50	49	0,001					
14	50	49	0,001					
15	50	49	0,001					
16	50	49	0,001					
17	50	49	0,001					
18	50	49	0,001					
19	60	59	1,529					
20	60	59	1,529					
21	60	59	1,529					
22	60	59	1,529					
23	60	59	1,529					
24	60	59	1,529					
25	80	79	1,962					
26	80	79	1,962					
27	80	79	1,962					
28	80	79	1,962					
29	80	79	1,962					
30	80	79	1,962					
	$\sum (T_{p} - ((A^{*}T_{1}^{3}) + (B^{*}T_{1}^{2}) + (C^{*}T_{1}) + (D))^{2} $ 40,990							
$s_{-}^{2} \sum (T_{p} - ((A*TI^{3}) + (B*TI^{2}) + (C*T_{i}) + (D)))^{2}$ (n - n° membros equação) 1,577								
	s 1.256							

Equação de ajuste:

 $T = 6,5494.10^{-4}x^3 - 0,11764435x^2 + 7,83529368x - 127,64696870$ Eq. 28

 $T = Temperatura \ corrigida \ (^{\circ}C)$ $x = Temperatura \ indicada \ (^{\circ}C)$
4.4.2.4. Temperatura da água de entrada do motor

A Tabela 33 resume os dados de calibração do canal de medição da temperatura da água de entrada do motor.

Temp. Padrão (°C)		Temperatura da água de entrada do motor									
30	34	34	34	35	35	35					
40	39	39	39	39	39	39					
50	49	49	49	49	49	49					
60	59	59	59	59	59	59					
80	79	79	79	79	79	79					

A curva de ajuste deste canal de medição está ilustrada na Figura 62.

Figura 62 - Curva de ajuste para correção da indicação da temperatura da água de entrada do motor.

 $T = 6,2668 \cdot 10^{-4}x^3 - 0,11148299x^2 + 7,39545379x - 117,41090835$ Eq. 29

$$T = Temperatura \ corrigida \ (^{\circ}C)$$
 $x = Temperatura \ indicada \ (^{\circ}C)$

4.4.2.5. Temperatura dos gases no escapamento

A Tabela 35 resume os dados de calibração do canal de medição da temperatura dos gases da combustão no escapamento, realizada com a década resistiva, calibrada, como padrão.

Temp. Padrão	Temperatura dos gases no escapamento*									
(°C)	Aquisição 1	Aquisição 2	Aquisição 3	Aquisição 4	Aquisição 5	Aquisição 6				
30,05	29	29	29	29	29	29				
70,03	69	69	69	69	69	69				
89,94	89	89	89	89	89	89				
149,86	149	149	149	149	149	149				
199,75	198	198	198	198	198	198				
349,82	350	350	350	350	350	350				
599,79	602	602	602	602	602	602				

Tabela 34 – Calibração do canal de medição de temperatura dos gases no escapamento.

* - Utilizando a década resistiva

A curva de ajuste deste canal de medição está ilustrada na Figura 63.

Equação de ajuste:
$$T = 0,9943 x + 1,4146$$
 Eq. 30

$$T = Temperatura corrigida (°C)$$
 $x = Temperatura indicada (°C)$

4.4.2.6. Temperatura ambiente

A Tabela 35 resume os dados de calibração do canal de medição da temperatura ambiente.

Temp. Padrão	Temperatura ambiente - °C								
(°C)	Aquisição 1	Aquisição 2	Aquisição 3	Aquisição 4	Aquisição 5	Aquisição 6			
35	35	35	35	36	36	36			
40	40	40	40	40	40	40			
50	50	50	50	50	50	50			
60	60	60	60	60	60	60			
80	80	80	80	80	80	80			

Tabela 35 – Calibração do canal de medição de temperatura ambiente.

A curva de ajuste deste canal de medição está ilustrada na Figura 64.

Figura 64 – Curva de ajuste para correção da indicação da temperatura ambiente.

Equação de ajuste:

$$T = 1,1628 \cdot 10^{-4}x^3 - 0,02016618x^2 + 2,11078990x - 19,32000741$$
 Eq. 31

$$T = Temperatura \ corrigida \ (^{\circ}C)$$
 $x = Temperatura \ indicada \ (^{\circ}C)$

4.4.2.7. Temperatura do ar de admissão pré-*aftercooler*

A Tabela 36 resume os dados de calibração do canal de medição da temperatura do ar de admissão pré-*aftercooler*.

Temp. Padrão	Temperatura do ar de admissão pré-aftercooler									
(°C)	Aquisição 1	Aquisição 2	Aquisição 3	Aquisição 4	Aquisição 5	Aquisição 6				
35	35	35	35	36	36	36				
40	40	40	40	40	40	40				
50	50	50	50	50	50	50				
60	60	60	60	60	60	60				
80	80	80	80	80	80	80				

Tabela 36 – Calibração do canal de medição de temperatura do ar de admissão pré-aftercooler.

A curva de ajuste deste canal de medição está ilustrada na Figura 65.

Figura 65 – Curva de ajuste para correção da indicação da temperatura do ad de admissão préaftercooler.

Equação de ajuste:

$$T = 4,101.10^{-5}x^3 - 7,51519.10^{-3}x^2 + 1,44620773x - 8,59431494$$
 Eq. 32

 $T = Temperatura \ corrigida \ (^{\circ}C)$ $x = Temperatura \ indicada \ (^{\circ}C)$

4.4.2.8. Temperatura do ar de admissão após o *aftercooler*

A Tabela 37 resume os dados de calibração do canal de medição da temperatura do ar de admissão após o *aftercooler*.

Tabela 37 – Calibração do canal de medição de temperatura do ar de admissão após o aftercooler.

Temp. Padrão	Temperatura do ar de admissão após o aftercooler									
(°C)	Aquisição 1	Aquisição 2	Aquisição 3	Aquisição 4	Aquisição 5	Aquisição 6				
35	35	35	35	36	36	36				
40	40	40	40	40	40	40				
50	50	50	50	50	50	50				
60	60	60	60	60	60	60				
80	80	80	80	80	80	80				

A curva de ajuste deste canal de medição está ilustrada na Figura 66.

Figura 66 – Curva de ajuste para correção da indicação da temperatura do ar de admissão após o aftercooler.

Equação de ajuste:

$$T = 4,101 \cdot 10^{-5}x^3 - 7,51519 \cdot 10^{-3}x^2 + 1,44620773x - 8,59431494$$
 Eq. 33

$$T = Temperatura \ corrigida \ (^{\circ}C)$$
 $x = Temperatura \ indicada \ (^{\circ}C)$

4.4.2.9. Temperatura da água de saída do dinamômetro

A Tabela 38 resume os dados de calibração do canal de medição da temperatura da água de saída do dinamômetro.

Tabela 38 – Calibração do canal de medição de temperatura da água de saída do dinamômetro.

Temp. Padrão	Temperatura da água de saída do dinamômetro									
(°C)	Aquisição 1	Aquisição 2	Aquisição 3	Aquisição 4	Aquisição 5	Aquisição 6				
35	35	35	35	36	36	36				
40	40	40	40	40	40	40				
50	50	50	50	50	50	50				
60	60	60	60	60	60	60				
80	80	80	80	80	80	80				

A curva de ajuste deste canal de medição está ilustrada na Figura 67.

Figura 67 – Curva de ajuste para correção da indicação da temperatura da água de saída do dinamômetro.

Equação de ajuste:

$$T = 4,101.10^{-5}x^3 - 7,51519.10^{-3}x^2 + 1,44620773x - 8,59431494$$
 Eq. 34

T = Temperatura corrigida (°C) x = Temperatura indicada (°C)

4.4.2.10. Temperatura da água de saída do motor

A Tabela 39 resume os dados de calibração do canal de medição da temperatura da água de saída do motor.

Temp. Padrão	Temperatura da água de saída do motor								
(°C)	Aquisição 1	Aquisição 2	Aquisição 3	Aquisição 4	Aquisição 5	Aquisição 6			
35	34	34	34	35	35	35			
40	39	40	39	39	39	39			
50	49	49	49	49	49	49			
60	59	59	59	59	59	59			
80	79	79	79	79	79	79			

Tabela 39 - Calibração do canal de medição de temperatura da água de saída motor.

A curva de ajuste deste canal de medição está ilustrada na Figura 68.

Figura 68 - Curva de ajuste para correção da indicação da temperatura da água de saída do motor.

Equação de ajuste:

$$T = 4,101 \cdot 10^{-5}x^3 - 7,51519 \cdot 10^{-3}x^2 + 1,44620773x - 8,59431494$$
 Eq. 35

$$T = Temperatura \ corrigida \ (^{\circ}C)$$
 $x = Temperatura \ indicada \ (^{\circ}C)$

4.4.3. Determinação dos limites superior e inferior da medição de temperatura

Para obter os limites de indicação de temperatura do sistema de medição, uma década resistiva substituiu os sensores Pt-100, um por vez, para cada canal de medição de temperatura. A resistência da década foi ajustada segundo a ITS-90, de maneira que o sistema de medição interpretasse como se estivesse ocorrendo uma variação de temperatura em um Pt-100. A Figura 69 mostra a conexão da década resistiva a um canal do sistema de medição. Os resistores da década resistiva, com valores conhecidos e calibrados (Certificado RBC no Anexo B), foram conectados em uma das extremidades dos cabos de interligação, ficando a outra extremidade conectada ao sistema de medição. A conexão entre a década e o sistema de medição se deu com condutores elétricos que possuíam resistência elétrica total de 0,089599 ohms.

Figura 69 – Década Resistiva acoplada ao sistema de medição

Mesmo tendo a década resistiva sido calibrada, foram feitas leituras de todas as suas resistências elétricas, sendo mensuradas as resistências de cada um dos multiplicadores decádicos. O resultado deste procedimento de medição das resistências decádicas está no Apêndice A. Com eles foi possível saber a resistência elétrica de cada posição dos multiplicadores, o que proporcionou melhor aproximação do valor desejado em função da ITS-90. O Quadro E da tabela do Apêndice A indica a resistência total para cada configuração utilizada da década resistiva, onde as cores da coluna da esquerda informam a temperatura da ITS-90 e as cores em cada um dos demais Quadros, na coluna das médias, indicam os arranjos utilizados para compor cada resistência.

Com o auxílio da tabela de temperatura *x* resistência da ITS-90 foram escolhidas temperaturas a serem simuladas, segundo suas resistências elétricas correspondentes. O Quadro E da Tabela no apêndice A relaciona os valores de resistências inseridas pela década resistiva com as temperaturas correspondentes da ITS-90.

Como o objetivo era saber como o sistema de medição responderia mediante um valor conhecido de resistência elétrica, simulando o Pt-100, não foram inseridas as resistências elétricas correspondentes ao cabo de interligação do sensor ao conector elétrico mostrado na Figura 53. A resistência elétrica dos condutores de interligação do conector do sensor Pt-100 ao condicionador de sinais permaneceram no circuito e, por isso, não foram inseridas pela década resistiva, mas foram consideradas para a expressão da incerteza de medição dos dados experimentais.

A Tabela 40 apresenta, para cada resistência inserida pela década resistiva, o valor correspondente de temperatura segundo a ITS-90 e, respectivamente a cada valor de temperatura, ou resistência inserida, o resultado da indicação do sistema de medição. Foram feitas somente 6 séries de medições devido ao fato das respostas do sistema de medição estarem constantes e bem definidas.

Resistência	Temperatura									
inserida (Ω)	Equivalente		Temperatura do combustível (°C)							
	(°C)	Medição 1	Medição 2	Medição 3	Medição 4	Medição 5	Medição 6	Média	E110 (C)	S
100,00	0,00	0	0	0	0	0	0	0	0,00	0,000
111,70	30,05	29	29	29	29	29	29	29	-1,05	0,000
127,10	70,03	69	69	69	69	69	69	69	-1,03	0,000
134,70	89,94	89	89	89	89	89	89	89	-0,94	0,000
157,30	149,86	149	149	149	149	149	149	149	-0,86	0,000
175,80	199,75	198	198	199	199	198	198	198	-1,42	0,516
229,70	349,82	350	350	350	350	350	350	350	0,18	0,000
313,70	599,79	602	602	602	602	602	602	602	2,21	0,000

Tabela 40 – Medição de temperaturas simuladas pela década resistiva, segundo ITS-90.

Resistência Temperatura

reconscentence	romportation									
Inserida	Equivalente			Femperatura d	o óleo lubrif	icante (°C)			E	
(Ω)	(°C)	Medição 1	Medição 2	Medição 3	Medição 4	Medição 5	Medição 6	Média	Effo (°C)	S
100,00	0,00	0	0	0	0	0	0	0	0,00	0
111,70	30,05	29	29	29	29	29	29	29	-1,05	0
127,10	70,03	69	69	69	69	69	69	69	-1,03	0
134,70	89,94	89	89	89	89	89	89	89	-0,94	0
157,30	149,86	149	149	149	149	149	149	149	-0,86	0
175,80	199,75	198	198	199	199	198	198	198	-1,42	0,516
229,70	349,82	350	350	350	350	350	350	350	0,18	0
313,70	599,79	602	602	602	602	602	602	602	2,21	0

Desistância	Temperatura									
inserida (O)	Equivalente			Eme (°C)						
11301100 (22)	(°C)	Medição 1	Medição 2	Medição 3	Medição 4	Medição 5	Medição 6	Média	E110 (C)	S
100,00	0,00	0	0	0	0	0	0	0	0,00	0
111,70	30,05	29	29	29	29	29	29	29	-1,05	0
127,10	70,03	69	69	69	69	69	69	69	-1,03	0
134,70	89,94	89	89	89	89	89	89	89	-0,94	0
157,30	149,86	149	149	149	149	149	149	149	-0,86	0
175,80	199,75	198	198	199	199	198	198	198	-1,42	0,516
229,70	349,82	350	350	350	350	350	350	350	0,18	0
313,70	599,79	602	602	602	602	602	602	602	2,21	0

Tabela 40 - Continuação

Desistênsis	Temperatura									
inserida (O)	Equivalente		Temperatura da água de entrada do motor (°C)							
1115011du (32)	(°C)	Medição 1	Medição 2	Medição 3	Medição 4	Medição 5	Medição 6	Média	E10 (C)	S
100,00	0,00	0	0	0	0	0	0	0	0,00	0
111,70	30,05	29	29	29	29	29	29	29	-1,05	0
127,10	70,03	69	69	69	69	69	69	69	-1,03	0
134,70	89,94	89	89	89	89	89	89	89	-0,94	0
157,30	149,86	149	149	149	149	149	149	149	-0,86	0
175,80	199,75	198	198	199	199	198	198	198	-1,42	0,516
229,70	349,82	350	350	350	350	350	350	350	0,18	0
313,70	599,79	602	602	602	602	602	602	602	2,21	0

Dagistânaia	Temperatura									
inserida (Ω)	Equivalente		Temperatura dos gases de escapamento (°C)							
111301100 (32)	(°C)	Medição 1	Medição 2	Medição 3	Medição 4	Medição 5	Medição 6	Média	E10 (C)	S
100,00	0,00	0	0	0	0	0	0	0	0,00	0
111,70	30,05	29	29	29	29	29	29	29	-1,05	0
127,10	70,03	69	69	69	69	69	69	69	-1,03	0
134,70	89,94	89	89	89	89	89	89	89	-0,94	0
157,30	149,86	149	149	149	149	149	149	149	-0,86	0
175,80	199,75	198	198	198	198	198	198	198	-1,75	0
229,70	349,82	350	350	350	350	350	350	350	0,18	0
313,70	599,79	602	602	602	602	602	602	602	2,21	0

Dagistânaia	Temperatura								-	
inserida (O)	Equivalente	Temperatura ambiente (°C)							Erro (°C)	
11501144 (22)	(°C)	Medição 1	Medição 2	Medição 3	Medição 4	Medição 5	Medição 6	Média	L10 (C)	S
18,50	-200,05	-195	-195	-195	-195	-195	-195	-195	5,05	0
39,70	-150,06	-145	-145	-145	-145	-145	-145	-145	5,06	0
60,30	-99,89	-97	-97	-97	-97	-97	-97	-97	2,89	0
80,30	-50,01	-48	-48	-48	-48	-48	-48	-48	2,01	0
93,00	-17,86	-16	-16	-16	-16	-16	-16	-16	1,86	0
96,10	-9,96	-9	-9	-9	-9	-9	-9	-9	0,96	0
100,00	0	0	0	0	0	0	0	0	0,00	0
138,10	98,88	99	99	99	99	99	99	99	0,12	0
146,10	120,02	120	120	120	120	120	120	120	-0,02	0
157,30	149,86	150	150	150	150	150	150	150	0,14	0
170,20	184,57	184	184	184	184	184	184	184	-0,57	0
190,50	239,97	240	240	240	240	240	240	240	0,03	0
208,50	289,92	291	291	291	291	291	291	291	1,08	0
226,20	339,84	341	341	341	341	341	341	341	1,16	0
243,60	398,42	392	392	392	392	392	392	392	-6,42	0
260,80	439,88	443	443	443	443	443	443	443	3,12	0
281,00	499,89	503	503	503	503	503	503	503	3,11	0
313,70	599,79	604	604	604	604	604	604	604	4,21	0
329,60	649,68	654	654	654	654	654	654	654	4,32	0

Tabela	40 –	Contin	uação
--------	------	--------	-------

Denintân sin	Temperatura									
inserida (O)	Equivalente		Temperatura do ar de admissão pré-aftercooler (°C)							
1115011du (32)	(°C)	Medição 1	Medição 2	Medição 3	Medição 4	Medição 5	Medição 6	Média	шю (с)	S
100,00	0,00	0	0	0	0	0	0	0	0,00	0
111,70	30,05	29	29	29	29	29	29	29	-1,05	0
127,10	70,03	69	69	69	69	69	69	69	-1,03	0
134,70	89,94	89	89	89	89	89	89	89	-0,94	0
157,30	149,86	149	149	149	149	149	149	149	-0,86	0
175,80	199,75	198	198	198	198	198	198	198	-1,75	0
229,70	349,82	350	350	350	350	350	350	350	0,18	0
313,70	599,79	602	602	602	602	602	602	602	2,21	0

Dagistâna	Temperatura									
inserida ((Equivalente		Temperatura do ar de admissão pós-aftercooler (°C)							
inseriaa (2	(°C)	Medição 1	Medição 2	Medição 3	Medição 4	Medição 5	Medição 6	Média	EII0 (C)	S
100,00	0,00	0	0	0	0	0	0	0	0,00	0
111,70	30,05	29	29	29	29	29	29	29	-1,05	0
127,10	70,03	69	69	69	69	69	69	69	-1,03	0
134,70	89,94	89	89	89	89	89	89	89	-0,94	0
157,30	149,86	149	149	149	149	149	149	149	-0,86	0
175,80	199,75	198	198	198	198	198	198	198	-1,75	0
229,70	349,82	350	350	350	350	350	350	350	0,18	0
313,70	599,79	602	602	602	602	602	602	602	2,21	0

Desistênsis	Temperatura									
inserida (O)	Equivalente		Temperatura da água de saída do dinamômetro (°C)							
11301100 (32)	(°C)	Medição 1	Medição 2	Medição 3	Medição 4	Medição 5	Medição 6	Média	EII0 (C)	S
100,00	0,00	0	0	0	0	0	0	0	0,00	0
111,70	30,05	29	29	29	29	29	29	29	-1,05	0
127,10	70,03	69	69	69	69	69	69	69	-1,03	0
134,70	89,94	89	89	89	89	89	89	89	-0,94	0
157,30	149,86	149	149	149	149	149	149	149	-0,86	0
175,80	199,75	198	198	198	198	198	198	198	-1,75	0
229,70	349,82	350	350	350	350	350	350	350	0,18	0
313,70	599,79	602	602	602	602	602	602	602	2,21	0

Dagistânaia	Temperatura									
inserida (O)	Equivalente		Tem	peratura da á	gua de saída	do motor (°C	C)		E	
11130110a (32)	(°C)	Medição 1	Medição 2	Medição 3	Medição 4	Medição 5	Medição 6	Média	EITO (°C)	S
100,00	0,00	0	0	0	0	0	0	0	0,00	0
111,70	30,05	29	29	29	29	29	29	29	-1,05	0
127,10	70,03	69	69	69	69	69	69	69	-1,03	0
134,70	89,94	89	89	89	89	89	89	89	-0,94	0
157,30	149,86	149	149	149	149	149	149	149	-0,86	0
175,80	199,75	198	198	198	198	198	198	198	-1,75	0
229,70	349,82	350	350	350	350	350	350	350	0,18	0
313,70	599,79	602	602	602	602	602	602	602	2,21	0

Pode ser observado na Tabela 40 que, para o canal referente ao sensor de medição da temperatura ambiente, foram ensaiadas temperaturas de -200°C até 649°C.

Г

4.4.4. Conclusão sobre o sistema de medição de temperatura

Foi verificado que a atualização dos dados de temperatura na IHM, embora não interfiram com os ensaios, podem ser realizadas em menor tempo, fazendo com que o sistema de medição tenha respostas mais rápidas.

A utilização dos dois métodos de medição demonstrou ser de grande utilidade. No primeiro método, realizado com auxílio do banho termostático, pôde ser simulada uma condição de ensaio bem próxima da condição real de trabalho. No segundo método, além de se simular uma variação de temperatura em larga faixa, pôde ser observada a velocidade de atualização de dados do sistema de medição. Pelo método da simulação de temperatura com a década resistiva pôde ser observado que o sistema de medição responde a todas as faixas de temperaturas simuladas, indo além das necessidades de medição do banco dinamométrico.

As incertezas de medição do tipo A também possuem valores que não interferem nos ensaios de motores no banco dinamométrico. A propagação das incertezas será apresentada no Capítulo 5.

4.5. Medição de pressões no banco de ensaios dinamométrico

As pressões medidas pelo sistema de aquisição de dados, de interesse atual para o Laboratório de Motores do CTEx, estão relatadas nos itens 1, 4 e 5 da Tabela 5, respectivamente: pressão do ar de Admissão, pressão do óleo lubrificante e pressão do combustível. Os sensores alocados para as medições destas pressões foram calibrados, embora a metodologia que foi utilizada para analisar o sistema de medição, referente à pressão, não necessitasse que isso ocorresse, mas este procedimento foi necessário para que houvesse certeza do bom funcionamento de cada sensor, pois os mesmos já estavam sendo utilizados há mais de 3 anos e, assim sendo, a calibração possibilitou avaliar o desempenho de cada um. Tanto o sensor de pressão do ar de entrada como o sensor de pressão do combustível apresentaram correntes elétricas inferiores a 4 mA em zero bar. Como os sensores são blindados não pôde ser feita a correção para o valor desejado (4 mA). A conclusão foi que os

três sensores estavam funcionando perfeitamente e que poderiam continuar sendo empregados. Os certificados de calibração estão no Anexo B.

Para calibrar o sistema de medição quanto às pressões mensuradas no banco de ensaios dinamométricos, um calibrador de pressão marca Presys, modelo TC 507, n° de série 5490411, foi empregado. Este instrumento foi utilizado em conjunto com uma bomba manual, à saída da qual foram conectados em paralelo o sensor de pressão e o calibrador Presys, de forma que os dois estivessem, ao mesmo tempo, submetidos à mesma pressão gerada pela bomba manual, como ilustrado na Figura 70.

Figura 70 - Pressão sendo aplicada ao sensor e ao sistema de medição

A saída do sensor de pressão foi conectada ao canal de medição de pressão do sistema de medição e pressões foram geradas pela bomba manual, sendo lidas, simultaneamente no calibrador Presys e na IHM de vídeo do sistema de medição. Este procedimento foi realizado para o sensor de pressão de combustível, para o sensor de pressão do ar de admissão do motor e para o sensor do óleo lubrificante do motor. Os valores das pressões de ensaio foram, respectivamente aos sensores

citados, de 0 a 10 bar, de 0 a 10 bar e de 0 a 20 bar. As respostas do sistema de medição para as faixas mencionadas estão relacionadas na Tabela 42, Tabela 43e Tabela 44, respectivamente. Na Figura 71 pode ser vista a configuração dos equipamentos utilizados para a calibração dos canais de medição de pressão.

Figura 71 – Configuração de equipamentos para ensaio de pressão

4.5.1. Calibração dos canais de pressão

Com base nos resultados dos ensaios realizados com o *set-up* da Figura 71, foram feitas as calibrações dos canais de medição de pressão, como segue, sendo traçadas as curvas de ajuste dos canais.

4.5.1.1. Pressão do Combustível do motor

A Tabela 41 indica as pressões às quais o sensor utilizado neste canal foi submetido e as respectivas indicações apresentadas pelo sistema de medição, corrigidas por equações do 1º grau, 2º grau e 3º grau. Baseado nestes dados foi calculado o desvio padrão do canal de medição (incerteza tipo A) para cada equação, sendo escolhida a equação do 3º grau por apresentar menor desvio médio quadrático.

	Pressão do combustível										
	P _p P _l Desvio médio Desvio médio Desvio médio										
n	Pressão -	quadrático (bar)	quadrático (bar)								
ltem	Padrão (bar)	(bar)	aprox. 1° grau	aprox. 2° grau	aprox. 3° grau						
1	0,00	0,00	0,0000477	0,0000681	0,0000046						
2	0,00	0,00	0,0000477	0,0000681	0,0000046						
3	0,00	0,00	0,0000477	0,0000681	0,0000046						
4	0,10	0,20	0,0000387	0,0000557	0,0000011						
5	0,10	0,20	0,0000387	0,0000557	0,0000011						
6	0,10	0,20	0,0000387	0,0000557	0,0000011						
7	0,50	1,00	0,0000120	0,0000186	0,0000052						
8	0,50	1,00	0,0000120	0,0000186	0,0000052						
9	0,50	1,00	0,0000120	0,0000186	0,0000052						
10	1,00	2,00	0,0000000	0,000002	0,0000175						
11	1,00	2,00	0,0000000	0,0000002	0,0000175						
12	1,00	2,00	0,0000000	0,000002	0,0000175						
13	1,50	3,00	0,0000117	0,0000115	0,0000152						
14	1,50	3,00	0,0000117	0,0000115	0,0000152						
15	1,50	3,00	0,0000117	0,0000115	0,0000152						
16	2,00	4,00	0,0000471	0,0000513	0,000029						
17	2,00	4,00	0,0000471	0,0000513	0,000029						
18	2,00	4,00	0,0000471	0,0000513	0,000029						
19	2,50	5,00	0,000106	0,000118	0,0000044						
20	2,50	5,00	0,000106	0,000118	0,0000044						
21	2,50	5,00	0,000106	0,000118	0,0000044						
22	3,00	6,00	0,000189	0,000211	0,0000514						
23	3,00	6,00	0,000189	0,000211	0,0000514						
24	3,00	6,00	0,000189	0,000211	0,0000514						
25	3,50	7,00	0,000296	0,000328	0,000176						
26	3,50	7,00	0,000296	0,000328	0,000176						
27	3,50	7,00	0,000296	0,000328	0,000176						
28	4,00	8,00	0,000426	0,000469	0,000401						
29	4,00	8,00	0,000426	0,000469	0,000401						
30	4,00	8,00	0,000426	0,000469	0,000401						
22	4,50	8,90	0,000690	0,000636	0,000554						
22	4,50	8,90	0,000690	0,000636	0,000554						
34	5.00	9,90	0,000521	0,00050	0,000354						
35	5,00	9.90	0,000521	0,000475	0,000266						
36	5.00	9.90	0.000521	0.000475	0,000200						
37	6.00	11.90	0.000254	0.000778	0,000200						
38	6.00	11,90	0,000254	0,000220	0,0000705						
20	6,00	11,00	0,000254	0,000228	0,0000705						
40	8.00	15.90	0,000254	0,000228	0,0000/05						
40	8,00	15,90	0,0000466	0,0000596	0,000162						
42	8.00	15,90	0,0000466	0,0000596	0,000162						
43	10.00	19,90	0.000135	0,0000390	0.000102						
44	10.00	19.90	0.000135	0.0000865	0.0000152						
45	10,00	19,90	0.000135	0.0000865	0.0000152						
<u>ــــــــــــــــــــــــــــــــــــ</u>			.,	.,	.,000102						
5	(P _p -((A*P _I ³)+(B*)	P_1^2)+(C*P_1)+(D)) ²	0,00833	0,00829	0,00505						
<u> </u>											
s ² =	<mark>Σ(Ρ_p -((A*Pl³)+(</mark> Ε	8*Pl ²)+(C*P ₁)+(D))) ²	0.000404	0.0004.07	0.0004.00						
	(<mark>n</mark> - n° me	embros equação)	0,000194	0,000197	0,000123						
		S	0,0139	0,0140	0,0111						

Tabela 41 - Resultado da medição da pressão do combustível

A Figura 72 ilustra a curva de ajuste da pressão, lida no sistema de medição deste canal.

Figura 72 – Curva de ajuste do canal de indicação da pressão do combustível.

Equação de correção:

 $P_c = 5,039.10^{-5} x^3 + 1,40373.10^{-3} x^2 + 0,49422993 x + 2,14172.10^{-3}$ Eq. 36

 $P_c = Pressão \ corrigida \ (bar)$ $x = Pressão \ indicada \ (bar)$

4.5.1.2. Pressão do ar de entrada do motor

A Tabela 42 indica as pressões às quais o sensor utilizado neste canal foi submetido e as respectivas indicações apresentadas pelo sistema de medição. Foi realizada análise utilizando equações do 1°, 2° e 3° graus para o ajuste da pressão indicada, sendo a equação do 3° grau a que apresentou menor desvio médio quadrático.

	Pressão do ar de entrada do motor								
	Pn	Pi							
n	- p		Desvio médio	Desvio médio	Desvio médio				
	Pressão -	Pressão Indicada	aprox. 1° grau	aprox. 2° grau	aprox. 3° grau				
Item	Faulao (bai)	(IBCI)							
1	0,00	0,00	0,00403	0,00446	0,00511				
2	0,00	0,00	0,00403	0,00446	0,00511				
3	0,00	0,00	0,00403	0,00446	0,00511				
4	0,10	0,00	0,00133	0,00110	0,000813				
5	0,10	0,00	0,00133	0,00110	0,000813				
6	0,10	0,00	0,00133	0,00110	0,000813				
8	0,50	0,40	0,00102	0,000876	0,000801				
9	0,50	0.40	0,00102	0,000876	0,000801				
10	0,99	0.90	0,00102	0,000878	0,000801				
11	0.99	0.90	0,000259	0,000224	0,000280				
12	0,99	0,90	0.000259	0.000224	0.000280				
13	1,49	1,40	0.000106	0.000104	0.000191				
14	1,49	1,40	0,000106	0,000104	0,000191				
15	1,49	1,40	0,000106	0,000104	0,000191				
16	1,99	1,90	0,0000204	0,0000278	0,0000951				
17	1,99	1,90	0,0000204	0,0000278	0,0000951				
18	1,99	1,90	0,0000204	0,0000278	0,0000951				
19	2,49	2,40	0,00000163	0,000000359	0,0000218				
20	2,49	2,40	0,00000163	0,000000359	0,0000218				
21	2,49	2,40	0,00000163	0,000000359	0,0000218				
22	2,99	2,90	0,0000499	0,0000255	0,00000159				
23	2,99	2,90	0,0000499	0,0000255	0,00000159				
24	2,99	2,90	0,0000499	0,0000255	0,00000159				
25	3,49	3,40	0,000165	0,000109	0,0000622				
26	3,49	3,40	0,000165	0,000109	0,0000622				
27	3,49	3,40	0,000165	0,000109	0,0000622				
28	3,99	3,90	0,000347	0,000255	0,000227				
29	3,99	3,90	0,000347	0,000255	0,000227				
30	3,99	3,90	0,000347	0,000255	0,000227				
31	4,49	4,40	0,000596	0,000470	0,000512				
32	4,49	4,40	0,000596	0,000470	0,000512				
24	4,49	4,40	0,000596	0,000470	0,000512				
34	4,99	4,90	0,000913	0,000758	0,000924				
36	4 99	4 90	0,000913	0,000758	0,000924				
37	5.98	5.80	0,000313	0,000758	0,000924				
38	5,98	5,80	0.00244	0,00266	0,00207				
39	5.98	5.80	0.00244	0,00266	0.00207				
40	7,97	7,80	0,00244	0.000241	0,00207				
41	7,97	7,80	0.000203	0.000241	0,000022				
42	7,97	7,80	0,000263	0.000241	0,0000622				
43	9,97	9,80	0,0000479	0,000169	0,0000415				
44	9,97	9,80	0,0000479	0,000169	0,0000415				
45	9,97	9,80	0,0000479	0,000169	0,0000415				
		D^{2} , (C*D), (D)) ²	0.0240	0.0244	0.0220				
<u> </u>	<u>v</u> (rp-((A°r))+(B*)	Γ ₁)+(U Ρ ₁)+(U)) ⁻	0,0348	0,0344	0,0336				
s ² =	<u>Σ(P_p -((A*Pl³)+(</u> E	3*Pl ²)+(C*P ₁)+(D))) ²	0 000000	0.000020	0.000920				
	(<mark>n</mark> - n° me	embros equação)	0,000808	0,000820	0,000820				
		S	0,0284	0,0286	0,0286				

Tabela 42 - Resultado da medição da pressão do ar de entrada do motor

A Figura 71 ilustra a curva de ajuste da pressão, lida no sistema de medição deste canal.

Figura 73 - Curva de ajuste do canal de indicação da pressão do ar de entrada.

Equação de ajuste:

$$P_c = -2,079.\,10^{-4}\,x^3 + 3,204.10^{-3}x^2 + 0,999\,x + 7,15.\,10^{-2}$$
 Eq. 37

 $P_c = Pressão \ corrigida \ (bar)$ $x = Pressão \ indicada \ (bar)$

4.5.1.3. Pressão do óleo de lubrificação do motor

A Tabela 43 indica as pressões às quais o sensor utilizado neste canal foi submetido e as respectivas indicações apresentadas pelo sistema de medição. Com base nestas indicações foi feita a analise utilizando equações do 1°, 2° e 3° graus, sendo que a equação do 3° grau foi a que apresentou o menor desvio médio quadrático, sendo a equação utilizada para o ajuste da pressão indicada pelo sistema de medição.

		Pressão do	óleo de lubrifica	ação do motor	
	Pn	Pi	Dente and the	Banda má lite	Denote and the
n	Dragoão	Dracaño Indiando	guadrático (bar)	duadrático (bar)	guadrático (bar)
ltem	Padrão (bar)	(bar)	aprox. 1° grau	aprox. 2° grau	aprox. 3° grau
1	0.00	0.00	0.0210	0.000	0.00505
2	0,00	0,00	0,0340	0,268	0,00586
3	0,00	0,00	0.0340	0.268	0.00586
4	0,50	0,30	0,0161	0,157	0,00266
5	0,50	0,30	0,0161	0,157	0,00266
6	0,50	0,30	0,0161	0,157	0,00266
7	0,99	0,60	0,0035	0,0885	0,0256
8	0,99	0,60	0,0035	0,0885	0,0256
10	1 49	0,80	0,0035	0,0885	0,0256
10	1,49	0.80	0,0353	0.00416	0.00193
12	1,49	0,80	0,0353	0,00416	0,00193
13	1,99	1,10	0,0170	0,000617	0,00982
14	1,99	1,10	0,0170	0,000617	0,00982
15	1,99	1,10	0,0170	0,000617	0,00982
16	2,49	1,30	0,0670	0,0597	0,00188
17	2,49	1,30	0,0670	0,0597	0,00188
18	2,49	1,30	0,0670	0,0597	0,00188
19	2,99	1,60	0,0405	0,098	0,00056
20	2,99	1,60	0,0405	0,098	0,00056
21	2,99	1,60	0,0405	0,098	0,00056
22	3,49	1,80	0,1087	0,270	0,03508
23	3,49	1,80	0,1087	0,270	0,03508
24	3,49	1,80	0,1087	0,270	0,0351
25	3,99	2,10	0,0741	0,324	0,0382
26	3,99	2,10	0,0741	0,324	0,0382
27	3,99	2,10	0,0741	0,324	0,0382
20	4,49	2,40	0,0461	0,368	0,0470
30	4,49	2,40	0.0461	0.368	0.0470
31	5,98	3,90	1,172	0,157	0,3454
32	5,98	3,90	1,172	0,157	0,3454
33	5,98	3,90	1,172	0,157	0,3454
34	7,97	4,90	0,904	0,0550	0,0242
35	7,97	4,90	0,904	0,0550	0,0242
36	7,97	4,90	0,904	0,0550	0,0242
37	9,97	5,90	0,654	0,0385	0,0209
38	9,97	5,90	0,654	0,0385	0,0209
39	9,97	5,90	0,654	0,0385	0,0209
40	11,97	6.80	0,232	0,00574	0,167
42	11.97	6,80	0,232	0.00574	0,107
43	13,96	7,80	0,122	0,0904	0,0213
44	13,96	7,80	0,122	0,0904	0,0213
45	13,96	7,80	0,122	0,0904	0,0213
46	15,95	8,80	0,047	0,434	0,309
47	15,95	8,80	0,047	0,434	0,309
48	15,95	8,80	0,047	0,434	0,309
49	19,95	9,80	3,703	0,739	0,0444
51	19,95	9,00	3,703	0,739	0,0444
51	10,00	0,00	3,703	0,739	0,0444
Σ	(P _p -((A*P ₁ ³)+(B*P	P_{12})+(C*P_1^1)+(D)) ²	21.828	9,480	3,301
	<u>, p.v. 17.1–1</u>		,020	5,.00	5,001
s ² =	<mark>Σ(Ρ_p -((A*Pl³)+(B</mark>	*Pl ²)+(C*P ₁)+(D))) ²	0.455	0.109	0.060
	(<mark>n</mark> - n° me	mbros equação)	0,400	0,198	0,009
		S	0,674	0,444	0,262

Tabela 43 – Resultado da medição de pressão do óleo de lubrificação

A Figura 74 ilustra a curva de ajuste da pressão, lida no sistema de medição deste canal.

Figura 74 - Curva de ajuste do canal do sensor do óleo de lubrificação

Equação de ajuste:

$$P_c = 1,708.\,10^{-2}\,x^3 - 1,801.10^{-1}x^2 + 2,146\,x + 7,66.\,10^{-2}$$
(38)

 $Pc = Pressão \ corrigida \ (bar)$ $x = Pressão \ indicada \ (bar)$

Para cada um dos sensores também foi feita a descompressão, partindo da pressão mais elevada para a mais baixa, porém não foi percebida histerese e, por este motivo, estas medições não foram computadas para análise.

4.5.2. Conclusão sobre o sistema de medição de pressão

Observando a dispersão de cada canal de medição, nas Tabelas 42, 43 e 44, pode ser observado que existem acentuados erros sistemáticos, provavelmente devido a fatores de escala, fazendo com que o sistema de medição, para medição de pressão, necessite ser revisto.

No próximo capítulo serão calculadas as incertezas das quatro grandezas

5 Expressão da incerteza de medição

5.1. Sobre o cálculo da incerteza de medição

Para relatar o resultado de medição de uma grandeza física é obrigatório que seja dada alguma indicação quantitativa da qualidade deste resultado, de forma tal que aqueles que o utilizem, possam avaliar sua confiabilidade. Sem essa indicação, resultados de medição não podem ser comparados, seja entre eles mesmos ou com valores de referência fornecidos em uma especificação ou em uma norma. É, portanto, necessário que haja um procedimento prontamente implementado, facilmente compreendido e de aceitação geral para caracterizar a qualidade de um resultado de uma medição, isto é, para avaliar e expressar sua incerteza [3], que reflete a falta de conhecimento exato do valor do mensurando. O resultado de uma medição, após correção dos efeitos sistemáticos reconhecidos, é ainda, tão somente uma estimativa do valor do mensurando devido à incerteza proveniente dos efeitos aleatórios e da correção imperfeita do resultado para efeitos sistemáticos [3]

A Recomendação INC-1 (1980) do Grupo de Trabalho sobre a Declaração de Incertezas que foi convocado pelo BIPM, sob solicitação do CIPM, agrupa os componentes da incerteza em duas categorias baseadas no seu método de avaliação, "A" e "B" [3]. O propósito da classificação Tipo A e Tipo B é de indicar as duas maneiras diferentes de avaliar os componentes da incerteza e serve apenas para discussão; a classificação não se propõe a indicar que haja qualquer diferença na natureza dos componentes resultados dos dois tipos de avaliação. Ambos os tipos de avaliação são baseados em distribuições de probabilidade e os componentes de incerteza resultantes de cada tipo são quantificados por variâncias ou desvios padrão [3].

A variância estimada u^2 , caracterizando um componente de incerteza obtido de uma avaliação do Tipo A, é calculada a partir de uma série de observações repetidas, e é a conhecida variância s^2 estatisticamente estimada. O desvio padrão estimado u, a raiz quadrada positiva de u^2 é, portanto u = s e, por conveniência, é por vezes denominada incerteza padrão do Tipo A. Para um componente de incerteza obtido por uma avaliação do Tipo B, a variância estimada u^2 é avaliada, usando-se o conhecimento disponível, e o desvio padrão estimado u é, por vezes, denominado incerteza padrão do Tipo B [3].

Quando todas as grandezas de entrada são independentes, a incerteza padrão de y, onde y é a estimativa do mensurando Y e, desta maneira, o resultado da medição, é obtido pela combinação apropriada de incertezas padrão das estimativas de entrada $x_1, x_2, ..., x_N$. Esta incerteza padrão combinada da estimativa y é representada por u_c (y) [3].

A incerteza padrão combinada $u_c(y)$ é a raiz quadrada positiva da variância combinada $u_c^2(y)$, que é dada por [3]:

$$u_c^2(y) = \sum_{i=1}^N \left[\frac{\partial f}{\partial x}\right]^2 u^2(x_i)$$
 Eq. 39

As derivadas parciais $\frac{\partial f}{\partial x_i}$ são iguais a $\frac{\partial f}{\partial X_i}$ avaliadas para Xi = xi. Estas derivadas, frequentemente denominadas coeficientes de sensibilidade, descrevem como a estimativa de saída y varia com alterações nos valores das estimativas de entrada x_1 , x_2 ..., x_N . Em particular, a alteração em y, produzida por uma pequena variação Δx_i na estimativa de entrada x^i , é dada por $(\Delta y)_i = \frac{\partial f}{\partial x_i}$ (Δxi). Se esta alteração é gerada pela incerteza padrão da estimativa x_i , a variação correspondente em y é $\frac{\partial f}{\partial x_i}$ u(x_i). Isso sugere que se escreva a Eq. 37 como [3]:

$$u_c^2(y) = \sum_{i=1}^N [C_i u(x_i)]^2 \equiv \sum_{i=1}^N u_i^2(y)$$
 Eq. 40

$$C_i \equiv \frac{\partial f}{\partial x_i}$$
, $u_i(y_i) \equiv |C_i| u(x_i)$ Eq. 41

Quando existe uma correlação direta e forte entre as variáveis de entrada, como é o caso demonstrado pelo emprego da Equação 17, sendo elas dependentes, como comprovado, quando $r(X,Y) \equiv 1$, a expressão apropriada para a variância combinada $u_c^2(y)$, associada com o resultado de uma medição é [3]:

$$u_c^2 = \sum_{i=1}^N \sum_{j=1}^N \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_j} u(x_i; x_j)$$
 Eq. 42

Para o caso muito especial em que todas as estimativas de entrada são correlacionadas, com coeficientes de correlação $r(x_i,x_j) = +1$, a Equação 41 se reduz a [3]:

$$u_{c}^{2}(y) = \left[\sum_{i=1}^{N} C_{i} u(x_{i})\right]^{2} = \left[\sum_{i=1}^{N} \frac{\partial f}{\partial x} u(x_{i})\right]^{2}$$
 Eq. 43

A incerteza padrão combinada $u_c(y)$ é, então, simplesmente uma soma linear dos termos, representando a variação da estimativa de saída y, gerada pela incerteza padrão de cada estimativa de entrada x_i [3].

O resultado de uma medição indireta, obtida a partir da combinação de duas ou mais medições de grandezas de entrada, não-correlacionadas, pode ser estimado com base na combinação das incertezas das medições envolvidas. Como não há nenhum tipo de sincronismo entre os erros aleatórios associados às medições das diferentes grandezas de entrada, a forma de combinar essas quantidades é baseada na lei de combinação das variâncias, válida para variáveis estatisticamente independentes [11].

Embora exista uma expressão geral para a estimativa da incerteza resultante da combinação de medições não-correlacionadas, há casos particulares, de grande interesse prático, em que as equações são drasticamente simplificadas [3]. Não cabe aqui o desenvolvimento de equações para demostrar como se chega às formas simplificadas de combinação de incertezas.

Combinação de incerteza de medição para

soma e subtração:

O quadrado da incerteza-padrão da soma e/ou subtração de medições não correlacionadas é obtido a partir da soma dos quadrados das incertezas padrão associadas a cada grandeza de entrada [12]; se z = x + y - t, então

$$u_z^2 = u_x^2 + u_y^2 + u_t^2$$
 Eq. 44

Combinação de incerteza de medição para multiplicação e divisão:

O quadrado da incerteza combinada relativa de medições indiretas, obtidas por multiplicações e / ou divisões de medições não correlacionadas, é estimada pela soma dos quadrados das incertezas-padrão relativas associadas a cada grandeza de entrada [3]. Denomina-se incerteza-padrão relativa o quociente entre a incerteza-padrão e o resultado base de uma medição [3], isto é:

$$u_R(a) = \frac{u(a)}{a}$$
 Eq. 45

Assim, a incerteza-padrão relativa da multiplicação de duas medições nãocorrelacionadas é dada por [3]:

$$\left[\frac{u(X_1,X_2)}{X_1,X_2}\right]^2 = \left[\frac{u(X_1)}{X_1}\right]^2 + \left[\frac{u(X_2)}{X_2}\right]^2$$
Eq. 46

ou em sua forma reduzida, que é $u_R^2(X_1, X_2) = u_R^2(X_1) + u_R^2(X_2)$ Eq. 47

Para a divisão a incerteza-padrão relativa de duas medições nãocorrelacionadas é dada por [3]:

$$\left[\frac{u(X_1/X_2)}{X_1/X_2}\right]^2 = \left[\frac{u(X_1)}{X_1}\right]^2 + \left[\frac{u(X_2)}{X_2}\right]^2$$
Eq. 48

ou em sua forma reduzida, que é $u_R^2 (X_1/X_2) = u_R^2 (X_1) + u_R^2 (X_2)$ Eq. 49

Segundo a Recomendação 1 (CI-1986) do CIPM, a forma de informar a incerteza de uma medição, com base no parágrafo 5 da Recomendação INC-1 (1980) e expressá-la por meio da incerteza expandida, representada por U, que é obtida, multiplicando-se a incerteza padrão combinada $u_c(y)$ por um fator de abrangência k [3]:

$$U = k.u_{c.}(y) Eq. 50$$

O resultado de uma medição é, então, convenientemente expresso como [3]

$$Y = y \pm U,$$

que é interpretado de forma a significar que a melhor estimativa do valor atribuível ao mensurando Y é y, e que (y - U) a (y + U) é um intervalo com o qual se espera abranger uma extensa fração da distribuição de valores que podem ser razoavelmente atribuídos a Y. Tal intervalo é também expresso como [3]:

$$y - U \le Y \le y + U$$

São apresentados neste capítulo os cálculos das incertezas de medição das grandezas mensuradas e relatadas no Capítulo 4. A Tabela 44 contém as incertezas combinadas dos instrumentos e equipamentos utilizados.

	Tipo da	Conversão da u Incertez	inidade da za
Equipamento (unidade da incerteza)	Incerteza	Incerteza	Unidade
Multímetro Agilent U1253B	u_{c1253V}	3,95.10-8	V
Multímetro Agilent 3458 A	$u_{c58m\Omega}$	0,00475	Ω
Multímetro Agilent 3458 A (ohms)	$u_{c58\Omega}$	0,0048	Ω
Osciloscópio (Hz)	<i>u</i> _{cTek}	0,00175	rpm
Paquímetro Mitutoyo (mm)	u_{cpq}	0,000005	m
Flange de aço (mm)	u_{cfa}	0,00000546	m
Braço Móvel de aço (mm)	u_{cbm}	0,0000201	m
MX840A + Célula de carga - Força aplicada (N)	и _{сfa}	4,411	Ν
Nível Eletrônico (grau)	u_{Ne}	0,023*	grau
Década Resistiva	u_{Dr}	0,065	ohms
Transmissor de Pressão do combustível (bar)	<i>U_{combust}</i>	0,0032	bar
Transmissor de Pressão do óleo (bar)	и _{р. óleo}	0,0066	bar
Transmissor de Pressão do ar (bar)	$u_{p.ar}$	0,0065	bar
Termômetro Digital do Banho Termostático (°C)	<i>u_{Td}</i>	0,39	°C

Tabela 44 - Incerteza Combinada dos instrumentos e equipamentos utilizados

As incertezas da Tabela 44, expressas nas unidades indicadas, foram convertidas para as unidades utilizadas no sistema de medição do banco de ensaios.

Cada uma das incertezas-padrão, separadamente estimadas para cada fonte de incerteza, tem um certo número de graus de liberdade associado. Quando a incerteza combinada é calculada, o número de graus de liberdade equivalente da combinação

deve ser calculado. O número resultante é denominado de número de graus de liberdade efetivos [12]. Para isto foi usada a equação de Welch-Satterthwaite [11].

$$\frac{u_C^4}{v_{ef}} = \frac{u_1^4}{v_1} + \frac{u_2^4}{v_2} + \dots + \frac{u_n^4}{v_n}$$
 Eq. 51

 v_{ef} – número de graus de liberdade efetivos

- u_c incerteza combinada
- u_i incerteza padrão da i-ésima fonte de energia
- v_i número de graus de liberdade da i-ésima fonte de incerteza

Resumindo, a incerteza combinada corresponde ao desvio-padrão da ação conjunta de todas as fontes de incerteza. Para obter a faixa de valores em que, com cerca de 95,45% de probabilidade, espera-se encontrar o erro aleatório do processo de medição, é necessário multiplicar a incerteza combinada pelo respectivo coeficiente de Student (coeficiente de abrangência – k), obtendo-se assim a incerteza expandida (U) [3].

5.2. Incerteza de medição do torque padrão

É composta pelo somatório da incerteza de medição do clinômetro com a incerteza de medição da distância do ponto de aplicação da força até o centro do eixo Cardan, adicionando-se também a incerteza de medição da força aplicada, levando em consideração a incerteza de medição do ângulo de inclinação do braço metálico. A Eq. 13, do torque, nas Figuras 29 e 30 é:

$$\tau = F \cos \theta. r \qquad (Eq. 13)$$

A Figura 50 mostra que esta distância r, designada por "d", daqui em diante, é a soma dos comprimentos do braço móvel, onde foi aplicada a força, com o comprimento do raio do flange de aço, que acoplou o eixo Cardan ao dinamômetro. Desta forma a incerteza de medição do torque, aplicando a Eq. 43 é calculada por:

$$u_{\tau}^{2} = \left(\frac{\partial \tau}{\partial F} \cdot u_{F}\right)^{2} + \left(\frac{\partial \tau}{\partial \theta} \cdot u_{\theta}\right)^{2} + \left(\frac{\partial \tau}{\partial d} \cdot u_{d}\right)^{2}$$
 Eq. 52

$$\frac{\partial \tau}{\partial F} = \frac{\tau}{F}$$
 Eq. 53

$$\frac{\partial \tau}{\partial \theta} = -F \cdot sen\theta \cdot d \, \therefore \, \frac{\partial \tau}{\partial \theta} = -F \cdot sen\theta \cdot d \cdot \frac{sen\theta}{cos\theta} \to -\tau \cdot tg\theta \qquad \text{Eq. 54}$$

$$\frac{\partial \tau}{\partial d} = \frac{\tau}{d}$$
 Eq. 55

$$u_{\tau}^{2} = \left(\frac{\tau}{F} \cdot u_{F}\right)^{2} + (\tau \cdot tg\theta \cdot u_{\theta})^{2} + \left(\frac{\tau}{d} \cdot u_{d}\right)^{2}$$
 Eq. 56

$$\left(\frac{u_{\tau}}{\tau}\right)^2 = \left(\frac{u_F}{F}\right)^2 + (tg\theta \cdot u_{\theta})^2 + \left(\frac{u_d}{d}\right)^2$$
 Eq. 57

Calculando a incerteza combinada da força (u_{cF}) : considerando que para o cálculo da incerteza da força foram usados os valores indicados na planilha de calibração da célula de carga, tem-se :

máxima relatada $\rightarrow U = 11,9$ N, $k = 2 \rightarrow u_{inst} = 5,95$ N

<mark>и_{сF} = 5,95 N</mark>

Então para uma força aplicada de 9.068,89 N, a incerteza do torque, pela Eq. 56 é:

$$\left(\frac{u_{\tau}}{\tau}\right)^2 = \left(\frac{5,95}{9068,89}\right)^2 + (tg\theta \cdot u_{\theta})^2 + \left(\frac{u_d}{d}\right)^2$$
 Eq. 58

A incerteza do ângulo foi calculada por último.

Para calcular a incerteza da distância de aplicação da força até o centro do eixo Cardan, foi utilizada a Equação 43, sendo:

$$u_c(\mathbf{d}) = \sqrt{u_{bm}^2 + u_{fa}^2} \qquad \qquad \text{Eq. 59}$$

 u_{bm} – incerteza de medição do comprimento do braço móvel u_{fa} – comprimento do raio do flange de aço

Considerando que as dimensões do braço móvel foram mensuradas com um paquímetro marca Mitutoyo, conforme declarado no certificado emitido pelo setor de metrologia do CTEx, a incerteza do paquímetro (Tipo B) foi acrescentada ao desvio padrão de medição do braço móvel, u_a (Tipo A). Assim, utilizando a Eq.43, obtémse:

$$u_{bm} = \sqrt{u_{pq}^2 + u_A^2}$$
 Eq. 60

As medições da barra de aço foram executadas em milimetros, porém no cálculo do torque, a unidade utilizada é o metro. Para que a incerteza possa ser propagada para o torque, deverá ser expressa também em metros, sendo:

$$u_{pq} = \frac{0.01}{\sqrt{3}} mm = 0.00577 mm = 0.00000577 m$$
 Eq. 61

$$u_A = 0,014 \ mm = 0,000014 \ m$$
 Eq. 62

Logo

$$u_{bm} = \sqrt{(0,00000577)^2 + (0,000014)^2}$$
 Eq. 63

 $u_{bm} = 1,51.\,10^{-5}\,m$

Incerteza do Flange de Aço – u_{fa}

$$u_{fa} = \sqrt{u_{pq(B)}^2 + u_A^2}$$
 Eq. 64

$$u_A = 0,195 \ mm = 0,000195 \ m$$
 Eq. 65

$$u_{fa} = \sqrt{(0,00000577)^2 + (1,95.10^{-4})^2} \quad (\text{Eq. 63})$$

 $u_{fa} = 1,95.\,10^{-4}\,m$

Logo,

$$u_c(d) = \sqrt{u_{bm}^2 + u_{fa}^2}$$
 (Eq. 58)

$$u_c(d) = \sqrt{(1,51.10^{-5})^2 + (1,95.10^{-4})^2}$$

 $u_c(d) = 1,96.\,10^{-4}\,m$

Assim,

$$\left(\frac{u_{\tau}}{\tau}\right)^2 = \left(\frac{5,95}{9068,89}\right)^2 + (tg\theta \cdot u_{\theta})^2 + \left(\frac{1,96 \cdot 10^{-4}}{0,3655}\right)^2 \dots (Eq. 57)$$

$$u_{\theta} = \frac{0.1}{\sqrt{3}} = 0.0577$$
 Eq. 66

$$tg_{\theta} \therefore \theta_{max} = 5,50 \ graus \rightarrow tg\theta = 0,0963$$
 Eq. 67

$$\left(\frac{u_{\tau}}{3314,679}\right)^2 = \left(\frac{5,95}{9068,89}\right)^2 + (0,0963 \cdot 0,0577)^2 + \left(\frac{1,96 \cdot 10^{-4}}{0,3655}\right)^2 \text{ (Eq.57)}$$
$$\left(\frac{u_{\tau}}{3314,679}\right)^2 = 3,159 \cdot 10^{-5} \therefore \quad u_{\tau} = 18,6 \, N \cdot m$$

Para calcular o número de graus de liberdade efetivos foi utilizada a Eq. 50, onde:

$$\frac{18,63^4}{V_{ef}} = \frac{(5,95)^4}{2} + \frac{(0,0577)^4}{\infty} + \frac{(u_{PM(B)}^2)^4}{\infty} + \frac{(u_A^2)^4}{5} + \frac{(u_{PM(B)}^2)^4}{\infty n} + \frac{(u_A^2)^4}{5}$$

Como o número de graus de liberdade efetivos, calculado foi 192, o coeficiente t de Student foi 2,00, assim a incerteza de medição expandida, calculada para o torque é :

$$U = 37 \text{ N}^{\cdot}\text{m}$$

5.3. Incerteza de medição da velocidade de rotação do motor

Utilizando os valores mensurados na calibração do sistema de medição, foram considerados:

- Leitura da velocidade padrão: *Y*
- Leitura da velocidade no sistema de medição (ajustada): X

A velocidade padrão, também associada a uma incerteza de medição, será expressa como:

Velocidade padrão =
$$Y \pm U_Y \rightarrow u_Y = \frac{U_Y}{2}$$

Da mesma forma, a velocidade lida no sistema de medição deverá, após ajustada pela curva de calibração calculada no Capítulo 4, ser indicada com uma incerteza associada e será expressa como:

Velocidade de rotação ajustada = $X \pm U_X$

Para a leitura no sistema de medição $U_x = 1$ (*leitura*) $\rightarrow u_x = \frac{1}{\sqrt{3}} = 0,577$ rpm

A incerteza* da velocidade de rotação será calculada por meio da fórmula:

$$u^{2} = u_{p}^{2} + \left(u_{x} \cdot \frac{\partial Y}{\partial x}\right)^{2} + s^{2}$$
 Eq. 68

Pela equação de ajuste, obtida no capítulo 4,

$$Y = ax + b \rightarrow Y = 0,9952x + 4,7847$$
 Eq. 69

$$\frac{\partial Y}{\partial x} = 0,9952 \qquad \qquad \text{Eq. 70}$$

 u_p^2 – Incerteza expandida do osciloscópio, dada pelo certificado de calibração.

Foi considerada a incerteza máxima do osciloscópio para as faixas de frequências utilizadas, sendo U = 0,0029 Hz para k = 3,31. Assim, o valor da incerteza do osciloscópio, em hertz foi calculada por:

$$u_p = \frac{0,0029}{2} \therefore u_p = 0,00145 \ Hz$$

Convertendo para rpm, $u_p = 0,087 rpm$.

O valor de s^2 foi calculado no Capítulo 4, sendo igual a 3,145 rpm

Todas as medições realizadas pelo sistema de medição para velocidade de rotação do dinamômetro apresentaram o mesmo resultado, não havendo desvio padrão. Consultando a tabela dos coeficientes t de Student foi verificada que, para estas condições, o valor t de Student, correspondente a uma probabilidade de 95,45%, indicada para *N*-1 graus de liberdade (25-1), vale k= 2,11.

Utilizando a equação para cálculo da Incerteza expandida foi obtida

$$u^2 = 0,0527^2 + (0,577,0,995)^2 + 3,145^2$$
 Eq. 71

$$u^2 = 10,223 \quad \therefore \quad u = 3,197 \ rpm = 0,335 \frac{raa}{seg}$$
 Eq. 72

$$U = 6,75 \ rpm$$
 \therefore $U = 6,75 \ .0,105 \ \frac{rad}{seg}$ Eq. 73

$$U = 0,71 \frac{rad}{seg}$$

5.4. Incerteza de medição para a potência mensurada

Sabe-se que a potência (P) mensurada pelo sistema de medição é diretamente proporcional ao produto do torque (τ) pela velocidade de rotação (v). Então $P_{=} \tau . v$

onde $P(SI) \rightarrow watt$; $v(SI) \rightarrow \frac{rad}{seg} e \tau(SI) \rightarrow N \cdot m$; sendo então a potência calculada igual a $P(SI) = N \cdot m \cdot \frac{rad}{seg}$.

Para converter rpm em radianos/segundo utiliza-se:

$$1rpm = 2 \cdot \pi \quad \frac{rad}{min} = \frac{2 \cdot \pi}{60} \cdot \frac{rad}{seg} = 0,1047 \quad \frac{rad}{seg}$$
 Eq 74

$$1 \frac{rad}{seg} = 9,549 rpm Eq.75$$

Pelos cálculos anteriores foram calculados $u_{\tau} = 18,6 N \cdot m$ e $u_{\nu} = 0,335 \frac{rad}{seg}$.

Pela Eq. 45

$$\left(\frac{u_p}{P}\right)^2 = \left(\frac{u_\tau}{T}\right)^2 + \left(\frac{u_v}{v}\right)^2 \therefore \left(\frac{u_p}{78,8}\right)^2 = \left(\frac{18,6}{498}\right)^2 + \left(\frac{0,335}{10,47}\right)^2$$
Eq. 76

$$u_p = 3,86 \ watts$$

Pela Eq. 50:

$$\frac{3,86^4}{V_{ef}} = \frac{18,6^4}{100} + \frac{0,335^4}{24} = 0,184 \rightarrow V_{ef} = 13,97$$

Então a incerteza expandida da potência é de

$$U = 53,92$$
 watts

5.5. Incerteza de medição da temperatura

A incerteza da medição de temperatura foi calculada com base na indicação do banho termostático, na calibração do sistema de medição (que gerou uma incerteza

$$u^{2} = u_{d}^{2} + s^{2} + \left(\frac{\partial T}{\partial Tsm} u_{sm}\right)^{2}$$
 Eq. 77

 u_d — Incerteza da temperatura indicada no display do banho termostático. s — Incertza tipo A das médias das temperaturas indicadas. u_{sm} — Incerteza da resolução do sistema de medição.

A temperatura indicada no display do banho termostático é:

$$T_d = T_p \pm U_d$$
 Eq. 78

 T_d – Temperatura indicada pelo display do banho termostático. T_p – Temperatura padrão.

 U_d – Incerteza expandida do banho, indicada no certificado de calibração.

A incerteza combinada do banho foi obtida com base na U_d .

$$u_d = \frac{U_d}{2} = \frac{0.77 \,^{\circ}C}{2} = 0.385 \,^{\circ}C$$

Incerteza da leitura da temperatura no display do sistema de medição

$$T_{dsm} = T_{sm} \pm U_{sm}$$
 Eq. 79

T_{dsm} – Temperatura indicada pelo display do sistema de medição T_{sm} – Temperatura lida pelo sistema de medição U_{sm} – Incerteza expandidada resolução da indicação do sistema de medição

A incerteza da resolução é de 1 °C, assim

$$u_{sm} = \frac{U_p}{\sqrt{3}} = \frac{1 \ ^\circ C}{\sqrt{3}} = 0,577 \ ^\circ$$

A temperatura lida no display do sistema de medição foi ajustada pela Eq.65

$$T = A \cdot T_{sm}^{3} + B \cdot T_{sm}^{2} + C \cdot T_{sm} + D$$
 Eq. 80

A incerteza de medição tipo A foi calculada pelo desvio médio quadrático entre a temperatura considerada padrão e a temperatura indicada pelo sistema de medição, utilizando a Eq. 47.

$$s^{2} = \frac{1}{n-4} \sum \left[T_{p} - (A \cdot T_{sm}^{3} + B \cdot T_{sm}^{2} + C \cdot T_{sm} + D) \right]^{2}$$
 Eq. 81

A incerteza combinada da temperatura de cada canal, expressa pela Eq. 49, foi calculada com base na Eq. 62, sendo:

$$u^{2} = u_{d}^{2} + s^{2} + \left(\frac{\partial T}{\partial T_{sm}} u_{s}\right)^{2}$$

$$u^{2} = u_{d}^{2} + s^{2} + \left[(3.A.T_{sm}^{2} + 2.B.T_{sm} + C).u_{sm}\right]^{2}$$
Eq. 82
$$u^{2} = 0.385^{2} + s^{2} + \left[(3.A.T_{sm}^{2} + 2.B.T_{sm} + C).\frac{1}{\sqrt{3}}\right]^{2}$$

Como a equação de melhor ajuste para temperatura foi uma equação de terceiro grau, seus coeficientes integraram a Eq.44. Devido a isto, o valor da incerteza foi calculado para cada temperatura indicada pelo sistema de mediação, sendo considerado o maior deles.

Para obter a incerteza expandida de cada canal foi utilizada a mesma metodologia, sendo o coeficiente t de Student calculado para uma probabilidade de 95,45%, com 29 graus de liberdade (30-1=29).

5.5.1. Incerteza de medição da temperatura do combustível

Empregando os coeficientes da Eq.26 na Eq.65, a incerteza de medição da temperatura do combustível foi calculada para cada valor de temperatura indicada pelo sistema de medição, com base na Tabela 45 e expressa na Tabela 46.

Tabela 45 - Variáveis para o cálculo da incerteza de medição combinada

Incert.Banho	Desv. Padrão	Resol. SM	Coe	Coeficientes da equação				
u _p	s	U _{sm}	A B C					
0,385	1,03854116	1	0,00062668	-0,11148296	7,39545194			

$$u^{2} = 0,385^{2} + 1,0385^{2} + \left[(3.6,267.10^{-4}.T_{sm}^{2} - 2.0,112T_{sm} + 7,395)\frac{1}{\sqrt{3}} \right]^{2}$$

Tabela 46 - Incertezas obtidas

Temperatura do combustível			
Τ _ρ	T _I	Incerteza de	Incerteza
Temperatura -	Temperatura	medição u _{sm}	Expandida - U
Padrão (°C)	Indicada (°C)	(°C)	(°C)
30	34	1,59	3,3
40	39	1,43	3,0
50	49	1,24	2,6
60	59	1,20	2,5
80	79	1,41	2,9

Das incertezas combinadas obtidas, relacionadas na Tabela 46, foi considerada a incerteza de maior valor para expressar a incerteza expandida.

$$u_c = 1,60 \,^{\circ}C$$

O coeficiente de Student, empregado para todos os canais de medição de temperatura, foi calculado com auxílio da função do Excel "INV.T, considerando 29 graus de liberdade, dado por n-1, e nível de confiança de 95,45%, como ilustrado na Figura 75.
Argumentos da função			? ×	
INV.T				
Probabilidade	0,9545+(1-0,9545)/2	=	0,97725	
Graus_liberdade	29	=	29	
 = 2,089971023 Retorna o inverso de cauda esquerda da distribuição t de Student. Probabilidade é a probabilidade associada à distribuição t de Student bicaudal, um número 				
	entre U e 1 indusive.			
Resultado da fórmula = 2,0899	71023			
<u>Ajuda sobre esta função</u>			OK Cancelar	

Figura 75 - Cálculo do coeficiente t de Student

A incerteza combinada foi multiplicada pelo coeficiente de t e foi obtida a incerteza expandida.

5.5.2. Incerteza de medição da temperatura do óleo lubrificante

A incerteza do termômetro do banho termostático, o desvio padrão referente à calibração e os coeficientes da equação de ajuste para este canal de medição foram calculados seguindo a mesma metodologia anterior, estando ilustrados na tabela 47.

Tabela 47 - Variáveis utilizadas no cálculo da incerteza do canal

Termos para a incerteza de medição da temperatura do óleo lubrificante					
Incert.Banho	Incert.Banho Desv. Padrão Resol. SM Coeficientes da equação				
u _p	S	U _{sm}	А	В	С
0,385	0,77188334	1	0,00056948	-0,10272805	6,97744272

Empregando os coeficientes da Eq.27 na Eq.49, a incerteza de medição deste canal foi calculada para cada valor de temperatura indicada pelo sistema de medição, com base na Tabela 47 e expressa na Tabela 48.

$$u^{2} = 0,385^{2} + 0,772^{2} + \left[(3.5,695.10^{-4}, T_{sm}^{2} - 2.0,103 T_{sm} + 6,98) \frac{1}{\sqrt{3}} \right]^{2} \text{ Eq. 83}$$

Das incertezas combinadas obtidas, relacionadas na Tabela 48, foi considerada como exemplo de cálculo a incerteza de maior valor para expressar a incerteza expandida do canal de medição, podendo ser utilizada a Equação 83 para ser obtida a incerteza ponto a ponto, que é calculada multiplicando-se o valor da incerteza *u* pelo valor t de Student igual a 2,09. Os resultados obtidos para algumas temperaturas são indicados na Tabela 48, onde também pode ser observada a variação da incerteza de medição expandida entre os valores U = 2,0 e U = 2,9 °C

Tabela 48 - Incertezas obtidas para cada temperatura do canal de medição

Temperatura do óleo lubrificante				
Tp	Τ _Ι	Incerteza de	Incerteza	
Temperatura -	Temperatura	medição u _{sm}	Expandida - U	
Padrão (°C)	Indicada (°C)	(°C)	(°C)	
30	35	1,39	2,9	
40	40	1,22	2,5	
50	50	1,03	2,2	
60	60	0,98	2,0	
80	80	1,21	2,5	

Como exemplo de cálculo a máxima incerteza verificada para T_p=30 °C

$$u_c = 1,39 \,^{\circ}C$$

A incerteza combinada foi multiplicada pelo coeficiente de t de Student (t=2,09), já calculado, e obtida a incerteza expandida para um nível de confiança de 95,45%. Sua variação vai de U = 2,0 °C a U = 2,9 °C para a faixa de temperaturas medidas. Considerando o maior valor como a incerteza da canal.

5.5.3. Incerteza de medição da temperatura do bloco do motor

A incerteza do termômetro do banho termostático, o desvio padrão referente à calibração e os coeficientes da equação de ajuste para este canal de medição foram calculados seguindo a mesma metodologia anterior, estando ilustrados na Tabela 49.

Tabela 49 - Variáveis utilizadas no cálculo da incerteza do canal

Termos para a incerteza de medição da temperatura do bloco do motor					
Incert.Banho Desv. Padrão Resol. SM Coeficientes da equação					
u _p	S	U _{sm}	Α	В	С
0,385 1,25560209 1 0,00065494 -0,11764435 7,83529368					

Empregando os coeficientes da Eq.28 na Eq.49, a incerteza de medição deste canal foi calculada para cada valor de temperatura indicada pelo sistema de medição, com base na Tabela 49 e expressa na Tabela 50.

$$u^{2} = 0,385^{2} + 1,25560209^{2} + \left[(3.6,549.10^{-4}.T_{sm}^{2} - 2.0,118T_{sm} + 7,835)\frac{1}{\sqrt{3}} \right]^{2}$$

Das incertezas combinadas obtidas, relacionadas na Tabela 50, foi considerada a incerteza de maior valor para expressar a incerteza expandida.

Temperatura do bloco do motor				
Tp	T _I	Incerteza de	Incerteza	
Temperatura	Temperatura	medição u _{sm}	Expandida - U	
Padrão (°C)	Indicada (°C)	(°C)	(°C)	
30	35	1,75	3,7	
40	39,67	1,60	3,4	
50	49	1,44	3,0	
60	59	1.39	2.9	

Tabela 50 - Incertezas obtidas para cada temperatura do canal de medição

$$u_c = 1,75 \,^{\circ}C$$

1,58

3.3

79

80

A incerteza combinada foi multiplicada pelo coeficiente de t de Student, já calculado, e obtida a incerteza expandida para um nível de confiança de 95,45%.

5.5.4. Incerteza de medição da temperatura da água de entrada do motor

A incerteza do termômetro do banho termostático, o desvio padrão referente à calibração e os coeficientes da equação de ajuste para este canal de medição foram calculados seguindo a mesma metodologia anterior, estando ilustrados na tabela 51.

Termos para a incerteza de medição da temperatura da água de entrada do motor Incert.Banho Desv. Padrão Resol. SM Coeficientes da equação А С в s U_p U_{sm} 0,385 1,03854074 0,00062668 -0,11148299 7,39545379 1

Tabela 51 - Variáveis utilizadas no cálculo da incerteza do canal

Empregando os coeficientes da Eq.29 na Eq.49, a incerteza de medição deste canal foi calculada para cada valor de temperatura indicada pelo sistema de medição, com base na Tabela 51 e expressa na Tabela 52.

$$u^{2} = 0,385^{2} + 1,0385^{2} + \left[(3.6,267.10^{-4}.T_{sm}^{2} - 2.0,112T_{sm} + 7,396) \frac{1}{\sqrt{3}} \right]^{2}$$

Das incertezas combinadas obtidas, relacionadas na Tabela 52, foi considerada a incerteza de maior valor para expressar a incerteza expandida.

Ter	Temperatura da água de entrada do motor				
Tp	T _I	Incerteza de	Incerteza		
Temperatura - Padrão (°C)	Temperatura Indicada (°C)	medição usm (°C)	Expandida - <i>U</i> (°C)		
30	34,50	1,58	3,3		
40	39	1,43	3,0		
50	49	1,24	2,6		
60	59	1,20	2,5		
80	79	1.41	2,9		

Tabela 52 - Incertezas obtidas para cada temperatura do canal de medição

$$u_c = 1,58 \,^{\circ}C$$

A incerteza combinada foi multiplicada pelo coeficiente de t de Student, já calculado, e obtida a incerteza expandida para um nível de confiança de 95,45%.

5.5.5. Incerteza de medição da temperatura dos gases de escapamento

A incerteza do termômetro do banho termostático, o desvio padrão referente à calibração e os coeficientes da equação de ajuste para este canal de medição foram calculados seguindo a mesma metodologia anterior, estando ilustrados na Tabela 53.

Fabela 53 –	Variáveis	utilizadas no	cálculo da	incerteza	do ca	anal
	vanavois			mooncza	40.00	anai

Termos para a incerteza de medição da temperatura dos gases no escapamento					
Incert.Banho	anho Desv. Padrão Resol. SM Coeficientes da equação				
u _p	S	U _{sm}	А	В	
0,385	0,22607452	1	0,9943	1,4146	

Empregando os coeficientes da Eq.30 na Eq.44, a incerteza de medição deste canal foi calculada com base na Tabela 53.

$$u^2 = 0,385^2 + 1,0385^2 + \left[(0,994)\frac{1}{\sqrt{3}}\right]^2$$

Neste caso a equação de ajuste era de grau 1, não existindo diferença entre as incertezas para as diferentes temperaturas indicadas pelo sistema de medição. Isto se deu pelo fato da derivada parcial da Eq.44 ser 0,9943

$$u_c = 0,73 \,^{\circ}C$$

A incerteza combinada foi multiplicada pelo coeficiente de t de Student, já calculado, e obtida a incerteza expandida para um nível de confiança de 95,45%.

5.5.6. Incerteza de medição da temperatura ambiente

A incerteza do termômetro do banho termostático, o desvio padrão referente à calibração e os coeficientes da equação de ajuste para este canal de medição foram calculados seguindo a mesma metodologia anterior, estando ilustrados na tabela 54.

Empregando os coeficientes da Eq.31 na Eq.49, a incerteza de medição deste
canal foi calculada para cada valor de temperatura indicada pelo sistema de medição,
com base na Tabela 54 e expressa na Tabela 55.

Incert.Banho

U_D

0,385

Desv. Padrão

s

0.50939596

$$u^{2} = 0.385^{2} + 0.509^{2} + \left[(3.\ 1.163.10^{-4}.\ T_{sm}^{2} - 2.0.0201\ T_{sm} + 2.111) \frac{1}{\sqrt{3}} \right]^{2}$$

Das incertezas combinadas obtidas, relacionadas na Tabela 56, foi considerada a incerteza de maior valor para expressar a incerteza expandida.

Temperatura ambiente				
T _p	T _I	Incerteza de		
Temperatura - Padrão (°C)	Temperatura Indicada (°C)	medição usm (°C)		
30	34,50	0,9144626		
40	39	0,8875529		
50	49	0,8498823		
60	59	0,8398412		
80	79	0.9009763		

Tabela 55 - Incertezas obtidas para cada temperatura do canal de medição

$$u_c = 0,92 \,^{\circ}C$$

A incerteza combinada foi multiplicada pelo coeficiente de t de Student, já calculado, e obtida a incerteza expandida para um nível de confiança de 95,45%.

С

2,11078990

Tabela 54 - Variáveis utilizadas no cálculo da incerteza do canal Termos para a incerteza de medição da temperatura ambiente

А

0,00011628

Empregando os coeficientes da Eq.31 na Eq.49, a incerteza de medição deste

Coeficientes da equação

В

-0.02016618

Resol. SM

u _{sm}

1

5.5.7. Incerteza de medição da temperatura do ar de admissão pré-*aftercooler*

A incerteza do termômetro do banho termostático, o desvio padrão referente à calibração e os coeficientes da equação de ajuste para este canal de medição foram calculados seguindo a mesma metodologia anterior, estando ilustrados na tabela 56.

Tabela 56 - Variáveis utilizadas no cálculo da incerteza do canal

Termos para a incerteza de medição da temperatura do ar de admissão pré-aftercooler					
Incert.Banho	Incert.Banho Desv. Padrão Resol. SM Coeficientes da equação				ação
u _p	S	U _{sm}	А	В	С
0,385	0,27233403	1	0,00004101	-0,00751519	1,44620773

Empregando os coeficientes da Eq.32 na Eq.49, a incerteza de medição deste canal foi calculada para cada valor de temperatura indicada pelo sistema de medição, com base na Tabela 56 e expressa na Tabela 57.

$$u^{2} = 0,385^{2} + 0,272^{2} + \left[(3.4,101.10^{-5}.T_{sm}^{2} - 7,515.10^{-3}.T_{sm} + 1,446) \frac{1}{\sqrt{3}} \right]^{2}$$

Das incertezas combinadas obtidas, relacionadas na Tabela 57, foi considerada a incerteza de maior valor para expressar a incerteza expandida.

Temperatura do ar pré-aftercooler						
T _p	T _l	Incerteza de				
Temperatura -	Temperatura	medição usm				
Padrão (°C)	Indicada (°C)	(°C)				
30	35,50	0,7758276				
40	39	0,7664569				
50	49	0,7474850				
60	59	0,7397086				
80	79	0 7571612				

	Tabela 57 –	Incertezas	obtidas par	a cada	temperatura	do	canal	de	medição
--	-------------	------------	-------------	--------	-------------	----	-------	----	---------

$$u_c = 0,78 \,^{\circ}C$$

A incerteza combinada foi multiplicada pelo coeficiente de t de Student, já calculado, e obtida a incerteza expandida para um nível de confiança de 95,45%.

5.5.8. Incerteza de medição da temperatura do ar de admissão pós-*aftercooler*

A incerteza do termômetro do banho termostático, o desvio padrão referente à calibração e os coeficientes da equação de ajuste para este canal de medição foram calculados seguindo a mesma metodologia anterior, estando ilustrados na tabela 58.

Tabela 58 - Variáveis utilizadas no cálculo da incerteza do canal

Termos para a incerteza de medição da temperatura do ar de admissão após o aftercooler						
Incert.Banho	Desv. Padrão	Resol. SM	Coeficientes da equação			
U _p	S	U _{sm}	А	В	С	
0,385	0,27233403	1	0,00004101	-0,00751519	1,44620773	

Empregando os coeficientes da Eq.33 na Eq.49, a incerteza de medição deste canal foi calculada para cada valor de temperatura indicada pelo sistema de medição, com base na Tabela 58 e expressa na Tabela 59.

$$u^{2} = 0,385^{2} + 0,272^{2} + \left[(3.4,101.10^{-5}.T_{sm}^{2} - 7,515.10^{-3}.T_{sm} + 1,446) \frac{1}{\sqrt{3}} \right]^{2}$$

Das incertezas combinadas obtidas, relacionadas na Tabela 60, foi considerada a incerteza de maior valor para expressar a incerteza expandida.

Temperatura do ar após o aftercooler						
Τ _ρ	T _I	Incerteza de				
Temperatura - Padrão (°C)	Temperatura Indicada (°C)	medição usm (°C)				
30	35,50	0,7758276				
40	39	0,7664569				
50	49	0,7474850				
60	59	0,7397086				
80	79	0,7571612				

Tabela 59 - Incertezas obtidas para cada temperatura do canal de medição

 $u_c = 0,78 \,^{\circ}C$

5.5.9. Incerteza de medição da temperatura da água de saída do dinamômetro

A incerteza do termômetro do banho termostático, o desvio padrão referente à calibração e os coeficientes da equação de ajuste para este canal de medição foram calculados seguindo a mesma metodologia anterior, estando ilustrados na Tabela 60.

Termos para a incerteza de medição da temperatura da água de saída do dinamômetro					
Incert.Banho	Desv. Padrão	Padrão Resol. SM Coeficientes da equação			
u _p	s	U _{sm}	А	В	С
0,385	0,27233403	1	0,00004101	-0,00751519	1,44620773

Empregando os coeficientes da Eq.34 na Eq.49, a incerteza de medição deste canal foi calculada para cada valor de temperatura indicada pelo sistema de medição, com base na Tabela 60 e expressa na Tabela 61.

$$u^{2} = 0,385^{2} + 0,272^{2} + \left[(3. 4,101.10^{-5}. T_{sm}^{2} - 7,515.10^{-3}.T_{sm} + 1,446) \frac{1}{\sqrt{3}} \right]^{2}$$

Das incertezas combinadas obtidas, relacionadas na Tabela 61, foi considerada a incerteza de maior valor para expressar a incerteza expandida.

Temperatura da água de saída do dinamômetro					
Τ _P	T _I	Incerteza de			
Temperatura - Padrão (°C)	Temperatura Indicada (°C)	medição usm (°C)			
30	35,50	0,7758276			
40	39	0,7664569			
50	49	0,7474850			
60	59	0,7397086			
80	79	0 7571612			

Tabela 61 – Incertezas obtidas para cada temperatura do canal de medição

A incerteza combinada foi multiplicada pelo coeficiente de t de Student, já calculado, e obtida a incerteza expandida para um nível de confiança de 95,45%.

5.5.10. Incerteza de medição da temperatura da água de saída do motor

A incerteza do termômetro do banho termostático, o desvio padrão referente à calibração e os coeficientes da equação de ajuste para este canal de medição foram calculados seguindo a mesma metodologia anterior, estando ilustrados na Tabela 62.

Tabela 62 - Variáveis utilizadas no cálculo da incerteza do canal

Termos para a incerteza de medição da temperatura da água de saída do motor					
Incert.Banho	Desv. Padrão	Resol. SM Coeficientes da equação			
u _p	S	U _{sm}	А	В	С
0,385	0,31640959	1	0,00001806	-0,00353040	1,22665566

Empregando os coeficientes da Eq.35 na Eq.49, a incerteza de medição deste canal foi calculada para cada valor de temperatura indicada pelo sistema de medição, com base na Tabela 62 e expressa na Tabela 63.

$$u^{2} = 0,385^{2} + 0,316^{2} + \left[(3.\ 1,806.\ 10^{-5}.\ T_{sm}^{2} - 3,530.\ 10^{-3}.\ T_{sm} + 1,227) \frac{1}{\sqrt{3}} \right]^{2}$$

Das incertezas combinadas obtidas, relacionadas na Tabela 64, foi considerada a incerteza de maior valor para expressar a incerteza expandida.

Temperatura da água de saída do motor						
T _p	T _I	Incerteza de				
Temperatura - Padrão (°C)	Temperatura Indicada (°C)	medição usm (°C)				
30	34,50	0,7833776				
40	39,17	0,7770139				
50	50 49					
60	59	0,7618290				
80	79	0 7654669				

Tabela 63 - Incertezas obtidas para cada temperatura do canal de medição

A incerteza combinada foi multiplicada pelo coeficiente de t de Student, já calculado, e obtida a incerteza expandida para um nível de confiança de 95,45%.

5.6. Incerteza de medição da pressão

Dos três canais de medição de pressão, dois apresentaram erro de 100% de leitura da pressão padrão. Como o erro é constante para todos os valores mensurados, o fato sugere erro de fator de escala no software de sistema de medição. A incerteza de medição foi calculada para cada canal de medição de pressão

A incerteza combinada para cada canal de medição de temperatura foi calculada pela Eq.50:

$$u^{2} = u_{d}^{2} + s^{2} + \left(\frac{\partial P}{\partial Psm} \ u_{sm}\right)^{2}$$
 Eq. 84

 u_d — Incerteza da pressão indicada no display do calibrador PRESYS. s — Incertza tipo A das médias das temperaturas indicadas no sm. u_{sm} — Incerteza da resolução do sistema de medição.

A pressão indicada no display calibrador Presys é:

$$P_d = P_p \pm U_d$$
 Eq. 85

 P_d – Pressão indicada pelo display do PRESYS.

 $P_p - Pressão padrão.$

U_d-Incerteza expandida do Calibrador, indicada no certificado de calibração do mesmo

A incerteza combinada do Presys foi obtida com base na U_d .

$$u_d = \frac{U_d}{2} = \frac{0,021 \text{ bar}}{3,3} = 0,00636 \text{ bar}$$

Incerteza da leitura da pressão no display do sistema de medição

$$P_{dsm} = P_{sm} \pm U_{sm}$$
 Eq. 86

P_{dsm} – Pressão indicada pelo display do sistema de medição
 P_{sm} – Pressão lida pelo sistema de medição
 U_{sm} – Incerteza expandida da resolução a indicação do sistema de medição

A incerteza da resolução é de 0,1 bar, assim

$$u_s = \frac{U_p}{\sqrt{3}} = \frac{0.1 \ bar}{\sqrt{3}} = \frac{0.0577 \ bar}{0.0577 \ bar}$$

A incerteza de medição tipo A foi calculada pelo desvio médio quadrático entre a pressão considerada padrão e a pressão indicada pelo sistema de medição, utilizando a Eq. 53.

$$s^{2} = \frac{1}{n-4} \sum \left[P_{p} - (A \cdot P_{sm}^{3} + B \cdot P_{sm}^{2} + C \cdot P_{sm} + D) \right]^{2}$$
 Eq. 87

A incerteza combinada da pressão mensurada por cada canal, expressa pela Eq. 54, foi calculada com base na Eq. 50 e na Eq.53, sendo:

$$u^{2} = u_{d}^{2} + s^{2} + \left(\frac{\partial P}{\partial P_{sm}} u_{s}\right)^{2}$$
$$u^{2} = u_{d}^{2} + s^{2} + \left[(3.A.P_{sm}^{2} + 2.B.P_{sm} + C).u_{sm}\right]^{2}$$
Eq. 88
$$u^{2} = 0,00636 + s^{2} + \left[(3.A.P_{sm}^{2} + 2.B.P_{sm} + C).\frac{0.1}{\sqrt{3}}\right]^{2}$$

5.6.1. Incerteza de medição da pressão do combustível do motor

Utilizando os coeficientes da equação de ajuste da pressão lida, a incerteza do calibrador e a incerteza da calibração, foi calculada a incerteza deste canal de medição de pressão, como apresentado na Tabela 64.

Tabela 64 - Variáveis utilizadas no cálculo da incerteza do canal

Termos para a incerteza de medição da pressão do combustível					
Incert.Banho	Desv. Padrão	Resol. SM	Coeficientes da equação		
u _p	S	U _{sm}	А	В	С
0,006363	0,31085257	0,1	0,00005039	0,00140373	0,49422993

$$u^{2} = 0,00636^{2} + 0,311^{2} + \left[(3.5,039.10^{-5}.P_{sm}^{2} - 2.0,0014P_{sm} + 0,494) \frac{0,1}{\sqrt{3}} \right]^{2}$$

Das incertezas combinadas obtidas, relacionadas na Tabela 65, foi considerada a incerteza de maior valor para expressar a incerteza expandida.

Pressão do Combustível - Correção Eq. 3º grau					
Pp	Pi	Incerteza de	Incerteza de		
Pressão -	Pressão Indicada	medição u _{sm}	medição <i>U</i>		
Padrão (bar)	(bar)	(bar)	(bar)		
0,00	0,0	0,0128	0,0263		
0,10	0,2	0,0140	0,0289		
0,50	1,0	0,0314	0,0647		
1,00	2,0	0,0587	0,121		
1,50	3,0	0,0869	0,179		
2,00	4,0	0,115	0,237		
2,50	5,0	0,144	0,296		
3,00	6,0	0,172	0,355		
3,50	7,0	0,201	0,414		
4,00	8,0	0,229	0,472		
4,50	8,9	0,255	0,525		
5,00	9,9	0,283	0,584		
6,00	11,9	0,340	0,701		
8,00	15,9	0,454	0,935		
10,00	19,9	0.567	1.17		

 $u_c = 0,567 \ bar$

A incerteza combinada foi multiplicada pelo coeficiente de t de Student, calculado com auxílio da função INV T = 2,06, e obtida a incerteza expandida para um nível de confiança de 95,45%.

 $U = 1,2 \ bar$

5.6.2. Incerteza de medição da pressão do ar de entrada do motor

Utilizando os coeficientes da equação de ajuste da pressão lida, a incerteza do calibrador e a incerteza da calibração, foi calculada a incerteza deste canal de medição de pressão, como apresentado na Tabela 66.

Termos para a incerteza de medição da pressão do ar de entrada										
Incert.Banho Desv. Padrão Resol. SM Coeficientes da equação										
u _p	u _p s u _{sm} A B C									
0,006363	0,03596824	0,1	-0,00020785	0,00320376	0,99927489					

$$u^{2} = 0,00636^{2} + 2,956^{2} + \left[(3.2,079.10^{-4}.T_{sm}^{2} - 2.0,00320.T_{sm} + 0,999) \cdot \frac{0,1}{\sqrt{3}} \right]^{2}$$

Das incertezas combinadas obtidas, relacionadas na Tabela 67, foi considerada a incerteza de maior valor para expressar a incerteza expandida.

Pressão	Pressão do ar de entrada - Correção Eq. 3º grau									
Pp	Pi	Incerteza de	Incerteza de							
Pressão -	Pressão Indicada	medição u _{sm}	medição <i>U</i>							
Padrão (bar)	(bar)	(bar)	(bar)							
0,00	0,0	0,0580	0,1195							
0,10	0,2	0,0593	0,1221							
0,50	1,0	0,0638	0,131							
1,00	2,0	0,0683	0,141							
1,50	3,0	0,0716	0,147							
2,00	4,0	0,0736	0,152							
2,50	5,0	0,0744	0,153							
3,00	6,0	0,0739	0,152							
3,50	7,0	0,0722	0,149							
4,00	8,0	0,0693	0,143							
4,50	8,9	0,0656	0,135							
5,00	9,9	0,0603	0,124							
6,00	11,9	0,0460	0,095							
8,00	15,9	0,00664	0,014							
10,00	19,9	0,0621	0,128							

Tabela 67 - Incertezas obtidas para cada pressão do canal de medição

$$u_c = 0,0744 \ bar$$

A incerteza combinada foi multiplicada pelo coeficiente de t de Student, calculado com auxílio da função INV T = 2,06, e obtida a incerteza expandida para um nível de confiança de 95,45%.

$$U = 0,15 \ bar$$

5.6.3. Incerteza de medição da pressão do óleo de lubrificação do motor

Utilizando os coeficientes da equação de ajuste da pressão lida, a incerteza do instrumento calibrador e a incerteza da calibração do sistema de medição, foi calculada a incerteza deste canal de medição de pressão, como apresentado na Tabela 68.

Tabela 68 - Variáveis utilizadas no cálculo da incerteza do canal

Termos para a incerteza de medição da pressão do óleo de lubrificação										
Incert.Banho	Incert.Banho Desv. Padrão Resol. SM Coeficientes da equação									
u _p	u _p s u _{sm} A B C D E F									
0,006363	0,82903432	0,1	0.00067819 -0.01857770 0.18656328 -0.81859826 1.43293282 1.0704279							

 $u^{2} = 0,00636^{2} + 2,956^{2}$ $+ \left[(6.6,782.10^{-4}.T_{sm}^{5} - 5.0,0186.T_{sm}^{4} + 4.0,187.T_{sm}^{3} - 3.0,819.T_{sm}^{2} + 2.1,433.T_{sm}) \cdot \frac{0,1}{\sqrt{3}} \right]^{2}$

Das incertezas combinadas obtidas, relacionadas na Tabela 69, foi considerada a incerteza de maior valor para expressar a incerteza expandida.

Pressao do	o leo de lubrifi	caçao - Correç	ao Eq. 3º grau
Pp	Pi	Incerteza de	Incerteza de
Pressão -	Pressão Indicada	medição u _{sm}	medição U
Padrão (bar)	(bar)	(bar)	(bar)
0,00	0,0	0,0313	0,0813
0,10	0,2	0,0313	0,0813
0,50	1,0	0,0314	0,0816
1,00	2,0	0,0315	0,0819
1,50	3,0	0,0316	0,0822
2,00	4,0	0,0317	0,0825
2,50	5,0	0,0318	0,0827
3,00	6,0	0,0319	0,0828
3,50	7,0	0,0319	0,0829
4,00	8,0	0,0319	0,0830
4,50	8,9	0,0319	0,0830
5,00	9,9	0,0319	0,0830
6,00	11,9	0,0319	0,0829
8,00	15,9	0,0316	0,0821
10,00	19,9	0,0310	0,0807

Tabela 69 – Incertezas obtidas para cada pressão do canal de medição

$u_c = 0,0319 \,^{\circ}C$

A incerteza combinada foi multiplicada pelo coeficiente de t de Student, calculado com auxílio da função INV T = 2,06, e obtida a incerteza expandida para um nível de confiança de 95,45%.

$U = 0,083 \ bar$

As incertezas encontradas são características para os canais do sistema de medição do banco de ensaios do CTEx e foram calculadas com base em um ensaio de motor a combustão interna. Elas deverão ser interpretadas como satisfatórias, ou não, para cada tipo de ensaio realizado; isto é, dependerá do tipo de ensaio, e seus objetivos, para que possa ser avaliado se as incertezas do sistema de medição, aqui calculadas, permitem que ele seja utilizado no ensaio específico, com base em normas técnicas próprias para cada tipo de ensaio a ser realizado. Não são citadas normas técnicas devido ao fato de que um banco de ensaios dinamométricos não se aplica somente a ensaio de motores de combustão interna, podendo ser utilizado para motores elétricos, motores hidráulicos, caixas redutoras, ensaios de controladores de potência para motores elétricos, e outras aplicações.

No próximo capítulo são feitas as conclusões e recomendações

6 Conclusões e Recomendações

6.1. Medição de velocidade de rotação do eixo do motor

O sistema de medição de velocidade de rotação do eixo do dinamômetro apresenta erro sistemático que não interfere no funcionamento do banco de ensaios, mas que deverá ser corrigido. Os valores de velocidades de rotação são estatisticamente correspondentes à velocidade real do eixo ao nível de 95,45 % de confiança.

É recomendável que o sistema gerador de pulsos, que atualmente gera um pulso por volta, seja substituído por um sistema gerador que proporcione pelo menos 60 pulsos por volta.

É recomendável que o tempo de atualização da tela do computador para a grandeza velocidade seja atualizado em períodos menores.

O sistema de controle de velocidade deverá ser substituído por um sistema que proporcione controle mais rápido da variável.

6.2. Sistema de medição de torque

O sistema de medição de torque apresenta erros de indicação para o método atual de medição que, como comprovado, não mede o torque real no eixo do motor. Sua incerteza de medição para o método é aceitável.

Como sugestão é indicada a aquisição de um sensor de torque que possibilite que esta grandeza seja mensurada no eixo do motor, evitando com isso a geração de ruídos elétricos para o canal do sistema de medição de torque.

O processo de medição do torque pela deformação elástica do eixo, com auxílio de *strain gauges*, fornece indicações confiáveis que poderão ser melhor processadas pelo sistema de medição se o nível de sinal elétrico for elevado. A utilização de uma ponte de Wheatstone composta poderá contribuir para a melhoria do processo de medição.

6.3. Sistema de medição de potência

A indicação de potência do motor ensaiado está bem próxima do valor calculado, tido como referência, não havendo necessidade de alteração do método de cálculo para a indicação do sistema de medição.

6.4. Sistema de medição de temperatura

É recomendável que a atualização dos valores das temperaturas mensuradas ocorra na IHM com maior rapidez.

6.5. Sistema de medição de pressão

Todos os canais dedicados para esta grandeza deverão ser testados e ajustados para que os erros existentes sejam diminuídos. É recomendável que os ajustes sejam realizados e novo estudo para o cálculo de incerteza de medição seja feito.

6.6. Recomendações gerais

Em ensaios com motores a combustível líquido, mudar o ponto de medição da temperatura do combustível, pois para motores de ignição por centelha, a temperatura do combustível deverá ser medida o mais próximo possível da entrada do carburador ou conjunto de injetores de combustível. Por recomendação da Norma ABNT 1585, a temperatura do combustível deve ser mantida dentro de ± 5 K da temperatura especificada pelo fabricante do motor. Contudo a temperatura mínima permitida para o combustível durante o ensaio deve ser a temperatura do ar ambiente. Caso não tenha sido especificada pelo fabricante do motor, a temperatura do

combustível durante o ensaio deve ser de 298 K \pm 5K [2], isto é entre 19,85 °C e 29,85 °C.

Para motores de ignição por compressão, a temperatura do combustível deve ser medida na entrada da bomba de injeção de combustível. Por solicitação do fabricante a medição da temperatura do combustível pode ser feita em qualquer ponto da bomba, representativo da condição de operação do motor. A temperatura do combustível deve ser mantida entre ± 3 K da temperatura especificada pelo fabricante. Em todos os casos, a temperatura mínima tolerável do combustível, na entrada da bomba deverá ser 303 K (29,85 °C). Caso não tenha sido especificada pelo fabricante do motor, a temperatura do combustível no ensaio deverá ser de 313 K ± 3 K [2], isto é, poderá variar de 36,85 °C até 42,85 °C.

Sugere-se adquirir equipamento condicionador de temperatura de óleo para manter a temperatura do óleo lubrificante dos motores ensaiados no banco dinamométrico conforme recomendado pela norma ABNT NBR ISO 1585.

Deve-se ainda substituir o sensor de rotação, que gera somente um pulso por cada volta do eixo do motor, por um conjunto sensor-roda fônica, que forneça vários pulsos por rotação, possibilitando a correção da velocidade mensurada para a velocidade de set-point em menor número de voltas do eixo do motor.

A instabilidade que ocorre no controle da velocidade pode estar associada à característica do sensor de rotação gerar somente um pulso por volta para o sistema de medição e Controle, como mencionado no parágrafo anterior. Isto ocorre pelo fato de que uma variação de velocidade, no sistema atual, somente poderá ser detectada após 2 voltas do eixo, no mínimo, necessitando de mais uma ou duas voltas para verificar se a correção foi feita no sentido certo e também avaliar sua amplitude, ocasionando atraso na estabilização da velocidade determinada no set-point. Substituir o sistema é recomendável.

Analisar o método de medição das termorresistências de platina de forma a identificar os detalhes de *hardware* do mesmo. Isto proporcionará intervenções de manutenção futuras de uma forma mais precisa.

6.7. Sugestão para desdobramento do trabalho

Sugere-se realizar novos ensaios de medição de torque no eixo de acoplamento do motor ao dinamômetro utilizando uma ponte de Wheatstone composta por strain gauges com resistência de 1000 ohms, melhorando o processo de medição de torque.

7 Referências Bibliográficas

- CONSELHO NACIONAL DO MEIO AMBIENTE Resolução CONAMA Nº 018/1986, de 6 de maio de 1986 – DOU; 17 de junho de 1986; Seção 1; páginas 8792-8795.
- 2 ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR ISO 1585: Veículos Rodoviários – Código de ensaio de motores – Potência líquida efetiva.Rio de Janeiro.1996
- 3 ISO, BIPM, IEC, IFCC, IUPAC, IUPAP, and OIML. Guide to the Expression of Uncertainty in Measurement. 1. Ed. 1993
- 4 PRESTON THOMAS H. The international Temperature Scale of 1990 (ITS-90). *Metrologia* V 3-10. 1990.
- 5 HENNING LOHSE-BUSCH, KEVIN STUTENBERG, MIKE DUOBA, ERIC RASK, FORREST JEHLIK and GLENN KELLER; Advanced Powertrain Reserach Facility. Argonne National Laboratory. Pág 41. 2013 – Acesso por http://www.transportation.anl.gov/D3/pdfs/ANL_APRF_DynoTestingReference _July2013.pdf
- 6 NEUSINGER, PETER; OLIVEIRA, WALTER P., JR; Introdução à Técnica de Bancos de Provas de Motores. 1ª ed. 1986. São Paulo. Schenck do Brasil. TCA/Horiba.
- 7 HIBBELER, R.C; Resistência dos Materiais. Tradução de Arlete Simille Marques. 7ª ed. 2009. São Paulo. Pearson Prentice Hall, ISBN 978-85-7605-373-6
- 8 FERDINAND P. BEER; E. RUSSEL JOHNSTON, JR; JOHN T. DEWOLF; DAVID F. MAZUREK; Mecânica dos Materiais. 5^a. ed. São Paulo. MCGraw-Hill. 2008.
- 9 ORLANDO, A.F; Calibração de um Termômetro Pt-100 Como Padrão de Trabalho de um Laboratório de Serviços Metrológicos. Congresso de Metrologia – 2003.SBM, 2003.
- 10 ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 13772: Termorresistência – Calibração por comparação com termorresistência de referência. 2008. Rio de Janeiro. 2ª.ed. ISBN 978-85-07-00903-0.

- 11 DA FONSECA, J. S.; MARTINS, G. D. A. Curso de Estatística. 6^a.ed. São Paulo: Atlas, 1980.
- 12 G.JR, A. A.; DE SOUSA, A. R. Fundamentos de Metrologia Científica e industrial. 1^a. ed. Barueri: Manole, 2008.

Bibliografia Complementar

•

Utilizada em toda a dissertação, onde termos técnicos, foram empregados.

INMETRO. Vocabulário Internacional de Metrologia: conceitos fundamentais e gerais e termos associados (VIM 2008). 1ª Edição Brasileira. Rio de Janeiro. 2009.

Apêndices

Apêndice A - Multiplicadores decádicos.

A medição da resistência elétrica de cada multiplicador decádico da Década Resistiva foi realizada e expressa na Tabela 70.

Equipamen to				Equipamento	Década Re	sistiva marca					
utilizado para	Multimetro Ag	gilent 3408.A		mensurado	Instrutherm - Mo	delo DR-1000 - N°					
medição			1		Ge sen	e 120202	1				
Quadro A	Mult	inlicador da E	Vécada: x 1 .	Resistências	em ohms	Quadro C	Multi	olicador da D	écada: x 10 .	Resistências	em ohms
Década (Ω)	Leitura 1	Leitura 2	Leitura 3	Média	DP	Década (Ω)	Leitura 1	Leitura 2	Leitura 3	Média	DP
0.00	0.098	0.098	0.098	0.098	0.00003512	0.00	0.098	0.098	0.098	0.098	0.00007767
1.00	0.198	0.198	0.197	0.198	0.00016743	1.00	10095	10.095	10.095	10.095	0.00013317
2.00	0.299	0,299	0.299	0.299	0.00013279	2.00	20.093	20.093	20.093	20.093	0.00017673
3,00	0.399	0,399	0.398	0,398	0.00012702	3,00	30,091	30,091	30,091	30,091	0.00014295
4,00	0,500	0,500	0,499	0,500	0,00011590	4,00	40,091	40,091	40,091	40,091	0,00021127
5,00	0,600	0,599	0,599	0,599	0,00014799	5,00	50,088	50,088	50,088	50,088	0,00015567
6,00	0,701	0,701	0,701	0,701	0,00013614	6,00	60,087	60,087	60,087	60,087	0,00012767
7,00	0,800	0,801	0,800	0,800	0,00016073	7,00	70,084	70,084	70,084	70,084	0,00011240
8,00	0,901	0,901	0,901	0,901	0,00015133	8,00	80,083	80,083	80,083	80,083	0,00005774
9,00	1,001	1,001	1,001	1,001	0,00016643	9,00	90,081	90,081	90,081	90,081	0,00007572
10,00	1,102	1,102	1,102	1,102	0,00014177	10,00	100,080	100,080	100,080	100,080	0,00014422
Quadro B	Mult	iplicador da I	Década: x1 -	Resistências e	mohms	Quadro D	Multip	licador da De	cada: x 100	Resistências	em ohms
Década (Ω)	Leitura 1	Leitura 2	Leitura 3	Média	DP	Década (Ω)	Leitura 1	Leitura 2	Leitura 3	Média	DP
0,00	0,098	0,098	0,098	0,098	0,00009165	0,00	0,098	0,098	0,098	0,098	0,00003786
1,00	1,097	1,097	1,097	1,097	0,00016010	1,00	100,104	100,104	100,104	100,104	0,00015011
2,00	2,098	2,097	2,097	2,097	0,00017954	2,00	200,116	200,116	200,116	200,116	0,00017321
3,00	3,096	3,096	3,096	3,096	0,00022480	3,00	300,117	300,117	300,117	300,117	0,00020817
4,00	4,097	4,097	4,097	4,097	0,00017616	4,00	400,115	400,114	400,114	400,114	0,00034641
5,00	5,095	5,095	5,095	5,095	0,00016523	5,00	500,118	500,117	500,117	500,117	0,00017321
6,00	6,096	6,096	6,096	6,096	0,00014189						
7,00	7,095	7,094	7,094	7,095	0,00016093						
8,00	8,095	8,095	8,095	8,095	0,00015177						
9,00	9,094	9,094	9,094	9,094	0,00015567						
10,00	10,096	10,096	10,096	10,096	0,00010536						
	1										
Quadro E					Resistência	Resistência da	Resistência				
Resistência	Posiç	ao do Multip	ácador da Dé	cada	obtida da	conexão (Ω)	Total (Ω)				
Desejada (12)	x 100	x 10	x1	x 0,1	Decada (12)						
100,00	0	9	9	0	99,8/541333	0,089599	99,96501253				
111,70	1	1	1	2	111,59451000	0,089599	111,68410900				
12/,10	1	2	7	0	127,38961667	0,089599	127,47921567				
154,70	1	5	4	2	154,09050333	0,089399	154,0/990233				
15/,50	1	2	7	0	157,38462000	0,089599	15/,4/421900				
1 /5,80	1	7	5	3	1/5,68203667	0,089599	1/5,7/163567				
229,70	2	2	9	2	229,60199333	0,089399	229,09109233				
313,70	3	1	3	3	313,70665333	0,089599	313,79625233				

Tabela 70 - Resistência elétrica dos multiplicadores decádicos.

Apêndice B - Determinação do raio do eixo Cardan

Este apêndice descreve como utilizar os resultados de várias medições do diâmetro e eliminar os *outliers* pelo método de Chauvenet.

Para realizar a medição do diâmetro foi utilizado um paquímetro marca Mitutoyo, de 30 cm, com uma incerteza tipo B de 0,05 mm (1/20 mm). Foram realizadas 50 medições. Isto se fez necessário pelo fato de que o valor do raio do eixo Cardan é utilizado para calcular o torque aplicado a ele, tendo por base a linearidade de sua deformação mecânica elástica, produzida pela aplicação de uma força ou torque. Na Tabela 71 estão relacionados os valores mensurados do diâmetro do eixo para cada medição realizada, assim como algumas operações estatísticas necessárias ao critério escolhido para eliminação de *outliers*.

Medição	Diâmetro (mm)	$\mathbf{d}_{\mathrm{i}} = \mathbf{x}_{\mathrm{i}} - \mathbf{x}_{\mathrm{m}}$	$ \mathbf{d}_i = \mathbf{x}_i - \mathbf{x}_m $	$(\mathbf{x}_{i} - \mathbf{x}_{m})^{2}$	di/S
1	95,25	0,03200	0,03200	0,001024	0,1769
2	95,50	0,28200	0,28200	0,079524	1,5587
3	95,15	-0,06800	0,06800	0,004624	0,3759
4	95,05	-0,16800	0,16800	0,028224	0,9286
5	95,15	-0,06800	0,06800	0,004624	0,3759
6	95,30	0,08200	0,08200	0,006724	0,4532
7	95,20	-0,01800	0,01800	0,000324	0,0995
8	95,05	-0,16800	0,16800	0,028224	0,9286
9	95,00	-0,21800	0,21800	0,047524	1,2050
10	95,25	0,03200	0,03200	0,001024	0,1769
11	95,40	0,18200	0,18200	0,033124	1,0060
12	95,20	-0,01800	0,01800	0,000324	0,0995
13	95,00	-0,21800	0,21800	0,047524	1,2050
14	95,15	-0,06800	0,06800	0,004624	0,3759
15	95,00	-0,21800	0,21800	0,047524	1,2050
16	95,40	0,18200	0,18200	0,033124	1,0060
17	95,25	0,03200	0,03200	0,001024	0,1769
18	95,65	0,43200	0,43200	0,186624	2,3878
19	95,50	0,28200	0,28200	0,079524	1,5587
20	95,45	0,23200	0,23200	0,053824	1,2824
21	95,65	0,43200	0,43200	0,186624	2,3878
22	95,40	0,18200	0,18200	0,033124	1,0060
23	95,35	0,13200	0,13200	0,017424	0,7296
24	95,10	-0,11800	0,11800	0,013924	0,6522
25	95,10	-0,11800	0,11800	0,013924	0,6522
26	95,10	-0,11800	0,11800	0,013924	0,6522
27	95,05	-0,16800	0,16800	0,028224	0,9286
28	95,15	-0,06800	0,06800	0,004624	0,3759
29	95,10	-0,11800	0,11800	0,013924	0,6522
30	95,00	-0,21800	0,21800	0,047524	1,2050

Tabela 71 - Medições do diâmetro do eixo Cardan

31	95,30	0,08200	0,08200	0,006724	0,4532
32	95,25	0,03200	0,03200	0,001024	0,1769
33	95,15	-0,06800	0,06800	0,004624	0,3759
34	95,00	-0,21800	0,21800	0,047524	1,2050
35	95,15	-0,06800	0,06800	0,004624	0,3759
36	95,20	-0,01800	0,01800	0,000324	0,0995
37	95,00	-0,21800	0,21800	0,047524	1,2050
38	95,00	-0,21800	0,21800	0,047524	1,2050
39	95,25	0,03200	0,03200	0,001024	0,1769
40	95,15	-0,06800	0,06800	0,004624	0,3759
41	95,00	-0,21800	0,21800	0,047524	1,2050
42	95,15	-0,06800	0,06800	0,004624	0,3759
43	95,20	-0,01800	0,01800	0,000324	0,0995
44	95,10	-0,11800	0,11800	0,013924	0,6522
45	95,45	0,23200	0,23200	0,053824	1,2824
46	95,65	0,43200	0,43200	0,186624	2,3878
47	95,25	0,03200	0,03200	0,001024	0,1769
48	95,30	0,08200	0,08200	0,006724	0,4532
49	95,40	0,18200	0,18200	0,033124	1,0060
50	95,05	-0,16800	0,16800	0,028224	0,9286
Média	95,22				
S	0,18	Desv. Padrão			
Σd_i		_	7,24		
$ \bar{d} $			0,14488		
$\Sigma (Xi-Xm)^2$				1,604	
S ²	Variância			0,033	
$S^{2} - \frac{1}{2}$	$\Sigma(x - x)^2$		$=\frac{1}{\Sigma} d_i =1$	$\frac{1}{\Sigma} \sum x_i - x_m $	
5 - n-1	$\Delta(x_i - x_m)$	141	n^{-1}	n^{-m}	

Continuação da Tabela 71 a

Valor do máximo do desvio para 50 medições, segundo a tabela de chauvenet: 2,57

O resultado obtido deste procedimento metrológico foi o diâmetro médio de 95,22 mm, com desvio padrão de 0,18 mm. Pelo critério de eliminação de *outliers* de Chauvenet, nenhum valor de medição foi excluído. Associando o resultado de medição a uma Distribuição Uniforme, ele admite uma incerteza de medição de 0,01 mm, calculada como visto abaixo, com número de graus de liberdade infinito.

$$u_p = \frac{s}{\sqrt{3}}$$

S = 0,18

$$u_p = \frac{0,18}{\sqrt{3}} = 0,0103 \text{ mm}$$

$$u_r = \frac{u_d}{2}$$

Esta incerteza também foi utilizada no cálculo da incerteza do torque.

Apêndice C – Análise de erros do osciloscópio

Este apêndice apresenta uma análise dos erros apresentados no certificado de calibração número 122432-101, emitido pelo IPT para o canal n° 1 do osciloscópio marca Tektronix, modelo TDS2024 relatados na página 3 de 5 do certificado supra citado. Os erros relados estão relacionados na Tabela 72. Estes erros foram utilizados para a correção da leitura de frequência gerada pelo gerador de sinais, e lidas pelo osciloscópio, no processo de avaliação do sistema de medição para velocidade de rotação do motor.

Freq. (Hz)	Erro (Hz)
1,0000	0,0000
1,5000	-0,0070
2,3000	-0,0270
2,5000	0,0000
4,0000	0,0320
5,0000	0,0000
20,0000	0,0008
28,0000	0,0014
35,0000	-0,0002
45,2000	0,0010
52,5000	0,0003
65,2300	0,0015

Tabela 72 - Erros relatados no certificado de calibração do osciloscópio - canal 1

Apêndice D: Elementos das amostras de medição de rpm.

	N2						N1				
Padrão	o n= 194	130	1399,73	262	2719,96	S.R	n = 194	129	1398	261	2718
Peso	Valor	132	1419,72	264	2739,96	Peso	Valor	131	1418	263	2738
2	101,16	133	1439,72	266	2759,96	1	100	134	1458	265	2758
3	139,31	135	1459,71	268	2779,96	4	139,5	136	1460	267	2778
5	159,21	138	1479,71	270	2799,96	6	159,5	137	1478	269	2798
7	179,11	140	1499,71	272	2819,96	8	180	139	1498	271	2818
9	199,02	142	1519,70	274	2839,96	10	200	141	1518	273	2838
11	218,92	144	1539,70	276	2859,96	12	219,5	143	1538	275	2858
13	258,08	146	1539,09	278	28/9,90	14	259,5	145	1558	277	28/8
15	239,08	148	1599.69	280	2099,90	16	239,3	147	1598	2/9	2090
19.50	300.00	150	1619.68	284	2939.96	10	300	149	1618	281	2939
21	319,90	154	1639,68	286	2959,96	22	320	153	1638	285	2958
24	339,89	156	1659,67	288	2979,96	23	339,5	155	1658	287	2978
25	359,88	158	1679,92	290	2999,96	26	360	157	1678	289	2998
28	379,88	160	1699,97	292	3019,96	27	379,5	159	1698	291	3019
29	399,87	162	1719,97	294	3039,96	30	400	161	1718	293	3039
32	419,87	164	1739,97	296	3059,96	31	419,5	163	1738	295	3059
34	439,86	166	1759,97	298	3079,96	33	439,5	165	1758	297	3079
36	459,85	168	1779,97	300	3099,96	35	459,5	167	1778	299	3099
38	479,85	170	1799,97	302	3119,96	37	479,5	169	1798	301	3119
40	499,84	172	1819,97	304	3139,96	39	499,5	171	1818	303	3139
42	519,83	174	1859,96	306	3159,95	41	519,5	173	1858	305	3159
44	550.82	170	1870.06	308	3100.05	43	550.5	175	1878	307	3100
40	579.81	1/0	1899.96	312	3219.95	43	579.5	170	1898	309	3219
40	599.81	182	1919.96	314	3239.95	50	600	181	1918	313	3239
52	619,80	184	1939,96	316	3259,95	51	616,5	183	1938	315	3259
53	639,80	186	1959,96	318	3279,95	54	640	185	1958	317	3279
56	659,79	188	1979,96	320	3299,95	55	659,5	187	1978	319	3299
58	679,78	190	1999,96	322	3319,95	57	679,5	189	1998	321	3319
59	699,78	192	2019,96	324	3339,95	60	700	191	2018	323	3339
61	719,77	194	2039,96	326	3359,95	62	720	193	2038	325	3359
64	739,76	196	2059,96	328	3379,95	63	739,5	195	2058	327	3379
66	759,76	198	2079,96	330	3399,95	65	759,5	197	2078	329	3399
67	779,75	200	2100,01	332	3419,95	68	780	199	2098	331	3419
70	799,74	202	2119,98	334	3439,95	69	799,5	201	2118	333	3439
72	819,74	204	2139,98	336	3459,95	71	819,5	203	2138	335	3459
74	850 72	206	2139,98	338	3479,93	73	850.5	205	2138	337	3400
70	879.72	208	2199.98	340	3519.95	75	880	207	2178	341	3519
79	899,71	210	2219,98	344	3539,95	80	900	209	2218	343	3539
82	919,71	212	2239,98	346	3559,95	81	919,5	213	2238	345	3559
83	939,70	216	2259,98	348	3579,95	84	940	215	2258	347	3579
86	959,69	218	2279,98	350	3599,94	85	959,5	217	2278	349	3599
88	979,69	220	2299,98	352	3619,94	87	979,5	219	2298	351	3619
89	999,68	222	2319,98	354	3639,94	90	1000	221	2318	353	3639
92	1019,67	224	2339,98	356	3659,94	91	1018	223	2338	355	3659
94	1039,67	226	2359,98	358	3679,94	93	1038	225	2358	357	3679
96	1059,66	228	2379,98	360	3699,94	95	1058	227	2378	359	3699
98	10/9,65	230	2399,98	362	3/19,94	97	10/8	229	2398	361	3/19
100	1119 64	232	2419,98	364	3759.94	99	1118	231	2418	303	3759
102	1139.64	234	2459.98	369	3779.94	101	1138	235	2458	367	3779
104	1159,63	230	2479.98	370	3799.94	105	1158	235	2478	369	3799
108	1179,62	240	2499,98	372	3819,94	107	1178	239	2498	371	3819
110	1199,52	242	2519,97	374	3839,94	109	1198	241	2518	373	3839
112	1219,76	244	2539,97	376	3859,94	111	1218	243	2538	375	3859
114	1239,76	246	2559,97	378	3879,94	113	1238	245	2558	377	3879
116	1259,75	248	2579,97	380	3899,94	115	1258	247	2578	379	3899
118	1279,75	250	2599,97	382	3919,91	117	1278	249	2598	381	3919
120	1299,75	252	2619,97	384	3939,91	119	1298	251	2618	383	3939
122	1319,74	254	2639,97	386	3959,91	121	1318	253	2638	385	3959
124	1339,74	256	2659,97	388	3979,91	123	1338	255	2658	387	3979
126	1359,73	258	2679,97	1.10	D2	125	1358	257	2678		p.
128	1379,13	260	2099,97	4140	K2	127	15/8	259	2098	4117	K1

Tabela 73 - Atribuição de pesos aos elementos das amostras, segundo Mann-Whitney

Apêndice E – Gráfico do torque

Gráfico gerado pelos dados transmitidos por bluetooth durante o ensaio dinâmico

Apêndice F – Cálculo do coeficiente de correlação

Apresenta-se aqui a determinação do coeficiente de correlação entre os valores de torques obtidos pelos dois métodos utilizados, indicados na Tabela 74.

Padrão	Eixo	Padrão	Eixo]	
$(x_i - \bar{x})$	$(y_i - \bar{y})$	$(x_i - \bar{x})^2$	$(y_i - \overline{y})^2$	$(x_i - \bar{x})(y_i - \bar{y})$	$(x_i - \bar{x})^2 (y_i - \bar{y})^2$
-1463,053628	-1560,343912	2140525,919	2434673,124	2282866,821	5211480924623,96
-1448,035584	-1445,620843	2096807,052	2089819,621	2093310,421	4381948519111,64
-1000,595352	-1100,725186	1001191,058	1211595,936	1101380,505	1213039016618,97
-926,233096	-1051,131069	857907,7479	1104876,523	973592,3838	947882129705,00
-831,718743	-950,814036	691756,0677	904047,3315	790809,8552	625380227058,65
-795,920520	-927,578849	633489,4749	860402,5218	738279,0406	545055941715,96
-678,989407	-789,609411	461026,6144	623483,0214	536136,4253	287442266482,57
-286,756499	-375,645214	82229,28945	141109,3266	107718,7062	11603319661,06
-281,886769	-348,571016	79460,15046	121501,7535	98257,55755	9654547615,69
-258,455552	-316,592183	66799,27226	100230,6106	81825,00746	6695331845,58
60,308601	21,498894	3637,127306	462,2024282	1296,56819	1681089,07
231,509616	231,452149	53596,70244	53570,09745	53583,3983	2871180572,99
488,466418	519,172373	238599,4419	269539,9533	253598,2697	64312082405,20
516,475105	552,644910	266746,5341	305416,3969	285427,3381	81468765339,12
528,120337	576,953013	278911,0906	332874,7794	304700,6199	92842467740,92
715,595881	799,413685	512077,4652	639062,2403	572057,1406	327249372124,15
820,211928	907,822615	672747,6072	824141,9002	744606,9375	554439491358,22
940,709142	1053,057731	884933,6906	1108930,586	990621,0355	981330035976,79
1147,304217	1306,897318	1316306,966	1707980,6	1499408,804	2248226761596,32
1154,184385	1307,425473	1332141,595	1709361,367	1509010,066	2277111378250,21
1368,759518	1590,293557	1873502,617	2529033,597	2176729,442	4738151062080,96
			2		1

Tabela 74 - Coeficientes de correlação

$\sum (x_i - \overline{x})^2$	$\Sigma (y_i - \overline{y})^2$	$\sum (x_i - \overline{x})(y_i - \overline{y})$
15544393,48	19072113,49	17195216,34

r(X,Y) = 0,99866847912

Sendo Y o valor considerado real de torque e X o torque calculado pela deformação do eixo.

Método do mínimos quadrados									
(X.Y)	X ²	Х	Y						
79,74694537	145988,3816	382,084260	0,208716						
92,2628166	708463,9157	841,702985	0,109614						
112,2237571	794410,5262	891,297103	0,125911						
109,0994211	983298,5937	991,614136	0,110022						
119,266688	1029919,147	1014,849322	0,117522						
103,8334492	1328991,096	1152,818761	0,090069						
87,23647383	2454808,838	1566,782958	0,055679						
67,21616424	2540380,631	1593,857155	0,042172						
59,3772745	2643342,661	1625,835988	0,036521						
41,40915757	3857009,518	1963,927065	0,021085						
3,543046374	4725755,651	2173,880321	0,001630						
-27,51883013	6059477,244	2461,600545	-0,011179						
-33,11211754	6225389,685	2495,073082	-0,013271						
-46,17227515	6347281,555	2519,381185	-0,018327						
-82,75075018	7517696,769	2741,841857	-0,030181						
-86,67743038	8123929,547	2850,250787	-0,030410						
-112,9623243	8972935,796	2995,485903	-0,037711						
-163,9795233	10558116,14	3249,325490	-0,050466						
-156,9833463	10561548,71	3249,853645	-0,048305						
-232,385726	12480122,81	3532,721728	-0,065781						

Apêndice G – Aplicação do método dos mínimos quadrados

Foi empregado este método para ser obtida uma equação de ajuste para os valores de torque obtidos pelo método da deformação do eixo, para que os mesmos fossem igualados aos valores do método padrão.

Σ(Χ.Υ)	Σ(X ²)	Σ(Χ)	Σ(Υ)	
-66,2528350	98305684,74022	40790,991607	0,615472	

m =	-0,00008			
b =	0,1862			

Apêndice H – Incertezas dos Instrumentos utilizados

As incertezas de medição dos instrumentos utilizados foram calculadas com base nos certificados de calibração de cada um deles, sendo:

Multímetro Agilent U1253 B Incerteza Tipo A – 0,0000394908 mV = 0,0000000394908 V Incerteza Tipo B – (Resolução = 0,0001 mV) = 0,000005/ $\sqrt{3}$ = 0,00000288675 mV = 0,0000000288675 V Incerteza combinada = 3,9498 . 10⁻⁸

Multímetro Agilent 3458A - Ω Incerteza Tipo A - 0,0095/2 = 0,00475 Ω Incerteza Tipo B - 0,0019 / $\sqrt{3}$ = 0,0010969655 Ω Incerteza Combinada = 0,004751203 Ω

Osciloscópio Tektronix - Hz Incerteza Tipo A - 0,0058/3,31 = 0,001752265 Hz $= (u_{c Tek})$ Incerteza Tipo B - xxxx

Paquímetro Mitutoyo - mm Incerteza Tipo A – **xxxx** Incerteza Tipo B – 1 mm /20 = 0,05 $\rightarrow \div \sqrt{3} = 0,028867513$ mm = 0,00002867513 m = (u_{cpm})

Flange de Aço - mm - R = 104,34 mm Incerteza Tipo A - 0,00219089 mm Incerteza Tipo B - 0,050 mm Incerteza Combinada (u_{cfa}) = 0,00469089 mm = 0,00000469089 m

Braço Móvel de Aço – mm - L = 261,16 mm Incerteza Tipo A – 0,00219089 mm Incerteza Tipo B – 0,050 mm Incerteza Combinada $(u_{cbm}) = 0,00469089$ mm = 0,00000469089 m Conjunto MX840A + Célula de carga Incerteza Tipo A – N Incerteza Tipo B – 0,050 N Incerteza Combinada $(u_{cbm}) = 0,00469089$ N

Anexo A – Escala Internacional de Temperatura de 1990

O Padrão Internacional de Temperatura de 1990 (ITS-90), atualmente em vigor, estabelece as seguintes correspondências entre a resistência elétrica de um Pt-100 e a temperatura na qual ele está inserido.

			10	anpera	ula en	Graus	Ceran	us (113-	-90)		
Resistên	icia em o	ohms							R	R _o = 100,0	00 Ω à 0°C
ITS-90 °C	0- 0	-1	-2	-3	4	-5	-6	-7	-8	-9	-10
				RESI	STÊNCI	A EM O	IMS				
-200	18.52										
-190	22.83	22.40	21.97	21.54	21.11	20.68	20.25	19.82	19.38	18.95	18.52
-180	27.10	26.67	26.24	25.82	25.39	24.97	24.54	24.11	23.68	23.25	22.83
-170	31.34	30.91	30.49	30.07	29.64	29.22	28.80	28.37	27.95	27.52	27.10
-160	35.54	35.12	34.70	34.28	33.86	33.44	33.02	32.60	32.18	31.76	31.34
-150	39.72	39.31	38.89	38.47	38.05	37.64	37.22	36.80	36.38	35.96	35.54
-140	43.88	43.46	43.05	42.63	42.22	41.80	41.39	40.97	40.56	40.14	39.72
-130	48.00	47.59	47.18	46.77	46.36	45.94	45.53	45.12	44.70	44.29	43.88
-120	52.11	51.70	51.29	50.88	50.47	50.06	49.65	49.24	48.83	48.42	48.00
-110	56.19	55.79	55.38	54.97	54.56	54.15	53.75	53.34	52.93	52.52	52.11
-100	60.26	59.85	59.44	59.04	58.63	58.23	57.82	57.41	57.01	56.60	56.19
-90	64.30	63.90	63.49	63.09	62.68	62.28	61.88	61.47	61.07	60.66	60.26
-80	68.33	67.92	67.52	67.12	66.72	66.31	65.91	65.51	65.11	64.70	64.30
-70	72.33	71.93	71.53	71.13	70.73	70.33	69.93	69.53	69.13	68.73	68.33
-60	76.33	75.93	75.53	75.13	74.73	74.33	73.93	73.53	73.13	72.73	72.33
-50	80.31	79.91	79.51	79.11	78.72	78.32	77.92	77.52	77.12	76.73	76.33
40	84.27	83.87	83.48	83.08	82.69	82.29	81.89	81.50	81.10	80.70	80.31
-30	88.22	87.83	87.43	87.04	86.64	86.25	85.85	85.46	85.06	84.67	84.27
-20	92.16	91.77	91.37	90.98	90.59	90.19	89.80	89.40	89.01	88.62	88.22
-10	96.09	95.69	95.30	94.91	94.52	94.12	93.73	93.34	92.95	92.55	92.16
0	100.00	99.61	99.22	98.83	98.44	98.04	97.65	97.26	96.87	96.48	96.09
ITS-90 °C	; 0	1	2	3	4	5	6	7	8	9 1	10
0	100.00	100.39	100.78	101.17	101.56	101.95	102.34	102.73	103.12	103.51	103.90
10	103.90	104.29	104.68	105.07	105.46	105.85	106.24	106.63	107.02	107.40	107.79
20	107.79	108.18	108.57	108.96	109.35	109.73	110.12	110.51	110.90	111.29	111.67
30	111.67	112.06	112.45	112.83	113.22	113.61	114.00	114.38	114.77	115.15	115.54
40	115.54	115.93	116.31	116.70	117.08	117.47	117.86	118.24	118.63	119.01	119.40
50	119.40	119.78	120.17	120.55	120.94	121.32	121.71	122.09	122.47	122.86	123.24
60	123.24	123.63	124.01	124.39	124.78	125.16	125.54	125.93	126.31	126.69	127.08
70	127.08	127.46	127.84	128.22	128.61	128.99	129.37	129.75	130.13	130.52	130.90
80	130.90	131.28	131.66	132.04	132.42	132.80	133.18	133.57	133.95	134.33	134.71
90	134.71	135.09	135.47	135.85	136.23	136.61	136.99	137.37	137.75	138.13	138.51
100	138.51	138.88	139.26	139.64	140.02	140.40	140.78	141.16	141.54	141.91	142.29
110	142.29	142.67	143.05	143.43	143.80	144.18	144.56	144.94	145.31	145.69	146.07
120	146.07	145.44	146.82	147.20	147.57	147.95	148.33	148.70	149.08	149.46	149.83
130	149.83	150.21	150.58	150.96	151.33	151.71	152.08	152.46	152.83	153.21	153.58
140	153.58	153.96	154.33	154.71	155.08	155.46	155.83	156.20	156.58	156.95	157.33
150	157.33	157.70	158.07	158.45	158.82	159.19	159.56	159.94	160.31	160.68	161.05
160	161.05	161.43	161.80	162.17	162.54	162.91	163.29	163.66	164.03	164.40	164.77
170	164.77	165.14	165.51	165.89	166.26	166.63	167.00	167.37	167.74	168.11	168.48
180	168.48	168.85	169.22	169.59	169.96	170.33	170.70	171.07	171.43	171.80	172.17
190	172.17	172.54	172.91	173.28	173.65	174.02	174.38	174.75	175.12	175.49	175.86
200	175.86	176.22	176.59	176.96	177.33	177.69	178.06	178.43	178.79	179.16	179.53
210	179.53	179.89	180.26	180.63	180.99	181.36	181.72	182.09	182.46	182.82	183.19
220	183.19	183.55	183.92	184.28	184.65	185.01	185.38	185.74	186.11	186.47	186.84
230	186.84	187.20	187.56	187.93	188.29	188.66	189.02	189.38	189.75	190.11	190.47
240	190.47	190.84	191.20	191.56	191.92	192.29	192.65	193.01	193.37	193.74	194.10

Temperatura em Graus Celsius (ITS-90)

TC 00 of	0	1	2	2	4	5	8	7	0 0) 4	0
112-90-0		1	2	3	4	0	0	1	0 8	<i>,</i>	U
				RESI	STENC	AEMO	HMS				
250	194,10	194,46	194.82	195,18	195.55	195.91	196.27	196.63	196.99	197.35	197.71
260	197.71	198.07	198.43	198.79	199,15	199.51	199.87	200.23	200.59	200.95	201.31
270	201.31	201.67	202.03	202.39	202.75	203.11	203.47	203.83	204.19	204.55	204.90
280	204.90	205.26	205.62	205.98	206.34	206.70	207.05	207.41	207.77	208.13	208.48
290	208.48	208.84	209.20	209.56	209.91	210.27	210.63	210.98	211.34	211.70	212.05
300	212.05	212.41	212.76	213.12	213.48	213.83	214.19	214.54	214.90	215.25	215.61
310	215.61	215.96	216.32	216.67	217.03	217.38	217.74	218.09	218.44	218.80	219.15
320	219.15	219.51	219.86	220.21	220.57	220.92	221.27	221.63	221.98	222.33	222.68
330	222.68	223.04	223.39	223.74	224.09	224,45	224.80	225.15	225.50	225.85	226.21
340	226.21	226.56	226.91	227.26	227.61	227.96	228.31	228.66	229.02	229.37	229.72
350	229.72	230.07	230.42	230.77	231.12	231.47	231.82	232.17	232.52	232.57	233.21
360	233.21	233.56	233.91	234.26	234.61	234.96	235.31	235.66	236.00	236.35	236.70
370	236.70	237.05	237.40	237.74	238.09	238.44	238.79	239.13	239.48	239.83	240.18
380	240.18	240.52	240.87	241.22	241.56	241.91	242.26	242.60	242.95	243.29	243.64
390	243.64	243.99	244.33	244.68	245.02	245.37	245.71	246.06	246.40	246.75	247.09
400	247.09	247.44	247.75	248.13	248.47	248.81	249.16	249.50	249.85	250.19	250.53
410	250.53	250.88	251.22	251.56	251.91	252.25	252.59	252.93	253.28	253.62	253.96
420	253.96	254 30	254 65	254.99	255 33	255 67	256.01	256.35	255.70	257.04	257 38
430	257.38	257.72	258.06	258.40	258.74	259.08	259 42	259.76	260.10	260.44	260.78
440	260.78	261.12	261.46	261.80	262.14	262.48	262.82	263.16	263.50	263.84	264.18
450	264.18	264 52	264.86	265.20	265 53	265.87	265.21	266.55	266.89	267 22	267 56
460	267.56	267.90	268.24	268.57	268.91	269.25	269.59	269.92	270.26	270.60	270.93
470	270.93	271.27	271.61	271.94	272.28	272.61	272.95	273.29	273.62	273.96	274.29
480	274.29	274.63	274.96	275.30	275.63	275.97	276.30	276.64	276.97	277.31	277.64
490	277.64	277.98	278.31	278.64	278.98	279.31	279.64	279.98	280.31	280.64	280.98
500	280.98	281.31	281 64	281.98	282 31	282 64	282.97	283 31	283.64	283.97	284.30
510	284 30	284 63	284 97	285.30	285 63	285 96	286.29	286.62	285.95	287.29	287.62
520	287.62	287.95	288.28	288.61	288.94	289.27	289.60	289.93	290.26	290.59	290.92
530	290.92	291.25	291.58	291.91	292.24	292.56	292.89	293.22	293.55	293.88	294.21
540	294.21	294.54	294.86	295.19	295.52	295.85	296.18	296.50	296.83	297.16	297.49
550	297.49	297.81	298.14	298.47	298.80	299.12	299.45	299.78	300.10	300.43	300.75
560	300.75	301.08	301.41	301.73	302.06	302.38	302.71	303.03	303.36	303.69	304.01
570	304.01	304.34	304.65	304 98	305.31	305.63	305.96	306.28	305.61	306.93	307.25
580	307.25	307.58	307.90	308.23	308.55	308.87	309.20	309.52	309.84	310.16	310.49
590	310.49	310.81	311.13	311.45	311.78	312.10	312.42	312.74	313.06	313.39	313.71
600	313 71	314.03	314 35	314.67	314.99	315 31	315.64	315.95	316.28	316.60	316.92
610	316.92	317.24	317.55	317.88	318.20	318.52	318.84	319,16	319.48	319.80	320,12
620	320.12	320.43	320.75	321.07	321.39	321.71	322.03	322.35	322.67	322.98	323.30
630	323.30	323.62	323.94	324.26	324.57	324.89	325.21	325.53	325.84	326.15	326.48
				307 43	207 74	200 05	200 20	200 50	200.04	200.20	
640	326.48	326.79	327.11	327.43	321.14	320.00	320.30	320.09	329.01	329.32	329.64

Temperatura em Graus Celsius (ITS-90)

CERTIFICADO DE CALIBRAÇÃO Nº 122432-101

Cliente:

Sérgio Bragantine Germano /FAPERJ Avenida das Américas, 28705 23020-470 - Guaratiba - Rio Janeiro - RJ

Anexo B – Certificados de calibração do osciloscópio

Item: Osciloscópio digital de 200 MHz

Referência: E-mail de 02/02/2013

DESCRIÇÃO DO ITEM

Osciloscópio digital de 200 MHz, marca Tektronix, modelo TDS2024C e serie nº C018754

Obs. Registrado no LME sob n^{eel} 0210/13.

INFORMAÇÕES PERTINENTES À CALIBRAÇÃO

1. Procedimento da calibração

Foram calibradas as faixas e os pontos solicitados pelo cliente.

A execução da calibração foi baseada no(s) procedimento(s) interno(s) CME-LME-G23 (Versão 9) e CME-LME-G25 (Versão 9).

A catioração foi realizada pelo método de comparação com o(s) padrão(ões) utilizado(8).

A calibração em treguência foi realizada aplicando-se sinais com amplitude eficaz de 1 V e forma de órida sencidal.

2. Incerteza

A excertaza expandida de medição relatada no item RESULTADOS e declarada como a incerteza padrão da medição multiplicada pelo fator de abrangência k, o qual para uma distribuição t com v_{en} graus de liberdada efetivos corresponde a uma probabilidade de abrangência de aproximadamente 95 %. A incerteza padrão da medição toi determinada de acordo com a publicação EA-4/02.

3. Padrão(ões) utilizado(s)

Descrição	Modelo	Série N*	Certificado Nº	Origem	Validade
Multimetro 6 % dígitos Calibrador multifunção	34401A 5520A	US36043082 1173004	120380-101 116071-101 e 116072-101	IPT-LME IPT-LME	out./2013 mar./2013

Charge and the second s

the Level Thready Practice Test - Collaboration and the Collaboration, Str. 1, 2344 Distribution of Call 11, 2012 (2020), Fail, 11, 2012 (2022), appendixed

1/5

Laboratório de calibração acreditado pela Cgcre de acordo com a ABNT NBR ISOREC 17025, sob o número CAL 0047

Certificado de Calibração Nº 122432-101

4. Rastreabilidade

Este certificado atende aos requisitos de acreditação pela Cgcre que avaliou a competência do laboratório e comprovou sua rastreabilidade a padrões nacionais de medida (ou ao Sistema Internacional de Unidades - SI).

5. Condições durante a calibração

As medições foram realizadas na temperatura ambiente de (23±3) °C e umidade relativa do ar de (60±20) %.

2.

6. Legenda para as abreviações usadas na apresentação dos resultados

VI = Valor Indicado (indicação obtida no item sob calibração)

VR = Valor de Referência (indicação obtida no padrão)

Erro = VI - VR (erro de indicação do item sob calibração)

- U = Incerteza Expandida de Medição
- k = Fator de Abrangência (fator multiplicativo adimensional)

vet = Graus de liberdade efetivos

Data da execução da calibração: 14/02/2013.

Calibração executada por: Técnico Roberto Felix Esteves

Supervisionada por: Eng.* Eletricista Tomie Yokoji

São Paulo, 14 de fevereiro de 2013.

CENTRÓ DE METROLOGIA MECÂNICA E ELÉTRICA Laboratório de Metrologia Elétrica

Fisico Regis Renato Dias Supervisor(a) da Calibração RE nº 8825

Una nole Fisica Rima Yehia Responsável pelo Laboratório RE nº 7837.8

CENTRO DE METROLOGIA MECÂNICA E ELÉTRICA

Laboratório de Metrologia Elétrica

On resultantics appresentantics interes data amente su aplicant acceptant ad dominiante nel consideratione. Ester documento ada da direito en suor da accesso d'El para de acaptante fan, cab pera de induntación A executiva de deda dacumento so podera sue falta remeatamente, sue revoltanta afra so ta

> As, publ. Armenda Prado, 572 | Cidade lancerotaria São Paulo | 521 | CID (15308-907 Tel: 11 - 3767 4002 | 428 | 11 - 3767 4002 | gateliptile

www.ipt.br

Laboratório de calibração acreditado pela Cgcre de acordo com a ABNT NBR ISO/IEC 17025, sob o número CAL 0047

Certificado de Calibração Nº 122432-101

RESULTADOS

Sinal de Calibração Interno (5 V) - Valor pico-a-pico

Unidade	VI	VR	Erro	U	k	Vett
V	5	4,907	0,093	0,010	2,00	80

Sinal de Calibração Interno (1 kHz)

Unidade	VI	VR	Erro	U	k	Verr
kHz	1	1.00000	0.00000	0,00012	2,00	00

Faixa de 250ms/DIV - (Medição pelo cursor) - Indicação em Frequência - Canal 1

Unidade	VI	VR	Erro	U	k	Vett
Hz	1,000	1,0000	0,0000	0,0058	2,00	40
Hz	1,493	1,5000	-0,0070	0,0058	2,00	60
Hz	2,273	2,3000	-0.0270	0,0058	2,00	ed
Hz	2,500	2,5000	0,0000	0,0058	2,00	

Faixa de 100ms/DIV (Medição pelo Cursor) - Indicação em Frequência - Canal 1

Unidade	VI	VR	Erro	U	k	Vett
Hz	4,032	4,0000	0,0320	0.0023	2,00	80
Hz	5,000	5,0000	0,0000	0.0023	2,00	10

Faixa de 10ms/DIV - (Medição automática) - Indicação em Frequência - Canal 1

Unidade	VI	VR	Erro	U	k	Ven
Hz	20,0008	20,0000	0,0008	0,0024	3,31	3
Hz	28,0014	28,0000	0.0014	0,0018	3,31	3
Hz	34,9998	35,0000	-0,0002	0,0018	3,31	3
Hz	45,2010	45,2000	0,0010	0,0029	3,31	3
Hz	52,5003	52,5000	0,0003	0,0020	3,31	3
Hz	65,2315	65,2300	0,0015	0,0012	3,31	3

Laboratório de calibração acreditado pela Cgcre de acordo com a ABNT NBR ISO/IEC 17025, sob o número CAL 0047

Certificado de Calibração Nº 122432-101

Faixa de 250ms/DIV - (Medição pelo cursor) - Indicação em Frequência - Canal 2

Unidade	VI	VR	Erro	U	k	Veff
Hz	1,000	1,0000	0,0000	0,0058	2,00	~~
Hz	1,493	1,5000	-0,0070	0,0058	2,00	00
Hz	2,326	2,3000	0,0260	0,0058	2,00	00
Hz	2,500	2,5000	0,0000	0,0058	2,00	00

Faixa de 100ms/DIV (Medição pelo Cursor) - Indicação em Frequência - Canal 2

Unidade	VI	VR	Erro	U	k	Veff
Hz	4,032	4,0000	0,0320	0,0023	2,00	00
Hz	5,000	5,0000	0,0000	0,0023	2,00	00

Faixa de 10ms/DIV - (Medição automática) - Indicação em Frequência - Canal 2

Unidade	VI	VR	Erro	U	k	Veff
Hz	20,0008	20,0000	0,0008	0,0020	3,31	3
Hz	28,0001	28,0000	0,0001	0,0073	3,31	3
Hz	35,0003	35,0000	0,0003	0,0024	3,31	3
Hz	45,2000	45,2000	0,0000	0,0049	3,31	3
Hz	52,5005	52,5000	0,0005	0,0049	3,31	3
Hz	65,2312	65,2300	0,0012	0,0044	3,31	3

Faixa de 250ms/DIV - (Medição pelo cursor) - Indicação em Frequência - Canal 3

Unidade	VI	VR	Erro	U	k	Veff
Hz	1,000	1,0000	0,0000	0,0058	2,00	00
Hz	1,515	1,5000	0,0150	0,0058	2,00	00
Hz	2,326	2,3000	0,0260	0,0058	2,00	00
Hz	2,500	2,5000	0,0000	0,0058	2,00	00

Faixa de 100ms/DIV (Medição pelo Cursor) - Indicação em Frequência - Canal 3

Unidade	VI	VR	Erro	U	k	Veff
Hz	4,032	4,0000	0,0320	0,0023	2,00	00
Hz	4,902	5,0000	-0,0980	0,0023	2,00	00

Os resultados apresentados neste documento se aplicam somente ao item ensaiado ou calibrado. Este documento não dá direito ao uso do nome ou da marca IPT, para quaisquer fins, sob pena de indenização. A reprodução deste documento só poderá ser feita integralmente, sem nenhuma alteração.

> Av. prof. Almeida Prado, 532 | Cidade Universitària São Paulo | SP | CEP 05508-901 Tel 11 3767 4000 | Fax 11 3767 4002 | ipt@ipt.br

Laboratório de calibração acreditado pela Cgcre de acordo com a ABNT NBR ISO/IEC 17025, sob o número CAL 0047

Certificado de Calibração Nº 122432-101

Faixa de 10ms/DIV - (Medição automática) - Indicação em Frequência - Canal 3

Unidade	VI	VR	Erro	U	k	Vet
Hz	20,0000	20,0000	0,0000	0,0024	3,31	3
Hz	27,9990	28,0000	-0,0010	0,0060	3,31	3
Hz	34,9995	35,0000	-0,0005	0,0074	3,31	3
Hz	45,2006	45,2000	0,0006	0,0036	3,31	3
Hz	52,4992	52,5000	-0,0008	0,0045	3,31	3
Hz	65,2315	65,2300	0,0015	0,0046	3,31	3

Faixa de 250ms/DIV - (Medição pelo cursor) - Indicação em Frequência - Canal 4

Unidade	VI	VR	Erro	U	k	Veff
Hz	1,000	1,0000	0,0000	0,0058	2,00	00
Hz	1,493	1,5000	-0,0070	0,0058	2,00	00
Hz	2,273	2,3000	-0,0270	0,0058	2,00	00
Hz	2,500	2,5000	0,0000	0,0058	2,00	00

Faixa de 100ms/DIV (Medição pelo Cursor) - Indicação em Frequência - Canal 4

Unidade	VI	VR	Erro	U	k	Veff
Hz	4,032	4,0000	0,0320	0,0023	2,00	00
Hz	5,000	5,0000	0,0000	0,0023	2,00	00

Faixa de 10ms/DIV - (Medição automática) - Indicação em Frequência - Canal 4

Unidade	VI	VR	Erro	U	k	Veff
Hz	20,0017	20,0000	0,0017	0,0060	3,31	3
Hz	28,0000	28,0000	0,0000	0,0019	3,31	3
Hz	35,0001	35,0000	0,0001	0,0051	3,31	3
Hz	45,2020	45,2000	0,0020	0,0051	3,31	3
Hz	52,5000	52,5000	0,0000	0,0040	3,31	3
Hz	65,2303	65,2300	0,0003	0,0017	3,31	3

Os resultados apresentados neste documento se aplicam somente ao item ensaiado ou calibrado. Este documento não dá direito ao uso do nome ou da marca IPT, para quaisquer fins, sob pena de indenização. A renoducião deste documento só poderá ser feita integralmente, sem nenhuma álteração.

Av. prof. Almeida Prado, 532 | Cidade Universitária São Paulo | SP | CEP 05508-901 Tel 11 3267 4000 | Fax 11 3767 4002 | ipt©ipt.br

Anexo C – Frequências utilizadas no segundo método de ensaio para análise da resposta do sistema de medição para velocidade de rotação

Frequência	Erro do	F A .	<i>a</i> ~
indicada no	osciloscópio	Frequencia Corrigida (Hz)	nara rnm
gerador (Hz)	(Hz)	Compilat (HZ)	puru ipin
1,6667	-0,0193	1,6860	101,16
2,0000	-0,0232	2,0232	121,39
2,3333	0,0115	2,3218	139,31
2,6667	0,0131	2,6535	159,21
3,0000	0,0148	2,9852	179,11
3,3333	0,0164	3,3169	199,02
3,6667	0,0181	3,6486	218,92
4,0000	0,0320	3,9680	238,08
4,3333	0,0154	4,3179	259,08
4,6667	0,0166	4,6501	279,00
5,0000	0,0000	5,0000	300,00
5,3333	0,0017	5,3316	319,90
5,6667	0,0018	5,6649	339,89
6,0000	0,0019	5,9981	359,88
6,3333	0,0020	6,3313	379,88
6,6667	0,0021	6,6645	399,87
7,0000	0,0022	6,9978	419,87
7,3333	0,0023	7,3310	439,86
7,6667	0,0025	7,6642	459,85
8,0000	0,0026	7,9974	479,85
8,3333	0,0027	8,3307	499,84
8,6667	0,0028	8,6639	519,83
9,0000	0,0029	8,9971	539,83
9,3333	0,0030	9,3303	559,82
9,6667	0,0031	9,6636	579,81
10,0000	0,0032	9,9968	599,81
10,3333	0,0033	10,3300	619,80
10,6667	0,0034	10,6633	639,80
11,0000	0,0035	10,9965	659,79
11,3333	0,0036	11,3297	679,78
11,6667	0,0037	11,6629	699,78
12,0000	0,0038	11,9962	719,77
12,3333	0,0039	12,3294	739,76
12,6667	0,0041	12,6626	759,76
13,0000	0,0042	12,9958	779,75
13,3333	0,0043	13,3291	799,74
13,6667	0,0044	13,6623	819,74
14,0000	0,0045	13,9955	839,73
14,3333	0,0046	14,3287	859,72
14,6667	0,0047	14,6620	879,72
15,0000	0,0048	14,9952	899,71
15,3333	0,0049	15,3284	919,71
15,6667	0,0050	15,6617	939,70
16,0000	0,0051	15,9949	959,69
16,3333	0,0052	16,3281	979,69
16,6667	0,0053	16,6613	999,68
17,0000	0,0054	16,9946	1019,67
17,3333	0,0055	17,3278	1039,67
17,6667	0,0057	17,6610	1059,66
18,0000	0,0058	17,9942	1079,65
18,3333	0,0059	18,3275	1099,65
18,6667	0,0060	18,6607	1119,64
19,0000	0,0061	18,9939	1139,64
19,3333	0,0062	19,3271	1159,63
19,6667	0,0063	19,6604	1179,62

	Medição 1 (Hz)	Medição 2 (Hz)	Medição 3 (Hz)	leituras (x _m)	Erro (rpm)	S^2	S
	100.0	100	100	100	-1.16	0.0000	0.0000
	110.5	110.5	110.5	119.5	-1.89	0.0000	0.0000
	139.5	139.5	139.5	139.5	0.19	0,0000	0,0000
	159.5	159,5	159,5	159.5	0.29	0,0000	0,0000
	139,5	139,5	139,5	180	0.89	0,0000	0,0000
	200	200	200	200	0.98	0,0000	0,0000
	200	200	200	219.5	0,58	0,0000	0,0000
	219,5	219,5	219,5	239.5	1.42	0,0000	0,0000
	259,5	259,5	259,5	259,5	0.42	0,0000	0,0000
	239,5	239,5	239,5	239,5	0,42	0,0000	0,0000
	219,5	219,5	279,5	300	0.00	0,0000	0,0000
	300	300	300	320	0,00	0,0000	0,0000
	220 5	220.5	220 5	330.5	0,10	0,0000	0,0000
	260	339,5	339,5	360	-0,39	0,0000	0,0000
	270.5	270.5	270.5	370.5	0,12	0,0000	0,0000
	379,5	379,5	3/9,5	400	-0,38	0,0000	0,0000
	400	400	400	410.5	0,15	0,0000	0,0000
	419,5	419,5	419,5	419,5	-0,37	0,0000	0,0000
	439,5	439,5	439,5	459,5	-0,30	0,0000	0,0000
	459,5	459,5	459,5	439,3	-0,33	0,0000	0,0000
	4/9,5	479,5	4/9,5	479,5	-0,33	0,0000	0,0000
	499,5	499,5	499,5	510.5	-0,34	0,0000	0,0000
	519,5	519,5	519,5	520.5	-0,33	0,0000	0,0000
	539,5	539,5	539,5	559,5	-0,55	0,0000	0,0000
	559,5	559,5	559,5	539,5	-0,52	0,0000	0,0000
	579,5	579,5	5/9,5	579,5	-0,51	0,0000	0,0000
	600	600	600	616.5	2,20	0,0000	0,0000
	616,5	616,5	616,5	616,5	-3,30	0,0000	0,0000
	640	640	640	640	0,20	0,0000	0,0000
	659,5	659,5	659,5	639,5	-0,29	0,0000	0,0000
	6/9,5	679,5	6/9,5	700	-0,28	0,0000	0,0000
	700	700	700	700	0,22	0,0000	0,0000
	720	720	720	720.5	0,25	0,0000	0,0000
	739,5	739,5	/39,5	759,5	-0,26	0,0000	0,0000
	/59,5	/59,5	/59,5	739,5	-0,20	0,0000	0,0000
	/80	/80	/80	700.5	0,23	0,0000	0,0000
	/99,5	/99,5	/99,5	799,5 810.5	-0,24	0,0000	0,0000
	819,5	819,5	819,5	830.5	-0,24	0,0000	0,0000
	839,5	839,5	839,5	850.5	-0,23	0,0000	0,0000
	839,5	859,5	859,5	880	-0,22	0,0000	0,0000
	000	000	000	900	0.20	0,0000	0,0000
	900	900	900	010.5	0,2)	0,0000	0,0000
	919,5	919,5	919,5	919,5	-0,21	0,0000	0,0000
	940	940	940	959.5	-0.19	0,0000	0,0000
	939,5	939,3	939,3	979.5	-0,19	0,0000	0,0000
	1000	979,5	9/9,5	1000	0.32	0,0000	0,0000
	1010	1010	1010	1018	-1.67	0,0000	0,0000
ļ	1018	1018	1018	1018	-1.67	0,0000	0,0000
ļ	1058	1050	1058	1058	-1.66	0.0000	0.0000
ļ	1056	1030	1030	1078	-1.65	0.0000	0.0000
ļ	1000	1008	1008	1098	-1.65	0.0000	0.0000
ļ	1118	1118	1118	1118	-1 64	0.0000	0.0000
ļ	1138	1138	1138	1138	-1 64	0.0000	0.0000
ļ	1158	1158	1158	1158	-1.63	0.0000	0.0000
	1178	1178	1178	1178	-1.62	0.0000	0,0000

Frequência	Erro do			1		
indicada no	osciloscópio	Frequência	Conversão		Medição 1	Medição 2
gerador (Hz)	(Hz)	Corrigida (Hz)	para rpm		(Hz)	(Hz)
20,0000	0,0080	19,9920	1199,52		1198	1198
20,3333	0,0040	20,3294	1219,76	1	1218	1218
20,6667	0,0040	20,6626	1239,76		1238	1238
21,0000	0,0041	20,9959	1259,75		1258	1258
21,3333	0,0042	21,3292	1279,75		1278	1278
21,6667	0,0042	21,6624	1299,75		1298	1298
22,0000	0,0043	21,9957	1319,74		1318	1318
22,3333	0,0044	22,3290	1339,74		1338	1338
22,6667	0,0044	22,6622	1359,73		1358	1358
23,0000	0,0045	22,9955	1379,73		1378	1378
23,3333	0,0046	23,3288	1399,73		1398	1398
23,6667	0,0046	23,6620	1419,72		1418	1418
24,0000	0,0047	23,9953	1439,72		1460	1460
24,3333	0,0048	24,3286	1459,71		1458	1458
24,6667	0,0048	24,6618	1479,71]	1478	1478
25,0000	0,0049	24,9951	1499,71]	1498	1498
25,3333	0,0050	25,3284	1519,70		1518	1518
25,6667	0,0050	25,6616	1539,70]	1538	1538
26,0000	0,0051	25,9949	1559,69		1558	1558
26,3333	0,0052	26,3282	1579,69		1578	1578
26,6667	0,0052	26,6614	1599,69		1598	1598
27,0000	0,0053	26,9947	1619,68		1618	1618
27,3333	0,0054	27,3280	1639,68		1638	1638
27,6667	0,0054	27,6612	1659,67		1658	1658
28,0000	0,0014	27,9986	1679,92		1678	1678
28,3333	0,0005	28,3328	1699,97		1698	1698
28,6667	0,0005	28,6661	1719,97		1718	1718
29,0000	0,0006	28,9994	1739,97		1738	1738
29,3333	0,0006	29,3328	1759,97		1758	1758
29,6667	0,0006	29,6661	1779,97		1778	1778
30,0000	0,0006	29,9994	1799,97		1798	1798
30,3333	0,0006	30,3328	1819,97		1818	1818
30,6667	0,0006	30,6661	1839,96]	1838	1838
31,0000	0,0006	30,9994	1859,96		1858	1858
31,3333	0,0006	31,3327	1879,96]	1878	1878
31,6667	0,0006	31,6661	1899,96		1898	1898
32,0000	0,0006	31,9994	1919,96		1918	1918
32,3333	0,0006	32,3327	1939,96		1938	1938
32,6667	0,0006	32,6660	1959,96		1958	1958
33,0000	0,0006	32,9994	1979,96		1978	1978
33,3333	0,0006	33,3327	1999,96		1998	1998
33,6667	0,0006	33,6660	2019,96		2018	2018
34,0000	0,0006	33,9994	2039,96		2038	2038
34,3333	0,0007	34,3327	2059,96		2058	2058
34,6667	0,0007	34,6660	2079,96		2078	2078
35,0000	-0,0002	35,0002	2100,01		2098	2098
35,3333	0,0004	35,3330	2119,98	l	2118	2118
35,6667	0,0004	35,6663	2139,98		2138	2138
36,0000	0,0004	35,9996	2159,98		2158	2158
36,3333	0,0004	36,3330	2179,98		2178	2178
36,6667	0,0004	36,6663	2199,98		2198	2198
37,0000	0,0004	36,9996	2219,98		2218	2218
37,3333	0,0004	37,3330	2239,98]	2238	2238
37,6667	0,0004	37,6663	2259,98		2258	2258
38,0000	0,0004	37,9996	2279,98		2278	2278

^	`	~	1		1	• .	1	1. 4	~	•	• ~	1	
	'onti	1110000	dor	acmonto.	d O	alatomo	do	modia	00 0	011011	0000	dor	nm
۰.	ОЛИ	macao	114 11	ESDUSIA.	(1()	SISICILIA	UC.	THECHCA	au a	SILLI	iacao	(17)	
-		IIGução	un I	opposia	~ ~	DIDCOINC	~~	1110 010	$\mathbf{a} \mathbf{c} \mathbf{a}$	DITIO.	inça0	cace 1	PIII

			Média das			
Medição 1	Medição 2	Medição 3	leituras	Erro (rpm)	S^2	S
(112)	(112)	(112)	(x _m)			
1198	1198	1198	1198	-1,52	0,0000	0,0000
1218	1218	1218	1218	-1,76	0,0000	0,0000
1238	1238	1238	1238	-1,76	0,0000	0,0000
1258	1258	1258	1258	-1,75	0,0000	0,0000
1278	1278	1278	1278	-1,75	0,0000	0,0000
1298	1298	1298	1298	-1,75	0,0000	0,0000
1318	1318	1318	1318	-1,74	0,0000	0,0000
1338	1338	1338	1338	-1,74	0,0000	0,0000
1358	1358	1358	1358	-1,73	0,0000	0,0000
1378	1378	1378	1378	-1,73	0,0000	0,0000
1398	1398	1398	1398	-1,73	0,0000	0,0000
1418	1418	1418	1418	-1,72	0,0000	0,0000
1460	1460	1460	1460	20,28	0,0000	0,0000
1458	1458	1458	1458	-1,71	0,0000	0,0000
1478	1478	1478	1478	-1,71	0,0000	0,0000
1498	1498	1498	1498	-1,71	0,0000	0,0000
1518	1518	1518	1518	-1,70	0,0000	0,0000
1538	1538	1538	1538	-1,70	0,0000	0,0000
1558	1558	1558	1558	-1,69	0,0000	0,0000
1578	1578	1578	1578	-1,69	0,0000	0,0000
1598	1598	1598	1598	-1,69	0,0000	0,0000
1618	1618	1618	1618	-1,68	0,0000	0,0000
1638	1638	1638	1638	-1,68	0,0000	0,0000
1658	1658	1658	1658	-1,67	0,0000	0,0000
1678	1678	1678	1678	-1,92	0,0000	0,0000
1698	1698	1698	1698	-1,97	0,0000	0,0000
1718	1718	1718	1718	-1,97	0,0000	0,0000
1738	1738	1738	1738	-1,97	0,0000	0,0000
1758	1758	1758	1758	-1,97	0,0000	0,0000
1778	1778	1778	1778	-1,97	0,0000	0,0000
1798	1798	1798	1798	-1,97	0,0000	0,0000
1818	1818	1818	1818	-1,97	0,0000	0,0000
1838	1838	1838	1838	-1,96	0,0000	0,0000
1858	1858	1858	1858	-1,96	0,0000	0,0000
1878	1878	1878	1878	-1,96	0,0000	0,0000
1898	1898	1898	1898	-1,96	0,0000	0,0000
1918	1918	1918	1918	-1,96	0,0000	0,0000
1938	1938	1938	1938	-1,96	0,0000	0,0000
1958	1958	1958	1958	-1,96	0,0000	0,0000
1978	1978	1978	1978	-1.96	0.0000	0.0000
1998	1998	1998	1998	-1.96	0.0000	0.0000
2018	2018	2018	2018	-1.96	0.0000	0.0000
2018	2010	2010	2038	-1.96	0.0000	0.0000
2058	2058	2058	2058	-1.96	0.0000	0.0000
2058	2038	2058	2078	-1.96	0.0000	0.0000
2078	2078	2078	2098	-2.01	0,0000	0,0000
2098	2098	2098	2118	-1.98	0,0000	0,0000
2110	2110	2110	2138	-1.98	0.0000	0.0000
2150	2150	2150	2158	-1.98	0.0000	0.0000
2130	2130	2130	2178	-1.98	0,0000	0,0000
21/0	21/0	21/0	2198	-1.98	0,0000	0,0000
2198	2198	2198	2190	-1,90	0,0000	0,000
2218	2218	2218	2210	-1,90	0,0000	0,000
2238	2238	2258	2230	-1,90	0,0000	0,000
2258	2258	2258	2230	-1,90	0,0000	0,000
2258 2278	2258 2278	2258 2278	2258 2278	-1,98 -1,98	0,0000 0,0000	0,00

S

0,0000 0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

Erro (rpm)

-1,98

-1,98

-1,98

-1,98

-1,98

-1,98

-1,98

-1,98

-1,98 -1,98

-1,98

-1,97

-1,97

-1,97

-1,97

-1,97

-1,97

-1,97 -1,97

-1,97

-1,97

-1,96

-1,96

-1,96

-1,96

-1,96 -1,96

-1,96

-1,96

-1,96

-1,96

-1,96

-0,96

-1,96

-1,96 -1,96

-0,96

-0,96

-0,96 -0,96

-0,96

-0,96

-0,96 -0,95

-0,95

-0,95

-0,95

-0,95

-0,95

-0,95 -0,95

-0,95

-0,95

-0,95

-0,95

 S^2

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0.0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

Frequência	Erro do	Eroquâncio	Conversão		Madiaão 1	Madiaão 2	Madiaão 2	Méd
indicada no	osciloscópio	Frequencia Corrigida (Hz)	Dara rom		(Hz)	(Hz)	(Hz)	leit
gerador (Hz)	(Hz)	Comgida (Hz)	para ipin		(112)	(112)	(112)	(x
38,3333	0,0004	38,3330	2299,98		2298	2298	2298	22
38,6667	0,0004	38,6663	2319,98		2318	2318	2318	23
39,0000	0,0004	38,9996	2339,98		2338	2338	2338	23
39,3333	0,0004	39,3329	2359,98		2358	2358	2358	23
39,6667	0,0004	39,6663	2379,98		2378	2378	2378	23
40.0000	0.0004	39,9996	2399.98		2398	2398	2398	23
40.3333	0.0004	40.3329	2419.98		2418	2/18	2418	24
40,6667	0,0004	40,6663	2439.98		2410	2410	2410	24
41,0000	0,0004	40,9996	2459.98		2458	2458	2458	- 24
41,0000	0,0004	41,3329	2459,90		2430	2450	2438	2
41,5555	0,0004	41,5523	2400.08		24/0	24/0	24/0	2
42,0007	0,0004	41,0005	2499,90		2498	2498	2498	25
42,0000	0,0004	41,9990	2519,97		2518	2518	2518	2.
42,5555	0,0004	42,3329	2559,97		2538	2538	2538	23
42,6667	0,0004	42,6662	2559,97		2558	2558	2558	25
43,0000	0,0004	42,9996	25/9,97		2578	2578	2578	23
43,3333	0,0004	45,3329	2599,97		2598	2598	2598	25
43,6667	0,0004	43,6662	2619,97		2618	2618	2618	26
44,0000	0,0004	43,9996	2639,97		2638	2638	2638	26
44,3333	0,0004	44,3329	2659,97		2658	2658	2658	26
44,6667	0,0004	44,6662	2679,97		2678	2678	2678	- 26
45,0000	0,0004	44,9996	2699,97		2698	2698	2698	- 26
45,3333	0,0006	45,3327	2719,96		2718	2718	2718	27
45,6667	0,0006	45,6661	2739,96		2738	2738	2738	27
46,0000	0,0006	45,9994	2759,96		2758	2758	2758	27
46,3333	0,0006	46,3327	2779,96		2778	2778	2778	2
46,6667	0,0006	46,6660	2799,96		2798	2798	2798	2
47,0000	0,0006	46,9994	2819,96		2818	2818	2818	- 28
47,3333	0,0006	47,3327	2839,96		2838	2838	2838	- 28
47,6667	0,0006	47,6660	2859,96		2858	2858	2858	28
48,0000	0,0006	47,9994	2879,96		2878	2878	2878	- 28
48,3333	0,0006	48,3327	2899,96		2898	2898	2898	- 28
48,6667	0,0006	48,6660	2919,96		2918	2918	2918	29
49,0000	0,0007	48,9993	2939,96		2939	2939	2939	29
49,3333	0.0007	49.3327	2959.96		2958	2958	2958	29
49,6667	0.0007	49,6660	2979.96		2978	2978	2978	29
50,0000	0,0007	49,9993	2999.96		2998	2998	2998	29
50,3333	0.0007	50,3327	3019.96		3010	3010	3010	3(
50,6667	0.0007	50,6660	3039.96		3019	3019	3019	3(
51,0000	0,0007	50,9993	3059.96		3059	3059	3059	30
51 3333	0,0007	51 3327	3079.90		2070	2070	2070	30
51,5555	0,0007	51,5527	3019,90		30/9	30/9	30/9	30
52,0000	0,0007	51,0002	2110.06		3099	3099	3099	30
52,0000	0,0007	51,9995	2120.00		3119	3119	3119	3.
52,3333	0,0007	52,5526	5159,96		3139	3139	3139	3.
52,6667	0,0008	52,6659	3159,95		3159	3159	3159	3
53,0000	0,0008	52,9992	3179,95		3179	3179	3179	3
53,3333	0,0008	53,3325	3199,95		3199	3199	3199	3
53,6667	0,0008	53,6658	3219,95		3219	3219	3219	32
54,0000	0,0008	53,9992	3239,95		3239	3239	3239	32
54,3333	0,0008	54,3325	3259,95		3259	3259	3259	32
54,6667	0,0008	54,6658	3279,95		3279	3279	3279	32
55,0000	0,0008	54,9992	3299,95		3299	3299	3299	32
55,3333	0,0008	55,3325	3319,95		3319	3319	3319	33
55,6667	0,0009	55,6658	3339,95		3339	3339	3339	33
56,0000	0,0009	55,9991	3359,95		3359	3359	3359	33
56,3333	0,0009	56,3325	3379,95		3379	3379	3379	33
				,				-

Continuação da resposta do sistema de medição a simulação da rpm

Frequência indicada no gerador (Hz)	Erro do osciloscópio (Hz)	Frequência Corrigida (Hz)	Conversão para rpm
56,6667	0,0009	56,6658	3399,95
57,0000	0,0009	56,9991	3419,95
57,3333	0,0009	57,3325	3439,95
57,6667	0,0009	57,6658	3459,95
58,0000	0,0009	57,9991	3479,95
58,3333	0,0009	58,3324	3499,95
58,6667	0,0009	58,6658	3519,95
59,0000	0,0009	58,9991	3539,95
59,3333	0,0009	59,3324	3559,95
59,6667	0,0009	59,6658	3579,95
60,0000	0,0009	59,9991	3599,94
60,3333	0,0009	60,3324	3619,94
60,6667	0,0009	60,6657	3639,94
61,0000	0,0009	60,9991	3659,94
61,3333	0,0009	61,3324	3679,94
61,6667	0,0009	61,6657	3699,94
62,0000	0,0009	61,9991	3719,94
62,3333	0,0010	62,3324	3739,94
62,6667	0,0010	62,6657	3759,94
63,0000	0,0010	62,9990	3779,94
63,3333	0,0010	63,3324	3799,94
63,6667	0,0010	63,6657	3819,94
64,0000	0,0010	63,9990	3839,94
64,3333	0,0010	64,3323	3859,94
64,6667	0,0010	64,6657	3879,94
65,0000	0,0010	64,9990	3899,94
65,3333	0,0015	65,3318	3919,91
65,6667	0,0015	65,6652	3939,91
66,0000	0,0015	65,9985	3959,91
66,3333	0,0015	66,3318	3979,91

-	· ·	~	1	. 1	•	1 1'	~	• •	~	
	`	0000	do moonoo	to do d	antomo .		aaaaa	14 100 11	000	0 100 100
	()()()	шясял	THA PECHAN	1 7 <i>1</i> 1 1 1 1 5	легения ($1e^{-11}e^{-11$	· 40 4 4	линия	(30 (гя гімпі
•	~///////	\mathbf{n}	\mathbf{u}		NINIA/11/01/0	\mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n}		<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	$\omega a v v$	
_										
		<u> </u>					•		`	

Medição 1 (Hz)	Medição 2 (Hz)	Medição 3 (Hz)	leituras	Erro (rpm)	S^2	s
			(Am)	0.05	0.0000	0.0000
3399	3399	3399	2399	-0,95	0,0000	0,0000
3419	3419	3419	3419	-0,95	0,0000	0,0000
3439	3439	3439	3439	-0,95	0,0000	0,0000
3459	3459	3459	3459	-0,95	0,0000	0,0000
3479	3479	3479	3479	-0,95	0,0000	0,0000
3499	3499	3499	3499	-0,95	0,0000	0,0000
3519	3519	3519	3519	-0,95	0,0000	0,0000
3539	3539	3539	3539	-0,95	0,0000	0,0000
3559	3559	3559	3559	-0,95	0,0000	0,0000
3579	3579	3579	3579	-0,95	0,0000	0,0000
3599	3599	3599	3599	-0,94	0,0000	0,0000
3619	3619	3619	3619	-0,94	0,0000	0,0000
3639	3639	3639	3639	-0,94	0,0000	0,0000
3659	3659	3659	3659	-0,94	0,0000	0,0000
3679	3679	3679	3679	-0,94	0,0000	0,0000
3699	3699	3699	3699	-0,94	0,0000	0,0000
3719	3719	3719	3719	-0,94	0,0000	0,0000
3739	3739	3739	3739	-0,94	0,0000	0,0000
3759	3759	3759	3759	-0,94	0,0000	0,0000
3779	3779	3779	3779	-0,94	0,0000	0,0000
3799	3799	3799	3799	-0,94	0,0000	0,0000
3819	3819	3819	3819	-0,94	0,0000	0,0000
3839	3839	3839	3839	-0,94	0,0000	0,0000
3859	3859	3859	3859	-0,94	0,0000	0,0000
3879	3879	3879	3879	-0,94	0,0000	0,0000
3899	3899	3899	3899	-0,94	0,0000	0,0000
3919	3919	3919	3919	-0,91	0,0000	0,0000
3939	3939	3939	3939	-0,91	0,0000	0,0000
3959	3959	3959	3959	-0,91	0,0000	0,0000
3979	3979	3979	3979	-0,91	0,0000	0,0000
3999	3999	3999	3999	3999.00	0.0000	0.0000

Anexo D - Valores críticos para o Teste K-S

Tabela 75 - Valores críticos da Distribuição para o teste K-S

TABELA VII

Valores Críticos da Distribuição da Estatística \mathbf{D}_{n} (Kolmogorov-Smirnov)

Os valores tabelados correspondem aos pontos $D_{n,\alpha}$ tais que: $P(D_n \ge D_{n,\alpha}) = \alpha$.

			α							α		
n	0.20	0.10	0.05	0.02	0.01		n	0.20	0.10	0.05	0.02	0.01
1	0.900	0.95	0.975	0.990	0.995		21	0.226	0.259	0.287	0.321	0.344
2	0.684	0.776	0.842	0.900	0.929		22	0.221	0.253	0.281	0.314	0.337
3	0.565	0.636	0.708	0.785	0.829		23	0.216	0.247	0.275	0.307	0.330
4	0.493	0.565	0.624	0.689	0.734		24	0.212	0.242	0.269	0.301	0.323
5	0.447	0.509	0.563	0.627	0.669		25	0.208	0.238	0.264	0.295	0.317
6	0.410	0.468	0.519	0.577	0.617		26	0.204	0.233	0.259	0.290	0.311
7	0.381	0.436	0.483	0.538	0.576		27	0.200	0.229	0.254	0.284	0.305
8	0.358	0.410	0.454	0.407	0.542	1	28	0.197	0.225	0.250	0.279	0.300
9	0.339	0.387	0.430	0.480	0.513	ĺ	29	0.193	0.221	0.246	0.275	0.295
10	0.323	0.369	0.409	0.457	0.489		30	0.190	0.218	0.242	0.270	0.290
11	0.308	0.352	0.391	0.437	0.468		31	0.187	0.214	0.238	0.266	0.285
12	0.296	0.338	0.375	0.419	0.449		32	0.184	0.211	0.234	0.262	0.181
13	0.285	0.325	0.361	0.404	0.432		33	0.182	0.208	0.231	0.258	0.277
14	0.275	0.314	0.349	0.390	0.418		34	0.179	0.205	0.227	0.254	0.273
15	0.266	0.304	0.338	0.377	0.404		35	0.177	0.202	0.224	0.251	0.269
16	0.258	0.295	0.327	0.366	0.392		36	0.174	0.199	0.221	0.247	0.265
17	0.250	0.286	0.318	0.355	0.381		37	0.172	0.196	0.218	0.244	0.262
18	0.244	0.279	0.309	0.346	0.371		38	0.170	0.194	0.215	0.241	0.258
19	0.237	0.271	0.301	0.337	0.361		39	0.168	0.191	0.213	0.238	0.255
20	0.232	0.265	0.294	0.329	0.352		40	0.165	0.189	0.210	0.235	0.252

Para n>40 os valores críticos de $\,{\rm D}_{\rm n}\,$ podem ser aproximados pelas seguintes expressões:

		α		
0.20	0.10	0.05	0.02	0.01
1.07	1.22	1.36	1.52	1.63
\sqrt{n}	\sqrt{n}	\sqrt{n}	\sqrt{n}	\sqrt{n}

Anexo E – Certificado de calibração do multímetro Agilent 3458A

CERTIFICADO DE CALIBRAÇÃO Nº 122584-101

Cliente: Sérgio Bragantine Germano / FAPERJ Avenida das Américas, 28705 23020-470 – Guaratiba – Rio Janeiro – RJ

Item: Multímetro 8 1/2 dígitos

Referência: E-mail de 02/02/2013

DESCRIÇÃO DO ITEM

Multímetro 8 1/2 dígitos, marca Agilent, modelo 3458A e série nº MY45048882.

Obs.: Registrado no LME sob nº(s) 0211/13.

INFORMAÇÕES PERTINENTES À CALIBRAÇÃO

1. Procedimento da calibração

Foram calibradas as faixas e os pontos solicitados pelo cliente.

A execução da calibração foi baseada no(s) procedimento(s) interno(s) CME-LME-G71 (Versão 2).

A calibração foi realizada pelo método de comparação com o(s) padrão(ões) utilizado(s).

As faixas de resistência, tensão DC e corrente DC foram calibradas utilizando-se a configuração "100 NPLC". Para as faixas de resistência e tensão DC também foi utilizada a configuração "NDIG 8". As faixas de resistência foram calibradas com a configuração "Offset Comp ON".

As correntes nominais das faixas de resistência foram calibradas com o multimetro configurado em "Offset Comp OFF".

2. Incerteza

A incerteza expandida de medição relatada no item RESULTADOS é declarada como a incerteza padrão da medição multiplicada pelo fator de abrangência k, o qual para uma distribuição t com v_{ert} graus de liberdade efetivos corresponde a uma probabilidade de abrangência de aproximadamente 95 %. A incerteza padrão da medição foi determinada de acordo com a publicação EA-4/02.

Os resultados apresentados neste documento se aplicam somente ao item ensaiado ou calibrado. Este documento não dá direito ao uso do nome ou da marca IPT, para quaisquer fins, sob pena de indenização. A reprodução deste documento só poderá ser feita integralmente, sem nenhuma alteração.

> Av. prof. Almeida Prado. 532 | Cidade Universitária São Paulo | SP | CEP 05508-901 Tel 11 3767 4000 | Fax 11 3767 4002 | Ipt@ipt.br

Laboratório de Metrologia Elétrica / CME Laboratório de calibração acreditado pela Cgcre de acordo com a ABNT NBR ISO/IEC 17025, sob o número CAL 0047

Certificado de Calibração Nº 122584-101

3. Padrão(ões) utilizado(s)

Modelo	Série Nº	Certificado Nº	Origem	Validade
4050-B	1815970	122677-101	IPT-LME	jan./2014
5685A	269769	121330-101	IPT-LME	dez./2013
5685B	269784	121866-101	IPT-LME	jan./2014
4045-B	1825946	119326-101	IPT-LME	ago./2013
1659	265938	121867-101	IPT-LME	jan./2014
732B	6495006	0580/2012	Inmetro	mar./2013
8508A	850147562	119311-101	IPT-LME	ago./2013
	Modelo 4050-B 5685A 5685B 4045-B 1659 732B 8508A	Modelo Série N° 4050-B 1815970 5685A 269769 5685B 269784 4045-B 1825946 1659 265938 732B 6495006 8508A 850147562	ModeloSérie N°Certificado N°4050-B1815970122677-1015685A269769121330-1015685B269784121866-1014045-B1825946119326-1011659265938121867-101732B64950060580/20128508A850147562119311-101	Modelo Série № Certificado № Origem 4050-B 1815970 122677-101 IPT-LME 5685A 269769 121330-101 IPT-LME 5685B 269784 121866-101 IPT-LME 4045-B 1825946 119326-101 IPT-LME 1659 265938 121867-101 IPT-LME 732B 6495006 0580/2012 Inmetro 8508A 850147562 119311-101 IPT-LME

4. Rastreabilidade

Este certificado atende aos requisitos de acreditação pela Cgcre que avaliou a competência do laboratório e comprovou sua rastreabilidade a padrões nacionais de medida (ou ao Sistema Internacional de Unidades - SI).

5. Condições durante a calibração

As medições foram realizadas na temperatura ambiente de (23 ± 3) °C e umidade relativa do ar de (60 ± 20) %.

6. Legenda para as abreviações usadas na apresentação dos resultados

VI = Valor Indicado (indicação obtida no item sob calibração)

VN = Valor Nominal (indicação obtida no item sob calibração)

VR = Valor de Referência (indicação obtida no padrão)

Erro = VI – VR ou VN – VR (erro de indicação do item sob calibração)

EMA = Erro Máximo Admissível (limites de erros especificados pelo fabricante do item sob calibração)

U = Incerteza Expandida de Medição

k = Fator de Abrangência (fator multiplicativo adimensional)

veff = Graus de liberdade efetivos

Os resultados apresentados neste documento se aplicam somente ao item ensaiado ou calibrado Este documento não da direito ao uso do nome ou da marca IPT, para quaisquer fins, sob pena de indenização A conclusão documento a fonderá ser faita intervalmente, sem nenhuma alteração

> Av. prof. Almeida Prado, 532 | Cidade Universitária São Paulo | SP | CEP 05508-901 Tel 11 3767 4000 | Fax 11 3767 4002 | ipt@ipt.br

Laboratório de Metrologia Elétrica / CME Laboratório de calibração acreditado pela Cgcre de acordo com a ABNT NBR ISO/IEC 17025, sob o número CAL 0047

To

Certificado de Calibração Nº 122584-101

7. Data da execução da calibração: 20/02/2013.

Calibração executada por: Técnico Tiago Lopes Santos

Supervisionada por: Eng.ª Eletricista Tomie Yokoji 🏻 🏃

São Paulo, 20 de fevereiro de 2013.

CENTRO DE METROLOGIA MECÂNICA E ELÈTRICA Laboratório de Metrologia Elétrica

> AL Fisico Regis Renato Dias Supervisor(a) da Calibração RE nº 8825

CENTRO DE METROLOGIA MECÂNICA E ELÉTRICA Laboratório de Metrologia Elétrica

Fisica Rima Yehia Responsável pelo Laboratório RE nº 7837.8

Av. prof. Almeida Prado, 532 | Cidade Universitària São Paulo | SP | CEP 05508-901 Tel 11 3767 4000 | Fax 11 3767 4002 | ipt@ipt.br

Laboratório de calibração acreditado pela Cgcre de acordo com a ABNT NBR ISO/IEC 17025, sob o número CAL 0047

Certificado de Calibração Nº 122584-101

RESULTADOS

Faixa de 100 mV DC

Erro Máximo Admissível (EMA): ± (5 ppm do valor indicado + 3 ppm da faixa)

Unidade	VI	VR	Erro	EMA	U	k	Veff
mV	30,00010	29,99995	0,00015	0,00045	0,00065	2,00	~

Faixa de 1 V DC

Erro Máximo Admissível (EMA): ± (4 ppm do valor indicado + 0,3 ppm da faixa)

Unidade	VI	VR	Erro	EMA	U	k	Veff
V	0,33299922	0,3329995	-0,00000028	0,0000016	0,0000011	2,00	00
V	0,46699878	0,4669993	-0,00000052	0,0000022	0,0000013	2,00	00
V	1,16999788	1,1699981	-0,00000022	0,0000050	0,0000025	2,00	00

Faixa de 10 V DC

Erro Máximo Admissível (EMA): ± (4 ppm do valor indicado + 0,05 ppm da faixa)

Unidade	VI	VR	Erro	EMA	U	k	Veff
V	1,1699986	1,1699981	0,0000005	0,0000052	0,0000025	2,00	00
V	1,3299988	1,3299979	0,0000009	0,0000058	0,0000027	2,00	00
V	1,6699976	1,6699973	0,000003	0,0000072	0,0000033	2,00	00
V	2,6999968	2,6999957	0,0000011	0,000011	0,0000049	2,00	00

Faixa de 100 nA DC

Erro Máximo Admissível (EMA): \pm (30 ppm do valor indicado + 400 ppm da faixa)

Unidade	VI	VR	Erro	EMA	U	k	V _{eff}
nA	100,306	100,2965	0,0095	0,043	0,0042	2,25	11

Faixa de 1 µA DC

Erro Máximo Admissível (EMA): \pm (20 ppm do valor indicado + 40 ppm da faixa)

Unidade	VI	VR	Erro	EMA	U	k	Veff
μA	0,500282	0,500294	-0,000012	0,000050	0,000013	2,02	127

Os resultados apresentados neste documento se aplicam somente ao item ensaiado ou calibrado ste documento não dá direito ao uso do nome ou da marca IPT, para quaisquer fins, sob pena de indenização A reprodução deste documento só poderá ser feita integralmente, sem nenhuma alteração

Av. prof. Almeida Prado, 532 | Cidade Universitària São Paulo | SP | CEP 05508-901 Tel 11 3767 4000 | Fax 11 3767 4002 | ipt@ipt.br

Laboratório de Metrologia Elétrica / CME Laboratório de calibração acreditado pela Cgcre de acordo com a ABNT NBR ISO/IEC 17025, sob o número CAL 0047

Certificado de Calibração Nº 122584-101

Faixa de 10 mA DC

Erro Máximo Admissível (EMA): ± (20 ppm do valor indicado + 5 ppm da faixa)

Unidade	VI	VR	Erro	EMA	U	k	v_{eff}
mA	3,330056	3,330045	0,000011	0,00012	0,000029	2,00	00
mA	4,670081	4,670058	0,000023	0,00014	0,000040	2,00	00
mA	11,700218	11,700136	0,000082	0,00028	0,000094	2,00	00

Faixa de 100 mA DC

Erro Máximo Admissível (EMA): ± (35 ppm do valor indicado + 5 ppm da faixa)

Unidade	VI	VR	Erro	EMA	U	k	Veff
mA	11,70035	11,70025	0,00010	0,00091	0,00032	2,00	00
mA	13,30037	13,30024	0,00013	0,00097	0,00035	2,00	00
mA	16,70048	16,70024	0,00024	0,0011	0,00042	2,00	00

Faixa de 100 Ω - 4 fios

Erro Máximo Admissivel (EMA): ± (12 ppm do valor indicado + 5 ppm da faixa)

Unidade	VI	VR	Erro	EMA	U	k	Veff
Ω	95,00155	95,00202	-0,00047	0,0016	0,00077	2,00	00
Ω	100,00160	100,00214	-0,00054	0,0017	0,00081	2,00	00
Ω	109,99998	110,00066	-0,00068	0,0018	0,00088	2,00	8687
Ω	119,99967	120,00032	-0,00065	0,0019	0,00095	2,00	00

Faixa de 1 k Ω - 4 fios

Erro Máximo Admissivel (EMA): ± (10 ppm do valor indicado + 0,5 ppm da faixa)

Unidade	VI	VR	Erro	EMA	U	k	v _{eff}
kΩ	0,1100001	0,11000066	-0,00000056	0,0000016	0,0000089	2,00	7372
kΩ	0,1200001	0,12000032	-0,00000022	0,0000017	0,00000096	2,00	6430
kΩ	0,1250000	0,1250005	-0,0000005	0,0000018	0,0000010	2,00	1029
kΩ	0,1299996	0,1300002	-0,0000006	0,0000018	0,0000010	2,00	3192
kΩ	0,1350001	0,1350009	-0,0000008	0,0000019	0,0000011	2,00	1358
kΩ	0,1399996	0,1400004	-0,000008	0,0000019	0,0000011	2,00	9053
kΩ	0,1699998	0,1700008	-0,0000010	0,0000022	0,0000013	2,00	00
kΩ	0,2000000	0,2000015	-0,0000015	0,0000025	0,0000020	2,00	00
kΩ	0,2500000	0,2500018	-0,0000018	0,0000030	0,0000024	2,00	00
kΩ	0,3000006	0,3000029	-0,0000023	0,0000035	0,0000028	2,00	00
kΩ	0,4000006	0,4000037	-0,0000031	0,0000045	0,0000035	2,00	00

Av. prof. Almeida Prado, 532 | Cidade Universitária São Paulo | SP | CEP 05508-901 Tel 11 3767 4000 | Fax 11 3767 4002 | ipt@ipt.br

Laboratório de calibração acreditado pela Cgcre de acordo com a ABNT NBR ISO/IEC 17025, sob o número CAL 0047

Certificado de Calibração Nº 122584-101

Corrente nominal de 1 mA DC da faixa de 100 Ω – 4 fios Erro Máximo Admissível (EMA): ± (3 % do valor indicado)

Unidade	VN	VR	Erro	EMA	U	k	Veff
mA	1	0,993160	0,006840	0,030	0,000011	2,00	00

Corrente nominal de 1 mA DC da faixa de 1 k $\Omega-4$ fios Erro Máximo Admissível (EMA): \pm (3 % do valor indicado)

Unidade	VN	VR	Erro	EMA	U	k	Veff
mA	1	0,9931395	0,0068605	0,030	0,0000074	2,00	00

Os resultados apresentados neste documento se aplicam somente ao item ensialado ou calorado Este documento não dá direito ao uso do nome ou da marca IPT, para quaisquer fins, sob pena de indenização A reprodução deste documento só poderá ser feita integralmente, sem nenhuma alteração

www.ipt.br

Av. prof. Almeida Prado, 532 | Cidade Universitária São Paulo | SP | CEP 05508-901 Tel 11 3767 4000 | Fax 11 3767 4002 | ipt@ipt.br

\$

195

DCT	MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEPARTAMENTO DE CIÊNCIA E TECNOLOGIA CENTRO TECNOLÓGICO DO EXÉRCITO DIVISÃO BÉLICA SEÇÃO DE MODELAGEM E METROLOGIA	CTP
	RELATÓRIO TÉCNICO Nº 004/2013 – SMM / DB	
Interessado: SI	BVM – VBPED	
	STATIS	
	METROLOGIA DO FLANGE DE AÇO E D DINAMÔMETRO DO PROJETO LABOMO	DO DT
	Nota: O presente documento não de autorização do Chefe da Seção ou de autorização do Chefe da Seção do	ve ser reproduzido da Divisão.
Elaborado por:	Nota: O presente documento não de autorização do Chefe da Seção ou de Lincolo Brüggemann de Souza Trec	ve ser reproduzido da Divisão.
Elaborado por: Aprovado por:	METROLOGIA DO FLANGE DE AÇO E D DINAMÔMETRO DO PROJETO LABOMO Nota: O presente documento não de autorização do Chefe da Seção ou d Mande B. d. Saya Lincom Brüggemann de Souza Tec Du Mat Maria Paulo Roberto Rocha Aguiar – TC Chefe da SMM	ve ser reproduzido da Divisão.
Elaborado por: Aprovado por: Recebido por:	METROLOGIA DO FLANGE DE AÇO E D DINAMÔMETRO DO PROJETO LABOMO Nota: O presente documento não de autorização do Chefe da Seção ou d Marte B. d. Saya Lincom Brüggemann de Souza Tec Dublic Mart Maria Paulo Roberto Rocha Aguiar – TC Chefe da SMM	ve ser reproduzido da Divisão.

Anexo F – Avaliação metrológica do conjunto braço - flange

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEPARTAMENTO DE CIÊNCIA E TECNOLOGIA CENTRO TECNOLÓGICO DO EXÉRCITO

Pág.

B

Relatório Técnico Nº 004/13 - SMM, de 20/06/2013

SUMÁRIO

1. ASSUNTO	02
2. FINALIDADE	02
3. REFERÊNCIAS	02
4. INTRODUÇÃO	02
5. DESENVOLVIMENTO	02
6. CONCLUSÕES	03
7. ANEXOS	03

1. ASSUNTO

Metrologia do flange de aço e do braço de aço do Dinamômetro do projeto LABOMOT e elaboração de desenho técnico.

2. FINALIDADE

Este relatório tem por finalidade identificar as medidas necessárias para a geração de desenho técnico e que permita a construção de um Dinamômetro, além da identificação de pontos para a realização de esforços sobre o eixo.

3. REFERÊNCIA

RST S/N de 05 de junho de 2013.

4. INTRODUÇÃO

O sistema de medição dinâmica, utilizado para calibração de torque em função de deformações plásticas produzidas em um eixo de acionamento de dinamômetro, é composto, basicamente, por duas peças principais: um flange de aço para fixação entre o eixo de acionamento e o flange do dinamômetro; e um braço de momento, fabricado em aço-carbono, o qual será conectado ao flange citado anteriormente. O braço possui três marcações de distância em relação à extremidade de conexão ao flange. Estas marcações determinam três pontos de aplicações de força.

5. DESENVOLVIMENTO

5.1. ITENS INSPECIONADOS

Foram inspecionadas duas peças:

- Flange de aço de fixação no motor; e
- Braço de aço para encaixe no flange com três marcações de distância.

5.2. INSTRUMENTOS UTILIZADOS

- Escala de aço inox para medidas de comprimento (incerteza herdada das medições U(E) = 1mm com K = 2).

Paquímetro Digital Mitutoyo (incerteza herdada das medições U(E) = 0,01mm com K = 2).
Máquina Tridimensional LK G-90c (incerteza herdada das medições U(E) = 0,0002 mm com K = 2).

5.3. PROCEDIMENTOS

- Aferição dos equipamentos.

- Identificação das cotas e ângulos a serem medidos.
- Medição.
- Elaboração dos desenhos técnicos.

5.4. RESULTADOS OBTIDOS

Os resultados da medição foram registrados em duas planilhas e quatro desenhos anexados ao relatório.

6. CONCLUSÃO

Este relatório técnico apresentou os resultados da inspeção metrológica realizada no flange e no braço de aço do dinamômetro do projeto LABOMOT. Permitindo a identificação dos pontos solicitados pelo cliente para aplicação de forças.

7. ANEXOS

- Anexo 1 Planilha Flange de aço de fixação no motor.
- Anexo 2 Planilha Braço de aço para encaixe no flange com três marcações de distância.
- Anexo 3 Desenho do flange para conferência dos diâmetros.
- Anexo 4 Desenho do flange de aço para conferência das cotas
- Anexo 5 Desenho braço de aço identificação dos pontos de esforço.

Anexo 6 - Desenho do braço de aço para identificação das cotas.

Rio de Janeiro - RJ, 20 de junho de 2013.

Elaborado por:_ Kincoln Brüggemann de Søuza – Tec

Adjunto ao LMET

3

CENTRO TECNOLÓGICO DO EXÉRCITO **DIVISÃO BÉLICA** SEÇÃO DE MODELAGEM E METROLOGIA

	Diâmetros do Flange de aço - LABOMOT									
COTAS	M1	M2	M3	M4	M5	MED ARIT.	DESV MED	DESV PAD		
ØA	208,6850	208,6805	208,6800	208,6800	208,6800	208,6811	0,00156000	0,00219089		
ØB	203,6800	203,6800	203,6850	203,6850	203,6810	203,6822	0,00224000	0,00258844		
ØC	182,9402	182,9410	182,9406	182,9403	182,9400	182,9404	0,00030400	0,00038987		
ØD	79,9630	79,9631	79,9630	79,9630	79,9632	79,9631	0,00006880	0,00008649		
ØE	154,9401	154,9400	154,9390	154,9400	154,9400	154,9398	0,00032800	0,00046043		
ØF	19,9989	20,0006	20,0021	20,0013	20,0000	20,0006	0,00090400	0,00122352		
ØG	9,0000	9,0000	9,0012	9,0006	9,0000	9,0004	0,00043200	0,00053666		

Rio de Janeiro, 20 de junho 2013.

Elaborado por <u>Lucque</u> <u>B. de Garza</u> Lincoln Brüggemann de Souza - SG Metrologia.

Visto por:

Paulo Roberto Rocha Aguiar - TC - Chef. SMM

CENTRO TECNOLÓGICO DO EXÉRCITO **DIVISÃO BÉLICA** SEÇÃO DE MODELAGEM E METROLOGIA

Medidas do Braço de aço do Dinamômetro - LABOMOT								
COTAS	M1	M2	M3	M4	M5	MED ARIT.	DESV MED	DESV PAD
ØA	17,48	17,50	17,52	17,50	17,50	17,5000	0,00800000	0,01414214
A	450,00	450,00	449,98	449,99	451,00	450,1940	0,32240000	0,45064398
В	467,227	467,229	467,225	467,227	467,227	467,2270	0,00080000	0,00141421
C raio	104,340	104,340	104,340	104,300	104,350	104,3340	0,01360000	0,01949359
D	68,250	68,253	68,247	68,250	68,250	68,2500	0,00120000	0,00212132
E	46,610	46,600	46,610	46,610	46,610	46,6080	0,00320000	0,00447214
F	38,000	38,000	38,000	38,000	38,000	38,0000	0,00000000	0,00000000
G	57,430	57,400	57,370	57,400	57,400	57,4000	0,01200000	0,02121320
Н	22,450	22,450	22,450	22,452	22,451	22,4506	0,00072000	0,00089443
1	21,640	21,639	21,639	21,639	21,641	21,6396	0,00072000	0,00089443
J	12,860	12,859	12,861	12,860	12,860	12,8600	0.00040000	0.00070711

Rio de Janeiro, 20 de junho 2013.

0070 Elaborado p Lincoln Brüggemann de Souza - SC / Metrologia.

Visto por:

Paulo Roberto Rocha Aguiar - TC - Chef. SMM

PUC-Rio - Certificação Digital Nº 1013882/CA

Agilent Padrão - Medições - mV										
(mV)	1ª	2ª	3ª	4 ^a	5ª	Média	Desv. Pad	Erro	Tipo A	$(x_i - \bar{x})^2$
0,109	0,1090	0,1070	0,1095	0,1090	0,1086	0,1086	0,000960208	-0,0004	0,0004	0,5567
0,145	0,1445	0,1441	0,1440	0,1441	0,1441	0,1442	0,000194936	-0,0008	0,0001	0,5049
0,189	0,1875	0,1877	0,1876	0,1879	0,1876	0,1877	0,000151658	-0,0013	0,0001	0,4450
0,288	0,2864	0,2867	0,2866	0,2864	0,2862	0,2865	0,000194936	-0,0015	0,0001	0,3230
0,312	0,3098	0,3099	0,3100	0,3099	0,3100	0,3099	0,000083666	-0,0021	0,0000	0,2968
0,377	0,3748	0,3749	0,3749	0,3749	0,3749	0,3749	0,000044721	-0,0021	0,0000	0,2303
0,395	0,3929	0,3928	0,3928	0,3929	0,3930	0,3929	0,000083666	-0,0021	0,0000	0,2133
0,414	0,4102	0,4109	0,4104	0,4101	0,4102	0,4104	0,000320936	-0,0036	0,0001	0,1975
0,54	0,5363	0,5364	0,5367	0,5367	0,5366	0,5365	0,000181659	-0,0035	0,0001	0,1013
0,66	0,6577	0,6570	0,6571	0,6572	0,6574	0,6573	0,000277489	-0,0027	0,0001	0,0390
0,741	0,7393	0,7396	0,7395	0,7393	0,7394	0,7394	0,000130384	-0,0016	0,0001	0,0133
0,746	0,7443	0,7442	0,7442	0,7440	0,7441	0,7442	0,000114018	-0,0018	0,0001	0,0122
0,751	0,7490	0,7490	0,7492	0,7494	0,7491	0,7491	0,000167332	-0,0019	0,0001	0,0112
0,775	0,7731	0,7731	0,7732	0,7731	0,7730	0,7731	0,000070711	-0,0019	0,0000	0,0067
0,793	0,7908	0,7904	0,7905	0,7904	0,7903	0,7905	0,000192354	-0,0025	0,0001	0,0041
0,947	0,9430	0,9429	0,9432	0,9433	0,9435	0,9432	0,000238747	-0,0038	0,0001	0,0078
1,018	1,0147	1,0146	1,0144	1,0145	1,0147	1,0146	0,000130384	-0,0034	0,0001	0,0255
1,023	1,0199	1,0198	1,0199	1,0198	1,0200	1,0199	0,000083666	-0,0031	0,0000	0,0273
1,03	1,0273	1,0274	1,0273	1,0272	1,0275	1,0273	0,000114018	-0,0027	0,0001	0,0298
1,015	1,0128	1,0127	1,0129	1,0129	1,0131	1,0129	0,000148324	-0,0021	0,0001	0,0250
1,127	1,1252	1,1251	1,1246	1,1246	1,1244	1,1248	0,000349285	-0,0022	0,0002	0,0729
1,221	1,2179	1,2177	1,2175	1,2180	1,2182	1,2179	0,000270185	-0,0031	0,0001	0,1319
1,256	1,2535	1,2536	1,2536	1,2533	1,2535	1,2535	0,000122474	-0,0025	0,0001	0,1590
1,309	1,3065	1,3064	1,3066	1,3065	1,3066	1,3065	0,000083666	-0,0025	0,0000	0,2041
1,316	1,3135	1,3133	1,3134	1,3133	1,3134	1,3134	0,000083666	-0,0026	0,0000	0,2103
1,333	1,3305	1,3305	1,3304	1,3308	1,3306	1,3306	0,000151658	-0,0024	0,0001	0,2264
1,353	1,3507	1,3506	1,3504	1,3506	1,3505	1,3506	0,000114018	-0,0024	0,0001	0,2458
1,475	1,4727	1,4726	1,4727	1,4726	1,4726	1,4726	0,000054772	-0,0024	0,0000	0,3818
1,518	1,5158	1,5158	1,5159	1,5159	1,5159	1,5159	0,000054772	-0,0021	0,0000	0,4371
1,536	1,5339	1,5341	1,5340	1,5338	1,5335	1,5339	0,000230217	-0,0021	0,0001	0,4612
					Média	0,8547			<i>s</i> ²	0,1931
									S	0,4395
									u med	0,2537

Anexo G – Calibração do multímetro U1253B

Agilent		Padrão	- Medições	- mV						
(V)	1ª	2ª	3ª	4 ^a	5ª	Média	Desv. Pad	Erro	Tipo A	$(x_i - x)^2$
9,106	9,10639	9,10639	9,10638	9,10632	9,10638	9,10637	0,000029496	0,0004	0,00001319	68,0893
9,108	9,10830	9,10832	9,10834	9,10831	9,10834	9,10832	0,000017889	0,0003		
9,109	9,10935	9,10933	9,10936	9,10930	9,10933	9,10933	0,000023022	0,0003		

Anexo H – Certificado de calibração do banho termostático

CERTIFICADO DE CALIBRAÇÃO

Calibration Certificate Issued by LC CONTROLS

Laboratório de Calibração Acreditado pela COCRE/INMETRO de acordo com a ABNT NBR ISO/IEC 17025, sob Nº 0 396								
N° DO CERTIFICADO	DATA DA CALIBRA	ÇAO	DATA	DE EMI	SSAO	PAGINA		
Certificate Number	Calibration Date	1	mued on		Page			
C-228/008/13	11/07/2013	1	1/07/2013		1/2			
IDENTIFICAÇÃO DO CLIENTE / Customer's Data								
Nome / Name: SERGIO BRAGANTINE GERMANO - FAPERJ								
Endereço / Address : AV. DAS AMERICAS, 28705, GUARATHRA - RIO DE JANEIRO/ RJ								
Código / Number:		с	- 228					
IDENTIFICAÇÃO DO INST	RUMENTO / Instrument Id	entification						
Instrumento / Instrument:		TER	MOMETRO I	IGITAL				
Fabricante / Manufacturer:			HAAKE					
N° Série / Serial Number:			NC					
Localização / location:			NC					
BP/BP:			NC					
Faixa / Range:		30	até	80	●C			
Resolução / Resolucion:			0,1 °C	2				
Modelo / Model:			DCI					
Tag/Tag:			NC					
PADRÃO(ÕES) UTILIZAD	O(S) / Standart Utilized							
Pad UStan 1:	MULTIMETRO DIGITAL	Ped 2/Stan.21		TER	MORRESI	STENCIA		
Modelo / Model :	8846A	Modelo / Mod	el:		PT-100			
Twg / Tag:	LCMT 0006	Tag/ Tag:			LCSS-00	06		
Certificador / Certifier:	METRACAL	Certificador /	Cartifia :	C	ONSISTEC	/N*128		
Certificado / Cetificate:	RBC1-11/1277	Certificado / (at fate:		CR-07276	/11		
Validade / Validity:	outubro-13	Validade / Val	ldky:		outubro-	13		
PROCEDIMENTO DE CAL	IBRAÇÃO / Calibration Pr	ocedure						
A CALIBRAÇÃO FOI E	X ECUTADA ATRAVÉS DA ME	DIÇÃO DIRET	A E COMPA	RATIVA I	E ACORD	0 COM		
A PROCEDIMENTO	DE TRABALHO PROC-0057 RE	V.00, UTILIZA	NDO-SE PAI	OROES RA	STREADO	SAO		
The colling time involves he direct	SI (SISTEMA INTERNA	CIONAL DE U	NIDADES).	land on the second		0057 REV 00		
The careful on watable by arrest	using traceable standards to th	te International 3	inten of Units	iorania pri				
CONDIÇÕES DA CALIBR/	CAO / Conditions Calibrati	ion						
Média da Temperatura / Ave	rage Temperature (°C):				20,3			
Média da Umidade / Average	Humidity (%):				62,0			
Local da Calibração / Locario	on Calibration :			LCO	ONTROLS			
O PRESENTE CERTIFICAL	O DE CALIBRAÇÃO É VÁLID	O APENAS PA	RA O INSTRI	MENTO	DE MEDIÇ	ÃO A CIMA		
CARA CTERIZADO, NÃO SI	NDO EXTENSIVO A QUAISQU	UER OUTROS	INSTRUMEN	TOS DE M	IEDIÇÃO,	AINDA QUE		
SIMILARES, ESTE CERTIFICADO DE CALIBRAÇÃO SOMENTE PODE SER REPRODUZIDO EM SUA FORMA INTEGRAL,								
REPRODUÇÕES THIS CERTIFICATE OF O	PARCIAIS DEVEM SER PREVI ALIBRATION IS VALID ONLY FO	A MENTE A UT R THE MEASUR	ORIZADAS I RINGINSTRUM	HELA LC (HENT OF S	CONTROLS	A BOVE,		
CERTIFICATE OF CALIBRATION CAN ONLY BE REPRODUCED IN THEIR ENTIRETY, PARTIAL REPRODUCTIONS								

MUST BE AUTHORIZED BY LC CONTROLS

Plan0026 rev02 Apr.24/01/12

CERTIFICADO DE CALIBRAÇÃO

Calibration Certificate issued by LC CONTROLS

Laboratório de Calibração A creditado pela COCRE/INMETRO de acordo com a ABNT NBR ISO/IEC 17025, sob Nº 0 396								
N° DO CERTIFICADO	DATA DA CALIBRAÇÃO	DA TA DE EMISSÃO	PÁGINA					
Certificate Number	Calibration Date	Imped on	Page					
C-228/00/13	11/07/2013	11/07/2013	2/2					

Resultado da Calibração / Results Calibration

Temp. Aplicada/ Temp. Applied	Média dos Valores / Average of Values	Davio / Deviation	Fator de A brangîncia / Factor Coverage	Incertora Expandida/ Incerikade expanded
•C	.	¥	k	•
30,02	30,00	-0,02	2,0	0,77
40,02	40,00	-0,02	2,0	Q,77
50,00	50,00	0,00	2,0	0,77
60,03	60,00	-0,03	2,0	0,77
80,02	80,00	-0,02	2,0	0,77

INFORMAÇÕES TÉCNICAS/ Technical Information

Os dados da calibração acima, foram obtidos por meio de médias aritméticas de 4 leituras. The calibration data above were obtained by arithmetic average of 4 readings.

A incerteza expandida de medição relatada é declarada como a incerteza padrão de medição multiplicada pelo fator de abrangência k = XX, o qual para uma distribuição t com veff = YY graus de liberdade eletivos corresponde a uma probabilidade de abrangência de aproximadamente 95%.

A incurteza padrão da medição foi determinada de acordo com a publicação EA-4/02.

The expanded uncertainty of measurement reported is declared with estandard uncertainty of measurement multiplied by the coverage facts k = XX, which for a t-distribution with V off = YY offective degrees of peedon corresponds to a coverage probability approximately 95%. The standard uncertainty of measurement was determined according to the publication EA-402.

Técnico Executante: Lucas Silva

Clayton Rodrigo Signatário Autorizado