

Alexandre Mendes

Calibração de amostradores para aerossóis atmosféricos: uma proposta metodológica

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do grau de Doutor em Engenharia Mecânica pelo programa de Pós – Graduação em Engenharia Mecânica da PUC-Rio

Orientador: Prof. Marcos Sebastião de Paula Gomes

Rio de Janeiro Agosto de 2012

Alexandre Mendes

Calibração de amostradores para aerossóis atmosféricos: uma proposta metodológica

Tese apresentada como requisito parcial para obtenção do grau de Doutor em Engenharia Mecânica pelo programa de Pós – Graduação em Engenharia Mecânica do Departamento de Engenharia Mecânica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Marcos Sebastião de Paula Gomes Orientador Departamento de Engenharia Mecânica – PUC-Rio

Prof. Alcir de Faro Orlando Departamento de Engenharia Mecânica – PUC-Rio

Prof. André Augusto Isnard Instituto Federal do Rio de Janeiro- *campus* Volta Redonda

Prof. Carlos Valois Maciel Braga Diretor do Departamento de Engenharia Mecânica – PUC-Rio

Prof. Cícero Martelli Universidade Tecnológica Federal do Paraná, *campus* Ponta Grossa

> Prof. Sergio Leal Braga Departamento de Engenharia Mecânica – PUC-Rio

> > Prof. José Eugênio Leal Coordenador Setorial do Centro

Técnico Científico – PUC-Rio

Rio de Janeiro, 10 de agosto de 2012

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Alexandre Mendes

Graduado em Licenciatura em Física pela Universidade Federal do Rio de Janeiro, Mestre em Metrologia pela PUC-Rio. É professor do IFRJ (antigo CEFET Química de Nilópolis/RJ) e atualmente exerce a função de Diretor-Geral do campus Volta Redonda. Tem experiência na área de Física, com ênfase em Metrologia, Instrumentação, atuando principalmente nos seguintes temas: metrologia, metrologia de aerossóis, física experimental, ensino de física e qualificação profissional. É autor de dois livros: A Física no Parque em co-autoria com o Prof. Henrique Lins Barros e Metrologia e Incerteza de Medição em coautoria com o Prof. Pedro Paulo N. Rosário. É Vice Presidente da Sociedade Brasileira de Metrologia no biênio 2010-2012 e 2012-2014.

Ficha Catalográfica

Mendes, Alexandre

Calibração de amostradores para aerossóis atmosféricos: uma proposta metodológica / Alexandre Mendes; orientador: Marcos Sebastião de Paula Gomes. – 2012.

224 f. : il. (color.) ; 30 cm

Tese (doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica, 2012.

Inclui bibliografia

- 1. Engenharia mecânica Teses.
 - 2. Calibração de impactadores.

3. Metrologia de aerossol. 4. Partículas de látex. I. Gomes, Marcos Sebastião de Paula. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III. Título. PUC-Rio - Certificação Digital Nº 0621134/CA

À minha amada esposa Marta F. A. Mendes, pelo carinho, amor e incentivo.

Agradecimentos

Ao professor Marcos Sebastião pela presença e compreensão ao longo do trabalho.

À PUC-Rio pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado.

Ao professor Luis Fernando Figueira da Silva pela gentileza de ceder o Laboratório de Combustão e Turbulência para o desenvolvimento desta pesquisa.

Ao amigo Francisco Esteves pela parceria e apoio nos momentos difíceis.

Ao meu sogro José Carlos A. Abdala e minha sogra Rosilda M. F. Abdala pela permanente ajuda, apoio e incentivo.

Ao Instituto Federal do Rio de Janeiro, em especial aos servidores do *campus* Volta Redonda.

À Gisllane Cristina de Oliveira, técnica em metrologia do laboratório de caracterização de fluidos.

Aos funcionários do Departamento de Engenharia Mecânica da PUC - Rio.

Resumo

Mendes, Alexandre; Gomes, Marcos Sebastião de Paula. **Calibração de amostradores para aerossóis atmosféricos: uma proposta metodológica.** Rio de Janeiro, 2012, 224p. Tese de Doutorado – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

O aumento da poluição nos grandes centros urbanos tem forçado a demanda por novos equipamentos capaz de fazer a amostragem correta das partículas em suspensão no ar. Estas partículas são de especial atenção, pois causam danos à nossa saúde. As partículas menores que 10µm são consideradas inaláveis, sendo que as de tamanho menores que 3µm são consideradas respiráveis, atingindo a região alveolar dos pulmões. Na busca para a diminuição dos efeitos da poluição, faz-se necessário monitorar as características físicas dos aerossóis (concentração e tamanho). No entanto, os procedimentos necessários para a calibração de medidores de aerossol são mal definidos, sem instruções formais e documentação. A fim de prover um ambiente com escoamento uniforme e controlado, foi construída uma câmara de calibração de aerossol, com pressão atmosférica em torno de 1atm e velocidade do ar variando entre 1,1cm/s a 3,1cm/s, para avaliação de amostradores de aerossol. Essa câmara é grande o bastante para acomodar vários instrumentos simultaneamente, tendo uma área de seção de teste relativamente ampla (aproximadamente 1,0m²) com uma concentração de aerossol controlável. Esta pesquisa propõe uma metodologia de calibração de amostradores atmosféricos em geral e em particular de impactadores em cascata. Adota metodologia de cálculo de incerteza de medição segundo o Guia para a expressão da Incerteza de Medição e utiliza terminologia respaldada no Vocabulário internacional de Termos Fundamentais e Gerais de Metrologia. Utilizando a Metrologia como ciência, para solucionar problemas oriundos da Medição de Aerossol.

Palavras-chave

Calibração de impactadores; metrologia de aerossol; partículas de látex.

Abstract

Mendes, Alexandre; Gomes, Marcos Sebastião de Paula (advisor). **Calibration of aerosol sampling instruments: a methodology proposal**. Rio de Janeiro, 2012, 224p. Dsc Thesis - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Increasing pollution in large urban centers has forced the demand for new equipment capable of making a correct sampling of the particles suspended in the air. These particles are of particular attention because they cause damage to our health. Particles smaller than 10µm are considered respirable, and the size smaller than 3µm are considered respirable, reaching the alveolar region of the lungs. In seeking to reduce the effects of pollution, it is necessary to monitor the physical characteristics of aerosols (size and concentration). However, the procedures for calibration of aerosol are poorly defined, without formal instruction and documentation. In order to provide an environment with controlled and uniform flow, we constructed a calibration chamber aerosol, with atmospheric pressure around 1atm and air velocity ranging between 1.1cm/s to 3.1 cm/s for evaluation of samplers aerosol. This chamber is large enough to accommodate multiple instruments simultaneously, having a test section area relatively wide (approximately $1.0m^2$) at a concentration of aerosol controllable. This research proposes a methodology for calibration of atmospheric samplers in general and in particular of cascade impactors. It adopts the methodology of calculation of measurement uncertainty according to the Guide to the Expression of Uncertainty in Measurement and uses terminology backed Vocabulary international General Terms and Fundamental Metrology. Using Metrology as a science, to solve problems arising from the Aerosol Measurement.

Keywords

Calibration impactors; metrology aerosol; latex particles.

Sumário

1. Introdução	23
1.1. Apresentação	23
1.2. Objetivo e organização da pesquisa	24
2. Revisão Bibliográfica	26
 Aerossol e suas propriedades aerodinâmicas 	30
3.1. Definições Básicas	30
3.2. Diâmetros característicos dos aerossóis.	32
3.2.1. Diâmetros geométricos	33
3.2.2. Diâmetros equivalentes baseados em propriedade	
comportamental.	34
3.3. Escoamentos de aerossol	34
3.3.1. A lei de resistência de Newton	35
3.3.2. Lei de Stokes	36
3.4. Velocidade de ajuste e mobilidade mecânica	39
3.5. Fator de correção de deslize	41
3.6. Diâmetro aerodinâmico	43
3.7. Amostragem isocinética	44
4. Estatísticas de Aerossol, Metrología e Impactador em Cascata.	47
4.1. Distribuição de Tamanho	47
4.2. Distribuição lognormal	48
4.3. Metrologia	50
4.3.1. Incerteza de Medição	50
a) Incerteza Tipo A	51
b) Incerteza Tipo B	52
c) Incerteza Padrão	53
d) Incerteza Padrao Combinada - u _c	54 54
f) Número de Graus de Liberdade Efetive $(1, 1)$	54
d) Arredondamento da Incerteza Expandida	56
h) Aiuste de uma função	56
i) Incerteza considerando o ajuste	57
4.4 Impactador em cascata	58

5. Aparato Experimental	64
5.1. Câmara de calibração de medidores de aerossol.	64
5.1.1. Descrição da Câmara.	64
5.1.2. Avaliação da Câmara	68
5.2. Medição de contagem de partículas usando o APS 3320.	75
5.3. Produção de Aerossol de Teste.	78
5.3.1. Atomização de Líquidos	78
5.3.2. Atomização de partículas monodispersa em suspensão líquida	81
5.4. Impactador Inercial de três estágios.	82
6. Metodologia de calibração para amostradores de particulados	
atmosféricos.	86
6.1. Procedimentos básicos na calibração	86
6.2. Geração de aerossol - Partículas de látex	88
6.3. Calibração de Impactadores Inerciais.	89
6.3.1. Rastreabilidade e Documentação	90
6.3.2. Intervalos de calibração	90
6.3.3. Registros	91
6.3.4. Seleção das Particulas de Calibração	92
6.3.6. Geração o Caracterização do Acrossol do Calibração	92
6.3.7 Condições Ambientais	94
6.3.8. Medição em cada estágio	96
6.4. Calibração do APS 3320	99
7. Análise de Dados	100
7.1 Calibrando o APS 3320	100
7.1.1 Resultado da calibração	100
7.2 Calibrando o impactador de três estágios	106
7.2.1 Calculo da incerteza de medição da eficiência de coleta	107
7.2.2. Calibração do 2° estágio – 2.5um	109
7.2.2 Calibração do 3° estágio – 1,0 µm	115
7.2.3. Resultado final – estágios 2,5 µm e 1,0 µm	120
8. Conclusão	121
9. Bibliografia	124
Anexo I - Canais e seus respectivos diâmetros aerodinâmicos do	

APS 3320

127

Anexo II - Projeto do Impactador de três estágios elaborado pelo Prof. Marcos Sebastião de Paula Gomes Departamento de Mecânica –	
PUC - Rio.	129
Anexo III - Certificados de calibração das partículas de látex.	136
Anexo IV - Contagem de partículas usadas na calibração do APS 3320	141
Anexo V - Contagem de partículas para determinação da eficiência	
de coleta do impactador.	151
Anexo VI - Certificado de calibração dos equipamentos utilizados.	215
Anexo VII - Cálculo de incerteza de medição da vazão na câmara de calibração	220

Lista de Figuras

Figura 1: Calibração de amostradores atmosféricos – Técnica 1.	26
Figura 2: Calibração de amostradores atmosféricos – Técnica 2.	26
Figura 3: Usina movida à queima de carvão. (fonte: Hinds, Aerosol Technology,1999)	31
Figura 4: Partículas de carvão.	
(fonte: Hinds, Aerosol Technology,1999)	31
Figura 5: Uma partícula irregular e suas esferas equivalentes.	
Fonte, Hinds 1999.	44
Figura 6: Amostra isocinética.	45
Figura 7: A amostragem anisocinética.	
(a) desalinhamento,	
(b) A amostragem superisocinetica, U>U ₀ .	
(c) A amostragem Subisocinetica, U <u<sub>0.</u<sub>	46
Figura 8:Visão de um impactador.	
(fonte: Aerosol Technology – 1999)	58
Figura 9:Diagrama esquemático de um impactador em cascata	
de oito fases. (fonte: Aerosol Technology – 1999)	61
Figura 10: Esquema da câmara	65
Figura 11: Parte superior da câmara – Misturador de aerossol	
com ar limpo	65
Figura 12: Mesa giratória	66
Figura 13: Câmara de calibração de medidores de aerossol	67
Figura 14: Plataforma giratória e os pontos de coleta de aerossol	
B e C.	68
Figura 15: Modelo 3320 - Aerodynamic Particle Sizer Spectrometer	
- APS (fonte: manual APS 3320).	75
Figura 16: Principio de medição do APS 3320	
(fonte: manual APS 3320).	76
Figura 17: Fluxo de aerossóis através do Modelo APS 3320.	
(fonte: manual APS 3320).	77
Figura 18: Nebulizador de ar comprimido – princípio básico.	79
Figura 19: INALAMAX - Inalador a Ar Comprimido	80
Figura 20: Partículas de látex (PSL) –	

fonte http://www.polysciences.com/	81
Figura 21: Orifício crítico de 25L/min	83
Figura 22: Peças do impactador construídas em aço inox.	83
Figura 23: Vista superior dos estágios 1 (10 μm), 2 (2,5 μm)	
e 3 (1,0 μm).	84
Figura 24: Vista frontal da entrado do impactador e lateral da	
sua saída.	84
Figura 25: Vista superior de um dos estágios com placa de	
impactação.	84
Figura 26: Foto comparativa entre uma caneta e o impactador.	84
Figura 27: Desenho esquemático de um estagio do impactador.	85
Figura 28: Esquema explicativo da coleta de partículas antes	
de entrar no impactador e depois que saiam do impactador.	95
Figura 29: Montagem do impactador de três estágios	98
Figura 30: Bomba de vácuo com orifício critico de 25L/min	98
Figura 31: Entrada do impactador de três estágios	1300
Figura 32: Bloco externo do 1 estágio.	130
Figura 33: Bloco externo do 2 e 3 estágios.	131
Figura 34: Placa de orifício do estágio 1.	131
Figura 35: Placa de orifício do estágio 2.	132
Figura 36: Placa de orifício do estágio 3.	132
Figura 37: Placa impactadora do estágio 1.	133
Figura 38: Placa impactadora do estágio 2 e 3.	133
Figura 39: Desenho do topo da base.	134
Figura 40: Base.	134
Figura 41: Impactador montado.	135
Figura 42: Certificados de calibração das partículas de látex	
de 0,5 µm	137
Figura 43: Certificados de calibração das partículas de látex	
de 1,0 µm	138
Figura 44: Certificados de calibração das partículas de látex	
de 3,0 µm	139
Figura 45: Certificados de calibração das partículas de látex	
de 5,0 µm	140

Lista de Tabelas

Tabela 1: Particulados em suspensão (fonte: Hinds, Aerosol Technology,1999)	30
Tabela 2: Valores de velocidade terminal para partículas de látex utilizadas neste trabalho	40
Tabela 3: Número de Reynolds para partículas de látex com	
velocidade máxima de 3,1 cm/s.	40
Tabela 4:Velocidade terminal corrigida pelo <i>Fator de Correção de Cunningham</i> C _C .	42
Tabela 5: Divisores e suas respectivas distribuições	53
Tabela 6: Velocidade do fluxo de ar na câmara.	69
Tabela 7: Resultado da medição da velocidade de saída do	
aerossol da câmara de calibração.	70
Tabela 8: Estabilidade temporal com partículas de 0,5 µm	73
Tabela 9: Estabilidade temporal com partículas de 1,0 µm	73
Tabela 10: Análise da estabilidade na câmara para 0,5 μm.	74
Tabela 11: Análise da estabilidade na câmara para 1,0 μm.	74
Tabela 12: Partículas de PSL comprada na Polysciences, Inc e	
usada neste trabalho.	81
Tabela 13: Dados do impactador	85
Tabela 14: Partículas de látex adquiridas para este trabalho.	89
Tabela 15: Condições ambientais	95
Tabela 16: Resultado de 39 medições do diâmetro aerodinâmico lido	
pelo APS 3320.	100
Tabela 17: Principais resultados da calibração do APS 3320.	102
Tabela 18: Principais resultados do ajuste da curva de calibração do	
APS 3320.	104
Tabela 19: Relação entre valores lido no APS e o valor corrigido com	
sua incerteza de medição.	105
Tabela 20: Valores dos diâmetros aerodinâmicos corrigidos e suas respectivas incertezas expandidas com ajuste.	105
Tabela 21: Resultado de 39 medições do diâmetro aerodinâmico lido	
pelo APS 3320.	107
Tabela 22: Incerteza na medição de contagem do APS 3320 para o	
ponto 0,5 μm e estágio 2,5 μm na posição B.	108

Tabela 23: Resultado da calibração do impactador no ponto B – mesa giratória em repouso.	109
Tabela 24: Resultado da calibração do impactador no ponto B após	
ajuste da equação.	110
Tabela 25: Resultado da calibração do impactador no ponto C – mesa giratória em repouso.	110
Tabela 26: Resultado da calibração do impactador no ponto C, após ajuste da equação.	111
Tabela 27: Resultado da calibração do impactador – mesa girando	
em 0,6 rpm com velocidade do ar de $(2,2 \pm 0,5)$ cm/s.	111
Tabela 28: Resultado da calibração do impactador com a mesa	
girando 0,6 rpm, após ajuste da equação. Exaustor de ar - 900 rpm.	112
Tabela 29: Resultado da calibração do impactador – mesa girando	
em 0,6 rpm com velocidade do ar de $(1,1 \pm 0,4)$ cm/s.	112
Tabela 30: Resultado da calibração do impactador com a mesa	
girando 0,6 rpm, após ajuste da equação. Exaustor de ar - 600 rpm.	113
Tabela 31: Resultado da calibração do impactador – mesa girando	
em 0,6 rpm com velocidade do ar de $(3,1 \pm 0,6)$ cm/s.	113
Tabela 32: Resultado da calibração do impactador com a mesa	
girando 0,6 rpm, após ajuste da equação. Exaustor de ar - 1200 rpm.	114
Tabela 33: Resultado da calibração do impactador no ponto B –	
mesa giratória em repouso.	115
Tabela 34: Resultado da calibração do impactador no ponto B, após ajuste da equação. Exaustor de ar - 900 rpm.	115
Tabela 35: Resultado da calibração do impactador no ponto C –	
mesa giratória em repouso.	116
Tabela 36: Resultado da calibração do impactador no ponto C, após ajuste da equação. Exaustor de ar - 900 rpm.	116
Tabela 37: Resultado da calibração do impactador – mesa girando	
em 0,6 rpm com velocidade do ar de $(2,2 \pm 0,5)$ cm/s.	117
Tabela 38: Resultado da calibração do impactador com mesa girando, após ajuste da equação. Exaustor de ar - 900 rpm.	117
Tabela 39: Resultado da calibração do impactador – mesa girando	
em 0,6 rpm com velocidade do ar de $(1,1 \pm 0,4)$ cm/s.	118
Tabela 40: Resultado da calibração do impactador com mesa girando, após ajuste da equação. Exaustor de ar - 600 rpm.	118
Tabela 41: Resultado da calibração do impactador – mesa girando	

em 0,6 rpm com velocidade do ar de $(3,1 \pm 0,6)$ cm/s.	119
Tabela 42: Resultado da calibração do impactador com mesa	
girando, após ajuste da equação. Exaustor de ar - 1200 rpm.	119
Tabela 43: Resultado da calibração do impactador nos estágio 2,5µm	
e 1,0µm	120
Tabela 44: Erro sistemático na calibração do impactador de três	
estágios – estágio 2,5 (μm)	121
Tabela 45: Erro sistemático na calibração do impactador de três	
estágios - estágio 1,0 (μm)	122
Tabela 46 Canais e seus respectivos diâmetros aerodinâmicos	
do APS 3320	128
Tabela 47: Contagem de partículas usadas na calibração do APS	
3320 - 0,5µm	142
Tabela 48: Contagem de partículas usadas na calibração do APS	
3320 - 0,5µm – continuação	143
Tabela 49: Contagem de partículas usadas na calibração do APS	
3320 - 0,5µm - continuação	144
Tabela 50: Contagem de partículas usadas na calibração do APS	
3320 – 1,0µm	145
Tabela 51: Contagem de partículas usadas na calibração do APS	
3320 – 1,0µm - continuação	146
Tabela 52 Contagem de partículas usadas na calibração do APS	
3320 – 3,0µm	147
Tabela 53: Contagem de partículas usadas na calibração do APS	
3320 – 3,0µm - continuação	148
Tabela 54: Contagem de partículas usadas na calibração do APS	
3320 – 5,0µm	149
Tabela 55: Contagem de partículas usadas na calibração do APS	
3320 – 5,0µm - continuação	150
Tabela 56: Estágio 2,5 μm – geração de partículas de 0,5 μm –	
Posição B	152
Tabela 57: Estágio 2,5 μm – geração de partículas de 0,5 μm –	
Posição B - continuação	153
Tabela 58: Análise de incertezas - geração de partículas de 0,5 μm – Posição B	153

Tabela 59: Estágio 2,5 μm – geração de partículas de 0,5 μm –	
Posição C	154
Tabela 60: Estágio 2,5 μm – geração de partículas de 0,5 μm –	
Posição C - continuação	155
Tabela 61: Analise de incertezas - Estágio 2,5 μm – geração de	
partículas de 0,5 µm – Posição C	155
Tabela 62: Estágio 2,5 μm – geração de partículas de 0,5 μm –	
Posição Girando 900 rpm	156
Tabela 63: Análise de incertezas - Estágio 2,5 µm – geração de	
partículas de 0,5 µm – Posição Girando 900 rpm	156
Tabela 64: Estágio 2,5 μm – geração de partículas de 0,5 μm –	
Posição Girando 600 rpm	157
Tabela 65: Análise de Incertezas - Estágio 2,5 μm – geração de	
partículas de 0,5 µm – Posição Girando 600 rpm	157
Tabela 66: Estágio 2,5 μm – geração de partículas de 0,5 μm –	
Posição Girando 1200 rpm	158
Tabela 67: Análise de incertezas - Estágio 2,5 μm – geração de	
partículas de 0,5 µm – Posição Girando 1200 rpm	158
Tabela 68: Estágio 2,5 μm – geração de partículas de 1,0 μm –	
Posição B	159
Tabela 69: Estágio 2,5 μm – geração de partículas de 1,0 μm –	
Posição B - continuação	160
Tabela 70: Análise de incertezas - Estágio 2,5 µm – geração de	
partículas de 1,0 μm – Posição B	160
Tabela 71: Estágio 2,5 μm – geração de partículas de 1,0 μm –	
Posição C	161
Tabela 72: Estágio 2,5 μm – geração de partículas de 1,0 μm –	
Posição C - continuação	162
Tabela 73: Análise de incertezas - Estágio 2,5 µm – geração de	
partículas de 1,0 μm – Posição C	162
Tabela 74: Estágio 2,5 μm – geração de partículas de 1,0 μm –	
Posição Girando 900 rpm	163
Tabela 75: Estágio 2,5 µm – geração de partículas de 1,0 µm –	
Posição Girando 900 rpm - continuação	164
Tabela 76: Análise de incertezas - Estágio 2,5 µm – geração de	

partículas de 1,0 µm – Posição Girando 900 rpm	164
Tabela 77: Estágio 2,5μm – geração de partículas de 1,0 μm –	
Posição Girando 600rpm	165
Tabela 78: Análise de incertezas - Estágio 2,5µm – geração de	
partículas de 1,0 µm – Posição Girando 600rpm	165
Tabela 79: Estágio 2,5 μm – geração de partículas de 1,0 μm –	
Posição Girando 1200 rpm	166
Tabela 80: Análise de incertezas - Estágio 2,5 μm – geração de	
partículas de 1,0 µm – Posição Girando 1200 rpm	166
Tabela 81: Estágio 2,5 μm – geração de partículas de 3,0 μm –	
Posição B	167
Tabela 82: Estágio 2,5 μm – geração de partículas de 3,0 μm –	
Posição B - continuação	168
Tabela 83: Análise de incertezas - Estágio 2,5 μm – geração de	
partículas de 3,0 µm – Posição B	168
Tabela 84: Estágio 2,5 μm – geração de partículas de 3,0 μm –	
Posição C	169
Tabela 85: Estágio 2,5 μm – geração de partículas de 3,0 μm –	
Posição C - continuação	170
Tabela 86: Analise de incertezas - Estágio 2,5 μm – geração de	
partículas de 3,0 μm – Posição C	170
Tabela 87: Estágio 2,5 μm – geração de partículas de 3,0 μm –	
Posição Girando 900 rpm	171
Tabela 88: Estágio 2,5 μm – geração de partículas de 3,0 μm –	
Posição Girando 900 rpm - continuação	172
Tabela 89: Análise de incertezas - Estágio 2,5 μm – geração de	
partículas de 3,0 µm – Posição Girando 900 rpm	172
Tabela 90: Estágio 2,5 μm – geração de partículas de 3,0 μm –	
Posição Girando 600 rpm	173
Tabela 91: Analise de incertezas - Estágio 2,5 μm – geração de partículas de 3,0 μm – Posição Girando 600 rpm	173
Tabela 92: Estágio 2,5 μm – geração de partículas de 3,0 μm –	
Posição Girando 1200 rpm	174
Tabela 93: Análise de incertezas - Estágio 2,5 μm – geração de	
partículas de 3,0 µm – Posição Girando 1200 rpm	174

Tabela 94: Estágio 2,5 μm – geração de partículas de 5,0 μm –	
Posição B	175
Tabela 95: Estágio 2,5 μm – geração de partículas de 5,0 μm –	
Posição B - continuação	176
Tabela 96: Análise de incertezas - Estágio 2,5 μm – geração de	
partículas de 5,0 µm – Posição B	176
Tabela 97: Estágio 2,5 μm – geração de partículas de 5,0 μm –	
Posição C	177
Tabela 98: Estágio 2,5 μm – geração de partículas de 5,0 μm –	
Posição C - continuação	178
Tabela 99: Análise de incertezas - Estágio 2,5 μm – geração de	
partículas de 5,0 µm – Posição C	178
Tabela 100: Estágio 2,5 μm – geração de partículas de 5,0 μm –	
Posição Girando 900 rpm	179
Tabela 101: Estágio 2,5 μm – geração de partículas de 5,0 μm –	
Posição Girando 900 rpm - continuação	180
Tabela 102: Analise de incertezas - Estágio 2,5 μm – geração de partículas de 5,0 μm – Posição Girando 900 rpm	180
Tabela 103: Estágio 2,5 μm – geração de partículas de 5,0 μm –	
Posição Girando 600 rpm	181
Tabela 104: Análise de incertezas - Estágio 2,5 μm – geração de partículas de 5,0 μm – Posição Girando 600 rpm	181
Tabela 105: Estágio 2,5 μm – geração de partículas de 5,0 μm –	
Posição Girando 1200 rpm	182
Tabela 106: Análise de incertezas - Estágio 2,5 μm – geração de partículas de 5,0 μm – Posição Girando 1200 rpm	182
Tabela 107: Estágio 1,0 μm – geração de partículas de 0,5 μm –	
Posição B	183
Tabela 108: Estágio 1,0 μm – geração de partículas de 0,5 μm –	
Posição B - continuação	184
Tabela 109: Análise de incertezas - Estágio 1,0 μm – geração de partículas de 0,5 μm – Posição B	184
Tabela 110: Estágio 1,0 μm – geração de partículas de 0,5 μm –	
Posição C	185
Tabela 111: Estágio 1,0 μm – geração de partículas de 0,5 μm –	
Posição C - continuação	186

Tabela 112: Analise de incertezas - Estágio 1,0 μm – geração de partículas de 0,5 μm – Posição C	186
Tabela 113: Estágio 1,0 μm – geração de partículas de 0,5 μm –	
Posição Girando 900 rpm	187
Tabela 114: Estágio 1,0 μm – geração de partículas de 0,5 μm –	
Posição Girando 900 rpm - continuação	188
Tabela 115: Analise de incertezas - Estágio 1,0 μm – geração de partículas de 0,5 μm – Posição Girando 900 rpm	188
Tabela 116: Estágio 1,0 μm – geração de partículas de 0,5 μm –	
Posição Girando 600 rpm	189
Tabela 117: Análise de incertezas - Estágio 1,0 μm – geração de partículas de 0,5 μm – Posição Girando 600 rpm	189
Tabela 118: Estágio 1,0 μm – geração de partículas de 0,5 μm –	
Posição Girando 1200 rpm	190
Tabela 119: Estágio 1,0 μm – geração de partículas de 0,5 μm –	
Posição Girando 1200 rpm	190
Tabela 120: Estágio 1,0 μm – geração de partículas de 1,0 μm –	
Posição B	191
Tabela 121: Estágio 1,0 μm – geração de partículas de 1,0 μm –	
Posição B - continuação	192
Tabela 122: Análise de incertezas - Estágio 1,0 μm – geração de partículas de 1,0 μm – Posição B	192
Tabela 123: Estágio 1,0 μm – geração de partículas de 1,0 μm –	
Posição C	193
Tabela 124: Estágio 1,0 μm – geração de partículas de 1,0 μm –	
Posição C - continuação	194
Tabela 125: Análise de incertezas - Estágio 1,0 μm – geração de partículas de 1,0 μm – Posição C	194
Tabela 126: Estágio 1,0 μm – geração de partículas de 1,0 μm –	
Posição Girando 900 rpm	195
Tabela 127: Estágio 1,0 μm – geração de partículas de 1,0 μm –	
Posição Girando 900 rpm – continuação.	196
Tabela 128: Estágio 1,0 μm – geração de partículas de 1,0 μm –	
Posição Girando 900 rpm - continuação	196
Tabela 129: Estágio 1,0 μm – geração de partículas de 1,0 μm –	
Posição Girando 600 rpm	197

Tabela 130: Análise de incertezas - Estágio 1,0 μm – geração de partículas de 1,0 μm – Posição Girando 600 rpm	197
Tabela 131: Estágio 1,0 μm – geração de partículas de 1,0 μm –	
Posição Girando 1200 rpm	198
Tabela 132: Análise de incertezas - Estágio 1,0 μm – geração de partículas de 1,0 μm – Posição Girando 1200 rpm	198
Tabela 133: Estágio 1,0 μm – geração de partículas de 3,0 μm –	
Posição B	199
Tabela 134: Estágio 1,0 μm – geração de partículas de 3,0 μm –	
Posição B - continuação	200
Tabela 135: Análise de incertezas - Estágio 1,0 μm – geração de partículas de 3,0 μm – Posição B	200
Tabela 136: Estágio 1,0 μm – geração de partículas de 3,0 μm –	
Posição C	201
Tabela 137: Estágio 1,0 μm – geração de partículas de 3,0 μm –	
Posição C - continuação	202
Tabela 138: Analise de incertezas - Estágio 1,0 μm – geração de partículas de 3,0 μm – Posição C	202
Tabela 139: Estágio 1,0 μm – geração de partículas de 3,0 μm –	
Posição Girando 900 rpm	203
Tabela 140: Estágio 1,0 μm – geração de partículas de 3,0 μm –	
Posição Girando 900 rpm - continuação	204
]Tabela 141: Análise de incertezas - Estágio 1,0 μm – geração de partículas de 3,0 μm – Posição Girando 900 rpm	204
Tabela 142: Estágio 1,0 μm – geração de partículas de 3,0 μm –	
Posição Girando 600 rpm	205
Tabela 143: Análise de incertezas - Estágio 1,0 μm – geração de partículas de 3,0 μm – Posição Girando 600 rpm	205
Tabela 144: Estágio 1,0 μm – geração de partículas de 3,0 μm –	
Posição Girando 1200 rpm	206
Tabela 145: Análise de incertezas - Estágio 1,0 μm – geração de partículas de 3,0 μm – Posição Girando 1200 rpm	206
Tabela 146: Estágio 1,0 μm – geração de partículas de 5,0 μm –	
Posição B	207
Tabela 147: Estágio 1,0 μm – geração de partículas de 5,0 μm –	
Posição B - continuação	208
Tabela 148: Análise de incertezas - Estágio 1,0 μm – geração de partículas de 5,0 μm – Posição B	208

Tabela 149: Estágio 1,0 μm – geração de partículas de 5,0 μm –	
Posição C	209
Tabela 150: Estágio 1,0 μm – geração de partículas de 5,0 μm –	
Posição C - continuação	210
Tabela 151: Anãlise de incertezas - Estágio 1,0 μm – geração de partículas de 5,0 μm – Posição C	210
Tabela 152: Estágio 1,0 μm – geração de partículas de 5,0 μm –	
Posição Girando 900 rpm	211
Tabela 153: Estágio 1,0 μm – geração de partículas de 5,0 μm –	
Posição Girando 900 rpm - continuação	212
Tabela 154: Análise de incertezas - Estágio 1,0 μm – geração de partículas de 5,0 μm – Posição Girando 900 rpm	212
Tabela 155: Estágio 1,0 μm – geração de partículas de 5,0 μm –	
Posição Girando 600 rpm	213
Tabela 156: Análise de incertezas - Estágio 1,0 μm – geração de partículas de 5,0 μm – Posição Girando 600 rpm	213
Tabela 157: Estágio 1,0 μm – geração de partículas de 5,0 μm –	
Posição Girando 1200 rpm	214
Tabela 158: Análise de incertezas - Estágio 1,0 μm – geração de partículas de 5,0 μm – Posição Girando 1200 rpm	214
Tabela 159: velocidade do ar na saída da câmara.	221
Tabela 160: incerteza tipo A da velocidade do ar na saída da câmara.	221
Tabela 161: incerteza do anemômetro padrão.	222
Tabela 162: incerteza combinada da velocidade do ar na saída da câmara.	222
Tabela 163: incerteza expandida da velocidade do ar na saída da	
câmara.	222
Tabela 164: incerteza expandida (em m³/s) da vazão volumétrica	
do ar na saída da câmara.	222
Tabela 165: incerteza expandida (em L/min) da vazão volumétrica	
do ar na saída da câmara.	223
Tabela 166: incerteza expandida (em L/min) da vazão volumétrica	
do ar na saída da câmara, com dois algarismos significativos.	223
Tabela 167: Velocidade do ar no interior da câmara de calibração e	
sua incerteza.	224

Lista de abreviaturas e símbolos

- I. APS 3320 = Aerodynamic Particle Sizes Spectrometer modelo 3320
- II. $d_M = diâmetro de Martin$
- III. d_F = diâmetro de Feret
- IV. d_{ae} ou d = diâmetro aerodinâmico
- V. d_{ve} = diâmetro de volume equivalente
- VI. d_{st} = diâmetro de Stokes
- VII. d_{PA} = diâmetro da área projetada
- VIII. d_{p50%} = diâmetro de corte
- IX. C_D = coeficiente de arraste
- X. ρ_{gás} = massa especifica do gás
- XI. ρ_{partícula} = massa especifica da partícula
- XII. Re = número de Reynolds
- XIII. $\eta = viscosidade$
- XIV. V_{TS} = velocidade terminal da partícula
- XV. k = fator de abrangência
- XVI. u_C = incerteza combinada
- XVII. U = incerteza expandida

XVIII.s_{ajuste} = incerteza do ajuste de uma função

XIX. A = numero de partículas antes de chegar ao impactador

- XX. AI = número de partículas antes de chegar ao impactador, limpas.
- XXI. D = numero de partículas depois de chegar ao impactador
- XXII. DI = numero de partículas depois de chegar ao impactador, limpas.
- XXIII. d_p = media aritmética da partícula
- XXIV. σ = desvio padrão amostral
- XXV. $u_A =$ incerteza tipo A
- XXVI. u_{APS} = incerteza do APS 3320
- XXVII. v_{ef} = grau de liberdade efetivo

1. Introdução

1.1. Apresentação

O aumento da poluição, nos grandes centros urbanos, tem forçado a demanda por novos equipamentos capazes de fazer a amostragem correta das partículas em suspensão no ar. Estas partículas são de especial atenção, pois causam danos à nossa saúde. As partículas menores que 10µm são consideradas inaláveis sendo que as de tamanho menores que 3µm são consideradas respiráveis, atingindo a região alveolar dos pulmões.

Na busca pela diminuição dos efeitos da poluição, faz-se necessário monitorar as características físicas dos aerossóis (concentração e tamanho). No entanto, os procedimentos necessários para a calibração de medidores de aerossol são mal definidos, sem instruções formais e documentação.

As calibrações de novos instrumentos são realizadas pelos próprios fabricantes, sendo necessário enviar o instrumento para a Europa ou Estados Unidos. No Brasil não existem laboratórios que façam calibrações de medidores de aerossol. Todo o monitoramento é feito sem confiabilidade metrológica.

A rigor, todos os instrumentos exigem, para assegurar os resultados fornecidos, uma calibração. Idealmente, todas as medidas deveriam ser rastreadas a um padrão primário, possivelmente pelo uso de padrões secundários.

Sob circunstâncias normais, calibrações de instrumentos novos são feitas pelos próprios fabricantes fora do Brasil. Calibrações subsequentes são realizadas quando os instrumentos são entregues aos fabricantes para limpeza e consertos. Além disso, um número muito pequeno de laboratórios realizam calibrações e manutenção de amostradores de aerossol. Porém, nos anos 1990 (Lewis al et - 1993), verificou que 58% dos instrumentos, usados naquele momento, nunca foram calibrados ou foram "caseiramente" calibrados. Claramente, esta situação é insatisfatória. Ela pode conduzir a diferenças consideráveis na medição da concentração de aerossol. Tais inconsistências são particularmente importantes quando as amostras, tiradas de um local de trabalho, são analisadas para efeito trabalhista ou para emissão ambiental. Também é importante no controle de qualidade de alguns processos industriais.

1.2. Objetivo e organização da pesquisa

O objetivo geral da pesquisa é desenvolver uma metodologia para calibração de amostradores atmosféricos de particulados, na faixa de (0,5 a 20,0) µm, segundo o *Guia para a Expressão da Incerteza de Medição – ISO GUM* e o *Vocabulário Internacional de Termos Fundamentais e gerais de Metrologia- VIM*.

Os objetivos específicos:

- Construir uma câmara de calibração de aerossol que provê uma atmosfera controlada para avaliação de amostradores de aerossol. Essa câmara deve ser grande o bastante para acomodar vários instrumentos, tendo uma área de seção de teste de aproximadamente 1,0m².
- Calibrar e validar o impactador em cascata desenvolvidos pelo Departamento de Engenharia Mecânica da PUC - Rio, nas grandezas diâmetro aerodinâmico e eficiência de coleta.
- Dar tratamento metrológico a medição de aerossol conferindo aos resultados experimentais uma confiabilidade metrológica.

A tese foi organizada da seguinte forma:

1. Introdução

Apresentamos o problema da pesquisa de uma forma geral, seus objetivos e a organização desta pesquisa.

2. Revisão Bibliográfica

É feita uma sucinta descrição cronológica do problema e principais bibliografias.

3. Aerossol e suas propriedades aerodinâmicas

Define os diversos tipos de aerossóis, seus diâmetros característicos e seu escoamento num gás. Destaca a importância de uma amostragem isocinética.

4. Estatística de aerossol, Metrologia e Impactador em cascata

Trata da estatística básica utilizada, menciona a distribuição lognormal e as características dos aerossóis, mas reforça conceitos da distribuição normal

usado na pesquisa. Define termos e conceitos metrológicos oriundos do VIM – Vocabulário Internacional de Metrologia, tais como: incerteza de medição, incerteza do ajuste de uma curva experimental e fator de abrangência. Por fim, descreve a teoria dos impactadores em cascata, seu diâmetro de corte e sua curva de eficiência.

5. Aparato Experimental

Descreve o princípio de funcionamento dos principais equipamentos utilizados na pesquisa. São eles:

- a. Câmara de Calibração
- b. APS 3320 Aerodynamic Particle Sizer Spectrometer
- c. Nebulizador de ar comprimido e produção de aerossol.
- d. Impactador de três estágios
- Metodologia de calibração de amostradores de particulados atmosféricos.

Descreve a metodologia de calibração de amostradores atmosféricos de particulados, proposta nesta pesquisa. Ela segue os seguintes passos:

- a. Procedimento inicial
- b. Geração de aerossol partículas de látex
- c. Calibração de impactadores inerciais
- d. Calibração do APS 3320

7. Análise dos dados

Apresenta os resultados da calibração do impactador de três estágios desenvolvido no departamento de engenharia mecânica da PUC-Rio e do APS 3320. (Fabricante: TSI Incorporated – 1997)

8. Conclusão

Conclusão da pesquisa e recomendações futuras.

Anexos

9. Bibliografia

2. Revisão Bibliográfica

Até hoje já foram elaboradas diversas avaliações e técnicas de calibração de instrumentos. Uma técnica é a introdução do aerossol em um túnel de vento por uma sonda que o conduz ao instrumento. Normalmente a sonda é de tamanho e de forma que permite uma velocidade constante até o ponto de amostragem.

Outra técnica é preencher o instrumento com o aerossol, figura 1, de forma que todas as partículas que entram no instrumento são de aerossol e não do ar circunvizinho. Neste caso, não se alcança a velocidade constante.

Figura 1: Calibração de amostradores atmosféricos - Técnica 1.

Uma modificação desta técnica é colocar um dispositivo de calibração na entrada do instrumento que está sendo calibrado (figura 2) e preencher a entrada do dispositivo de calibração.

Figura 2: Calibração de amostradores atmosféricos - Técnica 2.

Embora todas essas técnicas avaliem e calibrem medidores de aerossol, elas requerem sondas até a entrada do instrumento. Em alguns casos essas técnicas podem ser desejáveis para calibração. Porém, em outros casos, como em um programa de avaliação de instrumento, pode ser mais desejável expor o instrumento inteiro a uma atmosfera controlada que contenha o aerossol. Desta forma, a presença de fontes de calor geradas pelo próprio instrumento, no momento da amostragem das partículas, será incluída na calibração. As condições durante a calibração reproduzem uma atmosfera controlada.

No começo do século XX, o estudo de aerossóis estava na vanguarda da ciência física. A ciência de aerossol contribuiu para o entendimento prematuro do movimento Browniano, da medida da carga do elétron, e as experiências de câmara de nuvem de Wilson para o estudo da radiação ionizante. (Hinds, 1999)

Este período clássico de pesquisa na ciência do aerossol continuou pela primeira metade do século e conclui com a publicação de *As Mecânicas de Aerossóis* por Fuchs em 1955. Na Segunda Guerra Mundial e particularmente durante os anos 1970 a tecnologia de aerossol cresceu em importância por causa de um aumento na consciência ambiental e uma preocupação com a poluição do ar nas grandes cidades e ambientes profissionais. As pesquisas em aerossol expandiram-se rapidamente nos anos 1980 para incluir o uso de aerossóis em processos de produção, com uma preocupação para contaminação de aerossol na indústria de semicondutor (tecnologia limpa). A década de 1990 viu aumentar pesquisas sobre partículas com diâmetros abaixo de 0,1µm e no efeito de aerossóis no clima global.

Encontramos, na literatura especializada, vários livros e artigos que abordam o tema geração e calibração de aerossol. Abaixo, citamos alguns:

Y.H. Liu no livro Standardization and Calibration of Aerosol Instruments (1976) preocupa-se com geradores de aerossol desenvolvidos na Universidade de Minnesota. K. Willeke no livro Generation of Aerosol and Facilities for Exposure Experiments descreve a geração de aerossóis para instalações em ambientes onde animais são expostos, mas há muita informação útil sobre técnicas de geração de aerossol monodisperso. Raabe (1976), no livro The Generation of Aerosols of Fine Particles, incluiu informações sobre o uso correto de partículas de látex. H. Vincent (1989), Aerosol Sampling: Science and Practice, tem como objetivo fornecer a pesquisadores de aerossol com um quadro científico essencial para um conhecimento prático dos processos relevantes para a amostragem dos aerossóis. Uma descrição dos métodos experimentais é descrita e seguida por detalhes da evolução de técnicas de amostragem práticas.

Destacamos o livro que aborda a questão da calibração de medidores atmosféricos: Griffiths, W.D; Mark. D; Marshall. I. A and Nichols, A. L, (1998), *Aerosol Particles Size Analysis – Good Calibration Practices*. Nele os autores descrevem preocupações no procedimento de calibração. Não abordam cálculos de incerteza, nem determinação de erros sistemáticos, mas é de grande auxilio na

metodologia. Uma dissertação de mestrado que colaborou muito para este estudo foi desenvolvida por Costa, C.M.F e Gomes, M.S.P, (2005 PUC-Rio). *Projeto, simulação numérica e teste experimental de um impactador em cascata para amostragem de aerossóis atmosféricos.* James H. Vincent (2007), no livro: *Aerosol Sampling: Science, Standards, Instrumentation and Applications* oferece um relato completo do importante campo de amostragem de aerossol, como ele é aplicado para a medição de aerossóis que são comuns em ambientes de trabalho e de vida, tanto interiores como exterior. *Aerosol Measurement: Principles, Techniques, and Applications*, editado por: Pramod Kulkarni, Paul A. Baron, Klaus Willeke (2011), detalha recentes métodos de medição de aerossóis. Possibilita uma sólida compreensão dos fundamentos e práticas de medição de uma grande variedade de aplicações de aerosol. A sua 3º edição é atualizada e aborda novas aplicações e desenvolvimento de medição de aerossóis, incluindo aplicações em saúde ambiental, ciências atmosféricas, mudanças climáticas, poluição do ar, saúde pública, nanotecnologia, tecnologia de partículas.

No grupo dos artigos científicos, destaco: Marpel, Virgil A and Rubow, Kenneth L, (1983), An Aerosol Chamber for Instrument Evaluation and Calibration, nele os autores descrevem a construção de uma câmara de calibração de aerossol, semelhante à proposta desta pesquisa. Sioutas, C; Ferguson, S. T, Wolfson, J.M, Ozkaynak, H, Koutrakis, P. (1997). Inertial collection of fine particles using a high-volume rectangular geometry conventional impactor. Este trabalho apresenta o desenvolvimento e avaliação de um impactador retangular de alto volume e geometria convencional. Operando com uma entrada seletiva que remove as partículas maiores que 2,5µm, em tamanho aerodinâmico, o impactador foi projetado para amostrar partículas finas em ambiente. Chang, M; Sioutas, C; Cassee, F.R., Fokkens, P.H.B. (2001) Field evaluation of a mobile high-capacity particle size classifier (HCPSC) for separate collection of coarse, fine and *ultrafine particles*. Este artigo apresenta resultados de uma avaliação de campo de um classificador móvel de tamanho de partículas de alta capacidade (HCPSC), cuja vazão é 850L/min. Ele amostra e classifica as partículas ambientais em três grupos de tamanho: grosso, fino e ultrafino. Kelvin; Cheng (2002). Size Distribution of Indoor Particulate Matter in 60 Homes in Hong Kong, apresentam neste artigo um estudo detalhado da distribuição de tamanho de partículas realizado em 60 residências em Hong Kong. Os níveis de partículas foram

medidos usando impactadores em cascata de 8 estágios. Pode ser visto que a concentração de partículas no verão foi consideravelmente mais baixo que no inverno. Armendariz, A.J, Leith, D. (2002) no artigo: Concentration measurement and counting e efficiency for the aerodynamic particle sizer 3320. Mostram a performance do APS 3320 em diversas situações de medição. Hogrefe, O; Drewnick, F; Lala, G; Schwab, J.J; Demerjian, K.(2004) Development, Operation and Applications of an Aerosol Generation, Calibration and Research Facility. Importante artigo que trabalha a geração e calibração de aerossol, com o objetivo principal de avaliar a instrumentação de aerossol, incluindo testes de garantia de qualidade, intercomparação, avaliação de desempenho, e calibração de aerossol. Freitas, A.M; Solci, M.C, (2009) Caracterização do PM., e PM ... e distribuição por tamanho de cloreto, nitrato e sulfato em atmosfera urbana e rural de Londrina. Realizam entre os meses de março e abril de 2007, simultaneamente em duas áreas de Londrina, uma (Museu Histórico) urbana e outra rural (Fazenda-Escola da UEL), coleta com o impactor em cascata de quatro fases impactação (0,25 a 10) µm. Virgil A. Marple, Bernard A. Olson (2009). Good Laboratory Practice in Particle Measurement Calibration: Cascade Impactor. Este artigo enfatiza os procedimentos adequados para a calibração de classificadores inerciais, especificamente impactadores em cascata. Importante referência para esta pesquisa.

3. Aerossol e suas propriedades aerodinâmicas

3.1. Definições Básicas

Os aerossóis encontrados na natureza são de diversos tipos e podem ter origem na fumaça oriunda da combustão, partículas de sal oriundas dos oceanos e partículas de gelo das nuvens atmosféricas. Essas partículas aerotransportadas são exemplos de aerossóis e afetam a visibilidade, o clima e nossa qualidade de vida.

São encontrados em uma ampla extensão de fenômenos, tais como: poeira, fumaça, neblina, névoa, nuvens. Aerossóis também são chamados de particulados em suspensão e são definidos como um conjunto de partículas sólidas ou líquidas suspensa em um gás. Aerossóis são sistemas de duas fases e consistem nas partículas e no gás onde são suspensos. Na tabela 1 encontramos vários tipos de aerossóis.

Meio em suspensão	Tipo de partícula suspensa				
	Gás	Líquido	Sólido		
Gás		Névoa: Aerossol atmosférico.	Pó: Aerossol de partícula sólida. Partículas variam de submícrons para além de		
		Neblina : Aerossóis de partícula líquida. Partículas são esféricas com tamanhos que variam até 200µm.	 100μm. Forma irregular. Fumaça: Aerossol de partícula sólida produzido pela condensação de vapores ou 		
		Spray : Aerossol formado pelo colapso mecânico de um líquido (gotas). Partículas são maiores que alguns micra.	produtos de combustão gasosa. É menor que 0,05µm.		
Líquido	Espuma	Emulsão	Partícula em suspensão		
Sólido	Esponia	Gel	Liga		

Tabela 1: Particulados em suspensão (fonte: Hinds, Aerosol Technology, 1999)

O estudo sobre aerossol possibilita aplicação comercial na fabricação de produtos como: spray, fibra ótica, tinta, pigmentos e aplicação de inseticidas. Também aplicamos esses conhecimentos na produção, transporte, e destino final de contaminantes particulados na atmosfera, bem como na medição e controle de contaminantes particulados nos ambientes profissionais. As propriedades farmacêuticas das partículas inaladas dependem de suas características físicas e químicas. Este conhecimento é usado na administração de aerossóis para o tratamento de doenças respiratórias.

Aproximadamente 0,0001% da massa e do volume de um aerossol é composto de sua fase particulada. Sua viscosidade e densidade diferem muito pouco do ar puro. Conseqüentemente, para estudar as propriedades dos aerossóis, é preciso adotar um ponto de vista microscópico e considerar uma partícula isoladamente, analisando sua iteração com o gás ao seu redor; as forças presentes e as possíveis radiações eletromagnéticas e outras partículas.

Os fenômenos como: pôr do sol, silicosi, chuva, mudança de clima global, precipitação eletrostática, arco-íris, estão diretamente relacionados ao estudo dos aerossóis. As figuras abaixo mostram a poluição oriunda de uma usina de carvão e suas partículas ampliadas.

Figura 3: Usina movida à queima de carvão. (fonte: Hinds, Aerosol Technology, 1999)

Figura 4: Partículas de carvão. (fonte: Hinds, Aerosol Technology, 1999)

Um aerossol pode ser caracterizado por diferentes aspectos. Destacaremos aqui a dispersão de tamanho, seu diâmetro e sua concentração.

Aerossóis monodispersos têm partículas que são todas do mesmo tamanho e podem ser produzidas no laboratório para ensaios. A maioria dos aerossóis é polidisperso, com uma grande faixa de tamanhos, sendo usadas medidas estatísticas para caracterizar o tamanho das partículas. Todas as propriedades de aerossóis dependem fortemente do tamanho da partícula e uma avaliação de como as propriedades dos aerossóis varia com o tamanho é de fundamental importância para a sua compreensão.

O tamanho da partícula se refere ao seu diâmetro e é medido em *mícron* $(10^{-6}m)$. As menores partículas de aerossol se aproximam do tamanho de grandes moléculas de gás e têm muitas das suas propriedades. Partículas menores que 50 nm são chamadas de nano partículas. Partículas líquidas quase sempre são esféricas, já as partículas sólidas normalmente têm formas complexas.

No estudo do comportamento dos aerossóis é usual adotarmos as partículas como esféricas. No impedimento dessa simplificação, usam-se fatores de correção e diâmetros equivalentes. Diâmetro equivalente é o diâmetro da esfera que tem o mesmo valor de uma propriedade física particular da partícula. Sua densidade é definida como sendo a relação entre sua massa por unidade do seu volume e não do aerossol, normalmente expressa em kg/m³ ou g/cm³.

Outra medida comum é a *concentração de número*, o número de partículas por unidade de volume do aerossol, comumente expressa como número/cm³ ou número/m³. Seu conhecimento é muito importante para saúde e efeitos ambientais. Destaca-se também a medição da *concentração de massa*, a massa de matéria de particulado em um volume de unidade de aerossol. Unidades comuns são g/m³, mg/m³, e μ g/m³. A concentração de massa é equivalente à densidade do conjunto de partículas de aerossol no ar; porém, o último termo não é usado por causa de possível confusão com densidade de partícula.

3.2. Diâmetros característicos dos aerossóis.

O diâmetro da partícula é o seu parâmetro mais importante. Ele define as características físicas das partículas aerotransportadas. A distribuição de diâmetro de um conjunto de aerossol geralmente é polidispersa, às vezes com 100 vezes de variação entre as partículas menores e maiores (Hinds - 1999). Uma avaliação de como as propriedades dos aerossóis pode variar com o diâmetro das partículas é fundamental à sua compreensão. Aerossóis podem variar entre 0,001µm a 100µm de diâmetros.

A maioria dos autores considera que, geometrias esféricas apenas simplificam o desenvolvimento de teorias matemáticas, descrevendo o comportamento do aerossol e o fenômeno relacionado. É necessário fazer uso de vários fatores de correção, normalmente expresso em termos de diâmetro equivalente, para caracterizar o comportamento de partículas não esféricas. Em geral, o diâmetro equivalente é definido como o diâmetro da partícula esférica que tem a mesma característica comportamental da partícula não esférica, sob as mesmas condições. Muito freqüentemente esta propriedade física se refere a um parâmetro que descreve o comportamento aerodinâmico da partícula.

3.2.1. Diâmetros geométricos

Uma medida direta do diâmetro das partículas se dá através do microscópio. Este procedimento se opõe a métodos indiretos como: sedimentação, impactação, análise de mobilidade e difusão da luz, onde o tamanho da partícula é obtido a partir da medição de outra propriedade relacionada com o seu tamanho. O microscópio pode ser usado para obter informações em duas dimensões relativas à forma da partícula, além de permitir uma distribuição de tamanho. Podem ser usados microscópios ópticos para medir diâmetros na faixa de aproximadamente 0,5µm a 50µm. Tamanhos entre 0,01µm a 20µm necessitariam de microscópio eletrônico de varredura.

Geralmente é necessária, para caracterizar uma partícula, uma análise fundamentada em duas dimensões, baseada em sua imagem projetada ou silhueta. Para partículas esféricas o diâmetro da silhueta é circular, mas para partículas geometricamente complexas é necessário fazer uso de uma série de "diâmetros equivalentes" baseado na geometria da silhueta. Estes diâmetros equivalentes baseados em duas dimensões são dependentes da geometria, e difere dos diâmetros equivalentes em três dimensões.

A menor dimensão em uma imagem bidimensional é chamada de *diâmetro de Martin* (d_M). Este parâmetro é o comprimento da linha paralela a uma dada linha de referência que divide a área projetada da silhueta da partícula em duas partes iguais. Este diâmetro é freqüentemente chamado de "diâmetro estatístico", porque o seu valor depende da orientação da partícula.

Outro diâmetro estatístico é o *diâmetro de Feret* (d_F) que é o comprimento da projeção da imagem da partícula ao longo de uma determinada linha de referência.

O diâmetro equivalente mais usado é o *diâmetro de área projetada* (d_{PA}) que é o diâmetro do círculo que tem a mesma área da imagem projetada da partícula. Esta é uma medida útil porque, uma analise bidimensional, independente da orientação da partícula.

3.2.2. Diâmetros equivalentes baseados em propriedade comportamental.

Ao invés dos diâmetros equivalentes bidimensionais dependerem das dimensões geométricas discutidas acima, os diâmetros equivalentes tridimensionais estão relacionados a alguma propriedade física equivalente. O *diâmetro de Stokes (d_{st})* é um dos exemplos mais importantes dos diâmetros equivalentes tridimensionais, baseados em propriedades físicas. Representa o diâmetro de uma esfera que tem a mesma densidade e velocidade de uma partícula.

O *diâmetro aerodinâmico* (d_{ae}) é de importância um pouco mais fundamental. Permite uma compreensão do comportamento das partículas aerotransportadas e é definido como o diâmetro da esfera de densidade unitária que tem a mesma velocidade de ajuste, sob forças gravitacionais, que a partícula.

O diâmetro de volume equivalente (d_{ve}), o diâmetro de Stokes (d_{St}), e o diâmetro aerodinâmico (d_{ae}) de uma partícula de aerossol, estão relacionados em termos da densidade da partícula e sua forma. Sob condições de Stokes, estas relações podem ser expressas em termos de equações simples. Todos os três diâmetros podem ser definidos em termos do diâmetro aerodinâmico da partícula, no lugar da geometria da partícula. Diâmetro aerodinâmico é a dimensão chave da partícula por descrever comportamento aerotransportado como: dispersão, filtração, deposição respiratória, e o desempenho de muitos tipos de filtros de ar.

3.3. Escoamentos de aerossol

O movimento retilíneo uniforme é o mais comum e talvez o tipo mais importante de movimento de partícula. É tipicamente o resultado da ação de duas forças, uma força externa, constante, como gravidade ou força elétrica, em oposição à força de resistência do gás ao movimento da partícula. Análise do movimento uniforme da partícula é especialmente útil para o estudo dos aerossóis,

34

porque na maioria das situações, as partículas movimentam-se com velocidade constante. A força de resistência do gás depende da velocidade relativa entre a partícula e o gás.

3.3.1. A lei de resistência de Newton

A equação geral para a força de resistência ao movimento de uma esfera que atravessa um gás foi desenvolvida por Newton. A equação de resistência de Newton é válida para um amplo alcance de movimento de partícula, mas é principalmente útil para número de Reynolds maior que 1000.

$$F_D = C_D \rho_{gas} \frac{\pi}{8} d^2 V^2 \qquad \text{Eq.3.1}$$

onde, C_D é o coeficiente de arraste da partícula, ρ_{gas} é a massa especifica do gás, d o diâmetro da partícula e V sua velocidade.

Esta é a forma geral da equação de resistência de Newton, válida para todo o movimento de partículas abaixo da velocidade do som. O coeficiente adimensional de arraste é constante para esferas que têm Re >1000, mas muda para Re <1000, como mostrado no gráfico 1. A curva do gráfico é para esferas; outras formas têm curvas semelhantes.

Para movimento de partícula com número de Reynolds entre 1×10^3 a 2×10^5 , C_D, tem um valor quase constante de 0,44. Com número de Reynolds menor que 1000, precisamos saber o número de Reynolds da partícula para obter o valor correto de C_D (ver gráfico 1) para usar a Eq. 3.1 é necessário conhecer o diâmetro e a velocidade da partícula.

Gráfico 1: Coeficiente de arraste contra número de Reynolds para esferas.

O segmento de reta do lado esquerdo, no gráfico 1, implica que a relação funcional entre as variáveis é constante. Esta é a região de Stokes. Entre a região de Stokes e a região de Newton, localiza-se a região de transição, com C_D definido pela equação abaixo.

$$C_D = \frac{24}{\text{Re}} \left(1 + 0.15 \,\text{Re}^{0.687} \right)$$
 Eq.3.2

Que corresponde à correlação experimentalmente que determina exatidão dentro de 4% para Re <800 e dentro de 7% para Re <1000.

3.3.2. Lei de Stokes¹

O coeficiente de arraste de Newton (para Re > 1000) aplica-se a movimento de partícula para o qual podem ser desprezados os efeitos viscosos do gás comparado com os efeitos inerciais. Em 1851 Stokes deduziu uma expressão para o coeficiente de arraste para o outro extremo, quando forças inerciais são desprezíveis comparadas com forças viscosas. O número de Reynolds é uma relação de forças inerciais com forças viscosas; por conseguinte, uma condição de forças inerciais desprezíveis, comparada com forças viscosas, implica um baixo número de Reynolds e fluxo laminar. Por causa das baixas velocidades e pequenos tamanhos de partícula envolvidos, a maioria dos movimentos de aerossol acontece com baixos números de Reynolds. Assim, a lei de Stokes tem larga aplicação no estudo dos aerossóis. A equação 3.3 descreve o número de Reynolds.

$$\mathsf{Re} = \frac{\rho_g V d}{\eta}$$
 Eq.3.3

onde η é a viscosidade do gás.

A lei de Stokes é uma solução particular das equações de Navier-Stokes. Estas equações descrevem o movimento do fluido. Elas são derivadas da aplicação da segunda lei de Newton a um elemento de fluido no qual, incluem força de corpo, pressão, e forças viscosas. As equações resultantes são muito difíceis de resolver, porque são equações diferenciais parciais não lineares. Em

¹A lei de Stokes representa um caso especial da lei de resistência de Newton.
geral, algumas simplificações devem ser feitas antes que elas possam ser resolvidas. A solução de Stokes assume que as forças inerciais são desprezíveis comparadas com as forças viscosas. Esta suposição elimina as condições de ordem mais altas das equações de Navier-Stokes, solucionando as equações. Neste trabalho faremos as seguintes suposições:

a. O fluido é incompressível

O ar não é um fluido incompressível, mas o importante é que não comprima, de forma significativa, próximo da partícula. Isto é equivalente a assumir que a velocidade relativa é muito menor que a velocidade do som. Que é o caso para partículas de aerossol. Neste trabalho as partículas possuem velocidades em torno de 1,1 cm/s a 3,1 cm/s.

b. Não há partículas perto das paredes do escoamento

A presença de uma parede, a uma distancia inferior a 10 diâmetros de uma partícula, modificará a força de arraste sobre a partícula. Por causa do pequeno tamanho das partículas de aerossol, só uma minúscula fração das partículas de aerossol estará dentro desse limite. Neste trabalho, as partículas são coletas no mínimo a 20 cm da parede da câmara de calibração.

c. A partícula é uma esfera rígida

A correção da Lei de Stokes para esfera não rígida, como gotas de água, é geralmente insignificante. Neste trabalho as partículas analisadas são de látex com uma rigidez aceitável para a teoria de Stokes.

- **d. O movimento da partícula é constante** esta condição está justificada no item 3.4 deste capitulo.
- e. A velocidade do fluido na superfície da partícula é zero esta condição está justificada no item 3.5 deste capitulo.

As equações de Navier-Stokes, com as considerações acima, são suficientes para obter as equações de forças que agem em qualquer ponto do fluido que cerca uma partícula esférica. A força líquida que age na partícula é obtida integrando a força normal e tangencial sobre a superfície da partícula. As duas forças resultantes agem na direção oposta ao movimento das partículas e é a componente de forma,

$$F_n = \pi \eta V d$$
 Eq.3.4

e a componente de atrito,

$$F_{\tau} = 2\pi\eta V d$$
 Eq.3.5

Essas componentes são combinadas para dar a força de resistência total em uma partícula esférica que move com uma velocidade V através de um fluido:

$$F_D = 3\pi\eta V d$$
 Eq.3.6

Essa é a Lei de Stokes. Quando a força de resistência experimentada pela partícula é descrita pela Equação 3.6, dizemos que o movimento da partícula está localizado na região de Stokes.

Uma partícula que se move através de um fluido, deforma-o produzindo camadas do fluido na região ao seu redor. A força de resistência é o resultado do atrito entre essas camadas, uma sobre as outras. Esse atrito dissipa energia, sobre a forma de calor, aquecendo o fluido. Na prática, a aplicação da Lei de Stokes é restrita a situações, na qual, o número de Reynolds é menor que 1. Comparando a força de arraste, dada por Lei de Stokes com aquela determinada pela Lei de Newton, temos:

$$F_D = 3\pi\eta V d = C_D \frac{\pi}{8} \rho_g V^2 d^2; \text{ para Re} < 1 \qquad \text{Eq.3.7}$$

A Lei de Stokes considera a viscosidade do fluido, mas não fatores associados com a inércia. A lei de Newton considera a inércia, mas não a viscosidade do fluido. Resolvendo a Equação 3.7 para o coeficiente de arraste, temos:

$$C_D = \frac{24\eta}{\rho_q V d} = \frac{24}{\text{Re}}$$
Eq.3.8

A equação acima inclui V e d, mudando a relação funcional da equação de Newton, de uma equação que tem uma força de arraste proporcional a V^2 e d² (Eq. 3.7) para uma equação com força de arraste proporcional a V e d, Lei de Stokes (Eq.3.8). Esta mudança de V para V² e d para d² é que provoca a porção encurvada do gráfico 1. A componente da força de atrito, descrito na Eq. 3.5, representa 2/3 do arraste de Stokes, e a expressão equivalente a Eq.3.8 para fluxo em tubos onde não há nenhuma componente de forma é $C_D = \frac{16}{\text{Re}}$ ou 2/3 da Eq.3.8.

3.4. Velocidade de ajuste e mobilidade mecânica

Uma aplicação importante da Lei de Stokes é a determinação da velocidade de uma partícula de aerossol submetida a um campo gravitacional. Quando uma partícula é lançada no ar, alcança sua velocidade terminal depressa, uma condição de velocidade constante em que a força de arraste do ar, F_D , mais o empuxo é igual à força da gravidade F_G . Neste caso, temos:

$$F_{D} + E = F_{G}$$
Eq.3.9
$$3\pi\eta V d + \rho_{g} g \forall = mg$$

$$3\pi\eta V d + \rho_{g} g \frac{\pi d^{3}}{6} = \rho_{p} \frac{\pi d^{3}}{6} g$$

$$V_{TS} = \frac{d^2g}{18\eta} \left(\rho_p - \rho_g \right)$$
 Eq.3.10

onde g é a aceleração de gravidade, ρ_P é a massa especifica da partícula, e ρ_g é a massa especifica do gás. A equação 3.10 considera o efeito do empuxo, mas isto normalmente pode ser desprezado (introduz-se um erro de 0,1%).

Nesta pesquisa iremos utilizar partículas de látex, com massa especifica igual a 1.050 kg/m^3 , imersão em ar a pressão de 1 atm e temperatura próxima dos 20°C. Considerando a massa especifica do ar como sendo 1,2 kg/m³, sua viscosidade cinemática igual a 1.8×10^{-5} Pa.s, teremos para partícula variando entre 1 μm a 20 μm de diâmetro, usando a Equação 3.10, uma velocidade terminal igual a:

	d (µm)	V _{TS} (cm/s)
	1,00	0,003
	2,00	0,013
	3,00	0,029
	4,00	0,051
	5,00	0,079
	6,00	0,114
	7,00	0,156
	8,00	0,203
	9,00	0,257
	10,0	0,318
	11,0	0,384
	12,0	0,457
	13,0	0,537
	14,0	0,622
	15,0	0,715
	16,0	0,813
	17,0	0,918
	18,0	1,03
	19,0	1,15
	20,0	1,27
bela 2: Valores de velocidad		

d (µm)	Re	
1,00	0,03	
2,00	0,07	
3,00	0,10	
4,00	0,13	
5,00	0,17	
6,00	0,20	
7,00	0,23	
8,00	0,27	
9,00	0,30	
10,0	0,33	
11,0	0,37	
12,0	0,40	
13,0	0,43	
14,0	0,47	
15,0	0,50	
16,0	0,53	
17,0	0,57	
18,0	0,60	
19,0	0,63	
20,0	0,67	

Ta e velocidade terminal para partículas de látex utilizadas neste trabalho

Tabela 3: Número de Reynolds para partículas de látex com velocidade máxima de 3,1 cm/s.

Analisando o resultado da tabela 2, concluímos que as partículas analisadas neste trabalho possuem movimento uniforme, uma vez que suas velocidades terminais são baixíssimas. Considerando a maior velocidade do ar na câmara de calibração, utilizada neste trabalho, como sendo 3,1 cm/s, temos valores de número de Reynolds inferior a 1, como mostra a tabela 3.

A velocidade terminal aumenta rapidamente com o tamanho da partícula e é proporcional ao quadrado do diâmetro da partícula. A velocidade terminal na região de Stokes é inversamente proporcional à viscosidade e não depende da massa especifica do gás, uma vez que seu valor é desprezível comparado a massa especifica da partícula.

Partículas de aerossol ajustam-se quase imediatamente à velocidade terminal, e V_{TS} é apropriado para caracterizar o movimento das partículas na maioria das situações reais. A velocidade terminal, para outros tipos de forças externas, como força centrífuga, pode ser obtida através de derivações semelhante a aquelas determinada para a força da gravidade. Em um campo de força centrífuga, a velocidade terminal é:

$$V_{TC} = \frac{\rho_P d^2 a_C}{18\eta}$$
 Eq.3.11

onde a_C é a aceleração centrífuga aplicada à partícula. Para uma velocidade tangencial V_T e raio do movimento R.

$$a_C = \frac{V_T^2}{R}$$
 Eq.3.12

A lei de Stokes, na Equação 1.5, a força de resistência é diretamente proporcional a velocidade. Desta relação, nós podemos definir a mobilidade de partícula, B, uma medida da facilidade relativa de produzir movimento fixo para uma partícula de aerossol, como:

$$B = \frac{V_{TS}}{F_D} = \frac{1}{3\pi\eta d}$$
; para d >1 μm Eq.3.13

Mobilidade é a relação da velocidade terminal de uma partícula pela força fixa que produz aquela velocidade. Tem unidade de m/Ns e é chamada freqüentemente de *mobilidade mecânica* para distinguir de mobilidade elétrica. A velocidade terminal de uma partícula de aerossol é simplesmente a força x mobilidade.

$$V_{TS} = F_G B$$
 Eq.3.14

3.5. Fator de correção de deslize

Uma suposição importante da Lei de Stokes é que a velocidade relativa do gás à superfície da esfera é zero. Esta suposição não é verdadeira para partículas pequenas cujo caminho médio livre é da ordem do tamanho da partícula. Tais partículas viajam mais rapidamente do que prevê a Lei de Stokes, porque há "deslize" na superfície da partícula. Nas condições padrão, este erro fica explicito para partículas menores que 1 μm de diâmetro. Em 1910, Cunningham aplicou um fator de correção para a lei de Stokes para minimizar o efeito de deslize. O fator chamou-se *Fator de Correção de Cunningham* C_C, sempre maior que 1 e reduz a força de arraste de Stokes de:

$$C_{c} = 1 + \frac{\lambda}{d} [2,34 + 1,05^{(-0,39d/\lambda)}]$$
 Eq.3.15

Onde λ é o caminho médio livre. Para o ar, a pressão de 1 atm e temperatura em torno de 20°C, o caminho médio livre vale 0,066 μ m, isto é, a distancia média entre as moléculas de ar. Partículas dessa ordem de grandeza podem deslizar entre as moléculas de ar. Deste modo, usamos o *Fator de Correção de Cunningham* C_C para corrigir o cálculo da velocidade terminal para partículas abaixo de 1 μ m. A forma corrigida da velocidade de ajuste terminal se torna:

$$V_{TS} = \frac{d^2 g}{18\eta} (\rho_p - \rho_g) C_c$$
; para Re < 1,0 Eq.3.16

O fator de correção de deslize para uma partícula de diâmetro igual a $1,0 \,\mu m$, em condições padrão é 1,20; quer dizer, a partícula é 20% mais rápida do que prevê a lei de Stokes na forma não corrigida (Eq.3.10). Alguns autores recomendam para trabalhos com maior exatidão, usar o fator de correção para partículas menores 10 μm . Na tabela abaixo, apresentamos o fator de correção para partículas entre $0,3 \,\mu m$ a $20,0 \,\mu m$.

d(<i>µm</i>)	Cc	V _{TS} (cm/s)
0,3	1,72	0,0005
0,4	1,53	0,0008
0,5	1,42	0,0011
0,6	1,35	0,0015
0,7	1,30	0,0020
0,8	1,26	0,0026
0,9	1,23	0,0032
1,0	1,20	0,0038
2,0	1,10	0,014
3,0	1,06	0,030
4,0	1,04	0,053
5,0	1,03	0,082
6,0	1,03	0,12
7,0	1,02	0,16
8,0	1,02	0,21
9,0	1,02	0,26
10,0	1,02	0,32
11,0	1,01	0,39
12,0	1,01	0,46
13,0	1,01	0,54
14,0	1,01	0,63
15,0	1,01	0,72
16,0	1,01	0,82
17,0	1,01	0,93
18,0	1,01	1,0
19,0	1,01	1,2
20,0	1,01	1,3

Tabela 4: Velocidade terminal corrigida pelo Fator de Correção de Cunningham C_C.

Nesta pesquisa utilizamos partículas até 5,0 μ m e pala tabela 4, sua velocidade terminal é de 0,082 cm/s. A câmara de calibração utilizada nesta pesquisa possui velocidade do ar entre 1,1 cm/s a 3,1 cm/s. Deste modo, fica evidenciado que as partículas atingem sua velocidade terminal rapidamente, entrando em movimento uniforme dentro da câmara de calibração.

É comumente declarado que o fator de correção de deslize é necessário para partículas que se aproximam do caminho médio livre "as partículas são tão pequenas que deslizam entre as moléculas". Isto é um modo incorreto, mas útil, de se lembrar como aplicar o fator de correção de deslize.

Fator de correção de deslize aumenta com a diminuição da pressão, porque o caminho médio livre diminui. Uma forma útil da Eq. 3.15 para as pressões do ar fora da pressão padrão é:

$$C_c = 1 + \frac{1}{Pd} \left[15,60 + 7,00e^{-0,059Pd} \right]$$
 Eq.3.17

onde P é a pressão absoluta em kPa e d é o diâmetro da partícula em μm .

Embora a pressão não apareça diretamente na Lei de Stokes, a pressão afeta a velocidade de ajuste das partículas pequenas porque influencia o caminho médio livre e, afeta o fator de correção de deslize.

Movimento de partículas quando d $<<\lambda$ (d $<0,02 \ \mu m$, a pressão padrão) é dito que está na livre-molécula ou região cinética molecular. Nesta região o ar resiste ao movimento da partícula, não como um fluido contínuo, mas como uma série de impactos discretos que freqüentemente acontecem mais na parte da frente da partícula do que na parte de trás. Quando d $>3 \ \mu m$, o movimento da partícula está na região de quantidade contínua ($C_C \approx 1$), e a forma não corrigida da Lei de Stokes pode ser usada. A região localizada entre a região cinética molecular e a região de quantidade contínua é chamada de **região de transição**. O fator de correção de deslize na forma da Equação 3.15 corrige a Lei de Stokes de forma que isto pode ser usado para movimento de partícula na molécula livre e de transição (como também regiões de quantidade contínua).

3.6. Diâmetro aerodinâmico

Um diâmetro equivalente de grande aplicação em tecnologia de aerossol é o diâmetro aerodinâmico (d_{ae}), que é definido para uma partícula, como o diâmetro

da partícula esférica com uma densidade de 1000 kg/m³ e mesma velocidade de ajuste da partícula. O diâmetro aerodinâmico unifica a forma (uma esfera) e densidade [1g/cm³]. Um diâmetro relacionado, mas menos comum, é o diâmetro equivalente de Stokes (d_{st}), o diâmetro da esfera que tem a mesma densidade e velocidade de ajuste que a partícula.

O diâmetro aerodinâmico pode ser pensado como o diâmetro de uma gota de água que tem as mesmas propriedades aerodinâmicas que a partícula. Se uma partícula tem um diâmetro aerodinâmico de 1, ela se comporta como uma gota d'água, embora sua forma, densidade, ou tamanho físico não seja. Além disso, é aerodinamicamente indistinguível de outras partículas de tamanho diferente e densidade que tem diâmetros aerodinâmicos igual a 1.

Uma partícula irregular e seus diâmetros equivalentes, aerodinâmico e de Stokes, são comparadas nas esferas da Fig. 5. Cada uma tem a mesma velocidade de ajuste, mas uma forma diferente ou densidade. Ambos os diâmetros, aerodinâmico e Stokes, estão definidos em termos do seu comportamento aerodinâmico no lugar dos geométricos. O diâmetro aerodinâmico é o melhor para caracterizar filtração, deposição respiratória, e o desempenho de muitos tipos de limpadores de ar. Em muitas situações, não é necessário saber o verdadeiro tamanho, forma e densidade de uma partícula, se for conhecido o diâmetro aerodinâmico. Instrumentos como impactadores em cascata usam separação aerodinâmica para medir tamanho de partícula aerodinâmico.

Figura 5: Uma partícula irregular e suas esferas equivalentes. Fonte, Hinds 1999.

3.7. Amostragem isocinética

A amostragem isocinética é um procedimento para assegurar que uma amostra representativa de aerossol penetre na entrada de um tubo de amostragem a partir de um fluxo de aerossol. A amostragem é isocinética quando o eixo de entrada do amostrador ou sonda está alinhado paralelamente ao escoamento e a velocidade do escoamento na sonda é igual à velocidade do escoamento fora da sonda. Como mostrado na Fig. 6, esta condição é equivalente a de tomar uma amostra de forma que não haja nenhuma distorção aerodinâmica. Se a amostragem é isocinética, não há nenhuma perda de partícula na entrada do tubo, independentemente do tamanho da partícula.

Figura 6: Amostra isocinética.

Uma amostragem anisocinética, pode resultar em uma distorção da distribuição do tamanho e uma estimativa alterada da concentração, já que as velocidades da amostra e do todo são diferentes.

Estes efeitos surgem porque a inércia das partículas perto da entrada de linhas de correntes curvas pode conter um excesso ou uma deficiência de partículas grandes. A Figura 7 mostra três condições de amostragem anisocinética. Na Fig. 7a, a sonda não está alinhada com o escoamento; na Fig. 7b, a velocidade do escoamento fora da sonda é menor que a velocidade do escoamento dentro da sonda, é a amostragem super isocinética; e na Fig. 7c, a velocidade do escoamento fora da sonda e maior que velocidade do escoamento dentro da sonda, a amostragem é sub-isocinética.

Se a amostragem não é feita isocineticamente, não há nenhuma maneira para determinar a verdadeira concentração a menos que a distribuição original de tamanho da partícula seja conhecida ou possa ser estimada. Os erros resultantes a partir de amostragem anisocinética para o tamanho de partícula pode ser estimado pelas equações abaixo. Para obter uma condição isocinética, velocidade do escoamento fora da sonda (U_0) e a velocidade do escoamento dentro da sonda (U), deve obedecer à equação 3.18.

Figura 7: A amostragem anisocinética. (a) desalinhamento, (b) A amostragem superisocinetica, $U>U_0$. (c) A amostragem Subisocinetica, $U < U_0$.

Em algumas situações, tais como a amostragem com um impactador em cascata, a taxa de fluxo da amostra é fixa, e o diâmetro da sonda de amostragem deve ser selecionado para assegurar que a amostragem é feita isocineticamente.

O erro amostral máximo ocorre quando as partículas têm tanta inércia que continuam em uma linha reta não acompanhando o escoamento amostral. No outro extremo, as partículas com baixíssima inércia não têm nenhum erro de amostragem, porque eles seguem as linhas de fluxo amostral perfeitamente.

Mesmo com uma entrada eficiente das partículas em um amostrador, as partículas podem ser perdidas na tubulação e nas conexões até a entrada do dispositivo de medição. As perdas podem ocorrer no interior da sonda de amostragem, bem perto da entrada, por causa das curvas da linha de corrente, ou ao longo da tubulação.

Em geral, as perdas são reduzidas, tornando o percurso de transporte tão curto e reto quanto possível e usando o mesmo diâmetro ao longo da tubulação. Para algumas situações de amostragem, é desejável diluir o fluxo de aerossol com ar limpo para reduzir a coagulação ou a temperatura ou para evitar a condensação.

Eq.3.18

4. Estatísticas de Aerossol, Metrologia e Impactador em Cascata.

4.1. Distribuição de Tamanho

Ligando o topo dos retângulos abaixo, obtemos a curva de distribuição do tamanho das partículas que é a representação gráfica da função de freqüência, ou função de densidade de probabilidade. O gráfico 2 é uma amostra de como as partículas de aerossol são distribuídas entre os vários tamanhos.

Gráfico 2: Distribuição de contagens fornecida pelo APS 3320.

Um parâmetro importante de qualquer distribuição estatística é seu ponto central de distribuição, dado pela equação abaixo.

$$\bar{d}_p = \frac{\sum d}{N} = \frac{\sum n_i d_i}{\sum n_i} = \int_0^\infty d_p f(d_p) dd_p \qquad \text{Eq.4.1}$$

onde n_i é o número de partículas do grupo i, tendo um ponto central de tamanho d_i, e onde $N = \sum n_i$, isto é, o número total de partículas. O ponto central é usado como a média aritmética dos pontos.

O diâmetro mediano é definido como o diâmetro que possui 50% dos diâmetros acima e 50% dos diâmetros abaixo. O diâmetro mediano também é o diâmetro que divide a curva de distribuição de freqüência em áreas iguais, e o

diâmetro que corresponde a uma fração cumulativa de 0,5. A moda é o tamanho mais freqüente, ou o diâmetro associado com o ponto mais alto na curva de função de freqüência. A moda pode ser determinada igualando à derivada da função de freqüência a zero e resolvendo para d. Para distribuições simétricas como a distribuição normal, a média, a mediana e a moda terão o mesmo valor, o diâmetro médio. Para uma distribuição assimétrica, estas quantidades terão valores diferentes. A mediana é comumente usada nas distribuições assimétricas, porque valores extremos afetam menos a mediana do que a media. A maioria das distribuições assimétricas, de tamanho de aerossol, são configuradas com longa cauda à direita.

A media geométrica d_g , é definida como a enésima raiz do produto dos N valores,

$$d_g = (d_1 d_2 d_3 \dots d_N)^{1/N}$$
 Eq.4.2

A media geométrica também expressada em termos de ln(d):

$$\ln \bar{d_g} = \frac{\sum n_i \ln d_i}{N}$$
Eq.4.3

$$\bar{d_g} = \exp\left(\frac{\sum n_i \ln d_i}{N}\right)$$
 Eq.4.4

Para um aerossol monodisperso, $\bar{d}_p = \bar{d}_g$; caso contrário, $\bar{d}_g < \bar{d}_p$. A media geométrica é amplamente usado para caracterizar aerossóis numa distribuição lognormal.

4.2. Distribuição lognormal

A distribuição do diâmetro das partículas é o fator que define se um aerossol é monodisperso ou polidisperso. A maioria dos aerossóis é polidisperso e podem variar de tamanho de duas a três vezes. Por este motivo e pelo fato das propriedades físicas dos aerossóis serem fortemente dependentes do tamanho das partículas, se faz necessário caracterizar a sua distribuição estatística de tamanho. Neste momento, desprezaremos o efeito de forma das partículas e consideraremos apenas partículas esféricas. A distribuição de tamanho dos aerossóis é caracterizada por uma distribuição lognormal. A distribuição normal, embora extensamente usada, não é satisfatória para a maioria das distribuições de tamanho de partículas de aerossol.

A função de distribuição normal raramente descreve distribuições de tamanho das partículas de aerossol porque a maioria das amostras de aerossóis possuem uma cauda assimétrica para as funções de distribuição. A distribuição normal é simétrica e pode ser aplicada a teste de aerossóis monodispersos, para esferas de látex de poliestireno especialmente preparadas, o que será o caso neste trabalho. A função de freqüência de uma distribuição normal ou gaussiana é determinada por:

$$df = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{\left(d_p - \bar{d}_p\right)^2}{2\sigma^2}\right) dd_p \qquad \text{Eq.4.5}$$

onde d_p é a media aritmética do diâmetro e σ é o desvio padrão amostral.

$$\boldsymbol{\sigma} = \left(\frac{\sum n_i \left(d_i - \bar{d}_p\right)^2}{N - 1}\right)^{1/2}$$
Eq.4.6

A distribuição lognormal é muito útil em situações onde a quantidade distribuída só pode ter valores positivos e amplo alcance de valores, onde a relação do maior valor para o menor valor é superior a 10. Quando esta faixa é estreita, a distribuição lognormal aproxima da distribuição normal. A distribuição lognormal é extensivamente usada para distribuições de tamanho de aerossol porque ajusta razoavelmente bem as distribuições de tamanho observadas e sua forma matemática é conveniente para lidar com as distribuições de momento e médias de momento.

Como o logaritmo de d_p é normalmente distribuído, a função de distribuição da freqüência lognormal pode ser formada substituindo $\bar{d_p}$ e σ nas equações 4.5 e 4.6. Assim, $\bar{d_p}$ é substituído pela media aritmética de ln *d*, como o diâmetro médio geométrico,

$$\ln d_g = \frac{\sum n_i \ln d_i}{N}$$
 Eq.4.7

O desvio padrão amostral σ é substituído pelo desvio padrão dos logaritmos, chamado de desvio padrão geométrico σ_{e} .

$$\ln \sigma_{g} = \left(\frac{\sum n_{i} \left(\ln d_{i} - \ln d_{g}\right)^{2}}{N - 1}\right)^{1/2}$$
 Eq.4.8

4.3. Metrologia

Em qualquer campo de atividade as decisões são tomadas com base em informações. Na área científica e tecnológica tais informações são, em geral, medições realizadas de forma direta ou indireta, relacionada com o objeto em estudo.

Por definição, medição é o "processo de obtenção experimental de um ou mais valores que podem ser razoavelmente atribuídos a uma grandeza". "A medição pressupõe uma descrição da grandeza que seja compatível com o uso pretendido de um resultado de medição, de um procedimento de medição e de um sistema de medição calibrado que opera de acordo com um procedimento de medição especificado, incluindo as condições de medição". [VIM - 2009]

As medições são, geralmente, influenciadas por alguns agentes metrológicos, tais como: o método de medição, a amostra, o operador, o equipamento de medição, as condições ambientais e a rastreabilidade dos equipamentos e padrões. Dessa maneira, podemos entender a medida como sendo o resultado do processo de medição e, nesse sentido, sua qualidade depende de como tal processo é gerenciado. "A metrologia é a ciência da medição e engloba todos os aspectos teóricos e práticos da medição, qualquer que seja a incerteza de medição e o campo de aplicação." [VIM - 2009]².

4.3.1. Incerteza de Medição

A incerteza de medição é um "parâmetro não negativo que caracteriza a dispersão dos valores atribuídos a um mensurando, com base nas informações utilizadas." [VIM - 2009].

² Vocabulário Internacional de Metrologia

"Este parâmetro pode ser, por exemplo, um desvio padrão denominado incerteza padrão (ou um de seus múltiplos) ou a metade de um intervalo tendo uma probabilidade de abrangência determinada". [VIM - 2009].

O resultado de uma medição é uma estimativa do valor do mensurando e, desta forma, a apresentação do resultado é completo somente quando acompanhado por uma quantidade que declara sua incerteza. Assim, o resultado da medição R deve ser expresso na forma:

$$R = (X+C) \pm U$$
 [unidade de medição] Eq. 4.9

onde

X = média dos resultados obtidos do conjunto de medições;

C = correção a ser aplicada;

U = incerteza

A incerteza do resultado de uma medição normalmente contém vários componentes, que podem ser agrupados em duas categorias de acordo com as características do método usado para estimar seus valores numéricos: incertezas tipo A e incertezas tipo B.

a) Incerteza Tipo A

A avaliação da incerteza Tipo A é a "avaliação de uma componente da incerteza de medição por uma análise estatística dos valores medidos, obtidos sob condições definidas de medição" [VIM - 2009]. As incertezas Tipo A podem, portanto, ser caracterizadas por desvios padrões experimentais.

Na metrologia, pode-se afirmar que a melhor estimativa de uma grandeza que varia aleatoriamente é a média aritmética \overline{X} das *n* medidas efetuadas. A variância estimada (s²) ou o desvio padrão estimado (s) caracteriza a variabilidade dos valores medidos X_i, isto é, a dispersão em torno do valor médio.

A melhor estimativa da variância da média é a variância experimental da média $s^2(\bar{X})$, cuja expressão é obtida a partir da equação 4.10:

$$s^{2}(\bar{X}) = \frac{s^{2}}{n}$$
 Eq. 4.10

O desvio padrão experimental da média s(x) serve para qualificar quanto o valor médio \overline{X} e representa a grandeza a ser medida X_i. Esta estimativa é tanto melhor quanto maior for o número de repetições efetuadas na medição.

Por diversas razões, principalmente as de ordem econômica, o número de repetições de uma medição é reduzido, tipicamente variando entre três e dez.

b) Incerteza Tipo B

A avaliação da incerteza Tipo B é uma "avaliação de uma componente da incerteza de medição determinada por meios diferentes daquele adotado para a avaliação do Tipo A da incerteza de medição" [VIM - 2009].

As incertezas Tipo B podem ser caracterizadas por desvios padrões estimados por distribuições de probabilidades assumidas, podem ser baseadas na experiência ou em outras observações. Incertezas deste tipo são determinadas a partir de informações acessórias e externas ao processo de medição. Essas informações podem ser obtidas de resultados de medições similares anteriores, experiência ou conhecimento do comportamento do instrumento, dados do fabricante, dados fornecidos por certificados de calibração, referências de manuais de instrução etc.

Exemplos de fontes deste tipo de incerteza:

- \Rightarrow gradiente de temperatura durante a medição;
- ⇒ afastamento da temperatura ambiente em relação à temperatura de referência estipulada;
- \Rightarrow resolução de leitura do indicador (analógica ou digital);
- \Rightarrow instabilidade da rede elétrica;
- \Rightarrow erro de paralaxe;
- \Rightarrow incerteza do padrão;
- \Rightarrow instabilidade do padrão;
- \Rightarrow erros geométricos;
- \Rightarrow deformações mecânicas;
- \Rightarrow erro de histerese;

Na avaliação deste tipo de incerteza é necessário considerar e incluir, quando pertinente, pelo menos as originadas pelas seguintes fontes:

- a incerteza associada ao padrão de referência e qualquer instabilidade em seu valor ou indicação (padrão sujeito à deriva ou com instabilidade temporal);
- a instabilidade associada ao equipamento de medida ou à calibração, como por exemplo envelhecimento de conectores, e qualquer instabilidade em seu valor ou indicação (equipamento sujeito a deriva);
- a incerteza associada ao equipamento (mensurando) a ser medido ou calibrado, como por exemplo o valor de uma divisão, qualquer instabilidade durante a calibração etc.;
- a incerteza associada ao procedimento de calibração (ou de medição);
- a incerteza associada ao efeito das condições ambientais em um ou mais dos itens acima.

Observações:

- Sempre que possível os erros sistemáticos devem ser corrigidos;
- Sempre deve ser feita uma análise criteriosa ao adicionar as incertezas Tipo B para que não haja repetição, isto é, que não se considere mais de uma vez uma dada fonte de incerteza;

c) Incerteza Padrão

É a "incerteza de medição expressa na forma de um desvio padrão" [VIM - 2009].

Deve-se expressar todas as componentes de incerteza (u_i) , Tipos A e B, correspondentes a um desvio padrão. Para isto, divide-se o valor de cada contribuição de incerteza pelo seu respectivo divisor, correspondente à distribuição de probabilidade atribuída.

Os divisores para algumas distribuições de probabilidade são:

DISTRIBUIÇÃO	DIVISOR
NORMAL (certificado de calibração)	k do certificado
RETANGULAR	$\sqrt{3}$
TRIANGULAR	$\sqrt{6}$

Tabela 5: Divisores e suas respectivas distribuições

d) Incerteza Padrão Combinada - u_c

"Incerteza padrão do resultado de uma medição, quando este resultado é obtido por meio dos valores de várias outras grandezas, sendo igual à raiz quadrada positiva de uma soma de termos, que constituem as variâncias ou covariâncias destas outras grandezas, ponderadas de acordo com quanto o resultado da medição varia com mudanças nestas grandezas" [VIM - 2009].

A incerteza padrão combinada pode, resumidamente, ser determinada pela equação abaixo.

$$u_C = \sqrt{u_A^2 + u_B^2}$$
 Eq. 4.11

onde u_A são as incertezas Tipo A e u_B as incertezas Tipo B.

```
e) Incerteza Expandida - U
```

"Produto da incerteza padrão combinada por um fator maior que um." [VIM - 2009].

A incerteza expandida U é, então, obtida multiplicando-se a incerteza padrão combinada \mathbf{u}_{C} pelo fator de abrangência k, isto é:

A multiplicação da incerteza padrão combinada por uma constante não fornece nenhuma informação adicional. É apenas uma forma de representar a incerteza final associada a uma probabilidade de abrangência.

O fator de abrangência kp deve sempre ser declarado de forma que a incerteza padrão da grandeza medida possa ser recuperada para uso no cálculo da incerteza padrão combinada de outros resultados de medição, que dependam eventualmente desta grandeza.

Este fator kp deve ser obtido a partir da determinação do número de graus de liberdade efetivo (v_{ef}) e utilizando-se a distribuição t-Student, onde o valor do *t* será o fator de abrangência kp.

"Em geral, o número de termos de uma soma menos o número de restrições aos termos da soma" [VIM - 2009].

Quando são realizadas mais de 30 medições de um mesmo mensurando, sabemos, por meio estatísticos, que esses resultados se aproximam muito de uma distribuição normal. Se um número menor de medições for utilizado devemos aproximar esta distribuição a uma distribuição normal aplicando o fator de correção da distribuição t-Student, mas, para determinarmos esse fator de correção é necessário determinar o número de graus de liberdade efetivo da distribuição.

Quando várias fontes de incertezas são consideradas para estimar a incerteza padrão combinada o número de graus de liberdade efetivo resultante da incerteza combinada deve ser estimado a partir de informações de cada fonte de incerteza.

Recomenda-se a utilização da equação de Welch-Satterthwaite [4.13] para estimar o número de graus de liberdade efetivo:

$$\frac{u_C^4}{v_{ef}} = \frac{u_1^4}{v_1} + \frac{u_2^4}{v_2} + \dots + \frac{u_i^4}{v_i}$$
Eq. 4.13

onde:

u_C é a incerteza padrão combinada;

u₁, u₂, ... ,u_i são as incertezas padrão de cada uma das "i" fontes de incertezas (incertezas Tipo A e B);

 $v_1, v_2, v_3 \dots v_i$ são os números de graus de liberdade de cada uma das "i" fontes de incerteza;

 v_{ef} é o número de graus de liberdade efetivo associado à incerteza padrão combinada.

A equação 4.13 pode ser apresentada como:

$$V_{ef} = \frac{u_c^{4}}{\sum_{n=1}^{i} \frac{u_i^{4}}{V_i}}$$
 Eq. 4.14

O valor do v_{ef} obtido pelas equações 4.13 ou 4.14, geralmente, não é um número inteiro. A partir desse v_{ef} o fator de abrangência pode ser obtido no software Excel, função INVT, ou na tabela t-Student. Quando usamos o valor calculado de v_{ef} na tabela t-Student devemos sempre aproximá-lo do inteiro

imediatamente superior. Por exemplo, se o valor calculado $v_{ef} = 10,46$ devemos entrar na tabela com $v_{ef} = 10$ e obter t-Student = 2,28. Este será o valor utilizado para o fator de abrangência k.

g) Arredondamento da Incerteza Expandida

Segundo o Documento de Referência EA-4/02: Expressão da Incerteza de Medição na Calibração (traduzido na norma Inmetro NIT-DICLA-021), o valor numérico do resultado da medição, na declaração final, deve ser arredondado para o último algarismo significativo da incerteza expandida, atribuída ao resultado da medição.

Para o processo de arredondamento, as regras usuais de arredondamento de números devem ser utilizadas, porém, se o arredondamento diminuir o valor da incerteza de medição em mais de 5% recomenda-se que o arredondamento seja feito para cima.

Exemplo:

Incerteza expandida = $\pm 0,014$ mm

O arredondamento para 1 algarismo significativo na incerteza significa desprezar 0,004 mm. Vamos verificar quanto este valor representa da incerteza expandida.

$$\frac{0,004}{0,014} = 0,28 \Longrightarrow 28\% > 5\%$$

Assim, o valor da incerteza expandida com 1 algarismo significativo será de <u>+ 0,02 mm</u>.

h) Ajuste de uma função

Na maioria das vezes, um fenômeno ou processo físico, químico, mecânico, está representado por um conjunto de dados experimentais. Nestes casos, pode ser extremamente interessante "representar" este conjunto de dados por uma função matemática definida. Este procedimento de aproximação é conhecido por *ajuste ou regressão*.

Graficamente:

Gráfico 3: Ajuste de uma função

Um método de ajuste bastante conhecido e utilizado é o *Método dos Mínimos Quadrados*. Este método consiste em ajustar o conjunto dos dados a uma função que minimize a variância experimental do conjunto, ou seja, devemos minimizar a seguinte expressão:

$$s^{2} = \frac{1}{n-p} \sum (f(x_{i}) - y_{i})^{2}$$
 Eq.3.15

onde:

f(x_i): valor da função de ajuste para o ponto x_i;

yi: valor experimental obtido para o ponto xi.

p: número de parâmetros a serem ajustados;

n: numero de dados experimentais

(n-p): grau de liberdade do ajuste.

i) Incerteza considerando o ajuste

Considerando os pontos experimentais (x,y) obtidos através de uma calibração e utilizando-se um instrumento padrão, a incerteza total da variável y será a combinação da incerteza do objeto calibrado (U_{objeto}) e da incerteza do ajuste (U_{ajuste}) , através da equação:

$$U_{y} = \sqrt{U_{objeto}^{2} + U_{ajuste}^{2}}$$
 Eq. 3.16

A incerteza do ajuste Uajuste é calculada da seguinte forma:

$$U_{ajuste} = k. s_{ajuste}$$
 Eq. 3.17

4.4 Impactador em cascata

A impactação foi o processo de separação de aerossol mais analisado, teoricamente e experimentalmente, que qualquer outro. Desde os anos sessenta, instrumentos baseado na impactação em cascata foram extensivamente usados para a medição de distribuições de tamanho de partícula por massa. Impactação é um caso especial de movimento curvilínea que tem extensa aplicação na captação e medição de partículas de aerossol.

Todos os impactadores inerciais funcionam pelo mesmo princípio. Como mostrado na figura 6, o aerossol passa por um bocal e o fluxo de saída (jato) e dirigi-se contra um prato. O prato plano, chamado *prato de impactação*, desvia o fluxo para formar uma curva abrupta de 90° graus. Partículas cuja inércia excede certo valor são incapazes de seguir o fluxo e colidem (impactam) no prato plano. No momento, assumiremos que as partículas aderem à superfície do prato quando se chocam.

Partículas menores podem seguir o fluxo evitando bater no prato de impactação. Elas permanecem no ar fluindo para fora do impactador. Assim, um impactador separa partículas de aerossol em duas faixas de tamanho; partículas maiores que certo tamanho aerodinâmico ficam depositadas no prato de impactação, e as menores permanecem e atravessam o impactador.

Figura 8: Visão de um impactador. (fonte: Aerosol Technology - 1999)

A teoria do impactador busca explicar a forma da curva de eficiência de coleta *E* contra o tamanho da partícula (veja gráfico 4). Determinação teórica da curva de eficiência característica para um impactador requer análise numérica. Primeiro, o padrão de fluxo na vizinhança do jato é determinado resolvendo as equações de Navier-Stokes para a geometria de impactação particular. Então, para um determinado tamanho de partícula, trajetórias de partícula são determinadas

para cada fluxo. A eficiência associada a um determinado tamanho de partícula é definida pela fração das trajetórias que interceptam o prato de impactação. Este processo é repetido para muitos tamanhos de partícula até gerarem a curva característica de eficiência do impactador como mostrado no gráfico 4. As calibrações requerem medições de eficiência feitas com uma série de aerossóis monodispersos.

Gráfico 4:Curva típica de eficiência de impactador. (fonte: Aerosol Technology - 1999)

Para a maioria dos impactadores, uma curva completa de eficiência de coleta versus tamanho de partícula não é necessária. Impactadores tem uma curva de eficiência onde todas as partículas acima de certo tamanho aerodinâmico são coletadas e todas as partículas menores passam. O tamanho em questão é chamado de *tamanho de corte, diâmetro de corte, ponto de corte* ou d_{50} . A maioria dos impactadores para serem ideais, assume como curva de eficiência, um único número Stk₅₀, o número de Stokes que dá 50% de eficiência de coleta. Stk₅₀ é a localização da curva de corte ideal que melhor ajusta a curva de corte experimental. Como mostrado no gráfico 4, isto é equivalente a assumir que a massa das partículas superiores ao tamanho de corte coletado (área sombreada superior) é igual à massa de partículas abaixo do tamanho de corte coletado (área sombreada inferior).

Gráfico 5:Curvas de corte de impactador ideal. (fonte: Aerosol Technology - 1999)

$$Stk_{50} = \frac{\rho_P V_0 d_{50}^2 C}{9\mu W}$$
 Eq.3.18

Na equação acima, ρ_p é a densidade das partículas. Se a definição do diâmetro aerodinâmico das partículas for usado para d₅₀, ρ_p assumirá o valor de 1g/cm³. Quanto às demais variáveis, V₀ é a velocidade média na garganta do bocal ou jato, C é o coeficiente de correção de deslizamento Cunningham, μ é a viscosidade absoluta do fluido, e W corresponde ao diâmetro do orifício do jato (para bicos redondos) ou a largura do jato (para orifícios retangulares).

O desempenho de um impactador é geralmente caracterizado pela especificação de três parâmetros adimensionais: S/W, T/W e Re, onde S é à distância da saída do jato à placa de impactação, T é o comprimento da garganta do jato, e Re é o número de Reynolds baseado no valor do diâmetro dos orifícios existente nas placas de orifício (W). Ver figura 9.

Figura 9:Diagrama esquemático de um impactador em cascata de oito fases. (fonte: Aerosol Technology – 1999)

Segundo estes cálculos, as curvas de eficiência de coleta são mais íngremes para Re grandes. O desempenho melhora para Reynolds entre 100 e 500, e um forte corte é mantido até Re =10.000, acima do qual certa deterioração começa a aparecer. Para Reynolds abaixo de 100, impactadores se tornam ineficientes, e a eficiência de coleta pode não chegar a 100%. (Hering, 1995).

Colocando um filtro na saída do impactador mostrado na figura 9, podemos coletar todas as partículas que escapam do impactador. Amostradores de aerossol como impactadores, podem fornecer informação sobre a distribuição e classificação do tamanho das partículas coletadas. A massa das partículas coletadas no prato de impactação e das partículas coletadas no filtro é determinada pesando-as antes e depois de amostrar. O impactador separa as partículas amostradas em duas faixas de tamanho: partículas maiores que o tamanho de corte (coletadas no prato de impactação) e partículas menores que o tamanho de corte (coletadas no filtro). Por exemplo, suponha um impactador com tamanho de corte de 5µm, colete 30% da massa de aerossol no prato de impactação e 70% no filtro.

Então 30% da massa de aerossol são de partículas maiores que 5µm em diâmetro aerodinâmico e 70% são de partículas menores que 5µm.

Assim, esta medição fornece um ponto na curva de distribuição cumulativa, isto é, 70% da massa de particulado são associados com partículas menores que 5µm.. Operando o impactador a várias taxas de fluxo, cada uma correspondendo a um diâmetro de corte diferente, podemos obter vários pontos na curva de distribuição de massa cumulativa. Há limitações práticas na faixa de taxas de fluxo que podem ser usadas, e a distribuição de tamanho do aerossol tem que permanecer constante para todas as amostras. Esse problema pode ser superado operando vários impactadores simultaneamente com tamanhos de corte diferentes.

O uso de vários impactadores em paralelo não é comum, por causa da complexidade de controlar múltiplas taxas de fluxo. O método mais comum para operar vários impactadores em série, é organizar por ordem de tamanho de corte decrescente, tendo o ultimo estágio os menores tamanhos de corte. Esta configuração é chamada *Impactador em Cascata*. Cada impactador separado é chamado uma *fase de impactação*, como mostrado na figura 9. O tamanho de corte é reduzido em cada fase diminuindo o tamanho do bocal. Como o fluxo de gás por cada fase é o mesmo, só necessitamos controlar um fluxo. Cada fase possui um prato de impactação removível para determinação gravimétrica (ou substância química) das partículas coletadas. A última fase em um impactador em cascata normalmente é seguida por um filtro que captura todas as partículas menores que o tamanho de corte dessa fase.

Cada fase de impactação captura todas as partículas maiores que seu tamanho de corte. As partículas capturadas no prato de impactação de uma determinada fase representam todas as partículas menores que o tamanho de corte da fase anterior e maior que o tamanho de corte da fase em analise.

As partículas líquidas aderem ao prato de impactação, já as partículas sólidas podem saltar quando golpearem o prato de impactação, ou podem aderir e depois se soltarem. Uma vez que uma partícula salta, é provável que continue saltando em fases subseqüentes, porque a velocidade de impactação é maior nas fases seguintes. Se cobrirmos o prato de impactação com um fino filme de óleo ou graxa, podemos reduzir os saltos.

As partículas podem ser depositadas nas passagens entre fases de um impactador em cascata. Esse fenômeno é chamado *perda entre estágios* e representa outro problema de operação com impactadores em cascata. Para impactadores em cascata convencional, perdas entre estágios é fundamentalmente um problema de partículas grandes que são soltas do prato de impactação nas duas fases iniciais. Elas são removidas através do escoamento. As perdas entre estágios podem ser reduzidas projetando o impactador para operar a taxa de fluxo mais baixa.

5. Aparato Experimental

Neste capitulo, descreveremos o princípio de funcionamento dos principais equipamentos utilizados nesta tese. São eles:

5.1. Câmara de calibração de medidores de aerossol.

Desenvolvemos uma câmara de teste de aerossol com a finalidade de proporcionarmos um ambiente para avaliação de vários instrumentos de medição de aerossóis e amostradores ao mesmo tempo. Para garantir também que todos os instrumentos tenham a mesma exposição ao aerossol, usamos como base para os instrumentos, uma plataforma giratória. A plataforma pode ser girada durante a calibração, movendo-se continuamente os instrumentos na seção de teste.

A concepção da câmara, os controles e procedimentos operacionais estão descritos a seguir:

5.1.1. Descrição da Câmara.

A câmara possui uma altura de 2,3 m, com uma secção transversal de 1m x 1m.

O aerossol monodisperso proveniente de uma fonte, é introduzido na parte superior da câmara (parte 1) por duas entradas laterais, além do ar de diluição, na parte superior. O aerossol é bem misturado nesta porção da câmara pela energia do jato de aerossol, um ventilador de baixa rotação (misturador) e ar limpo de diluição, filtrado por filtro HEPA. A partir deste ponto, o aerossol flui para baixo, através de uma estrutura de 3 telas, uma com espaçamento 10cm x 10cm, a segunda com espaçamento 5cm x 5cm e a terceira com espaçamento de 1cm x 1xm, onde a turbulência do escoamento é reduzida, proporcionando assim um escoamento laminar – Figura 10 e 11.

Figura 11: Parte superior da câmara - Misturador de aerossol com ar limpo

Uma mesa de 1,0m de diâmetro, perfurada, permiti o fluxo de ar através dela, como mostrado na Figura 12. A mesa pode girar proporcionando deslocamento aos instrumentos continuamente, reduzindo assim, os efeitos de variação espacial na concentração de aerossol na seção de teste. O aerossol não amostrado atravessa a mesa e vai para um filtro HEPA, onde as partículas são

removidas da corrente de ar. O ar circula na câmara por um exaustor que varia sua rotação entre 600 rpm a 1200 rpm.

Figura 12: Mesa giratória

Dois lados da câmara são projetados como estações de trabalho e cada lado está equipado com uma janela de 50 x 75 cm de acrílico e um par de luvas. Assim, durante um teste, até duas pessoas, uma em cada estação de trabalho, podem operar a instrumentação no interior da câmara.

As janelas, mantidas no lugar por braçadeiras, podem ser removidas para a colocação ou retirada dos instrumentos na câmara. Além disso, a câmara é dividida horizontalmente em três partes, a parte 1 (entrada de aerossol), a parte 2 (secção de teste) e a parte 3 (base da câmara). Assim, para a instalação de instrumentos muito grande, ou para a montagem da mesa dentro da câmara, a parte superior da câmara pode ser removida – Figura 13.

Em muitos casos, precisamos ter fios elétricos ou linhas de ar que passem pelos instrumentos para o exterior da câmara. Isso é necessário para conectar um instrumento ou uma linha de ar a uma bomba ou um impactador em cascata. Por este motivo, a câmara possui 4 tomadas no interior, duas no exterior e orifícios laterais na parte 2.

A mesa é gira a uma velocidade de 0,6 rpm através de um motor elétrico redutor de velocidade variável e reversível. Uma roda dentada e mecanismo de movimentação são utilizados para que o motor localize-se fora da câmara, uma vez que o motor elétrico dentro da câmara pode ser uma fonte de calor capaz de criar correntes de convecção. Com este arranjo, a mesa não pode rodar mais de 180° em uma direção, antes de um interruptor ser ativado e dar sentido de rotação inverso. Se o sentido de rotação da mesa não fosse revertido, as linhas aéreas e condutores elétricos se enrolariam ao redor do eixo da mesa.

Figura 13: Câmara de calibração de medidores de aerossol

A câmara foi projetada para estudos de analisadores de aerossol. Para executar uma avaliação, as janelas são removidas e os instrumentos colocados na

plataforma giratória. Em seguida, as linhas aéreas, cabos de alimentação e fios elétricos são ligados. O sistema de geração de aerossol também é iniciado.

O ar de diluição é também introduzido na câmara e misturado ao aerossol. O fluxo de ar de diluição proporciona a vazão desejada, de modo que a pressão dentro da câmara, monitorada por um medidor de pressão diferencial, é menor do que a do ar ambiente, garantindo que nenhum vazamento de aerossol ocorra na câmara. No entanto, é importante manter esse diferencial de pressão baixa, de modo a minimizar entrada de ar externo na câmara. Um diferencial de pressão de 1,4 cm de coluna d'água é adequado.

5.1.2. Avaliação da Câmara

As avaliações na câmara foram realizadas com partículas monodispersas de látex. A entrada de taxas de fluxo de aerossol utilizadas na avaliação variou de (660 a 1860) L/min que corresponde a uma velocidade média de queda na câmara variando de 1,1 cm/s a 3,1 cm/s. As partículas monodispersas de látex variaram no tamanho entre 0,5µm a 5,0µm de diâmetro aerodinâmico.

O aerossol foi amostrado a uma altura de 40 cm acima da plataforma parada em dois pontos (B e C) e com a plataforma girando. Na ilustração abaixo, são mostrados os pontos B e C.

Figura 14: Plataforma giratória e os pontos de coleta de aerossol B e C.

A tabela abaixo relaciona a rotação do exaustor, a velocidade do ar na câmara e o diâmetro de captação de partículas, para garantir uma amostragem isocinética.

Rotação do exaustor - rpm	Velocidade do ar na câmara (cm/s)	Vazão de ar na câmara (10 ³ L/min)	Diâmetro do coletor de partículas (cm)*
600	$1,1 \pm 0,4$	$0,66 \pm 0,24$	9,8
700	$1,4 \pm 0,5$	$0,84 \pm 0,30$	8,7
800	$1,7 \pm 0,5$	$1,02 \pm 0,30$	7,9
900	$2,2 \pm 0,5$	$1,32 \pm 0,30$	6,9
1000	$2,5 \pm 0,6$	$1,50 \pm 0,36$	6,5
1100	$2,7 \pm 0,5$	$1,62 \pm 0,30$	6,3
1200	$3,1 \pm 0,6$	$1,86 \pm 0,36$	5,9

Tabela 6: Velocidade do fluxo de ar na câmara.

* Condição Isocinética.

Apresentaremos os cálculos para a determinação da vazão volumétrica e velocidade do aerossol na câmara, bem como de sua incerteza de medição.

Devido ao baixo valor da velocidade do ar na câmara de calibração (parte2), medimos sua intensidade na saída da câmara. Com esse valor, calculamos a vazão volumétrica do aerossol e sua velocidade no interior da câmara de calibração.

A seguir, iremos apresentar os seguintes cálculos:

a) Valor da área da seção na saída da câmara sua incerteza de medição

O aerossol sai pela parte inferior da câmara, passando por filtro. Sua seção tem formato quadrado, de lado $L = (0,2300 \pm 0,0005)m$. Foi adotada a metade da menor divisão da trena, como sua incerteza de medição. A área da seção é então:

$$A = L2$$
$$A = 0,23002$$
$$A = 0,0529m2$$

Sua incerteza de medição vale:

$$U_A = A \sqrt{\left(\frac{uL}{L}\right)^2 + \left(\frac{uL}{L}\right)^2}$$
$$U_A = 0,0529x0,003074$$
$$U_A = \pm 0,0002m^2$$

$$A = (0,0529 \pm 0,0002)m^2$$

b) Valor da velocidade do ar na saída da câmara e sua incerteza de medição para o ponto 900 rpm.

N°. de medições	v(m/s)	
1	0,35	
2	0,38	
3	0,30	
4	0,35	
5	0,43	
6	0,35	
Média aritmética		
0,36		
Valor corrigido (m/s)		
0,41		

Tabela 7: Resultado da medição da velocidade de saída do aerossol da câmara de calibração.

Incerteza de medição da velocidade do ar na saída da câmara.

$$\Rightarrow$$
 Incerteza tipo A: $u_A = \frac{\sigma}{\sqrt{6}}$

Desvio padrão amostral $\sigma = 0.0428952$.

$$u_A = \frac{0.0428952}{\sqrt{6}}$$
$$u_A = 0.017512 \ m/s$$

⇒ Incerteza do anemômetro de fio quente padrão.

$$u_{anemômetro} = 0.035 m/s$$

⇒ Incerteza combinada da velocidade do ar na saída da câmara.

$$u_{C} = \sqrt{(u_{A})^{2} + (u_{padrão})^{2}}$$
$$u_{C} = \sqrt{0,017512^{2} + 0,035^{2}}$$
$$u_{C} = 0,039137 \ m/s$$

⇒ Incerteza expandida da velocidade do ar na saída da câmara.
 k = 2,648654254

$$U = k.u_{c}$$

 $U = 2,648654254 \ x \ 0,039137$
 $U = \pm 0,10 \ m/s$

⇒ Resultado da medição da velocidade de saída do aerossol da câmara.

 $v = (0,41 \pm 0,10) m/s$

c) Valor da vazão na saída da câmara e sua incerteza de medição.

⇒ A vazão na saída da câmara é dada pela expressão:

$$Q = A.v$$
 Eq. 5.1

onde A é a área da seção de saída e v sua velocidade.

Para o ponto 900 rpm, temos:

$$Q = 0,0529x0,41$$

 $Q = 0,022 m^3 / s$

Sua incerteza de medição é dada pela equação:

$$U_{Q} = Q \cdot \sqrt{\left(\frac{UA}{A}\right)^{2} + \left(\frac{Uv}{v}\right)^{2}}$$
 Eq. 5.2

Aplicando no ponto 900 rpm, temos:

$$U_{Q} = 0,022.\sqrt{\left(\frac{0,0002}{0,0529}\right)^{2} + \left(\frac{0,10}{0,41}\right)^{2}}$$

$$U_Q = \pm 0,005 \ m^3 \ / \ s$$

⇒ Resultado da medição de vazão volumétrica na saída da câmara.

$$Q = (0,022 \pm 0,005)m^3 / s$$

 \Rightarrow Valores em L/min.

Devemos multiplicar por 60.000, temos:

$$Q = (1320 \pm 300)L/\min$$

Como não declaramos incertezas com mais que dois algarismos significativos, temos:

$$Q = (1,32 \pm 0,30) \times 10^3 L / \min$$

d) Valor da velocidade do ar no interior da câmara e sua incerteza de medição.

Pelo principio da conservação de massa, a vazão será constante. Deste modo, teremos no interior da câmara a mesma vazão da saída.

A área da seção transversal da câmara tem formato quadrado de lado $L = (1,0000 \pm 0,0005)m$. Foi adotada a metade da menor divisão da trena, como sua incerteza de medição.

⇒ A área da seção é então:

$$A = L^2 = 1,0000^2 = 1,0000 m^2$$

⇒ Sua incerteza de medição vale:

$$U_{A} = A \sqrt{\left(\frac{uL}{L}\right)^{2} + \left(\frac{uL}{L}\right)^{2}}$$
$$U_{A} = 1,0000 \sqrt{\left(\frac{0,0005}{1}\right)^{2} + \left(\frac{0,0005}{1}\right)^{2}}$$
$$U_{A} = \pm 0,0007m^{2}$$

⇒ Resultado da área da seção da câmara (parte 2) e sua incerteza de medição.

$$A = (1,0000 \pm 0,0007)m^2$$

⇒ A velocidade do ar é dada pela equação 5.1.

$$v = \frac{0,022}{1}$$

v = 0,022 m/s

E sua incerteza é dada pela expressão:

$$U_{v} = v \sqrt{\left(\frac{U_{Q}}{Q}\right)^{2} + \left(\frac{U_{A}}{A}\right)^{2}}$$
 Eq.5.3

$$U_{v} = 0.022x \sqrt{\left(\frac{0.005}{0.022}\right)^{2} + \left(\frac{0.0007}{1}\right)^{2}}$$

 $U_v = 0,006 \, m/s$
Resultado da velocidade do ar na câmara de calibração para o ponto 900 rpm.

$$v = (0,022 \pm 0,006) m/s$$

 $v = (2,2 \pm 0,6) cm/s$

Os resultados e cálculos dos demais pontos estão no anexo VII deste trabalho.

O certificado de calibração do anemômetro de fio quente, utilizado para medição da velocidade, se encontra no anexo VI.

e) Estabilidade Temporal

Sua estabilidade temporal foi medida nas seguintes condições:

- Partículas de 0,5 e 1,0 μm
- Amostra coletada durante 20s
- Intervalo de coleta de 3 min
- Rotação do exaustor em 900 rpm velocidade do ar em 2,2 cm/s.

As tabelas abaixo apresentam os resultados:

Tempo	No. de	Concentração
(min)	partículas	(Partículas/cm ³)
0	67150	167,4
3	58026	149,3
6	63166	152,4
9	60356	148,7
12	59289	160,3
15	61317	149,6
18	62491	151,7
21	58639	140,6
24	66839	165,6
27	59049	147,4
30	60541	147,5

Tabela 8: Estabilidade temporal com partículas de 0,5 µm

Tempo	No. de	Concentração
(min)	partículas	(Partículas/cm ³)
0	3514	8,8
3	3163	7,9
6	3512	8,3
9	3379	7,8
12	3227	7,7
15	3350	7,9
18	3391	8,0
21	3508	7,4
24	3268	8,7
27	3077	7,8
30	3249	7.8

Tabela 9: Estabilidade temporal com partículas de 1,0 μm

Gráfico 6: Estabilidade temporal na câmara de calibração – partículas de 0,5 μm

Gráfico 7: Estabilidade temporal na câmara de calibração - partículas de 1,0 µm

Analisando os valores das tabelas 8 e 9 obtemos os seguintes resultados:

 \Rightarrow Estabilidade para partículas de 0,5 µm

Média Aritmética	Maior valor	Menor valor	Amplitude	Variação
61533	67150	58026	9124	± 7%

Tabela 10: Análise da estabilidade na câmara para 0,5 µm.

⇒ Estabilidade para partículas de 1,0 µm

Média Aritmética	Maior valor	Menor valor	Amplitude	Variação
3331	3514	3077	437	± 7%

Tabela 11: Análise da estabilidade na câmara para 1,0 µm.

5.2. Medição de contagem de partículas usando o APS³ 3320.

Um elemento essencial no estudo de aerossóis é a capacidade de recolher amostras representativas para análise. Essas amostras devem refletir com precisão as partículas transportadas pelo ar, tanto na concentração como na distribuição de tamanho.

O modelo APS 3320, mostrado na Figura 15, é um espectrômetro de partículas de alto desempenho, que mede tanto o diâmetro aerodinâmico como a dispersão de intensidade da luz. O modelo 3320 oferece distribuições de tamanho e contagem de partículas com diâmetro aerodinâmico entre 0,5µm a 20 µm. Ele detecta a intensidade de dispersão da luz para partículas entre 0,3 µm a 20 µm.

O Software Manager TM Aerossol proporciona uma operação controlada por computador e interpretação dos dados.

Figura 15: Modelo 3320 - *Aerodynamic Particle Sizer Spectrometer* - APS (fonte: manual APS 3320).

Durante o processo de amostragem, a distribuição de tamanho é mostrada na tela em tempo real. O Modelo 3320 foi projetado para executar as medidas de tamanho aerodinâmico em tempo real utilizando aceleração de partículas.

O tamanho aerodinâmico de uma partícula determina sua taxa de aceleração, as partículas maiores aceleram mais lentamente devido ao aumento da inércia. O tempo de vôo entre dois feixes de laser é gravado e convertido em diâmetro aerodinâmico utilizando uma curva de calibração.

A Figura 12 mostra dois feixes de laser por onde a partícula passa. Essa dupla interrupção da luz produz um perfil de dupla crista. Cada partícula cria um

³ Aerodynamic Particle Sizer Spectrometer

único sinal contínuo, que tem duas cristas. Partículas com apenas uma crista (partículas fantasma) ou mais de duas cristas (erro de coincidência) não são usados nos cálculos da construção da distribuição de tamanho. O resultado é um distribuição extremamente precisa, com quase nenhum ruído.

Figura 16: Principio de medição do APS 3320 (fonte: manual APS 3320).

O APS 3320 é um espectrômetro de tempo de vôo, que mede a velocidade das partículas em um fluxo de ar acelerado através de um bocal. As particulas passam por dois feixes de laser focalizado, espalhando luz. A luz refletida é coletada por um espelho elíptico que concentra os feixes de luz coletados sobre um fotodetector, que converte os pulsos de luz em pulsos elétricos. Cronometrado eletronicamente entre os picos dos pulsos, a velocidade pode ser calculada para cada partícula individualmente.

O modelo APS 3320 converte cada tempo de vôo de medição para um diâmetro da partícula aerodinâmica. Estes tamanhos de partículas são guardados em 52 canais (em uma escala logarítmica). Essa conversão eletrônica, toma como padrão o comportamento das particulas de latex (PSL). No anexo I, encontra-se a relação de diâmetro aerodinâmico para cada um dos 52 canais.

O caminho do fluxo da amostra é ilustrado na figura 17. O aerossol é arrastado para uma entrada e é imediatamente dividido em um fluxo de amostra, através do bocal interno (vazão de 1L/min), e um fluxo externo, através do bocal externo (vazão de 4 L/min).

O fluxo externo é filtrado e controlado pela bomba de fluxo externo.

Figura 17: Fluxo de aerossóis através do Modelo APS 3320. (fonte: manual APS 3320).

Depois de passar através do orifício, o fluxo externo reencontra o fluxo da amostra no orifício de aceleração. Isto limita as partículas de fluxo de amostra e acelera o fluxo de ar em torno das partículas. Desta forma, as partículas pequenas (que pode acelerar com o fluxo) atingem uma velocidade maior do que as partículas maiores.

A velocidade das partículas são medidas na câmara óptica. Após a medição, as partículas de fluxo da câmara óptica saem, atraídas pela bomba de fluxo total. O fluxo da amostra é filtrado antes e após cada uma das duas bombas.

Abaixo sao apresentadas algumas características básicas do APS 3320.

- a) O bocal de entrada no topo do APS 3320 é projetado para que aerosol possa ser amostrado a partir de uma câmara ou ao ar livre com boa eficiência. A entrada é de ¾ de polegadas (18,9 mm) de diâmetro.
- b) O tempo total da amostra pode ser definido entre 1s a 64.800 s (18 horas) no modo soma e de 1s a 300 s no modo média. O padrão é 20 segundos.
- c) Existem três tipos de amostragem: Soma; Média ou Soma Corrigida.
 - Soma: exibe o número total de partículas amostradas para cada canal.
 - Média: apresenta um número médio calculado de partículas amostradas para cada canal.

 Soma Corrigida: Não é mostrado no visor de LCD. Pode ser analisado atraves do software APS para interpretar.

O padrão é soma.

5.3. Produção de Aerossol de Teste.

Um aspecto importante na calibração de medidores atmosféricos é a produção de aerossóis de teste para sua calibração.

Os aerossóis monodispersos são indicados para calibrar instrumentos que medem tamanho de partículas e para determinar o efeito do tamanho das partículas em um dispositivo de amostragem.

Os aerossóis polidispersos podem ser usados para calibrar ou para simular o uso real do equipamento em condições controladas de laboratório. Um aerossol monodisperso é geralmente definido como um aerossol que tem um desvio padrão geométrico - σ_g inferior a 1,2. Testes feitos com uma série de aerossóis monodisperso, cada um tendo um tamanho de partícula diferente, permitem avaliar o efeito do tamanho das partículas de aerossol em propriedades ou o desempenho de um instrumento. Por exemplo, as curvas de corte para impactadores são construídas com aerossóis de teste monodisperso. Aerossóis de teste também são usados para vários tipos de estudos de inalação, tais como estudos de exposição de animais a substâncias tóxicas, deposição respiratória em seres humanos ou animais e administração de aerossóis terapêuticos.

5.3.1. Atomização de Líquidos

Atomização é o nome dado ao processo de desintegração de um líquido em gotículas no ar. Atomizadores são classificados pelo tipo de energia utilizada para quebrar o líquido. Atomizadores de pressão são mais simples, pois eles convertem pressão do líquido em energia cinética que faz com que o líquido possa quebrar-se em gotas. Existem dois tipos de atomizadores de pressão, atomizadores a jato e atomizadores de redemoinho. O atomizador a jato ejeta o líquido em um fluxo com velocidade suficientemente alta para que ele se desintegre em gotas relativamente grandes a alguma distância do bico. Atomizadores de redemoinho fazem com que o líquido gire à medida que sai do bocal, formando um cone oco que facilita a separação do líquido. Outro tipo é o atomizador pneumático, que utiliza a energia do ar comprimido para quebrar um fluxo líquido. Este tipo de atomizador produz à menor gotícula e pode ser usado para dispersar líquidos viscosos.

A forma mais comum de gerar aerossóis em gota é por nebulização de ar comprimido. A nebulização é um tipo de atomização que produz um aerossol de partículas de pequenas dimensões, removendo gotas maiores do pulverizador por impactação dentro do dispositivo. De um modo geral, esses nebulizadores produzem aerossóis com diâmetros entre (1 a 10) µm, com desvio padrão geométrico de 1,5 a 2,5. O princípio de funcionamento da maioria dos nebulizadores de ar comprimido é semelhante ao do modelo mostrado na Fig. 18. Ar comprimido a uma pressão de alimentação de (5 a 50) psig sai a partir de um pequeno tubo ou orifício em alta velocidade. A baixa pressão criada na região de saída pelo efeito Bernoulli succiona o líquido de um reservatório para a corrente de ar através de um segundo tubo. O líquido é acelerado se chocando com o ar até que se rompe em gotas. O fluxo de pulverização é dirigido para uma superfície de impactação, onde são depositadas as gotas grandes e drenagem de volta para o reservatório de líquido. O princípio de funcionamento é o mesmo para a maioria dos nebulizadores, mas a geometria dos componentes difere para cada dispositivo. Tamanho da partícula diminui com o aumento da velocidade do ar, com a diminuição da viscosidade e da tensão superficial. Nebulizadores produzem uma concentração em número de partículas da ordem de $(10^6 \text{ a } 10^7)$ partículas/cm³.

Figura 18: Nebulizador de ar comprimido - princípio básico.

Neste trabalho utilizamos um nebulizador de ar comprimido, modelo INALAMAX, utilizado para fins terapêuticos. Suas especificações técnicas são:

Voltagem: 127/220V; Frequência: 50/60Hz; Motor: 1/40Hp; Taxa de nebulização: 0,15-0,25 mL/min.

Figura 19: INALAMAX - Inalador a Ar Comprimido

Nebulizadores ultra-sônicos produzem gotículas de aerossóis na faixa de tamanho de (1 a 10) μm , sem o uso de um jato de ar comprimido. Ondas ultrasônicas geradas por um cristal piezoelétrico estão concentradas perto da superfície de um pequeno volume de líquido. A energia ultra-sônica cria intensa agitação do líquido e forma uma fonte cônica acima da superfície do líquido. A ação das ondas de compressão no líquido provoca ondas capilares para formar na superfície da fonte, e estas ondas quebram para criar um aerossol denso.

Outro tipo de atomizador monodisperso é o gerador de aerossol de disco giratório. Um disco horizontal é rodado a velocidades de até 70.000 rpm. O líquido é introduzido no centro do disco a uma taxa constante. A força centrífuga faz com que o líquido viaje para a borda do disco como um filme fino. O filme faz filamentos na borda que quebram em partículas. O tamanho das gotas produzidas depende do raio R do disco e da velocidade de rotação (Mercer, 1973).

Outro tipo de atomizador é o atomizador eletrostático. Um líquido é alimentado lentamente (≈ 10 mL/h) através de uma agulha oca para baixo. A alta voltagem (≈ 10 kV) é estabelecida entre a agulha e um anel coaxial alguns centímetros abaixo da agulha para criar um forte campo eletrostático perto da ponta da agulha, o líquido que sair da agulha forma um cone que emite um grande número de gotas na sua ponta, as gotículas são eletricamente carregadas e, inicialmente, se repelem, até que são neutralizados. O tamanho da partícula pode ser monodisperso e é controlada pela constante dielétrica do líquido, taxa de fluxo

do líquido e a intensidade do campo elétrico. Partículas de nanômetros a micrômetros podem ser produzidas.

5.3.2. Atomização de partículas monodispersa em suspensão líquida

Uma maneira simples de gerar partículas de aerossóis sólidas e monodispersas, para calibrar instrumentos é por nebulização de uma suspensão líquida contendo partículas sólidas monodispersas de tamanho conhecido. Após a nebulização, o líquido é removido por secagem para produzir um aerossol de partículas sólidas. Líquido contendo partículas monodispersa de poliestireno (PSL) são usadas neste trabalho para este fim – ver tabela 12. As esferas têm baixo desvio padrão, são esferas perfeitas, e têm propriedades homogêneas. A densidade das esferas está perto de densidade padrão – 1,05 g/cm³. No anexo III, encontra-se os certificados de calibração das partículas de látex.

Essas esferas são rastreáveis pelo National Institute of Standards e Tecnologia (NIST). A maioria com a incerteza na sua dimensão média de menos de 1% e desvio padrão relativo para suas distribuições de tamanho de menos de 2%. Elas são vendidas em frascos contendo 15 mL com 1, 2, ou 10% de sólidos em suspensão aquosa. A água contém estabilizador para impedir a coagulação do líquido e devem ser armazenas na temperatura de 4°C. Figura 16.

Valor de referência	Valor Verdadeiro com	Valor sem certificado de
Diâmetro médio µm	certificado NIST(µm)	calibração (μm)
0,5	$0,5050 \pm 0,0064$	
1,0	$0,99 \pm 0,01$	
3,0	$3,00 \pm 0,02$	
4,5		4,52
5.0	4.76 ± 0.04	

Tabela 12: Partículas de PSL comprada na Polysciences, Inc e usada neste trabalho.

Figura 20: Partículas de látex (PSL) - fonte http://www.polysciences.com/

Três problemas podem surgir na geração de aerossóis monodispersos usando esferas uniformes:

- Uma fonte de erro é a tendência das esferas para mudar de tamanho devido à volatilização ou decomposição num feixe de um microscópio eletrônico. Medições precisas dessas esferas são feitas usando feixes de elétrons de baixa intensidade para evitar tais efeitos. Além disso, as partículas podem inchar um pouco com alguns solventes.
- Mais de uma esfera presente em uma gota na sua formação. Quando a gota seca, a partícula resultante é um aglomerado de esferas.
- 3) O terceiro problema é criado pelas gotículas vazias. Alguns tamanhos de PSL têm a percentagem significativa de estabilizador no líquido. O estabilizador está presente nas gotículas vazias, e quando elas secam, uma partícula de resíduo do estabilizador é formada. O estabilizador também forma um revestimento que altera ligeiramente o tamanho de pequenas partículas.

5.4. Impactador Inercial de três estágios.

O impactador inercial em cascata utilizado nesta tese é constituído de três estágios de coleta, a saber: estágio de 10 μ m; estágio de 2,5 μ m e estágio de 1,0 μ m. Esses estágios são dispostos nesta ordem e o fluxo de aerossol penetra o primeiro estágio, com um diâmetro de corte de 10 μ m, ou seja, 50% das partículas de 10 μ m que chegam ao primeiro estagio, devem impactar na superfície de coleta. Esse valor é teórico e seu raciocínio se estende aos demais estágios, ou seja: no segundo estágio, 50% das partículas de 2,5 μ m devem impactar na superfície de coleta e 50% das partículas de 1 μ m que chegam ao terceiro estágio, idem.

A vazão de operação do impactador é de 30 L/min e deve ser garantida ao longo de sua utilização. Neste trabalho, utilizamos um orifício critico de 25 L/min e juntamente com a vazão do APS 3320, que é de 5L/min, totalizamos a vazão de operação do impactador, que é de 30 L/min. A figura 21 mostra o desenho do orifício critico utilizado.

Figura 21: Orifício crítico de 25L/min

Apresentamos a medição e sua estimativa de incerteza, tanto do orifício critico como do APS 3320.

Usamos como referência na medição de vazão volumétrica um rotâmetro da marca OMEGA. Ele não foi calibrado, mas é acompanhado de uma tabela de verificação do fabricante (ver anexo VI – item d).

Como resultado da medição do orifício crítico, temos:

$$Q_{OC} = (24,9 \pm 0,4) L / \min$$

O resultado da medição da vazão do APS 3320 foi de:

$$Q_{APS} = (5,16\pm0,36) L/\min$$

As incertezas de medição foram estimadas como sendo a metade da menor divisão da escala do rotâmetro.

O sistema do impactador de três estágios foi elaborado por Gomes (1997) e o projeto é apresentado no anexo II.

A seguir são mostradas as peças, construídas em aço inox.

Figura 22: Peças do impactador construídas em aço inox.

Figura 23: Vista superior dos estágios 1 (10 µm), 2 (2,5 µm) e 3 (1,0 µm).

Figura 24: Vista frontal da entrado do impactador e lateral da sua saída.

Figura 25: Vista superior de um dos estágios com placa de impactação.

As dimensões totais do impactador de três estágios, são: 29 mm de diâmetro; 225 mm de altura e 830 g.

Figura 26: Foto comparativa entre uma caneta e o impactador.

Ν	dp _{50%}	W(mm)	T(mm)	S(mm)	S/W	T/W
3	10,0	8,4	10,0	8,0	0,95	1,2
7	2,5	4,2	4,0	4,0	0,95	0,95
14	1,0	1,0	4,0	4,0	4	4

Tabela 13: Dados do impactador

A tabela 13 mostra os dados do impactador. Sendo:

N = número de orifícios em cada estágio.

 $dp_{50\%} = diâmetro de corte$

W = diâmetro dos orifícios

T = altura da garganta

S = distância entre a saída do jato e a placa coletora

 D_C = diâmetro da placa de impactação

Figura 27: Desenho esquemático de um estagio do impactador.

6. Metodologia de calibração para amostradores de particulados atmosféricos.

Considerações cuidadosas devem ser tomadas antes de executar qualquer medição. Se os dados obtidos da medição não são satisfatórios para a aplicação pretendida, as medições devem ser descartadas.

> "Se estamos interessados na deposição de um conjunto de aerossol no pulmão, é inadequado examinar as partículas de aerossol sob um microscópio para determinar a distribuição de tamanho baseado em um diâmetro geométrico equivalente. A medição pode ser exata e precisa, mas não será pertinente ao propósito. Como o deposição das partículas dentro do pulmão dependerá do seu diâmetro aerodinâmico e não do seu diâmetro geométrico equivalente, mediremos bem um parâmetro errado". (Griffiths, Marshall e Nichols – 1998)

Assim, deve-se ter grande cuidado na escolha da técnica de medição.

Uma vez escolhida à técnica de medição adequada, é igualmente importante que os dados produzidos sejam válidos em termos da sua exatidão e precisão. Isto é alcançado calibrando-se os equipamentos de medição e materiais de referência apropriadamente. A escolha do equipamento rastreável é tão importante quanto à técnica de medição.

6.1. Procedimentos básicos na calibração

Numa calibração, devemos nos ater a procedimentos básicos antes de iniciarmos a calibração propriamente dita. A seguir, listaremos pontos relevantes, que precisam ser considerados, para iniciarmos uma calibração.

- 1. Inspecionar o equipamento antes de realizar a medição.
- Verificar se o equipamento é capaz de alcançar os níveis de precisão exigidos e se está sendo operado por pessoal qualificado e autorizado. Instruções escritas e os manuais dos fabricantes devem estar prontamente disponíveis.

- Devemos utilizar o equipamento de acordo com as instruções do fabricante, e devemos calibrá-lo regularmente, sendo verificado o seu desempenho depois de deslocado de um lugar para outro.
- 4. Equipamento danificado, defeituoso ou impróprio para uso deve ser retirado de uso.
- 5. Qualquer sistema de computador usado junto com um instrumento deve ser validado antes do uso.
- 6. Condições ambientais, tais como: pressão atmosférica, umidade relativa do ar e temperatura ambiente, podem afetar a precisão ou validade das calibrações e tais dados precisam ser avaliados.
- 7. Os procedimentos adotados para a realização das calibrações e as respectivas medições devem satisfazer as exigências do Guia para Expressão da Incerteza de Medição (*Guide to the Expression of Uncertainty in Measurement* - ISO GUM).
- As expressões utilizadas nos documentos, tais como: Certificado de Calibração e Procedimento Operacional Padrão – POP devem seguir o Vocabulário Internacional de Termos Fundamentais e Gerais de Metrologia – VIM.
- 9. O Sistema de calibração deve ser projetado e operado para assegurar que todas as medições são rastreáveis a padrões nacionais ou internacionais e asseguram confiabilidade metrológica. Onde a rastreabilidade não for aplicável, evidência satisfatória de correlação entre as grandezas envolvidas deve ser estabelecida.
- 10. Os padrões de referência devem cobrir a faixa de medição do mensurando. Uma estimativa das incertezas de medição, que usam métodos aceitáveis de análise, deve ser realizada para todas as calibrações.
- 11. Sempre que possível, devemos usar materiais de referência, por exemplo, partícula padrão, que foram produzidas e caracterizadas usando técnicas válidas. A certificação deve produzir evidência de rastreabilidade.

6.2. Geração de aerossol - Partículas de látex

A maioria dos estudos de aerossol é efetuada com partículas que variam aproximadamente entre (0,01 a 100) µm de diâmetro, e não existe uma única técnica de geração de aerossol capaz de produzir partículas com esta faixa de diâmetros. Fatores como concentração de aerossol e a morfologia das partículas sólidas também devem ser consideradas na escolha de uma fonte de aerossol.

"Geração de aerossol de látex é a técnica mais simples, as partículas são confeccionadas e precisam ser suspensas no ar ou em outro meio gasoso. Esfera monodispersas de poliestireno ou polímero (PSL), com diâmetro variando entre (0,038 a 20) µm estão disponíveis no mercado". (Hinds, 1999)

Devemos usar água destilada ou bidestilada para a diluição do concentrado de partículas de látex. Já que impurezas oriundas da água formarão partículas, como também irão aderir nas superfícies das partículas de látex já existentes.

"Na prática, impurezas não causam um problema significativo ao trabalhar com partículas maiores que 0,5 μm de diâmetro". Fuchs (1973).

Devemos armazenar as partículas de látex em geladeira, a 4°C, a fim de evitar que as partículas se aglomerem de forma irreversível.

Partículas de látex têm um índice de refração bem definido, e foram reconhecidos como padrões para a calibração de analisadores de tamanho de partícula ópticos. Estas partículas são virtualmente não-porosas, com densidades de 1,05g/cm³ para poliestireno, e seu diâmetro aerodinâmico pode ser determinado diretamente de medidas do tamanho físico através de microscopia.

Altas concentrações de PSL podem gerar aglomerados de partículas, mascarando a verdadeira leitura do diâmetro aerodinâmico.

Nesta pesquisa, foram encomendados dois conjuntos de partículas de látex da empresa *Polysciences*⁴. Um conjunto de partículas calibradas pelo *NIST* -

⁴ http://www.polysciences.com/

	Partículas NIST (µm).	0,2	0,5	1,0	3,0	5,0	7,0	10,0	15,0	
	Partículas sem calibração (µm).	0,2	0,5	1,0	3,0	4,5	6,0	10,0	15,0	20,0
т	Fabala 14: Partículas de látay adquiridas para esta trabalho									

Tabela 14: Partículas de látex adquiridas para este trabalho.

6.3. Calibração de Impactadores Inerciais.

Impactadores inerciais medem as características aerodinâmicas de um conjunto de aerossol no lugar das características físicas, então é fundamental usarmos aerossóis que possuem propriedades aerodinâmicas bem conhecidas.

O impactador seleciona as partículas pelo seu tamanho, em cada estágio, discretamente. O objetivo da sua calibração é determinar os diâmetros aerodinâmicos em cada estágio, selecionando partículas com uma eficiência de 50% (dp_{50%}). A metodologia de calibração inclui os seguintes passos:

- ⇒ Rastreabilidade e Documentação
- ⇒ Intervalos de calibração
- ⇒ Registros
- ⇒ Seleção das partículas de calibração,
- ⇒ Preparação do instrumento,
- ⇒ Geração e caracterização do aerossol de calibração,
- ⇒ Ensaio do aerossol em calibração,
- ⇒ Medição quantitativa do material selecionado,
- ⇒ Análise de dados.

São operados vários estágios do impactador em série para análise de distribuição de tamanho. Cada estágio deve ser calibrado.

Embora muitos usuários confiem nas curvas de calibração fornecidas pelo fabricante, esta prática deveria ser evitada porque as respectivas curvas são geradas por lotes, ferindo assim um principio fundamental da calibração: *todo equipamento deve ser calibrado individualmente*, mesmo porque mudanças

⁵ <u>http://www.**nist**.gov/</u>

secundárias na geometria podem ter um efeito nas características de desempenho do impactador, especialmente para impactadores de múltiplo orifício.

6.3.1. Rastreabilidade e Documentação

A rastreabilidade é vital para assegurar a confiabilidade de qualquer medição. Um procedimento de calibração válido tem que ser aplicado ao equipamento e a qualquer medição que possa afetar a precisão ou confiabilidade da análise do tamanho da partícula. Segundo *Griffiths; Mark; Marshall and Nichols (1998)* no livro: *Aerosol Particles Size Analysis – Good Calibration Practices*, os aspectos listados abaixo devem ser considerados:

- Métodos e procedimentos para todas as calibrações; eles devem ser consistentes com a precisão requerida e com qualquer especificação do padrão pertinente à calibração.
- b. Procedimentos para calibrações, instruções para a operação e calibração de equipamento e qualquer informação deve ser documentado para assegurar implementação formal e consistência de aplicação de uma ocasião para outra. Tais registros deveriam ser prontamente acessíveis. No anexo III encontram-se os certificados de calibração das partículas de látex (PSL) utilizados nesta pesquisa, bem como dos demais equipamentos.
- c. A integridade dos dados de calibração deve ser garantida. Devem ser estabelecidos procedimentos para assegurar que a amostragem, entrada, processo, armazenamento e transmissão de dados da calibração estão em acordo com as diretrizes acima.
- Cálculos e transferências de dados devem estar sujeitos a constantes verificações.
- e. O pessoal do laboratório deve satisfazer as exigências acima e ser comprovadamente apto a realizar as calibrações.

6.3.2. Intervalos de calibração

A escolha do intervalo de tempo entre calibrações é determinada por cada laboratório. Devem-se executar calibrações com uma freqüência que assegure a confiabilidade dos dados obtidos. Uma boa técnica a ser empregada é realizar calibrações num intervalo pequeno e se o instrumento não apresentar alterações de uma calibração para outra, aumentar esse intervalo. Por exemplo: Inicia-se com calibrações semestrais, caso o impactador não apresente alterações, aumente para anual. Além disso, devemos considerar:

- ⇒ Especificação do padrão envolvido na calibração.
- ⇒ Recomendações do fabricante do equipamento.
- \Rightarrow Tipo e estabilidade do equipamento.
- ⇒ Influência das condições ambientais (por exemplo, temperatura, umidade e vibração).

6.3.3. Registros

Registros apropriados é uma parte essencial de qualquer sistema de calibração. É necessário que evidências documentais estejam disponíveis para provar a validade das calibrações. Deve ser mantidos registros para cada equipamento de medição, inclusive dos padrões de referência. Esta informação deve incluir evidência que a calibração é rastreável, ou por documentação própria ou por certificado de calibração externo.

Todos os registros devem conter informações detalhadas do equipamento ou material de referência usado nas calibrações. Cada registro deverá incluir:

- ➡ Método de calibração ou procedimento adotado, e os padrões usados.
- ⇒ Data na qual cada calibração foi executada.
- ⇒ Resultados da calibração obtida, antes de qualquer ajuste e conserto.
- ⇒ Intervalo de calibração.
- ⇒ Documentação para todos os materiais de referência usados na calibração e a rastreabilidade a padrões nacionais ou internacionais de medida ou materiais de referência.
- ➡ Condições ambientais na hora da calibração, e as correções se necessário.

⇒ Nomes das pessoas que executam a calibração e conferem os resultados.

6.3.4. Seleção das Partículas de Calibração

Podem ser executadas calibrações usando partículas monodispersas ou polidispersas. A vantagem de partículas monodispersas é que as partículas de teste são definidas em termos do tamanho, forma, densidade e propriedades ópticas. Embora devam ser executadas várias experiências para cobrir o alcance operacional do impactador, estes testes podem ser minimizados por seleção cuidadosa do tamanho das partículas.

"A vantagem do uso de partículas polidispersas é que o impactador é calibrado completamente em um único experimento, embora a análise de dados seja mais complexa do que com partículas monodispersas e a incerteza final é um pouco maior". (Griffiths, Marshall e Nichols – 1998).

Calibrações que usam partículas monodispersas são recomendadas devido à maior exatidão e precisão.

Esta metodologia emprega a calibração através de partículas de látex monodispersas. Nos valores nominais de: 0,5µm; 1,0µm; 3,0µm; 5,0µm

6.3.5. Preparação do Instrumento a ser calibrado

É essencial que as instruções operacionais fornecidas pelo fabricante do impactador de cascatas sejam seguidas na montagem da calibração. Deve-se assegurar:

- \Rightarrow Que o impactador esteja limpo.
- ⇒ Pratos do impactador engraxados e vedados para que não ocorram vazamentos. Recomenda-se o uso de óleo ou vaselina na superfície de impactação. Essa medida assegura a fixação das partículas que impactarão no prato, evitando assim o retorno de partículas "ricocheteadas".

- A vazão de entrada deve ser a mesma da saída do instrumento. Para garantir esta vazão, usamos orifício critico na bomba de vácuo acoplada ao impactador.
- ⇒ Calibrar o impactador em cada estágio,

A seguir listamos os fatores que segundo *Griffiths et all (1998)*, influenciam o desempenho do impactador inercial em cascata.

1. Os diâmetros de coleta podem variar com a variação da vazão do escoamento.

Ação: Manter a vazão do escoamento constante utilizando orifício critico com Mach igual a 1.

- A carga eletrostática das partículas pode influenciar a eficiência de coleta. Ação: As partículas de látex (PSL) possuem baixa carga eletrostática não afetando significativamente as medições. No uso de outras partículas teremos um aumento na incerteza de medição do dp_{50%}.
- A evaporação das partículas, no caso de utilizar partículas líquidas, é fator preocupante.

Ação: Aconselha-se o uso de partículas sólidas. Não havendo alternativa, esse fator aumentará o erro de medição para dp_{50%}.

- 4. A fragmentação das partículas após a impactação no prato e os efeitos de salto e o conseqüente retorno das partículas ao escoamento. Ação: recomenda-se o uso de óleo ou graxa na superfície do prato de impactação, aumentando assim a aderência das partículas à superfície de impactação.
- A deposição indesejável nas paredes do impactador e o efeito de interação entre os jatos em estágios com múltiplos orifícios.
 Ação: Esses fatores estão ligados ao projeto do impactador. No ato da calibração, nada pode ser feito para minimizar esses efeitos.

6.3.6. Geração e Caracterização do Aerossol de Calibração.

Devem ser caracterizadas partículas produzidas pelo gerador de aerossol. É fundamental a medição do diâmetro das partículas geradas simultaneamente com a coleta feita pelo impactador de cascatas, usando um medidor de diâmetro e concentração padrão (neste caso, *Espectrômetro de Tamanho de Partícula Aerodinâmica* – APS 3320). As partículas devem ser classificadas (diâmetro e concentração) no momento da calibração.

O procedimento adotado:

- Diluiu-se entre 5 a 15 gotas de PSL em 15 mL de água deionizada e filtrada. Essa variação do número de gotas se reflete na concentração de PSL existente no frasco. Maior concentração, menor número de gotas.
- Foram geradas partículas em ambos os lados da câmara, garantido assim uma maior uniformidade de partículas.
- 3. Iniciamos medindo o diâmetro aerodinâmico das partículas pré existente na câmara de calibração. A isso chamamos de dp_{branco}. Essa etapa visa determinar, para posteriormente retirar da amostra padrão, as partículas pré existentes na câmara, a fim de garantir que somente usaremos na calibração as partículas de látex geradas na nebulização.
- 4. Em seguida, medimos o diâmetro aerodinâmico das partículas existentes na água destilada, usada para diluir a solução de partículas de látex calibradas. A isso chamamos de dp_{água}. Essa etapa visa garantir que somente usaremos na calibração as partículas de látex geradas na nebulização evitando assim a contaminação através da água.
- 5. As partículas de látex são geradas, uma faixa de tamanho por vez, e medida pelo espectrômetro. Em seguida, subtraem-se deste valor, os valores medidos nos itens 3 e 4, ficando apenas com as partículas de látex que possuem tamanho conhecido, ou seja: (0,5; 1,0; 3,0; 5,0) μm.
- 6. Num intervalo de 1 min, cada amostra era coletada pelo APS 3320, da seguinte maneira:
 - Amostragem de 20s para as partículas que chegam ao impactador.
 Identificadas neste trabalho pela letra A.

- No minuto seguinte, mudamos a chave seletora para coletar as partículas que saem do impactador com amostragem de 20 s, identificadas neste trabalho pela letra D.
- Isso se repetia três vezes, de forma que possuíamos valores (número de partículas) antes de entrar no impactador (N_A) e depois que entravam no impactador (N_D). Ver ilustração 6.

Figura 28: Esquema explicativo da coleta de partículas antes de entrar no impactador e depois que saiam do impactador.

6.3.7. Condições Ambientais

A vazão à qual o aerossol de calibração é testado deve ser medida. O impactador utilizado nesta pesquisa funciona com vazão de 30L/min, já o medidor padrão APS 3320, funciona na vazão de 5L/min.

A temperatura do aerossol deve ser registrada, assim como sua umidade relativa e pressão ambiente.

Temperatura na câmara (°C)Pressão atmosférica local - mbar		Pressão atmosférica na câmara - mbar	Umidade relativa do ar
(19,5 ± 0,3)	$1022,3 \pm 0,6$	1021,3 ± 0,6	$(52 \pm 2)\%$

Tabela 15: Condições ambientais

6.3.8. Medição em cada estágio

O objetivo da calibração de um impactador inercial é caracterizar a faixa de tamanho dentro do qual a eficiência do impactador inercial varia de 0 a 100%. Um impactador ideal teria um único passo de 0 para 100% de eficiência, e a partícula classificada segundo o tamanho definiria o desempenho do impactador. Porém, este comportamento não é observado na prática por causa de irregularidades nas trajetórias das partículas, salto de partícula e retorno que resultam em curvas de eficiência contra tamanho de partícula denominada **curva características do impactador**.

Ao calibrar um impactador de cascata com um aerossol polidisperso, as partículas coletadas em cada fase são normalmente analisadas no microscópio óptico ou eletrônico. Partículas coletadas em intervalos de diâmetro definidos, são contadas, e uma análise semelhante é feita do aerossol que penetra o impactador nos seus respectivos estágios, sendo coletada em um prato de impactação. A eficiência de coleta do impactador $E_{\%}$ num determinado estágio é determinada por:

$$E(\%) = \frac{N_A - N_D}{N_A}$$
 Eq. 6.1

onde N_A e N_D é o número de partículas que entra e saí, respectivamente no impactador com diâmetro aerodinâmico *dp*. Este procedimento relativamente simples é repetido até a curva característica de o impactador ser completamente determinada. Porém, erros sistemáticos significativos podem surgir por causa dos seguintes fatores:

- Partículas pequenas não podem ser observadas (especialmente para microscopia óptica, onde partículas menores que 0,5µm de diâmetro geométrico estão abaixo do mais baixo limite de resolução).
- 2. Pode ser contado aglomerado de partículas como única partícula.

Muitos técnicos preferem calibrar analisadores de aerossol com partículas monodispersas, apesar do esforço requerido. A análise de dados e interpretação é muito mais fácil quando partículas monodispersas de formato esférico são usadas, desde que os tamanhos das partículas sejam bem definidos e efeitos de orientação não acontecem. Partículas monodispersas sólidas e líquidas são utilizadas nas calibrações dos analisadores de aerossol; salto de partícula é mais provável acontecer quando partículas sólidas são usadas (Franzen e Fissan - 1979), enquanto gotas líquidas podem quebrar no impacto com os pratos de coleta. A indicação é calibrar com partículas sólidas se o classificador for usado para analisar partículas sólidas e com gotinhas líquidas quando for líquidas.

Nesta pesquisa, usaremos partículas de látex bem caracterizadas. O procedimento é repetido para diferentes tamanhos de partícula até que a curva de eficiência de coleta seja feita. O tamanho que corresponde a uma eficiência de coleta de 50% define o desempenho do impactador e é chamado de diâmetro de corte.

O procedimento experimental para calibrar os impactadores em cascata é descrito a seguir:

- 1. Usamos um contador de partículas óptico APS 3320. Esse equipamento é considerado nosso padrão para contagem. Deve-se coletar o número de partículas que chegam ao impactador N_A , imediatamente antes de chegar ao impactador.
- 2. Só a etapa de interesse precisa ser montada para calibração.
- 3. Deve-se assegurar que a vazão de aerossol no impactador e no APS 3320 sejam mantidas. Neste trabalho adotamos um orifício critico na linha de ar que chega até a bomba de vácuo acoplada ao impactador. Esse orifício mantém a vazão constante em 25L/min, que, juntamente com a vazão de 5L/min do APS 3320, totaliza 30L/min. Que é a vazão de funcionamento do impactador.
- 4. O quantitativo de aerossol após passar pelo impactador é obtido fazendo medidas na saída do estágio de interesse. Utilizamos uma válvula de três vias para fazer medições antes (N_A) e medições após o estagio de interesse (N_D), conforme figura abaixo.

Saída de aerossol para o APS 3320

Coleta de aerossol Antes - N_{antes}

Impactador e sua saída de aerossol

Válvula de três vias. Posição A: coleta de aerossol antes de entrar no impactador - N_{antes} Posição D: coleta de aerossol na saída do impactador - N_{sai}

Figura 29: Montagem do impactador de três estágios

Figura 30: Bomba de vácuo com orifício critico de 25L/min

6.4. Calibração do APS 3320

O modelo 3320 APS, é um espectrômetro de partículas de alto desempenho, que mede tanto o diâmetro aerodinâmico como a dispersão de intensidade da luz. O modelo 3320 oferece distribuições de tamanho e contagem de partículas com diâmetro aerodinâmico entre 0,5µm a 20 µm.

Foi usado nesta pesquisa para contar as partículas de látex, geradas pelo nebulizador no topo da câmara de calibração.

Para atingir os objetivos deste trabalho, não foi necessário a sua calibração. De todo modo, apresento a metodologia utilizada.

O APS 3320 foi calibrado nos pontos: (0,5; 1,0; 3,0; 5,0) μm. Não calibramos em mais pontos, devido à limitação do gerador de partícula utilizado.

Procedimento de calibração:

- a. Iniciamos medindo o diâmetro aerodinâmico e contagens de partículas pré existente na câmara de calibração. A isso chamaremos de dp_{branco}.
- b. Em seguida, medimos as partículas existentes na água destilada, usada para diluir a solução de partículas de látex calibradas (dp_{água}).
- c. As partículas de látex são geradas, uma de cada vez, e medida pelo APS 3320. Em seguida, subtraem-se deste montante, os valores medidos nos itens b e c, ficando apenas com as partículas de látex que possuem tamanho conhecido (ver anexo IV).
- d. Os dados utilizados são relativos à soma da contagem de partículas referente a cada canal do APS. Desprezamos o canal < 0,542 μm, por não ser capaz de definir o diâmetro aerodinâmico e também por ser desprezado pelo APS 3320 para efeito de cálculos.
- e. Em seguida, aplicamos os cálculos de erro sistemático e incerteza (ver capitulo 7).

7. Análise de Dados

7.1. Calibrando o APS 3320

O APS 3320 foi usado neste trabalho para contar as partículas de látex geradas pelo nebulizador, no topo da câmara de calibração.

Para atingir os objetivos desta tese, não foi necessária a sua calibração. De todo modo, apresentamos o resultado da calibração do APS 3320 nos pontos: (0,5; 1,0; 3,0; 5,0) μm. A metodologia de calibração está descrita no capitulo 6. Não calibramos em mais pontos, devido à limitação do gerador de partícula utilizado. A incerteza expandida final foi declarada com 95,45% de probabilidade.

7.1.1. Resultado da calibração

Como exemplo, apresentaremos os cálculos que determinaram a incerteza e o erro sistemático do APS 3320 no ponto 0,5 μm.

a. Media aritmética dos valores lidos no APS 3320.

Foram realizadas 39 medições⁶, de 20s cada, num intervalo entre medições de 1 min. Partículas de látex, calibradas pelo NIST⁷ foram utilizadas. Os valores, em microns, estão na tabela 16.

N1	N2	N3	N4	N5	N6	N7	N8	N9	N10
0,63	0,62	0,62	0,62	0,62	0,62	0,62	0,62	0,62	0,61
N11	N12	N13	N14	N15	N16	N17	N18	N19	N20
0,62	0,62	0,62	0,61	0,61	0,61	0,61	0,61	0,61	0,61
N21	N22	N23	N24	N25	N26	N27	N28	N29	N30
0,61	0,61	0,61	0,61	0,61	0,61	0,61	0,61	0,61	0,61
N31	N32	N33	N34	N35	N36	N37	N38	N39	
0,62	0,61	0,62	0,62	0,62	0,61	0,62	0,61	0,62	

Tabela 16: Resultado de 39 medições do diâmetro aerodinâmico lido pelo APS 3320.

A média aritmética global foi $d_p = 0.61 \mu m$ e o desvio padrão da média $\sigma_{dpmédio} = 0.00539 \mu m$.

⁶ Ver resultados das medições no anexo IV

⁷ Ver certificado de calibração das partículas no anexo III

A maioria dos valores concentra-se nos pontos 0,626; 0,673; 0,723 μm, deste modo, foi adotado a maior variação entre este intervalo como sendo a resolução do instrumento nesta faixa, ou seja:

$$resolução = 0,723 - 0,673 = 0,05 \mu m$$

Adotando uma distribuição triangular para a incerteza da resolução, temos:

$$u_{resolução} = \frac{0.05}{\sqrt{6}} = 0.02041 \mu m$$

c. Incerteza da partícula padrão

Analisando o certificado de calibração das partículas de látex (ver anexo III), temos para a partícula padrão de 0,5µm, os valores:

$$d_p = (0,5050 \pm 0,0064) \mu m$$

d. Erro sistemático no ponto 0,5µm.

$$E_{sistemático} = d_p - d_{padrão}$$
$$E_{sistemático} = 0,61 - 0,5050$$
$$E_{sistemático} = 0,11 \mu m$$

e. Incerteza tipo A

Foi considerada a incerteza tipo A como sendo o desvio padrão da média das partículas.

$$\sigma_{dpmédio} = 0,00539 \,\mu m$$

f. Incerteza combinada - u_c

$$u_{C} = \sqrt{u_{A}^{2} + u_{padrão}^{2} + u_{resolução}^{2}}$$
$$u_{C} = \sqrt{0,00539^{2} + \left(\frac{0,0064}{2}\right)^{2} + 0,02041^{2}}$$
$$u_{C} = 0,0214\mu m$$

g. Grau de liberdade efetivo - v_{ef}

O grau de liberdade efetivo é dado pela equação 4.14. Neste exemplo vale: $v_{ef} = 9.492$

h. Fator de abrangência – k

Para $v_{ef} = 9.492$, o fator de abrangência k será igual a 2,000.

i. Incerteza expandida para 95,45%

A incerteza expandida será:

$$U = k.u_C$$

 $U = 2,066 \ x \ 0,0214$
 $U = 0,043 \mu m$

j. Ajustando a incerteza expandida.

A média das leituras feitas pelo APS 3320 no ponto 0,5µm foi de 0,61µm. Devemos arredondar a incerteza final para uma casa decimal. Segundo o Documento de Referência EA-4/02: Expressão da Incerteza de Medição na Calibração diz:

"Se o arredondamento diminuir o valor da incerteza de medição em mais de 5% recomenda-se que o arredondamento seja feito para cima."

Vejamos:

$$\frac{0,003}{0,043} = 7\%$$

Logo, devemos arredondar a incerteza expandida para:

$$U = 0.05 \mu m$$

Na tabela 17, apresentamos o resultado para os pontos calibrados.

Média aritmética do valor lido pelo APS 3320 - d_p	Valor da partícula padrão <i>d_{padrão}</i>	Incerteza expandida U	Erro sistemático	Número de medições	Incerteza tipo A- u _A µm
0,61 µm	0,5050 μm	0,05 μm	0,105 µm	39	0,00539
0,94 μm	0,99 µm	0,07 μm	-0,05 µm	30	0,01033
2,4 µm	3,00 µm	0,3 μm	-0,60 µm	30	0,10965
3,9 µm	4,76 μm	0,5 μm	-0,86 µm	30	0,16498

Tabela 17: Principais resultados da calibração do APS 3320.

k. Curva de calibração do APS 3320

A fim de obter a equação que ajusta os valores lidos pelo APS 3320 e os valores verdadeiros, obtidos através do certificado de calibração das partículas de látex, construímos um gráfico com o auxilio do software LAB FIT⁸ e obtivemos uma equação deste ajuste. Com essa equação podemos gerar uma tabela com os valores lidos pelo APS 3320 corrigidos e com suas respectivas incertezas de medição. Abaixo apresentamos a curva de calibração do APS 3320.

Gráfico 8: Curva de calibração do APS 3320

Utilizando a equação do ajuste:

$$y = 8,972*ATAN(0,1662*X) - 0,4011$$
 Eq. 7.1

onde x é o valor lido no APS e y é seu valor corrigido, sem erro sistemático. Podemos gerar a tabela 18.

103

⁸ Desenvolvido por: Wilton e Cleide Pereira da Silva

Universidade Federal de Campina Grande, DF/CCT. R. Aprígio Veloso, 882 Bodocongó. Campina Grande, Paraíba 58109-970 - Brasil

Média aritmética dos valores lidos pelo APS 3320 - µm	Jia aritmética dos lores lidos pelo APS 3320 - μmDiâmetro aerodinâmico da partícula padrão - μmDiâmetro obtido utilizando a equação ajustada - μm		$[f(x)-y]^2$
0,61	0,505	0,505	0,0000002
0,94	0,99	0,99	0,0000004
2,4	3,00	3,00	0,0000171
3,9	4,76	4,76	0,0000018
		soma	0.0000195

Tabela 18: Principais resultados do ajuste da curva de calibração do APS 3320.

1. Incerteza do ajuste

$$s^{2} = \frac{1}{n-p} \sum (f(x_{i}) - y_{i})^{2}$$
$$s^{2} = \frac{1}{4-2} .0,0000195$$
$$s = \sqrt{0,0000097}$$
$$s = 0,0031 \,\mu m$$

m. Grau de liberdade efetivo

Como o grau de liberdade (v_{ef}) do ajuste é dado pela equação (n-p), onde p: número de parâmetros a serem ajustados e n: número de dados experimentais. Temos:

$$v_{ef} = 4 - 3 = 1$$

n. Fator de abrangência – k

Para $v_{ef} = 1$, o fator de abrangência numa distribuição t-student e probabilidade de 95,45%, vale:

o. Incerteza do ajuste expandida para 95,45%

$$U_{ajuste} = k.u_{ajuste}$$
$$U_{ajuste} = 13,96781 \times 0,003126$$
$$U_{ajuste} = 0,04 \mu m$$

p. Incerteza expandida final considerando o ajuste

$$U_{final} = \sqrt{U_{objeto}^2 + U_{ajuste}^2}$$

Na tabela 19, apresentamos os valores de incerteza da medição para os pontos lidos pelo APS 3320, juntamente com seus valores corrigido, sem erro sistemático.

Média aritmética dos	Diâmetro	Diâmetro aerodinâmico		П
valores lidos pelo	aerodinâmico da	utilizando a equação	Uobjeto	Ufinal
APS 3320 - µm	partícula padrão - µm	ajustada - μm	μΠ	μΠ
0,61	0,5050	0,51	0,05	0,08
0,94	0,99	0,99	0,07	0,09
2,4	3,00	3,0	0,3	0,3
3,9	4,76	4,8	0,5	0,5

Tabela 19: Relação entre valores lido no APS e o valor corrigido com sua incerteza de medição.

Se desejarmos construir uma tabela relacionando os diâmetros aerodinâmicos lido pelo APS 3320 com os seus respectivos valores já corrigidos, precisaremos gerar os valores corrigidos com a equação do ajuste e interpolar linearmente as incertezas em cada ponto, apresentadas na tabela 19.

Diâmetro lido	Valor corrigido sem	Incerteza	Incerteza final
pelo APS 3320	erro sistemático	da leitura	(com ajuste)
μm	μm	μm	μm
0,61	0,51	0,05	0,08
0,626	0,53	0,05	0,08
0,673	0,60	0,05	0,08
0,723	0,67	0,06	0,08
0,777	0,75	0,06	0,09
0,835	0,84	0,06	0,09
0,898	0,93	0,07	0,09
0,965	1,0	0,08	0,1
1,037	1,1	0,09	0,1
1,114	1,2	0,10	0,1
1,197	1,4	0,11	0,1
1,286	1,5	0,13	0,1
1,382	1,6	0,14	0,2
1,486	1,8	0,16	0,2
1,596	1,9	0,18	0,2
1,715	2,1	0,20	0,2
1,843	2,3	0,21	0,2
1,981	2,5	0,24	0,2
2,129	2,7	0,26	0,3
2,288	2,9	0,28	0,3
2,458	3,1	0,31	0,3
2,642	3,3	0,33	0,3
2,839	3,6	0,36	0,4
3,051	3,8	0,39	0,4
3,278	4,1	0,42	0,4
3,523	4,4	0,45	0,5
3,786	4,6	0,48	0,5
3,900	4,8	0,50	0,5

A tabela abaixo apresenta esses valores.

Tabela 20: Valores dos diâmetros aerodinâmicos corrigidos e suas respectivas incertezas expandidas com ajuste.

7.2. Calibrando o impactador de três estágios

Adotaremos a metodologia descrita no capitulo 6 para calibrar o impactador de três estágios.

Devido à impossibilidade do nebulizador em gerar partículas acima de 5,0μm, não foi possível calibrar o estágio 10μm.

Deste modo, apresentaremos apenas os resultados dos estágios 2 e 3, respectivamente 2,5µm e 1,0µm.

O impactador foi colocado em repouso, dentro da câmara de calibração, nos pontos B e C e em movimento giratório com rotação da mesa em 0,6 rpm.

Nos pontos B e C a velocidade do ar na câmara era de $(2,2 \pm 0,5)$ cm/s. O que equivale a uma rotação do exaustor de 900 rpm.

A calibração do impactador também foi testada para velocidades de escoamento de $(1,1 \pm 0,4)$ cm/s – rotação do exaustor de 600 rpm e para $(3,1 \pm 0,6)$ cm/s - rotação do exaustor de 1200 rpm. Nesses casos, com a mesa em rotação de 0,6 rpm.

Os dados da calibração, apresentados a seguir, são relativos a esses pontos. Todos os pontos experimentais foram ajustados segundo uma tangente hiperbólica do tipo: Y = A * TANH(B * X).

Para o cálculo da incerteza de medição da eficiência de coleta do impactador, adotamos o seguinte procedimento:

- Calculamos a média aritmética das eficiências de coleta medida em cada amostra (ver anexo V) em seguida sua incerteza tipo A.
- 2. O fabricante do APS 3320 fornece em seu manual o erro máximo de coincidência⁹ na medição das partículas. Esse valor depende da concentração das partículas, assumindo valor máximo de 6% do numero de partículas contadas. Adotando uma postura conservadora, utilizamos o erro máximo como à incerteza do APS 3320 no processo de contagem das partículas.
- Em cada faixa de medição (0,5; 1,0; 3,0; 5,0) μm, calculamos a incerteza da eficiência de coleta, combinando a incerteza tipo A com a incerteza do APS 3320.

⁹ Coincidência das partículas é definido como mais de uma partícula no volume de visualização do contador, criando um sinal que faz com que o contador classifique incorrectamente as partículas como única.

- 4. Após analise dos dados, construímos um gráfico: Eficiência de coleta (E%) versus diâmetro aerodinâmico da partícula (dp). Ajustamos os pontos experimentais por uma tangente hiperbólica (curva característica desta distribuição) e obtivemos a incerteza do ajuste.
- 5. Por fim, a incerteza final é calculada como sendo a combinação da incerteza do ajuste experimental do gráfico com a maior incerteza dos pontos experimentais. Procurando assim, ser o mais conservador na estimativa da incerteza final.
- Para a determinação do diâmetro de corte (dp_{50%}), interpolamos o gráfico de ajuste para o ponto de eficiência 50%. Assim, descobrimos qual diâmetro aerodinâmico produz essa eficiência.

A seguir, apresentamos os resultados tratados matematicamente.

7.2.1 Calculo da incerteza de medição da eficiência de coleta

Como exemplo, apresentaremos os cálculos que determinaram a incerteza de medição na eficiência de coleta do impactador no ponto 0,5 µm e estágio 2,5 µm na posição B.

a. Media aritmética da eficiência de coleta

Foram realizadas 6 medições¹⁰, de 20s cada, num intervalo entre medições de 1 min. Partículas de látex, calibradas pelo NIST¹¹ foram utilizadas. Os valores estão na tabela 21.

	Eficiência	16%	14%	11%	16%	17%	15%	
Fabela 21: Resultado de 39 medições do diâmetro aerodinâmico lido pelo APS 3320.								

A média aritmética global foi E = 15% e o desvio padrão $\sigma_E = 0.022097$.

b. Incerteza tipo A

Foi considerada a incerteza tipo A como sendo o desvio padrão da média das partículas.

$$\sigma_{dpmédio} = u_A = \frac{\sigma}{\sqrt{n}}$$
$$u_A = 0,0090211$$

¹⁰ Ver resultados das medições no anexo V

¹¹ Ver certificado de calibração das partículas no anexo III

onde n é o número de medições.

c. Incerteza da contagem das partículas pelo APS 3320.

O manual do APS 3320 [21] informa que o máximo erro admissível na contagem das partículas é de 6%. Deste modo, adotaremos este percentual como a incerteza na contagem das partículas padrão que chegam e saem em cada estágio.

Como a eficiência de coleta é dada pela equação 6.1, temos como incerteza na eficiência de coleta a expressão:

$$uE(\%) = \sqrt{\left(\frac{\partial E}{\partial N_A}u_{N_A}\right)^2 + \left(\frac{\partial E}{\partial N_D}u_{N_D}\right)^2}$$
$$uE(\%) = \sqrt{\left(\frac{N_D}{N_A^2}u_{N_A}\right)^2 + \left(\frac{-1}{N_A}u_{N_D}\right)^2}$$

Na tabela 22, encontramos os valores de incerteza na medição de contagem do APS 3320 para o ponto 0,5 μm e estágio 2,5 μm na posição B.

Incerteza do APS 7,1% 7,3% 7,6% 7,2% 7,1% 7,2% Tabela 22: Incerteza na medição de contagem do APS 3320 para o ponto 0,5 μm e estágio 2,5 μm na posição B.

Adotaremos o maior valor de incerteza do APS 3320 para efeito de propagação de incerteza na medição da eficiência de coleta.

$$u_{APS3320} = 7,6\% = 0,076$$

d. Incerteza combinada - u_c

$$u_C = \sqrt{u_A^2 + u_{APS3320}^2}$$
$$u_C = \sqrt{0,009021^2 + 0,0758^2}$$
$$u_C = 0,076335$$

e. Grau de liberdade efetivo - v_{ef}

O grau de liberdade efetivo é dado pela equação 4.14. Neste exemplo vale: $v_{ef} = 25.617$
f. Fator de abrangência – k

Para $v_{ef} = 25.617$, o fator de abrangência k será igual a 2,000.

g. Incerteza expandida para 95,45%

A incerteza expandida é a incerteza combinada multiplicada pelo fator de abrangência k

A incerteza expandida será:

$$U = k.u_C$$

 $U = 2,000 \ x \ 0,076321$
 $U = 0,015 \ ou \ 15\%$

7.2.2. Calibração do 2º estágio - 2,5µm

a) Ponto B – mesa em repouso – velocidade do ar na câmara - $(2,2 \pm 0,5)$ cm/s

VVC (µm)	U(µm)	E(%)	U (%)
0,5050	0,0064	15	15
0,99	0,01	32	12
3,00	0,02	80	5
4,76	0,04	99	3

Tabela 23: Resultado da calibração do impactador no ponto B - mesa giratória em repouso.

Gráfico 9: Curva de eficiência de coleta do impactador de 3 estágios - ponto B

Usando a equação de ajuste Y = A * TANH(B * X) para os resultados da tabela 23, onde: A = 110,7; B = 0,3036, temos:

$$dp_{50\%} = (1,60 \pm 0,02) \mu m$$

Para uma eficiência de coleta de (50 ± 16) %

dp μm	E% - valores obtido do ajuste	E% - valores experimentais	[f(x)-y]^2	u _{ajuste}	U _{final}
0,5050	17	15	3,387644	1,322782	16
0,99	32	32	0,093289	k	
1,60	50	-	-	4,526551	
3,00	80	80	0,01643		
4,76	99	99	0,002141	U ajuste	
		soma	3,50	6	

Tabela 24: Resultado da calibração do impactador no ponto B após ajuste da equação.

b) Ponto C - mesa em repouso – velocidade do ar na câmara - $(2,2 \pm 0,5)$ cm/s.

VVC (µm)	U(µm)	E(%)	U (%)
0,5050	0,0064	16	15
0,99	0,01	33	12
3,00	0,02	80	5
4,76	0,04	99	3

Tabela 25: Resultado da calibração do impactador no ponto C - mesa giratória em repouso.

Gráfico 10: Curva de eficiência de coleta do impactador de 3 estágios - ponto C

Usando a equação de ajuste Y = A * TANH(B * X) para os resultados da tabela 25, onde: A =110,3; B = 0,3063, temos:

$dp_{50\%} = (1,$	60 ± 0),02)µm
-------------------	------------	------	-----

Para uma eficiência de coleta de (50 \pm 15) %

dp	E% - valores	E% - valores	$[f(x)-y]^{2}$	u _{aiuste}	U _{final}
μm	obtido do ajuste	experimentais	/	j	
0,5050	17	16	0,858564	0,759344	15
0,99	32	33	0,293532	kp	
1,60	50	-	-	4,526551	
3,00	80	80	8,17E-05		
4,76	99	99	0,00103	U ajuste	
		soma	1,15	4	

Tabela 26: Resultado da calibração do impactador no ponto C, após ajuste da equação.

c) Mesa girando a 0,6 rpm - velocidade do ar na câmara - $(2,2 \pm 0,5)$ cm/s. Exaustor de ar - 900 rpm.

VVC (µm)	U(µm)	E(%)	U (%)
0,5050	0,0064	16	14
0,99	0,01	30	12
3,00	0,02	79	5
4,76	0,04	99	2

Tabela 27: Resultado da calibração do impactador – mesa girando em 0,6 rpm com velocidade do ar de $(2,2 \pm 0,5)$ cm/s.

Gráfico 11: Curva de eficiência de coleta do impactador de 3 estágios – mesa girando a 0,6 rpm – com velocidade do ar de $(2,2 \pm 0,5)$ cm/s.

Usando a equação de ajuste Y = A * TANH(B * X) para os resultados da tabela 27, onde: A = 112,5; B = 0,2894, temos:

$$dp_{50\%} = (1,65 \pm 0,02) \mu m$$

dp μm	E% - valores obtido do ajuste	E% - valores experimentais	[f(x)-y]^2	u _{ajuste}	U _{final}
0,5050	16	16	0,105931	1,011504	15
0,99	31	30	1,898952		
1,65	50	-	-	kp	
3,00	79	79	0,039373	4,526551	
4,76	99	99	0,002026	U ajuste	
		soma	2,05	5	

Para uma eficiência de coleta de (50 ± 15) %

Tabela 28: Resultado da calibração do impactador com a mesa girando 0,6 rpm, após ajuste da equação. Exaustor de ar - 900 rpm.

d) Mesa girando a 0,6 rpm - velocidade do ar na câmara - $(1,1 \pm 0,4)$ cm/s. Exaustor de ar - 600 rpm.

VVC (µm)	U(µm)	E(%)	U (%)
0,5050	0,0064	15	15
0,99	0,01	31	12
3,00	0,02	80	4
4,76	0,04	99	3

Tabela 29: Resultado da calibração do impactador – mesa girando em 0,6 rpm com velocidade do ar de $(1,1 \pm 0,4)$ cm/s.

Gráfico 12: Curva de eficiência de coleta do impactador de 3 estágios – mesa girando a 0,6 rpm – com velocidade do ar de $(1,1 \pm 0,4)$ cm/s.

Usando a equação de ajuste Y = A * TANH(B * X) para os resultados da tabela 29, onde: A = 110,8; B = 0,3027, temos:

$$dp_{50\%} = (1,61 \pm 0,02) \mu m$$

dp	E% - valores	E% - valores	[f(x)-y]^2	u _{ajuste}	U _{final}
μΠ	oblido do ajusic	experimentals			
0,5050	17	15	3,263701	1,557799	17
0,99	32	31	1,548226		
1,61	50	-	-	kp	
3,00	80	80	0,039891	4,526551	
4,76	99	99	0,001656	U ajuste	
		soma	4,85	7	

Para uma eficiência de coleta de (50 \pm 17) %

Tabela 30: Resultado da calibração do impactador com a mesa girando 0,6 rpm, após ajuste da equação. Exaustor de ar - 600 rpm.

e) Mesa girando a 0,6 rpm - velocidade do ar na câmara - $(3,1 \pm 0,6)$ cm/s. Exaustor de ar - 1200 rpm.

VVC (µm)	U(µm)	E(%)	U (%)
0,5050	0,0064	15	15
0,99	0,01	30	12
3,00	0,02	80	4
4,76	0,04	99	3

Tabela 31: Resultado da calibração do impactador – mesa girando em 0,6 rpm com velocidade do ar de $(3,1 \pm 0,6)$ cm/s.

Gráfico 13: Curva de eficiência de coleta do impactador de 3 estágios – mesa girando a 0,6 rpm – com velocidade do ar de $(3,1 \pm 0,6)$ cm/s.

Usando a equação de ajuste Y = A * TANH(B * X) para os resultados da tabela 31, onde: A = 111,0; B = 0,3014, temos:

$$dp_{50\%} = (1,61 \pm 0,02) \mu m$$

dp µm	E% - valores obtido do ajuste	E% - valores experimentais	[f(x)-y]^2	u _{ajuste}	U _{final}
0,5050	17	15	3,117719	1,988769	17
0,99	32	30	4,716162		
1,61	50	-	-	kp	
3,00	80	80	0,070023	4,526551	
4,76	99	99	0,006504	U ajuste	
		soma	7,91	9	

Para uma eficiência de coleta de (50 \pm 17) %

Tabela 32: Resultado da calibração do impactador com a mesa girando 0,6 rpm, após ajuste da equação. Exaustor de ar - 1200 rpm.

Usando a equação de ajuste Y = A * TANH(B * X) unindo todos os resultados um único grafico, onde: A = 111,0; B = 0,3009, temos:

 $dp_{50\%} = (1,61 \pm 0,02) \mu m$

Para uma eficiência de coleta de (50 ± 15) %

Gráfico 14: Curva de eficiência de coleta do impactador de 3 estágios – gráfico relativo a todos os pontos experimentais para o estágio 2,5 µm.

7.2.2 Calibração do 3º estágio - 1,0 µm

VVC (µm)	U(µm)	E(%)	U (%)
0,5050	0,0064	44	10
0,99	0,01	74	5
3,00	0,02	96	3
4,76	0,04	97	2

a) Ponto B – mesa em repouso – velocidade do ar na câmara - $(2,2 \pm 0,5)$ cm/s

Tabela 33: Resultado da calibração do impactador no ponto B – mesa giratória em repouso.

Gráfico 15: Curva de eficiência de coleta do impactador de 3 estágios - ponto B.

Usando a equação de ajuste Y = A * TANH(B * X) para os resultados da tabela 33, onde: A = 96,86; B = 1,0008, temos:

$$dp_{50\%} = (0,57 \pm 0,01) \mu m$$

Para uma eficiência de coleta de (50 ± 11) %

dp um	E% - valores	E% - valores	[f(x)-y]^2	u _{ajuste}	U _{final}
0,5050	45	44	1,354045	0,976067	11
0,57	50	-	-		
0,99	73	74	0,381137	kp	
3,00	96	96	0,146475	4,526551	
4,76	97	97	0,023756	U _{ajuste}	
		soma	1,91	4	

Tabela 34: Resultado da calibração do impactador no ponto B, após ajuste da equação. Exaustor de ar - 900 rpm.

VVC (µm)	U(µm)	E(%)	U (%)
0,5050	0,0064	44	10
0,99	0,01	74	5
3,00	0,02	96	1
4,76	0,04	99	1

b) Ponto C - mesa em repouso – velocidade do ar na câmara - $(2,2 \pm 0,5)$ cm/s

Tabela 35: Resultado da calibração do impactador no ponto C - mesa giratória em repouso.

Gráfico 16: Curva de eficiência de coleta do impactador de 3 estágios - ponto C.

Usando a equação de ajuste Y = A * TANH(B * X) para os resultados da tabela 35, onde: A = 97,90; B = 0,9393, temos:

$$dp_{50\%} = (0,60 \pm 0,01) \mu m$$

Para uma eficiência de coleta de (50 ± 14) %

dp um	E% - valores obtido do ajuste	E% - valores experimentais	[f(x)-y]^2	u _{ajuste}	U _{final}
0,5050	43	44	0,573244	2,172044	14
0,60	50	-	-	-	
0,99	72	74	6,145951	kp	
3,00	97	96	1,449385	4,526551	
4,76	98	99	1,266975	U _{ajuste}	
		soma	9,44	10	

Tabela 36: Resultado da calibração do impactador no ponto C, após ajuste da equação. Exaustor de ar - 900 rpm.

VVC (µm)	U(µm)	E(%)	U (%)
0,5050	0,0064	47	11
0,99	0,01	75	5
3,00	0,02	97	6
4,76	0,04	97	5

c) Mesa girando a 0,6 rpm - velocidade do ar na câmara - $(2,2 \pm 0,5)$ cm/s. Exaustor de ar - 900 rpm.

Tabela 37: Resultado da calibração do impactador – mesa girando em 0,6 rpm com velocidade do ar de $(2,2 \pm 0,5)$ cm/s.

Gráfico 17: Curva de eficiência de coleta do impactador de 3 estágios – mesa girando a 0,6 rpm – com velocidade do ar de $(2,2 \pm 0,5)$ cm/s.

Usando a equação de ajuste Y = A * TANH(B * X) para os resultados da tabela 37, onde: A = 97,15 B = 1,037, temos:

$$dp_{50\%} = (0,55 \pm 0,01) \mu m$$

Para uma eficiência de coleta de (50 ± 11) %

dp µm	E% - valores obtido do ajuste	E% - valores experimentais	[f(x)- y]^2	u _{ajuste}	U _{final}
0,5050	47	47	0,09962	0,297736	11
0,55	50	-	-	-	
0,99	75	75	0,002867	kp	
3,00	97	97	0,055213	4,526551	
4,76	97	97	0,019594	U _{ajuste}	
		soma	0,18	1	

Tabela 38: Resultado da calibração do impactador com mesa girando, após ajuste da equação. Exaustor de ar - 900 rpm.

Curve collection efficiency of the impactor

VVC (µm)	U(µm)	E(%)	U (%)
0,5050	0,0064	44	10
0,99	0,01	74	5
3,00	0,02	98	2
4,76	0,04	99	2

d) Mesa girando a 0,6 rpm - velocidade do ar na câmara - $(1,1 \pm 0,4)$ cm/s. Exaustor de ar - 600 rpm.

Tabela 39: Resultado da calibração do impactador – mesa girando em 0,6 rpm com velocidade do ar de $(1,1 \pm 0,4)$ cm/s.

Gráfico 18: Curva de eficiência de coleta do impactador de 3 estágios – mesa girando a 0,6 rpm – com velocidade do ar de $(1,1 \pm 0,4)$ cm/s.

Usando a equação de ajuste Y = A * TANH(B * X) para os resultados da tabela 39, onde: A = 98,81; B = 0,9726, temos:

$$dp_{50\%} = (0,57 \pm 0,01) \mu m$$

de uma eficiência de coleta de (50 ± 11) %

dp µm	E% - valores obtido do ajuste	E% - valores experimentais	[f(x)-y]^2	u _{ajuste}	U _{final}
0,5050	45	44	0,945338	0,75954	11
0,57	50	-	-	-	
0,99	74	74	0,109961	kp	
3,00	98	98	0,054897	4,526551	
4,76	99	99	0,043605	Uajuste	
		soma	1.15	3	

Tabela 40: Resultado da calibração do impactador com mesa girando, após ajuste da equação. Exaustor de ar - 600 rpm.

Curve collection efficiency of the impactor

VVC (µm)	U(µm)	E(%)	U (%)
0,5050	0,0064	45	9
0,99	0,01	75	5
3,00	0,02	98	3
4,76	0,04	97	2

e) Mesa girando a 0,6 rpm - velocidade do ar na câmara - $(3,1 \pm 0,6)$ cm/s. Exaustor de ar - 1200 rpm.

Tabela 41: Resultado da calibração do impactador – mesa girando em 0,6 rpm com velocidade do ar de $(3,1 \pm 0,6)$ cm/s.

Gráfico 19: Curva de eficiência de coleta do impactador de 3 estágios – mesa girando a 0,6 rpm – com velocidade do ar de $(3,1 \pm 0,6)$ cm/s.

Usando a equação de ajuste Y = A * TANH(B * X) para os resultados da tabela 41, onde: A = 97,44; B = 1,024, temos:

$$dp_{50\%} = (0,55 \pm 0,01) \mu m$$

Para uma eficiência de coleta de (50 ± 11) %

dp	E% eq	E% exp	fx-y)^2	u ajuste	U total
0,5050	46	45	1,769439	1,217115	11
0,55	50	-	-	-	
0,99	75	75	0,054312	kp	
3,00	97	98	0,95527	4,526551	
4,76	97	97	0,183718	U _{ajuste}	
		soma	2,96	6	

Tabela 42: Resultado da calibração do impactador com mesa girando, após ajuste da equação. Exaustor de ar - 1200 rpm.

Curve collection efficiency of the impactor

Usando a equação de ajuste Y = A * TANH(B * X) unindo todos os resultados um único gráfico, onde: A = 97,79; B = 0,9946, temos:

 $dp_{50\%} = (0.57 \pm 0.01) \mu m$

Para uma eficiência de coleta de (50 ± 11) %

Gráfico 20: Curva de eficiência de coleta do impactador de 3 estágios – gráfico referente a todos os pontos experimentais para o estágio 1,0 µm.

Estágio 2,5 μm				
Posição	dp _{50%} (µm)	E(%)		
Ponto B fixo	$1,\!60 \pm 0,\!02$	50 ± 16		
Ponto C fixo	$1,\!60 \pm 0,\!02$	50 ± 15		
Exaustor a 600 rpm	$1,61 \pm 0,02$	50 ± 17		
Exaustor a 900 rpm	$1,65 \pm 0,02$	50 ± 15		
Exaustor a 1200 rpm	$1,61 \pm 0,02$	50 ± 17		
Média de todas as posições	$1,61 \pm 0,02$	50 ± 15		
Estágio 1,	,0 μm			
Posição	dp _{50%} (µm)	E(%)		
Ponto B fixo	$0,57 \pm 0,01$	50 ± 11		
Ponto C fixo	$0,60 \pm 0,01$	50 ± 14		
Exaustor a 600 rpm	$0,57 \pm 0,01$	50 ± 11		
Exaustor a 900 rpm	$0,55 \pm 0,01$	50 ± 11		
Exaustor a 1200 rpm	$0,55 \pm 0,01$	50 ± 11		
Média de todas as posições	$0,57 \pm 0,01$	50 ± 11		

7.2.3. Resultado final - estágios 2,5 µm e 1,0 µm

Tabela 43: Resultado da calibração do impactador nos estágio 2,5µm e 1,0µm

Como principais conclusões desta pesquisa, destacamos:

a) Importância da Calibração – Determinação das Incertezas e Erros sistemáticos

A importância no desenvolvimento de uma metodologia de calibração para amostradores atmosféricos, em geral, reside no fato de garantirmos a confiabilidade metrológica nos resultados encontrados, fundamentalmente: erros sistemáticos e incertezas de medição. Isso é garantido ao aplicarmos a metodologia preconizada pelo Guia para a Expressão da Incerteza de Medição (INMETRO 1998) – 2^a . Edição Brasileira do *Guide to the Expression of Uncertainty in Measurement* e o Vocabulário Internacional de Termos Fundamentais e Gerais de Metrologia. VIM (INMETRO 1999).

Observamos o resultado da calibração do impactador inercial em cascata de três estágios. Ele foi projetado para ter uma eficiência de coleta nos diâmetros $10\mu m$, $2,5\mu m$ e $1,0\mu m$. Como o nebulizador utilizado não possibilitou a nebulização de partículas acima de $5\mu m$, o estágio $10\mu m$ não foi calibrado.

Destacamos a relevância da ciência das medições – Metrologia e suas técnicas, como fundamental para o estudo da medição de aerossol e suas implicações. Sem as técnicas estatísticas oriundas da Metrologia não seria possível observar, por exemplo, os erros sistemáticos encontrados nos estágios $2,5\mu$ m e $1,0\mu$ m.

Eles foram expressivos (da ordem de 40%) e sem a calibração dos amostradores atmosféricos esse conhecimento não seria possível.

Essa diferença entre o valor do diâmetro de coleta medido e o projetado, se deve fundamentalmente a erros e incertezas na confecção das peças do impactador e a incerteza na medição da eficiência de coleta.

ESTÁGIO 2,5 (µm)					
Posição	dp _{50%} (µm)	Erro sistemático (µm)	Erro Percentual		
Ponto B fixo	$1,60 \pm 0,02$	-0,90	36,0		
Ponto C fixo	$1,60 \pm 0,02$	-0,90	36,0		
Rotação Exaustor à 600 rpm	1,61 ± 0,02	-0,89	35,6		
Rotação Exaustor à 900 rpm	1,65 ± 0,02	-0,85	32,0		
Rotação Exaustor à 1200 rpm	1,61 ± 0,02	-0,89	35,6		

Tabela 44: Erro sistemático na calibração do impactador de três estágios - estágio 2,5 (µm)

ESTÁGIO 1,0 (μm)					
Posição	dp _{50%} (μm) Erro sistemático (μι		Erro Percentual		
Ponto B fixo	$0,57 \pm 0,01$	-0,43	43		
Ponto C fixo	$0,60 \pm 0,01$	-0,40	40		
Rotação Exaustor à 600 rpm	$0,\!57\pm0,\!01$	-0,43	43		
Rotação Exaustor à 900 rpm	0,55 ± 0,01	-0,45	45		
Rotação Exaustor à 1200 rpm	0,55 ± 0,01	-0,45	45		

Tabela 45: Erro sistemático na calibração do impactador de três estágios - estágio 1,0 (µm)

b) Importância na geração do aerossol.

Durante a pesquisa, evidenciamos as limitações decorrentes do nebulizador utilizado. A faixa de nebulização do aerossol não permitia gerarmos partículas acima de 5,0 µm, o que limitou a faixa de calibração. Isso não invalida a metodologia empregada, mas não permitiu a calibração do estágio 10,0 µm.

A grande contribuição na nebulização das partículas de látex, usadas como padrão na calibração de amostradores de particulados atmosféricos, é garantir uma boa estabilidade temporal. Se a vazão na nebulização for constante, isso contribui para uma menor incerteza na eficiência de coleta.

A metodologia de calibração proposta pressupõe uma estabilidade temporal na geração de particulado dentro da câmara de calibração. Quanto mais estável no tempo, menor será a variação da eficiência de coleta, uma vez que a eficiência é calculada pela diferença entre as partículas que chegam ao amostrador menos as partículas que saem.

Uma forma de minimizar a influencia da estabilidade temporal seria contar às partículas que chegam e as que saem, simultaneamente. Isso só é possível com dois contadores de particulados. Esse é o principal fator de contribuição na incerteza da eficiência de coleta. No capítulo 5, as tabelas 8 e 9 apresentam os resultados da análise da estabilidade temporal da câmara de calibração. A estabilidade temporal varia, em torno da média aritmética, em 7%. Concluímos, com as análises, ser importante o investimento num gerador/nebulizador de particulado. Como a geração de partículas acima de 5µm é difícil, portanto, requer a aquisição de um bom gerador/nebulizador de particulado para alcançar a geração de partículas de diâmetros superiores. c) Importância na escolha dos diâmetros das partículas padrão.

Identificamos que a escolha das partículas de látex deve levar em consideração que o diâmetro das partículas esteja em torno da faixa de interesse. Isso pode ser observado nos gráficos gerados pelos valores produzidos pelo estágio 1,0µm, mostrando ser mais compatível com a teoria do que os gráficos gerados pelo estágio 2,5µm. Esse fato ocorre devido às partículas padrão possuírem valores de 0,5µm e 1,0µm. Já o estágio 2,5µm, foi analisado experimentalmente em torno dos diâmetros 1,0µm e 3,0µm, distantes do ponto de interesse (2,5µm), gerando uma lacuna na área de interesse e prejudicando um melhor ajuste gráfico dos pontos experimentais.

A metrologia pode ajudar muito o desenvolvimento das pesquisas na área de medição de poluentes atmosféricos, com novas metodologias que qualifiquem as medições, possibilitando um controle mais efetivo dos agentes poluidores.

Como perspectivas futuras, a pesquisa pode colaborar em novos estudos que possam aprimorar alguns processos de medição e geração de partículas, levando em consideração:

- a) O investimento num nebulizador mais estável e de maior amplitude de nebulização de particulados.
- b) Importação de mais partículas de látex e com isso menor intervalo de calibração.
- c) Teste da metodologia em impactadores de mais estágios e outros tipos de amostradores atmosféricos.
- d) Pesquisa na área de calibração com particulados monodispersos e polidispersos.

9. Bibliografia

Armendariz, A.J, Leith, D. (2002). *Concentration measurement and counting e ciency for the aerodynamic particle sizer 3320.* Aerosol Science 33 133–148.

C. Hinds (1999), Aerosol Technology: Properties, Behavior and Measurement of Airborne Particles, John Wiley and Sons, New York, USA.

Chang, M; Sioutas, C; Cassee, F.R., Fokkens, P.H.B.. (2001). *Field evaluation of* a mobile high-capacity particle size classifier (HCPSC) for separate collection of coarse, fine and ultrafine particles. Aerosol Science 32 (2001).

Chao, C. Y, Wong, K.K, Cheng. E. C. (2002). Size Distribution of Indoor Particulate Matter in 60 Homes in Hong Kong. Indoor Built Environ.

Costa, C.M.F e Gomes, M.S.P, (2005 PUC-Rio). Dissertação de mestrado: Projeto, simulação numérica e teste experimental de um impactador em cascata para amostragem de aerossóis atmosféricos.

D. Boulaud, M. Diouri and G. Madelaine (1981), *Parameters Influencing the Collection Efficiency of Solid Aerosols in Cascade Impactors*, p.125 in Proc. 9th Conf. European Association for Aerosol Research, Duisburg, Germany.

D.R. Booker and K. D. Horton (1995), VAM 14 Annex B: (II), *Development of Aerosol Concentration Standards*, AEA Technology Report AEA-TPD-0345.

Dennis (1976), *Handbook on Aerosols*, Technical Information Center, US Energy Research and Development Administration, USA.

Fox, Robert W; Mcdonald, Alan T; Pritchard, Philip J. *Mecânica dos Fluidos*. Ed. LTC. 6°. Edição.

Franzen,H.; Fissan, H. Improvement of Cascade Impactor Results Obtained at Emission Sources. J. Aerosol Sci , Vol. 10, 1979

Freitas, A. M.; Solci, M. C. Caracterização do MP10 e MP2,5 e distribuição por tamanho de cloreto, nitrato e sulfato em atmosfera urbana e rural de londrina. Química Nova, v. 32, p.1750-1754, 2009.

Fuchs (1978), *Aerosol Impactors* (A Review), Chapter 1 in 'Fundamentals of Aerosol Science', Ed.: D. T. Shaw, John Wiley and Sons, New York, USA.

G.N.J. Lewis, J.P.Mitchell, W.D.Griffiths, D. Mark and R.S.Sokhi (1993), *Survey* of User Needs, National measurement infrastructure for aerosols and particles in the gas phase.

Gomes, M.S.P, Desing of na eigth stages cascade impactador for the classification of airbone particules. COBEM 1997.

Griffiths, W.D; Mark. D; Marshall. I. A and Nichols, A. L, (1998), Aerosol Particles Size Analysis – Good Calibration Practices, AEA Technology.

H. Vincent (1989), *Aerosol Sampling: Science and Practice*, John Wiley and Sons, Chichester, UK.

Hering, S. V. (1995). Impactors, Cyclones, and Other Inertial and Gravitational Collectors, in Air Sampling Instruments—for Evaluation of Atmospheric Contaminants (B. S. Cohen, and S. V. Hering, eds.) ACGIH, Cincinnati, pp. 279–321.

Hogrefe, O; Drewnick, F; Lala, G.G; Schwab, J. J and Demerjian, K. L, (2004), Development, Operation and Aplications of an Aerosol Generation, Calibration and Research Facility, Aerosol Science and Technology, 38(S1):196–214, 2004 INMETRO (2009). – Vocabulário Internacional de Termos Fundamentais e Gerais de Metrologia.

INMETRO, 1998 - *Guia para a Expressão da Incerteza de Medição*. Segunda Edição Brasileira do Guide to the Expression of Uncertainty in Measurement.

Instruction Manual. Model APS 3320. Aerodynamic Particle Sizer Revision A / July 2000. Copyright ©TSI Incorporated / March 1997–2000 / All rights reserved. <u>www.tsi.com</u>.

J. Fissan and C. Helsper (1982), *Techniques for Calibration of Dust Measurement Methods*, VDI Berichte No.429, Germany.

K. Willeke (Ed). *Generation of Aerosol and Facilities for Exposure Experiments*. Ann Arbor Science, 1980.

Kulkarni, P. Baron, P.A, Willeke, K. editors (2011). Aerosol Measurement: Principles, Techniques, and Applications. John Wiley & Sons.

Lippmann (1989), *Calibration of Air Sampling Instruments*, p.73 in 'Air Sampling Instruments for Evaluation of Atmospheric Contaminants', 7th Edn, Ed.: S. V. Hering, Am. Conf. Govern. Indust. Hygienists, Cincinnati, Ohio, USA.

Marpel, Virgil A and Rubow, Kenneth L, (1983), *An Aerosol Chamber for Instrument Evaluation and Calibration*, Am Ind Hyg. Assoc. J 44(5): 361-367.

Martins, Gilberto de Andrade, (2001), *Estatística Geral e Aplicada*. Ed. Atlas. ISBN 85-224-2794-1.

Mendes, Alexandre; Rosário, Pedro Paulo Novelino, (2005), *Metrologia e Incerteza de Medição*, Ed. Epse. ISBN 85-89705-40-4.

Mercer, T.T. Aerosol technology in hazard evaluation. Academic Press, 1973.

Montgomery, Douglas C; Runger, George C. *Estatística Aplicada e Probabilidade para Engenheiros*, (2003). Ed. LTC.

N. A. Fuchs, Latex Aerosols-Caution!, Aerosol Sci. 4, 405 (1973).

O. Knutson and D. Sinclair (1979), *Experience in Sampling Urban Aerosols with the Sinclair Diffusion Battery and Nucleus Counter*, Proc. Advances in Particle Sampling and Measurement, Ashville, North Carolina, US Department of Commerce, USA.

P.A. Baron (1986), Calibration and Use of the Aerodynamic Particle Sizer (APS 3300), Aerosol Sci. Technol., 5(1), 55.

Raabe, O. G. (1976). *The Generation of Aerosols of Fine Particles*. Fine Particles: aerosol generation, measurement, sampling, and analysis. *1975*.

Sioutas, C; Ferguson, S. T, Wolfson, J.M, Ozkaynak, H, Koutrakis, P. (1997). *Inertial collection of fine particles using a high-volume rectangular geometry conventional impactor.* J. Aerosol. Vol. 28, No. 6. pp.

T.Allen (1981), *Particle Size Measurement*, 30. Ed, Chapman and Hall, London, UK.

Versão Brasileira do Documento de Referência EA-4/02 (Referência Original do Editor : EAL-R2) - *Expressão da Incerteza de Medição na Calibração-Expression of the Uncertainty of Measurement in Calibration*. Primeira Edição Brasileira do EA-4/02 ; Janeiro de 1999.

Vincent, J.H. (2007): Aerosol Sampling: Science, Standards, Instrumentation and Applications. John Wiley & Sons.

Virgil A. Marple, Bernard A. Olson (2009). *Good Laboratory Practice in Particle Measurement Calibration: Cascade Impactor*. KONA Powder and Particle Journal 206 No.27.

Vuolo, Jose Henrique, (1996), *Fundamentos da Teoria de Erro*. Ed. Edgard Blucher. 20. edição. ISBN 85-212-0056-0.

Y.H. Liu, *Standardization and calibration of aerosol instruments*. Fine Particles, Academic Press, New York (1976), pp. 57–110

Anexo I - Canais e seus respectivos diâmetros aerodinâmicos do APS 3320

Canais	Diâmetro aerodinâmico μm
canal 1	<0,542
canal 2	0,542
canal 3	0,583
canal 4	0,626
canal 5	0,673
canal 6	0,723
canal 7	0.777
canal 8	0.835
canal 9	0.898
canal 10	0.965
canal 11	1.037
canal 12	1.114
canal 12	1 197
canal 14	1 286
canal 15	1 382
canal 16	1 486
canal 17	1,400
canal 18	1,350
canal 10	1,713
canal 20	1,045
canal 20	2 120
canal 21	2,129
canal 22	2,200
canal 23	2,438
canal 24	2,042
	2,639
canal 26	3,051
canal 27	3,278
canal 28	3,523
canal 29	3,786
canal 30	4,068
canal 31	4,371
canal 32	4,698
canal 33	5,048
canal 34	5,425
canal 35	5,829
canal 36	6,264
canal 37	6,732
canal 38	7,234
canal 39	7,774
canal 40	8,354
canal 41	8,977
canal 42	9,647
canal 43	10,366
canal 44	11,140
canal 45	11,971
canal 46	12,864
canal 47	13,824
canal 48	14,855
canal 49	15,963
canal 50	17,154
canal 51	18,434
canal 52	19,810

Tabela 46 Canais e seus respectivos diâmetros aerodinâmicos do APS 3320

Anexo II - Projeto do Impactador de três estágios elaborado pelo Prof. Marcos Sebastião de Paula Gomes Departamento de Mecânica – PUC - Rio. a) Entrada – Observe que a entrada foi projetada para minimizar o efeito da entrada de vento lateral.

Figura 31: Entrada do impactador de três estágios

b) Bloco externo do 1 estágio.

Figura 32: Bloco externo do 1 estágio.

c) Bloco externo do 2º e 3º estágios

Figura 33: Bloco externo do 2 e 3 estágios.

d) Placa de orifício do estágio 1.

Figura 34: Placa de orifício do estágio 1.

e) Placa de orifício do estágio 2.

Figura 35: Placa de orifício do estágio 2.

f) Placa de orifício do estágio 3.

Figura 36: Placa de orifício do estágio 3.

g) Placa de impactação do estágio 1

Figura 37: Placa impactadora do estágio 1.

h) Placa de impactação do estágio 2 e 3

Figura 38: Placa impactadora do estágio 2 e 3.

i) Topo da base

Figura 39: Desenho do topo da base.

Figura 40: Base.

l) Montagem completa

Figura 41: Impactador montado.

O rasgo próximo a saída do ultimo estágio é para a colocação de um filtro de teflon de 37 mm, apropriado para coleta de partículas abaixo de 1 μ m.

O bloco externo e as placas coletoras são intercambiáveis, o que permite a utilização do instrumento com outras configurações.

Anexo III - Certificados de calibração das partículas de látex.

a) partículas de 0,5 μ m

CERTIFIC	CATE OF A	NALYSIS
Produ-	ced by Polysciences, Inc.	
NANOBEAD NIST TRACE.	ABLE PARTICLE SIZE	STANDARDS 500NM
Catalog # 64019		
Lot 617993		
Test	Specification	Test Result
Percent solids	0.95 - 1.05	1.01 %
Mean Number Diameter by Disc Centrifuge	480.0 - 520.0	505.0 ± 6.4
Standard Deviation	Report result	8.0
CV	report value	2
Traceable to NIST Stand	ard Reference Material	0
Microsphere Compositio	on : Polystyrene	and a second
	-	motors
		Michael H. Ott President and CEO
an in	Corporate Headquarters 400 Valley Read Warrington PA 19075	Europe - Germany Polyscience Europe Grabit Dastichury 1
Polysciences, Inc.	warrington, P.S. 18976 1-806-823-2878 FAX: 1-806-343-3291	D-49214 Eppelheim, Germany (49) 6221-769767

Figura 42: Certificados de calibração das partículas de látex de 0,5 μm

b) partículas de 1,0 µm

CERTIFIC	ALE OF A	NAL Y 515
Frodu	eed by rotysciences, inc.	
MICROBEAD NIST TRAC	CEABLE PARTICLE SIZ MICRON	E STANDARD 1.00
Catalog # 64030		
Lot 619711		
Test	Specification	Test Result
Percent solids	0.95 - 1.05	1.01
Mean Number Diameter by Disc Centrifuge	0.95 -1.05	0.99 ± 0.01
Standard Deviation	Report result	0.03 micron
CV	Report value	3.0
Traceable to NIST Stand	lard Reference Material	
Microsphere Composition	on : Polystyrene	Constantes to
	_	motor
		Michael H, Ott President and CEO
-	Corporate Biodeparters	Europe - Germany

Figura 43: Certificados de calibração das partículas de látex de 1,0 µm

c) partículas de 3,0 μ m

CERTIFIC	CATE OF A	NALYSIS
Produ	ced by Polysciences, Inc.	
MICROBEAD NIST TRAC	CEABLE PARTICLE SIZ	E STANDARD 3.00
Catalog # 64060		
Lot 619827		
Test	Specification	Test Result
Percent solids	0.95 - 1.05	1.00
Mean Number Diameter by Disc Centrifuge	2.85 - 3.15	3.00 ± 0.02
Standard Deviation	Report result	0.07 micron
CV	Report value	2 %
Traceable to NIST Stand	lard Reference Material	
Microsphere Compositio	on : Polystyrene	STATES.
mer seprete a surpresser	an an organgi and	Ser The
	_	1
		Mitullion
		President and CEO
ATT	Corporate Headquarters	Europe - Gereany
	409 Valley Road	Polysciences Europe Gathfi

Figura 44: Certificados de calibração das partículas de látex de 3,0 µm

d) partículas de 5,0 μ m

CERTIFIC	ATE OF A	NALYSIS
Tiouc	eu by rotysciences, me.	
MICROBEAD NIST TRACE	EABLE PARTICLE SIZE MICRON	STANDARDS 5.00
Catalog # 64080		
Lot 610911		
Test	Specification	Test Result
Percent solids	0.95 - 1.05	1.01 %
Mean Number Diameter by Disc Centrifuge	4.50 - 5.50	4.76 ± 0.04
Standard Deviation	Report result	0.20
cv	Report value	4.22 %
Traceable to NIST Standa	ard Reference Material	
Microsphere Compositio	n : Polystyrene	A STATE
	2/63	Stranger P.
	-	mitter
		Michael H. Ott President and CEO
AT	Corporate Readquarters	Kurupo – Gormany
Palveciancae Inc	400 Valley Rood Warrington, PA 18976	Polysciences Europe Guihii Handelestr. 3

Figura 45: Certificados de calibração das partículas de látex de 5,0 µm

Anexo IV - Contagem de partículas usadas na calibração do APS 3320

a) partículas de 0,5µm

dp (µm)	dp _{branco}	dp_{agua}	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13
0,54	3	50	3677	3717	3087	3047	2757	2467	2617	2767	2977	2767	2627	2167	3177
0,58	3	45	2122	2052	1772	1732	1482	1412	1462	1522	1612	1482	1512	1212	1762
0,63	1	59	1630	1470	1320	1340	1100	1100	1060	1080	1180	1130	1230	1010	1390
0,67	5	67	1208	1038	948	875	784	756	745	783	817	765	803	649	1018
0,72	8	75	792	643	613	543	507	533	481	493	580	509	534	395	616
0,78	14	82	540	465	405	351	330	354	323	319	372	331	300	255	401
0,84	5	92	415	317	235	251	209	253	233	209	204	185	218	198	261
0,90	4	77	240	166	173	145	137	126	103	143	114	112	87	92	147
0,97	1	69	135	107	66	74	68	39	83	73	47	22	65	42	47
1,04	4	68	63	24	13	3	18	14	6	16	0	0	6	0	0
1,11	6	70	3	7	0	0	0	0	0	0	0	0	0	0	0
1,20	5	47	4	0	0	0	0	0	0	0	0	0	0	0	0
1,29	0	56	0	0	0	0	0	0	0	0	0	0	0	0	0
1,38	3	41	0	0	0	0	0	0	0	0	0	0	0	0	0
1,49	2	36	0	0	0	0	0	0	0	0	0	0	0	0	0
1,60	0	25	6	2	0	0	0	0	0	0	0	0	0	0	0
1,72	0	27	0	0	0	0	0	0	0	0	0	0	0	0	0
1,84	3	20	0	0	0	1	0	0	0	0	0	0	0	0	0
1,98	3	19	0	0	0	0	0	0	0	0	0	0	0	0	0
2,13	0	16	0	0	0	0	0	0	0	0	0	0	0	0	0
2,29	1	10	0	0	0	0	0	0	0	0	0	0	0	0	0
2,40	3	13	0	0	0	0	0	0	0	0	0	0	0	0	0
2,04	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2,04	0	0 5	0	0	0	0	0	0	0	1	0	0	0	0	0
3.00	1	6	0	0	0	4	4	0	0	0	0	0	0	0	0
3,20	0	5	1	0	0	1	0	0	0	0	0	0	0	0	0
3 79	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0
4 07	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0
4.37	0	1	0	0	0	1	1	3	1	2	3	1	2	0	1
4.70	0	0	0	1	3	1	2	2	0	2	1	4	3	2	4
5.05	0	1	0	2	2	3	4	1	1	2	0	4	1	1	1
5.43	0	0	1	2	1	1	1	3	0	2	1	3	2	2	3
5,83	0	0	0	3	1	3	1	4	3	2	4	2	4	4	2
6,26	0	0	0	0	2	0	3	0	0	1	2	1	2	0	2
6,73	0	0	3	1	2	3	1	1	2	6	0	1	3	2	2
7,23	0	0	1	3	1	3	5	3	1	0	2	1	0	2	5
7,77	0	0	2	3	3	1	1	1	2	2	3	2	4	1	7
8,35	0	0	0	3	1	4	0	2	3	2	2	2	3	3	1
8,98	0	0	1	1	2	2	3	1	2	0	1	5	4	1	3
9,65	0	1	1	0	4	1	4	0	0	4	0	0	1	0	2
10,37	0	0	0	0	2	2	0	2	1	1	1	2	2	4	3
11,14	0	0	3	2	2	2	2	3	1	1	2	1	1	1	1
11,97	0	0	1	1	2	1	2	1	0	0	1	0	1	1	1
12,86	0	0	3	2	1	0	2	2	3	2	0	1	0	1	0
13,82	0	0	0	3	0	1	0	0	1	0	2	4	1	0	1
14,86	0	0	2	1	0	0	1	0	0	0	0	0	1	0	0
15,96	0	0	3	0	0	0	2	0	2	2	0	0	2	0	0
17,15	0	0	0	0	3	2	1	0	1	0	0	1	0	1	1
18,43	0	0	0	0	2	0	0	1	1	0	0	0	0	1	0
19,81	0	0	1	1	3	0	0	1	0	1	2	4	1	0	1
TOTAL	78	1118	10835	10008	8632	8362	7392	7054	7113	7405	7903	7303	7382	6020	8819

Tabela 47: Contagem de partículas usadas na calibração do APS 3320 - 0,5µm

A1; A2, ...An = número de partículas descontadas as impurezas oriundas das particulas existentes na agua de diluição e na camara, antes da nebulização.

Continuação – partículas de 0,5µm

dp (um)	dp _{branco}	dp _{agua}	A14	A15	A16	A17	A18	A19	A20	A21	A22	A23	A24	A25
0.54	3	50	2857	3327	3087	3857	2637	3507	3028	4086	2946	3591	2833	4401
0.58	3	45	1582	1782	1562	2132	1532	1792	1669	2146	1559	1929	1405	2412
0,63	1	59	1280	1410	1180	1630	1160	1330	1271	1643	1117	1509	1061	1580
0,67	5	67	903	938	783	1128	818	900	829	1112	745	1007	706	1141
0,72	8	75	479	578	412	700	438	544	463	645	449	624	496	689
0,78	14	82	287	344	253	443	347	308	278	372	280	394	243	386
0,84	5	92	193	200	155	259	200	205	176	251	179	225	148	254
0,90	4	77	78	109	64	135	95	83	71	130	56	124	70	103
0,97	1	69	46	45	32	57	16	27	22	45	27	44	22	39
1,04	4	68	0	0	0	0	0	3	0	0	0	0	0	0
1,11	6	70	0	0	0	0	0	0	0	0	0	0	0	0
1,20	5	47	0	0	0	0	0	0	0	0	0	0	0	0
1,29	0	56	0	0	0	0	0	0	0	0	0	0	0	0
1,38	3	41	0	0	0	0	0	0	0	0	0	0	0	0
1,49	2	36	0	0	0	0	0	0	0	0	0	0	0	0
1,60	0	25	0	0	0	0	0	0	0	0	0	0	0	0
1,72	0	27	0	0	0	0	0	0	0	0	0	0	0	0
1,84	3	20	0	0	0	0	0	0	0	0	0	0	0	0
1,98	3	19	0	0	0	0	0	0	0	0	0	0	0	0
2,13	0	10	0	0	0	0	0	0	0	0	0	0	0	0
2,29	1	10	0	0	0	0	0	0	0	0	0	0	0	0
2,40	3	13	0	0	0	0	0	0	0	0	0	0	0	0
2,04	 1	0	0	0	0	0	0	0	0	0	0	0	0	0
2,04	0	5	0	0	0	0	0	0	0	2	0	0	0	0
3.28	1	6	0	0	0	0	0	0	0	0	0	0	0	0
3.52	0	5	0	0	0	0	0	0	0	0	0	0	0	0
3 79	0	5	0	0	0	0	0	0	0	0	0	0	0	0
4 07	0	4	0	0	0	0	0	0	0	0	0	0	0	0
4.37	0	1	2	2	0	4	1	0	2	0	2	0	0	6
4.70	0	0	2	1	4	3	3	4	4	2	2	5	2	3
5,05	0	1	4	1	2	1	2	2	2	0	2	4	0	2
5,43	0	0	0	1	1	4	3	1	3	3	2	2	2	4
5,83	0	0	1	1	2	1	1	1	2	6	2	0	4	4
6,26	0	0	3	1	4	7	2	2	2	0	2	2	1	1
6,73	0	0	1	1	1	1	1	1	1	0	2	2	0	2
7,23	0	0	1	1	1	0	2	3	4	5	0	2	0	1
7,77	0	0	3	1	0	1	4	1	2	2	1	0	2	2
8,35	0	0	3	3	1	3	0	1	3	5	1	2	3	3
8,98	0	0	1	5	3	0	1	2	2	3	0	0	2	2
9,65	0	1	1	0	2	1	1	0	0	0	0	1	0	1
10,37	0	0	0	2	0	1	2	1	0	2	3	0	1	3
11,14	0	0	1	2	1	1	1	1	0	1	0	4	0	4
11,97	0	0	0	1	1	0	0	4	3	0	3	3	2	2
12,86	0	0	3	0	1	2	1	0	0	0	2	0	1	0
13,82	0	0	0	0	1	1	3	1	0	0	0	1	2	2
14,86	0	0	1	1	0	1	0	0	2	0	0	2	0	2
15,96	0	0	0	U 1	U	U 4	0		2	2	1	0		U
10,15	0	0	0	1	1	1		0	0	2	2	0	1	U 1
10,43	0	0	1	0	2	2	1	2	2	∠ 1	2	1	0	0
19,01	79	1118	7705	8733	7528	103/1	72/13	2008	 7807	10/130	2 7358	0///7	6984	11005
	10	1110	1105	0100	1520	10341	1243	0033	1001	10430	1000	3447	0304	11005

Tabela 48: Contagem de partículas usadas na calibração do APS 3320 - 0,5µm - continuação

A1; A2, ...An = número de partículas descontadas as impurezas oriundas das particulas existentes na agua de diluição e na camara, antes da nebulização.

dp	dp _{bran}	dp_{agu}	A26	∆27	A28	Δ20	A30	Δ31	A32	∆33	434	۵35	436	Δ37	Δ <u>38</u>	A 30
(μ m)	со	а	720	721	720	723	7.00	7.01	7.52	700	7.04	700	7.50	7.57	7.00	700
0,54	3	50	3730	5107	2544	3788	3161	3766	3500	3325	2173	3725	3456	4103	3322	3018
0,58	3	45	1948	2925	1372	2032	1674	2062	1838	1927	1324	1995	1736	2247	1784	1710
0,63	1	59	1292	1966	911	1495	1322	1517	1436	1545	999	1601	1268	1601	1220	1349
0,67	5	67	949 540	1389	002	1051	89Z	1079	950	1024	694	7175	846	7109	894 579	949
0,72	8	/5	540	766	371	624	527	688	202	633	399	740	560	765	5/8	552
0,78	14 5	02	200	422	232	3/3	340	459	398	206	269	400	373	484	352	420
0,04	J 1	92 77	200	160	71	232	104	151	100	290	85	181	118	181	126	125
0,30	1	69	26	62	20	36	42	74	47	59	21	57	55	77	36	79
1.04	4	68	0	02	0	0	-12	0	2	0	0	2	1	15	0	12
1,11	6	70	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.20	5	47	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,29	0	56	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,38	3	41	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,49	2	36	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,60	0	25	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,72	0	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,84	3	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,98	3	19	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2,13	0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2,29	1	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2,46	3	13	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2,64	2	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2,84	1	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3,05	0	5	0	0	0	0	1	0	0	0	0	0	0	0	0	0
3,28	1	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3,32	0	5	0	0	0	0	0	0	0	0	0	0	0	1	0	0
4.07	0	3	0	0	0	0	2	0	1	0	0	0	2	0	0	0
4 37	0	1	2	1	2	4	0	1	2	1	3	1	0	7	0	1
4 70	0	0	2	0	1	1	4	2	1	5	2	2	2	6	1	2
5.05	0	1	1	0	0	3	2	5	0	0	3	1	3	0	3	0
5,43	0	0	0	2	1	2	2	2	1	1	1	4	3	4	3	5
5,83	0	0	1	2	1	1	2	3	1	8	1	1	5	2	1	2
6,26	0	0	1	4	2	3	4	1	2	3	1	1	0	1	1	0
6,73	0	0	0	6	1	1	2	0	3	3	1	3	4	2	2	3
7,23	0	0	2	2	1	4	1	1	2	1	2	4	5	1	3	1
7,77	0	0	2	1	0	3	1	6	1	1	0	5	6	1	3	3
8,35	0	0	3	4	2	2	1	1	2	2	3	1	2	4	2	2
8,98	0	0	4	0	2	1	1	2	4	1	2	2	2	1	2	1
9,65	0	1	2	2	0	1	0	0	1	1	0	3	2	0	1	0
0,37	0	0	1	0	0	1	3	4	0	2	1	1	3	1	3	0
1,14	0	0	1	0	0	5	1	2	1	0	2	0	2	0	0	2
11,97	U	0	2	0	1	2	3	0	2	3	1	2	4	2	1	1
12,86	0	0	0	1	0	0	1	2	0	2	2	1	0	2	0	0
13,82	0	0	0	1	U 4	1	1	0	1	0	0	1	1	1		2 4
14,00	0	0	0	1	1	0	2	0	1	1	0	1	」 つ	1	0	1
7 15	0	0	1	0	0	0	∠ 1	1	1	0	0	0	∠ 1	1	0	2
8 43	0	0	1	1	0	0	1	1	2	0	1	0	2	0	0	2
9.81	0	0	0	1	2	0	1	1	1	1	2	2	0	0	0	1
10,01	78	1118	9042	13132	6285	9717	8258	10075	9100	9404	6145	10237	8669	10914	8554	8473
L	10	1110	0012	10102	0200	0717	0200	10010	0100	0101	0110	10201	0000	10014	000 1	0110

Continuação - partículas de 0,5µm

Tabela 49: Contagem de partículas usadas na calibração do APS 3320 - 0,5µm - continuação

A1; A2, ...An = número de partículas descontadas as impurezas oriundas das particulas existentes na agua de diluição e na camara, antes da nebulização.
b) partículas de 1,0 µm

	dp (μm)	dp _{branco} + dp _{aqua}	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15
	0,542	167	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0,583	131	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0,626	95	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0,673	71	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0,723	57	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0,777	43	47	16	30	33	34	36	37	36	49	17	7	4	49	41	53
	0,835	31	369	198	326	333	301	343	303	357	386	218	206	229	412	502	494
	0,898	13	815	812	840	890	912	997	997	1147	1137	729	788	856	1627	1867	2017
	0,965	37	382	569	513	547	651	644	582	/4/	/11	449	537	531	1343	1603	1663
_	1,037	13	00	120	92	110	142	147	129	147	114	103	24	105	344	444	429
	1,114	9	6	10	14	22	40	20	39	23	22	31	24	- <u>30</u>	70	04 10	14
	1,197	12	0	2	0	3	3	4	4	4	0	0	0	0	7	19	10
	1 382	7	4	0	0	1	2	0	4	0	7	0	0	0	6	8	0
-	1 486	10	0	0	0	0	0	0	5	0	0	0	0	0	7	0	6
	1,596	4	5	4	0	2	4	4	7	3	1	3	0	0	3	0	4
-	1.715	3	0	0	0	1	5	2	5	1	3	3	2	2	6	6	1
	1.843	3	0	2	0	4	0	3	0	0	0	2	2	1	2	0	9
	1,981	2	0	0	2	0	4	0	0	1	0	1	0	0	1	4	5
	2,129	0	0	2	0	1	2	2	6	4	2	2	2	0	2	1	5
	2,288	1	0	2	2	5	0	0	0	1	1	0	0	3	2	3	1
	2,458	1	0	0	0	0	1	0	0	0	1	1	0	0	1	2	0
	2,642	1	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0
	<u> </u>	0	2	3	1	0	1	0	0	0	1	1	2	0	1	3	1
₹ U	51	0	0	0	0	0	1	0	1	4	0	0	1	0	3	3	1
7	:78	0	0	1	0	1	0	0	1	0	0	0	1	0	1	0	1
7	23	0	0	0	1	0	0	0	0	0	0	0	0	0	4	0	1
21	86	0	0	0	0	2	0	0	0	0	0	1	0	1	0	0	0
8	68	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
å	571	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
a	190	0	0	0	1	1	1	1	2	0	0	0	0	0	0	0	1
igi	25	0	0	0	0	1	0	1	0	0	0	0	1	0	0	0	1
	20	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
ã	64	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0	1
ğ	32	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
tifi	:34	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0
e	74	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	54	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0
<u>0</u>	77	0	0	0	1	0	2	0	0	1	0	0	0	0	1	0	0
Ř	47	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
9	366	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1
ď_	140	0	0	1	1	0	0	0	0	0	0	0	1	1	0	1	2
	11,971	0	0	0	0	1	0	0	0	2	1	0	1	0	1	1	0
	12,864	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	13,824	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	14,855	0	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0
-	15,963	0	0	0	0	0	1	0	0	0	1	0	0	1	0	1	0
-	19 124	0	0	0	0	2	1	0	0	0	0	0	0	0	0	0	0
-	10,434	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0
⊢	Total	2996	1710	1748	1825	1968	2120	2215	2124	2480	2441	1562	1601	1768	3924	4605	4799
	10101	2000	1710	1140	1020	1000	2120	2210	2127	2700	2771	1002	1001	1700	0024	-000	4100

Tabela 50: Contagem de partículas usadas na calibração do APS 3320 – 1,0 μm

A1; A2, ...An = número de partículas descontadas as impurezas oriundas das particulas existentes na agua de diluição e na camara, antes da nebulização.

Continuação - partículas de 1,0 µm

	dp (μm)	dp _{branco} + dp _{aqua}	A16	A17	A18	A19	A20	A21	A22	A23	A24	A25	A26	A27	A28	A29	A30
	0,542	167	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0,583	131	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0,626	95	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0,673	71	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0,723	57	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	0,777	43	38	26	31	60	67	70	109	67	46	46	42	34	115	131	172
_	0,835	31	380	449	483	627	551	655	828	674	587	479	440	484	1010	1310	1210
_	0,898	13	1587	1747	1957	2067	1967	2137	2597	2297	2157	1617	1497	1557	3547	4457	3747
_	0,965	37	1413	1413	1503	1513	1523	1483	1713	1683	1593	1143	1123	1063	2523	3163	2613
_	1,037	13	398	345	415	431	428	339	391	376	417	228	227	271	501	701	504
_	1,114	9	73	58	62	85	106	67	82	100	104	40	52	49	92	104	86
_	1,197	12	10	12	16	24	23	23	24	19	22	12	/	15	30	26	17
-	1,286	10	13	6	4	15	14	2	8	14	4	6	2	8	18	3	13
-	1,382	10	0	4	/	11	15	4	8	13	1	2	0	4	/	9	5
-	1,480	10	0	1	0	3	8	5	0	8	3	0	1	0	0	0	<u> </u>
-	1,390	4	9	0	2	4	1	2	0	0	3	1	0	2	2	4	0
-	1,713	3	0	9	0	5	2	2	4	3	2	1	0	2	Z /	2	3
-	1,043	2	2	0	1	0	2	2 1	2	3	2	2	1	3	4	 1	3
-	2 129	0	2	2	3	2	3	4	1	4	5	1	0	3	1	1	4
-	2,123	1	2	0	3	0	3	-	3	0	1	2	0	2	2	1	1
-	2,200	1	1	1	0	1	1	0	1	4	2	2	0	0	2	3	4
-	2,400	1	0	2	2	1	0	2	0	2	0	0	1	0	1	1	2
F	839	0	2	0	0	1	1	0	1	1	1	0	0	0	1	1	1
₹	051	0	2	1	3	0	1	1	0	0	3	0	0	0	3	1	0
Š	278	0	0	2	2	2	0	2	0	2	1	1	0	0	1	1	1
ğ	523	0	1	2	1	0	1	1	0	0	0	0	0	0	0	2	0
2	786	0	3	0	0	2	0	0	0	0	0	0	0	0	1	2	2
002	068	0	0	1	0	0	0	0	0	0	1	0	0	0	2	3	0
0	371	0	0	1	1	2	1	1	1	1	0	1	0	0	0	1	1
Z	698	0	0	0	0	0	0	0	1	0	0	0	0	2	0	0	0
ita	048	0	0	0	0	0	0	0	0	0	1	0	2	1	0	0	0
Dig	425	0	1	0	0	0	0	0	1	2	0	0	0	0	0	0	1
0	829	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
çã	264	0	0	0	0	0	1	1	0	0	0	0	1	0	1	1	1
Ga	732	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ξ	234	0	0	1	3	0	2	1	0	1	1	0	0	0	0	0	0
G	774	0	0	0	0	0	0	0	1	0	1	0	1	0	2	0	2
Ÿ	354	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
20	977	0	0	1	1	1	2	2	0	1	0	0	0	1	0	0	0
ц К	647	0	0	1	0	0	1	1	1	0	0	0	0	0	0	0	2
З	,366	0	0	0	1	0	2	0	0	0	1	0	0	0	0	0	1
٩	,140	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1
	11,971	0	0	0	1	1	1	2	0	0	0	0	0	0	1	1	1
L	12,864	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
L	13,824	0	0	0	1	1	0	0	0	0	0	0	1	1	0	1	0
L	14,855	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0
L	15,963	0	0	0	0	0	0	0	2	0	0	0	1	0	1	0	0
	17,154	0	1	0	0	0	0	0	0	0	1	0	0	1	1	0	0
L	18,434	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
L	19,810	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0
L	Total	2996	3938	4085	4510	4865	4725	4808	5778	5277	4961	3588	3400	3503	7870	9944	8407

Tabela 51: Contagem de partículas usadas na calibração do APS 3320 – 1,0 μ m - continuação

A1; A2, ...An = número de partículas descontadas as impurezas oriundas das particulas existentes na agua de diluição e na camara, antes da nebulização.

c) partículas de 3,0 µm

dp (μm)	dp _{branco}	dp_{agua}	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15
0,542	31	68	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0,583	16	61	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0,626	14	55	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0,673	12	43	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0,723	34	18	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0
0,777	30	13	0	0	0	0	0	4	0	0	0	0	0	0	3	5	5
0,835	57	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0,898	66	0	0	2	0	26	7	6	4	9	0	0	0	0	14	16	13
0,965	52	15	0	0	0	0	0	0	0	0	0	0	0	0	6	14	0
1,037	23	0	0	0	0	0	0	0	0	0	1	0	0	0	17	10	9
1,114	11	0	0	0	0	5	8	8	9	4	0	4	5	4	15	18	16
1,197	9	5	0	0	0	0	0	0	1	0	0	0	0	0	13	11	5
1,280	8	0	0	1	1	4	0	11	5	5	2	6	0	2	10	10	12
1,302	5 5	0	0	0	3	5	1	2	0	5	9	0	0	0	19	14	3
1,400	2	0	2	6	0	0	1	3	4	2	1	2	4	1	10	9	0
1,390	5	0	2	0	0	4	0	0	1	0	4	2	1	0	2	0	9
1,713	3	0	0	0	0	0	0	3	0	0	4	0	0	0	5	0	1
1,981	0	0	0	1	1	2	0	3	3	1	5	2	4	1	0	6	6
2,129	4	0	0	0	0	2	0	0	0	3	0	0	0	0	2	0	0
2.288	0	0	63	49	38	30	29	31	40	30	29	29	31	17	22	21	21
2,458	2	0	83	74	89	67	101	84	62	95	77	58	64	61	85	105	101
2,642	1	0	70	57	62	73	62	85	72	50	70	29	35	43	87	85	108
2,839	2	0	16	21	32	40	36	32	26	21	22	7	8	18	29	28	47
3,051	1	0	0	0	0	0	1	1	0	0	1	0	0	0	0	0	0
3,278	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	1	0
3,523	0	0	0	0	0	1	0	0	0	1	1	0	0	1	1	0	2
3,786	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	1	0
4,068	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0
4,371	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
4,698	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
5,048	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5,425	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
5,829	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	1	0
6,264	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7 224	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0
7 774	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8,354	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1	0	0
8,977	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9.647	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
10.366	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11,14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11,971	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12,864	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
13,824	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
14,855	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15,963	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0
17,154	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18,434	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19,81	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
TOTAL	393	285	236	219	228	261	246	277	237	228	228	145	163	156	349	365	378

Tabela 52 Contagem de partículas usadas na calibração do APS 3320 - 3,0µm

A1; A2, ...An = número de partículas descontadas as impurezas oriundas das particulas existentes na agua de diluição e na camara, antes da nebulização.

Continuação - partículas de 3,0 µm

dp (µm)	dp _{branco}	dp_{agua}	A16	A17	A18	A19	A20	A21	A22	A23	A24	A25	A26	A27	A28	A29	A30
0,542	31	68	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0,583	16	61	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0,626	14	55	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0
0,673	12	43	0	0	0	0	0	0	0	0	0	0	7	0	0	0	0
0,723	34	18	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0
0,777	30	13	0	0	0	0	0	0	0	1	0	8	5	0	0	0	0
0,835	57	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0,898	66	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0
0,965	52	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,037	23	0	4	0	0	1	8	1	16	14	11	2	8	8	0	0	2
1,114	11	0	6	6	8	8	21	9	11	15	14	20	19	18	2	0	5
1,197	9	5	0	0	0	10	2	2	3	5	1	8	11	9	0	3	0
1,286	8	0	6	9	3	7	5	11	8	11	6	6	12	16	2	10	10
1,382	5	0	3	3	1	6	5	4	8	6	10	7	11	15	2	3	8
1,486	5	0	3	0	0	7	1	0	9	9	4	7	15	14	9	0	0
1,596	2	0	5	6	2	3	7	11	7	6	4	7	7	9	2	3	3
1,715	5	0	0	1	1	3	2	5	0	0	0	2	7	6	3	1	0
1,843	3	0	3	0	1	2	0	3	1	3	0	1	0	4	3	0	0
1,981	0	0	4	2	1	2	6	1	1	1	2	1	3	6	2	6	3
2,129	4	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0
2,288	0	0	21	17	20	21	22	18	5	10	8	26	13	16	31	26	24
2,458	2	0	93	78	68	63	/5	65	67	67	5/	84	94	110	50	75	68
2,642	1	0	12	69	76	45	48	51	79	88	81	12	97	128	30	50	61
2,639	2	0	10	16	25	10	14	24	43	39	45	19	41	40	14	13	14
3,031	1	0	1	0	3	1	0	0	1	0	3	1	0	3	0	0	1
3,270	0	0	1	0	1	2	0	0	0	0	0	1	2	1	0	0	0
3,323	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
<u>3,700</u> 1,068	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4,000	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	0
4 698	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5.048	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5.425	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
5.829	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6.264	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
6.732	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7,234	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
7,774	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
8,354	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
8,977	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9,647	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
0,366	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0
11,14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,971	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0
12,864	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13,824	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14,855	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15,963	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
17,154	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
18,434	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
19,81	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	393	285	238	209	213	199	220	206	261	281	248	284	355	416	151	197	200

Tabela 53: Contagem de partículas usadas na calibração do APS 3320 - 3,0µm - continuação

A1; A2, ...An = número de partículas descontadas as impurezas oriundas das particulas existentes na agua de diluição e na camara, antes da nebulização.

d) partículas de 5,0 µm

dp (μm)	dp_{branco}	dp_{agua}	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15
0,542	65	68	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0,583	56	61	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0,626	53	55	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0,673	50	43	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0,723	48	18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0,777	40	13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0,835	45	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0,898	39	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0,965	32	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,037	25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,114	19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,197	16	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,286	23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,382	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,486	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,596	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,715	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,843	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,981	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2,129	3	0	0	0	1	4	0	0	0	2	1	0	0	0	2	1	0
2,288	2	0	1	0	2	2	0	1	0	1	0	0	0	1	1	1	2
2,458	0	0	3	1	1	3	2	0	1	2	4	1	0	1	4	3	3
2,642	0	0	2	1	3	4	2	1	2	2	2	1	0	3	1	5	0
2,839	0	0	0	0	2	0	1	0	1	0	0	1	2	1	3	0	4
3,051	1	0	0	1	0	0	0	0	0	0	0	2	0	0	1	1	1
3,278	0	0	0	0	0	1	0	1	1	0	3	0	0	1	0	0	0
3,523	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
3,786	1	0	10	12	10	12	17	12	16	16	13	3	12	/	11	12	8
4,068	0	0	15	15	14	16	6	18	12	19	24	16	11	9	29	45	29
4,371	1	0	4		1	0	1	3	2 1	0	2	0	0	0	4	1	3
4,098	0	0	1	0	0	0	1	1	1	1	2	0	0	0	0	0	2
5,046	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
5,425	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0
5,629	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
6,204	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7 23/	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0
7,234	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8 354	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8 977	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9.647	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
10 366	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11 14	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
11 971	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12 864	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
13,824	0	0	0	0 0	0	0	0	0	0 0	0	0	õ	0	0	0	0	0 0
14,855	0	0	0	0 0	0	0	0	0	0 0	0	0	õ	0	0	0	0	0 0
15,963	0	0	0	0	0	0	0	0	0	0	0	õ	Ő	0	0	0	Ő
17,154	0	0	0	0	0	Õ	0 0	Ő	õ	Ő	Õ	õ	õ	õ	õ	õ	Õ
18,434	0	0	0	0	0	0	0	Ő	0	Ő	Ő	Ő	0	Ő	Ő	Ő	0 0
19.81	0	0	Õ	0	0	0	0	Õ	Õ	Õ	Õ	0	0	0	0	0	0
TOTAL	563	285	38	32	36	45	29	38	37	43	51	25	25	23	57	69	52
											- ·						

Tabela 54: Contagem de partículas usadas na calibração do APS 3320 - 5,0µm

A1; A2,An = número de partículas	descontadas as impureza	as oriundas das particula	s existentes.
na agua de diluição e na camara, antes	da nebulização.		

Continuação - p	artículas de 5,0 µm
-----------------	---------------------

dp (μm)	dp _{branco}	dp_{agua}	A18	A19	A20	A21	A22	A23	A24	A25	A26	A27	A28	A29	A30
0,542	65	68	0	0	0	0	0	0	0	0	0	0	0	0	0
0,583	56	61	0	0	0	0	0	0	0	0	0	0	0	0	0
0,626	53	55	0	0	0	0	0	0	0	0	0	0	0	0	0
0,673	50	43	0	0	0	0	0	0	0	0	0	0	0	0	0
0,723	48	18	0	0	0	0	0	0	0	0	0	0	0	0	0
0,777	40	13	0	0	0	0	0	0	0	0	0	0	0	0	0
0,835	45	7	0	0	0	0	0	0	0	0	0	0	0	0	0
0,898	39	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0,965	32	15	0	0	0	0	0	0	0	0	0	0	0	0	0
1,037	25	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,114	19	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,197	16	5	0	0	0	0	0	0	0	0	0	0	0	0	0
1,286	23	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,382	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,486	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,596	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,715	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,843	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,901	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2,129	3	0	0	0	1	1	2	3	0	0	1	0	1	0	4
2,200	2	0	0	0	1	1	0	0	0	1	0	0	1	0	0
2,450	0	0	0	1	4	Z 4	3	2	Z 4	1	3	1	1	2 5	3
2,042	0	0	1	1	2	4	0	3	4	 1	2	0	2	2	1
2,039	1	0	2	0	0	0	0	0	1	0	0	0	0	0	2
3,001	0	0	0	0	1	0	1	0	1	0	0	2	1	0	2
3,270	1	0	0	0	1	0	0	0	0	0	0	2	0	0	0
3,525	1	0	0	0	1 8	6	10	10	6	5	10	16	27	17	16
4 068	0	0	9 28	4	16	11	28	34	37	27	10	17	40	17	51
4,000	1	0	20	0	2	2	5	4	4	5	2	1	40 5	2	6
4 698	0	0	0	0	1	1	0	2	- - 1	2	0	0	0	0	3
5.048	0	0	0	1	0	1	0	0	1	0	0	1	0	1	0
5 425	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5 829	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6 264	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6,732	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
7.234	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7,774	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8,354	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
8.977	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9,647	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
10,366	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11,14	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
11,971	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
12,864	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
13,824	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
14,855	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15,963	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
17,154	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
18,434	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
19,81	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	563	285	40	17	37	31	51	60	58	46	37	40	78	75	87

Tabela 55: Contagem de partículas usadas na calibração do APS 3320 - 5,0µm - continuação

A1; A2, ...An = número de partículas descontadas as impurezas oriundas das particulas existentes na agua de diluição e na camara, antes da nebulização.

Anexo V - Contagem de partículas para determinação da eficiência de coleta do impactador.

Г	dp					-				-				-	
	(μ m)	dp _{branco}	dp _{agua}	A	AL	D	DL	A	AL	D	DL	A	AL	D	DL
_	0.542	15	68	10295	10212	9205	9122	12946	12863	11339	11256	16823	16740	15002	14919
	0.583	12	61	6335	6262	5769	5696	7722	7649	6690	6617	10507	10434	9325	9252
	0.626	13	55	4939	4871	4526	4458	5908	5840	5132	5064	7337	7269	6728	6660
	0.673	16	43	3865	3806	3177	3118	4443	4384	3847	3788	5394	5335	5000	4941
_	0.723	13	18	2916	2885	2216	2185	3228	3197	2695	2664	3705	3674	3468	3437
-	0.777	17	13	2312	2283	1772	1/43	2404	2375	1991	1962	2537	2508	2268	2239
-	0.835	32	/	1891	1853	1331	1293	1911	1873	1593	1555	2051	2013	1756	1/18
-	0.898	38	0	1369	1331	889	602	1287	1249	1036	998	1348	1310	1098	740
-	0.905	44	15	1005	940	001	002	933	0/4 502	109	730	963	924	000	749
-	1.037	0	0	257	249	330	330	224	202	400	390	260	250	440	2440
-	1.114	9	5	105	240	63	54	12/	115	7/	65	1/3	13/	70	70
-	1.137	4	0	48	45	20	17	38	35	28	25	46	43	36	33
-	1.200	1	0	21	20	17	16	12	11	13	12	21	20	17	16
-	1.002	1	0	10	9	7	6	7	6	13	12	16	15	11	10
F	1.596	3	0	6	3	13	10	15	12	9	6	15	12	10	7
-	1.715	1	0	11	10	10	9	15	14	11	10	16	15	9	8
F	1.843	1	0	9	8	5	4	12	11	13	12	8	7	11	10
Ē	1.981	2	0	6	4	6	4	8	6	8	6	14	12	9	7
Ē	2.129	1	0	7	6	11	10	10	9	7	6	9	8	14	13
	2.288	0	0	8	8	10	10	10	10	8	8	13	13	9	9
	2.458	0	0	8	8	4	4	3	3	13	13	12	12	11	11
	2.642	0	0	10	10	4	4	7	7	5	5	7	7	8	8
Γ	<u>^ 1</u> 39	0	0	6	6	4	4	7	7	5	5	14	14	5	5
Ř	51	2	0	6	4	8	6	14	12	5	3	4	2	6	4
¥	278	1	0	6	5	11	10	6	5	5	4	9	8	7	6
13	23	0	0	5	5	4	4	8	8	7	7	5	5	4	4
3	'86	0	0	3	3	4	4	15	15	5	5	10	10	5	5
90	68	0	0	10	10	6	6	6	6	2	2	5	5	2	2
٩	571	0	0	8	8	8	8	5	5	9	9	14	14	8	8
a	98	0	0	10	10	9	9	10	10	8	8	3	3	/	- / -
git	148	0	0	11	11	6	0 7	12	12	5	5	6	0	5	5 0
ā	20	0	0	10	10	7	7	10	10	0	0	9	9	0	0
ão	164	0	0	10	10	7	7	6	6	7	7	7	7	7	7
aç	.0 4 '32	0	0	3	3	4	4	8	8	5	5	7 Q	9	7	7
fic	134	0	0	6	6	4	4	8	8	7	7	3	3	7	7
ente	74	0	0	8	8	8	8	7	7	8	8	7	7	6	6
Õ	54	0	0	9	9	8	8	10	10	3	3	7	7	12	12
0	77	0	0	4	4	5	5	11	11	5	5	7	7	4	4
Ŕ	47	0	0	5	5	4	4	4	4	2	2	7	7	3	3
ö	.37	0	0	8	8	4	4	2	2	6	6	7	7	6	6
٦	.14	0	0	4	4	5	5	1	1	2	2	5	5	5	5
	11.97	0	0	3	3	4	4	0	0	2	2	4	4	7	7
	12.86	0	0	7	7	4	4	6	6	2	2	2	2	3	3
Ļ	13.82	0	0	4	4	3	3	5	5	0	0	3	3	1	1
Ļ	14.86	0	0	2	2	3	3	4	4	4	4	1	1	5	5
Ļ	15.96	0	0	6	6	3	3	5	5	4	4	1	1	3	3
Ļ	17.15	0	0	5	5	3	3	2	2	0	0	3	3	1	1
╞	18.43	0	0	3	3	4	4	1	1	2	2	3	3	3	3
╞	19.81	U	U	3	3	4	4	3	3	3	3	2	2	3	3
┝			E.C.	iônoic	ა ეეგე	160/	29031		41452	1 / 0/	30010		514/1	110/	459/1
┝			Efic			7 10%				7 20/				7 6%	
L			incerte	za uu APS		1,170				1,3%				1,0%	

a) Estágio 2,5 μ m – geração de partículas de 0,5 μ m – Posição B

Tabela 56: Estágio 2,5 µm – geração de partículas de 0,5 µm – Posição B

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

dp (µm)	dp _{branco}	dp _{agua}	А	AL	D	DL	А	AL	D	DL	А	AL	D	DL
0.542	15	68	1350	1289	1053	992	1241	1180	990	869	1289	1228	1159	1098
0.583	12	61	550	495	530	475	523	468	489	434	558	503	498	443
0.626	13	55	351	308	351	308	355	312	346	303	381	338	282	239
0.673	16	43	202	184	190	172	261	243	234	216	275	257	193	175
0.723	13	18	160	148	143	131	146	134	142	130	161	149	134	122
0.777	17	13	94	88	81	75	98	92	121	115	122	116	115	109
0.835	32	7	82	82	74	74	68	68	73	73	88	88	73	73
0.898	38	0	53	38	52	37	52	37	35	20	56	41	52	37
0.965	44	15	27	27	19	0	28	28	16	0	33	33	28	28
1.037	8	0	25	25	13	13	17	17	16	16	24	24	18	18
1.114	9	0	15	10	13	8	15	10	5	0	12	7	13	8
1.197	4	5	12	0	4	0	5	0	12	0	11	0	9	0
1.286	3	0	9	9	8	8	11	11	4	0	5	5	/	/
1.382	1	0	6	0	3	0	6	0	3	0	8	0	4	0
1.486	1	0	1	1	1	1		0	3	3	1	0	8	8
1.390	3	0	<u> </u>	<u> </u>	4	4	4	4	2	0	4	4	5	5
1.713	1	0	6	6	2	0	6	6	2	0	4	4	4	4
1.040	2	0	5	5	2	2	5	5	3	3	6	6	1	0
2.129	1	0	2	2	0	0	3	3	1	1	1	1	2	2
2.288	0	0	4	4	0	0	2	2	0	0	2	2	1	0
2.458	0	0	2	2	3	3	2	2	2	2	1	0	0	0
2.642	0	0	1	1	0	0	5	5	0	0	1	1	0	0
2.839	0	0	1	1	2	2	2	2	1	1	0	0	1	1
3.051	2	0	1	1	0	0	1	1	2	2	0	0	0	0
.278	1	0	0	0	0	0	1	1	0	0	1	1	1	1
.523	0	0	0	0	0	0	0	0	0	0	3	3	0	0
.786	0	0	1	1	1	1	0	0	0	0	1	1	0	0
.068	0	0	1	1	0	0	1	1	0	0	0	0	0	0
.371	0	0	0	0	1	1	1	1	1	1	3	3	1	1
.698	0	0	0	0	0	0	0	0	1	1	2	2	1	1
.048	0	0	0	0	0	0	0	0	1	0	0	0	0	1
920	0	0	3	3 0	1	1	2	2	0	0	0	0	0	0
264	0	0	1	1	1	1	2	2	0	0	1	1	1	1
732	0	0	0	0	1	1	3	3	0	0	2	2	0	0
234	0	0	2	2	1	1	0	ő	0	0	2	2	0	0
.774	0	0	2	2	1	1	0	0	0	0	2	2	1	1
.354	0	0	0	0	2	2	1	1	0	0	1	1	0	0
.977	0	0	2	2	0	0	0	0	0	0	0	0	0	0
.647	0	0	1	1	0	0	2	2	1	1	1	1	0	0
0.37	0	0	0	0	0	0	2	2	1	0	0	0	1	0
1.14	0	0	0	0	0	0	0	0	0	0	2	2	2	2
1.97	0	0	1	1	0	0	0	0	1	1	0	0	1	1
ı2.86	0	0	1	1	0	0	1	1	0	0	1	1	1	1
13.82	0	0	0	0	0	0	2	2	2	2	0	0	0	0
14.86	0	0	0	U	2	2	1	1	0	0	0	U	0	U
15.96	0	0	1		1	1	0	0	0	0	0	U	0	U
10.15	0	0	0	0	0	0	U 1	1	<u> ৩</u>	<u>১</u>	0	0	0	0
10.43	0	0	0	0	1	1	0	0	0	0	0	0	1	1
10.01	0	Total	20200	2751	20000	2321	22300	2650	17800	2203	21300	2826	18900	2391
		Eficiência	20200	2.01	16%	1011	22000	1000	17%	1200	2,000	2020	15%	2001
		Incerteza d	o APS		7,2%				7,1%				7,2%	
l i				l		l	l	l	1	l	l	l i	1	· · · · · ·

Tabela 57: Estágio 2,5 µm – geração de partículas de 0,5 µm – Posição B - continuação

	MEDIA	σ	u _A	u _{APS}	u _C	$V_{efetivo}$	k	U
	15%	0,022097	0,012757	0,0758	0,076852	2633,851	2,000952	15%
_	1 1 50 1	(1) 1 .		~ 1	(1 1 0		~ D	

Tabela 58: Análise de incertezas - geração de partículas de 0,5 µm - Posição B

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

dp		, ,	· · ·	, ,		Ы	•		,	Ы	٨		5	
(μ m)	ap _{branco}	ap _{agua}	A	AL	D	DL	A	AL	D	DL	A	AL	D	DL
0.542	15	68	11769	11686	10268	10185	9576	9493	8214	8131	10306	10223	9562	9479
0.583	12	61	7131	7058	5681	5608	5740	5667	4962	4889	6064	5991	4526	4453
0.626	13	55	4949	4881	4786	4718	4309	4241	2568	2500	4554	4486	3851	3783
0.673	16	43	3838	3779	3384	3325	3293	3234	2995	2936	3500	3441	3108	3049
0.723	13	18	2720	2689	2322	2291	2266	2235	1994	1963	2447	2416	2011	1980
0.025	17	13	1834	1494	11577	1040	1000	13/1	1418	1010	1804	1770	1389	1051
0.808	32	0	051	013	600	652	002	864	671	633	1015	977	666	628
0.965	44	15	714	655	465	406	690	631	500	441	823	764	524	465
1.037	8	0	415	407	294	286	357	349	263	255	433	425	292	284
1.114	9	0	176	167	145	136	179	170	118	109	226	217	120	111
1.197	4	5	83	74	52	43	84	75	67	58	96	87	58	49
1.286	3	0	28	25	26	23	32	29	16	13	40	37	28	25
1.382	1	0	17	16	13	12	15	14	10	9	13	12	9	8
1.486	1	0	8	7	8	7	8	7	8	7	8	7	10	9
1.596	3	0	7	4	9	6	9	6	5	2	4	1	6	3
1.715	1	0	11	10	4	3	10	9	3	2	9	8	11	10
1.843	1	0	8	7	4	3	9	8	8	7	15	14	9	8
1.981	2	0	9	7	6	4	5	3	5	3	12	10	4	2
2.129	1	0	8	1	8	7	6	5	4	3	6	5	6	5
2.288	0	0	10	10	1	1	4	4	7	7	1	1	8	8
2.458	0	0	4	4	6	6	10	10	7	7	10	10	2	2
2.042	0	0	1	1	5	4	9	9	12	12	10	10	5	5
2.053	2	0	5		10	8	6		8	6	4		12	10
3 278	1	0	7	6	5	4	7	6	5	4	6	5	4	3
3.523	0	0	10	10	8	8	6	6	5	5	9	9	8	8
3.786	0	0	3	3	2	2	4	4	10	10	5	5	3	3
4.068	0	0	4	4	10	10	4	4	5	5	2	2	9	9
4.371	0	0	9	9	3	3	7	7	5	5	2	2	5	5
4.698	0	0	8	8	6	6	6	6	5	5	9	9	9	9
5.048	0	0	5	5	6	6	5	5	4	4	5	5	9	9
5.425	0	0	9	9	9	9	0	0	3	3	9	9	9	9
5.829	0	0	5	5	10	10	8	8	3	3	7	7	1	1
6.264	0	0	1	1	8	8	7	7	5	5	5	5	7	7
6.732	0	0	6	6	5	5	/	1	6	6	5	5	2	2
7.234	0	0	0	0	9	9	3	3 7	9	9	3 6	<u> </u>	0	0
8 354	0	0	3	7	15	15	6	6	0 4	0 	8	8	6	6
8.977	0	0	7	7	4	4	9	9	4	4	5	5	1	1
9.647	0	0	8	8	4	4	4	4	2	2	3	3	3	3
10.37	0	0	4	4	5	5	2	2	3	3	7	7	3	3
11.14	0	0	3	3	2	2	2	2	4	4	2	2	3	3
11.97	0	0	6	6	4	4	4	4	3	3	2	2	4	4
12.86	0	0	1	1	2	2	3	3	1	1	7	7	2	2
13.82	0	0	4	4	4	4	1	1	1	1	4	4	1	1
14.86	0	0	2	2	7	7	2	2	0	0	1	1	2	2
15.96	0	0	3	3	5	5	3	3	4	4	3	3	1	1
17.15	0	0	2	2	1	1	3	3	3	3	2	2	1	1
18.43	0	0	3	3	3	3	3	3	1	1	3	3	0	0
19.81	0	0	4	4	0	0	2	2	4	4	6	6	2	2
		Effect	iotai ônoic	JJ0J	150/	30353		30028	190/	24302		32333	170/	20090
			erillid	ADS	7 2%				6.0%				7.0%	
_	1 1 70			Aro	<i>1,∠/</i> 0				0,970				1,0 /0	

b) Estágio 2,5 μm – geração de partículas de 0,5 μm – Posição C

Tabela 59: Estágio 2,5 µm – geração de partículas de 0,5 µm – Posição C

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

dp (um)	dp _{branco}	А	AL	D	DL	А	AL	D	DL	А	AL	D	DL
0.542	94	1190	1129	1176	1115	1330	1269	1268	1207	1420	1359	1359	1298
0.583	81	527	472	519	464	726	671	643	588	729	674	636	581
0.626	78	370	327	296	253	441	398	426	383	447	404	389	346
0.673	62	285	267	202	184	300	282	222	204	296	278	228	210
0.723	39	183	171	126	114	203	191	143	131	189	177	133	121
0.777	29	130	124	91	85	134	128	114	108	123	117	83	77
0.835	24	90	90	63	63	119	119	64	64	86	86	71	71
0.898	11	52	37	32	17	56	41	31	16	64	49	43	28
0.965	25	35	35	37	37	33	33	25	0	37	37	18	0
1.037	7	24	24	16	16	19	19	18	18	20	20	19	19
1.114	9	13	8	8	0	19	14	15	10	12	7	15	10
1.197	13	4	0	0	0	15	15	13	13	12	0	9	0
1.286	5	13	13	6	6	11	11	9	9	18	18	11	11
1.382	10	9	0	6	0	9	0	9	0	9	0	6	0
1.486	3	7	7	1	0	6	6	2	0	8	8	5	5
1.596	2	7	7	4	4	6	6	3	3	9	9	2	2
1.715	4	3	0	2	0	5	5	2	0	3	0	1	0
1.843	4	6	6	1	0	4	4	1	0	3	0	0	0
1.981	1	2	2	1	0	4	4	1	0	5	5	3	3
2.129	1	2	2	1	1	2	2	2	2	3	3	1	1
2.288	2	3	3	1	0	3	3	2	2	2	2	1	0
2.458	2	3	3	1	0	3	3	1	0	5	5	1	0
2.642	1	4	4	1	1	2	2	1	1	4	4	0	0
2.839	0	1	1	1	1	1	1	0	0	2	2	1	1
3.051	0	3	3	0	0	1	1	0	0	0	0	0	0
3.278	0	1	1	1	1	0	0	0	0	1	1	0	0
3.523	0	1	1	1	1	2	2	0	0	2	2	0	0
3.780	0	1	1	0	0	1	1	0	0	0	0	0	0
4.000	0	1	1	1	1	0	0	0	0	1	1	1	1
4.371	0	1	1	1	1	1	1	1	1	1	1	0	0
4.090	0	1	1	1	1	2	2	0	0	0	0	2	2
5 4 2 5	0	1	1	1	1	0	0	2	2	0	0	0	0
5 829	0	1	1	0	0	1	1	1	1	0	0	1	1
6 264	0	0	0	0	0	1	1	0	0	0	0	0	0
6 732	0	0	0	1	1	1	1	0	Ő	0	Ő	0	0
7.234	0	0	0	0	0	2	2	0	0	2	2	0	0
7.774	0	1	1	1	1	0	0	2	2	2	2	0	0
8.354	0	0	0	0	0	1	1	0	0	2	2	0	0
8.977	0	1	1	0	0	0	0	0	0	1	1	1	1
9.647	0	0	0	1	1	1	1	0	0	2	2	1	1
10.37	1	0	0	0	0	1	0	0	0	0	0	0	0
11.14	0	1	1	1	1	0	0	0	0	1	1	0	0
11.97	0	2	2	0	0	0	0	0	0	0	0	0	0
12.86	0	0	0	0	0	1	1	3	3	0	0	1	1
13.82	0	0	0	0	0	0	0	1	1	0	0	0	0
14.86	0	0	0	0	0	0	0	0	0	0	0	0	0
15.96	0	0	0	0	0	0	0	1	1	0	0	2	2
17.15	0	0	0	0	0	0	0	0	0	0	0	0	0
18.43	0	0	0	0	0	0	0	0	0	1	1	1	1
19.81	0	0	0	0	0	0	0	0	0	0	0	1	1
		Total	2745	18200	2368	22700	3240	18600	2769	21400	3278	18000	2792
	Eficiê	ncia		14%				15%				15%	
	Incert	eza do A	PS	7,3%				7,3%				7,2%	

Tabela 60: Estágio 2,5 µm - geração de partículas de 0,5 µm - Posição C - continuação

MEDIA	σ	u _A	u _{APS}	u _C	$V_{efetivo}$	k	U
16%	0,01863	0,010756	0,0732	0,073987	4477,262	2,000561	15%

Tabela 61: Analise de incertezas - Estágio 2,5 µm – geração de partículas de 0,5 µm – Posição C

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

c)) Estág	10 2,5 µ	ım – g	eraçac	o de pa	articul	as de (),5 µm	-Post	ição G	irando	o 900 i	rpm	
dp (µm)	dp _{branco}	dp_{agua}	А	AL	D	DL	А	AL	D	DL	А	AL	D	DL
0,542	3	50	3081	3028	3042	2989	4326	4273	4006	3953	2999	2946	2873	2820
0,583	3	45	1756	1708	1569	1521	2269	2221	2074	2026	1756	1708	1587	1539
0,626	1	59	1456	1396	1254	1194	1856	1796	1674	1614	1256	1196	993	933
0,673	5	67	901	829	793	721	1184	1112	1047	975	956	884	768	696
0,723	8	75	546	463	309	226	728	645	429	346	532	449	486	403
0,777	14	82	374	278	155	59	468	372	240	144	376	280	161	65
0,835	5	92	273	176	87	0	348	251	140	43	276	179	103	6
0,898	4	77	152	71	42	0	211	130	67	0	137	56	46	0
0,965	1	69	92	22	18	0	115	45	32	0	97	27	18	0
1,037	4	68	51	0	5	0	52	0	11	0	60	0	10	0
1,114	6	70	41	0	9	0	28	0	6	0	61	0	5	0
1,197	5	47	23	0	5	0	27	0	4	0	30	0	4	0
1,286	0	56	33	0	6	0	21	0	2	0	17	0	1	0
1,382	3	41	22	0	3	0	18	0	1	0	19	0	1	0
1,486	2	36	17	0	0	0	20	0	3	0	27	0	1	0
1,596	0	25	11	0	2	0	6	0	3	0	1	0	0	0
1,715	0	27	13	0	0	0	12	0	2	0	13	0	1	0
1,843	3	20	12	0	2	0	6	0	1	0	10	0	2	0
1,981	3	19	9	0	0	0	13	0	4	0	5	0	0	0
2,129	0	16	- 11	0	1	0	3	0	2	0	10	0	0	0
2,200	1	10	5 7	0	0	0	10	0	3	0	9	0	1	0
2,438	3	13	1	0	0	0	2	0	1	0	4	0	1	0
2,042	1	0	4	0	4	0	2	0	2	0	3	0	2	0
2,039	0	0 5	4	0	4	0	Z 7	0	3	0	2	0	5	0
3,001	1	5	4	0	2	0	5	- 2	4	0	2	0	2	0
3,270	0	5	3	0	1	0	3	0	3	0	 1	0	2	0
3 786	0	5	4	0	2	0	4	0	0	0	0	0	2	0
4 068	0	4	1	Ő	1	Ő	1	0	0	0	3	0	2	0
4,000	0	1	3	2	1	0	0	0	3	2	3	2	3	2
4 698	0	0	4	4	2	2	2	2	0	0	2	2	6	6
5.048	0	1	3	2	1	0	0	0	3	2	3	2	1	0
5.425	0	0	3	3	3	3	3	3	2	2	2	2	0	0
5,829	0	0	2	2	0	0	6	6	2	2	2	2	3	3
6,264	0	0	2	2	0	0	0	0	2	2	2	2	1	1
6,732	0	0	1	1	3	3	0	0	4	4	2	2	1	1
7,234	0	0	4	4	2	2	5	5	2	2	0	0	2	2
7,774	0	0	2	2	2	2	2	2	2	2	1	1	1	1
8,354	0	0	3	3	3	3	5	5	2	2	1	1	1	1
8,977	0	0	2	2	1	1	3	3	1	1	0	0	0	0
9,647	0	1	0	0	1	0	1	0	0	0	1	0	3	2
10,366	0	0	0	0	1	1	2	2	1	1	3	3	1	1
11,14	0	0	0	0	2	2	1	1	0	0	0	0	1	1
11,971	0	0	3	3	1	1	0	0	2	2	3	3	1	1
12,864	0	0	0	0	0	0	0	0	3	3	2	2	0	0
13,824	0	0	0	0	2	2	0	0	2	2	0	0	1	1
14,855	0	0	2	2	0	0	0	0	0	0	0	0	1	1
15,963	0	0	2	2	1	1	2	2	3	3	1	1	0	0
17,154	0	0	0	0	0	0	2	2	1	1	2	2	0	0
18,434	0	0	2	2	0	0	2	2	0	0	2	2	0	0
19,81	0	0	0	0	0	0	1	1	2	2	2	2	0	0
	E (Iotal		8006	460/	6/33		10883	460/	9135		1155	460/	6486
	Eficie	encia			7 40/				7 40/				7 40/	
	incerteza	I do APS			1,1%				1,1%				7,1%	

Tabela 62: Estágio 2,5 µm - geração de partículas de 0,5 µm - Posição Girando 900 rpm

MEDIA	σ	u _A	u _{APS}	u _C	$V_{efetivo}$	k	U
16%	0,0024	0,0014	0,0714	0,071368	14824063	2,000003	14%

Tabela 63: Análise de incertezas - Estágio 2,5 µm - geração de partículas de 0,5 µm - Posição Girando 900 rpm

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

u)	Lotugic	,		ciuçuo	ao pa	i tie aia.	ue 0,	5 µm	1 051ç			oo ipii	L
dn	dp _{branco}												
jup		Α	AL	D	DL	А	AL	D	DL	А	AL	D	DL
(µm)	dn							_					
	upagua												
0,542	94	2320	2226	1999	1905	2310	2216	1821	1727	2660	2566	2136	2042
0,583	81	1080	999	996	915	1110	1029	1100	1019	1330	1249	1267	1186
0,626	78	781	703	695	617	725	647	605	527	810	732	742	664
0,020	70	101	100	000	017	125	440	000	027	500	102	172	44.4
0,673	62	499	437	386	324	475	413	450	388	528	400	476	414
0,723	39	303	264	241	202	271	232	239	200	343	304	267	228
0 777	29	188	160	139	111	164	136	159	131	191	163	183	155
0.925	24	146	100	100	90	120	115	104	01	122	110	100	104
0,035	24	140	123	109	00	130	115	104	01	133	110	127	104
0,898	11	74	63	59	48	69	58	57	46	86	75	57	46
0.965	25	39	14	43	18	45	20	39	14	43	18	49	24
1 037	7	18	11	18	11	24	17	23	16	27	20	28	21
1,007	,	10	•	10		24	40	20	7	27	44	20	
1,114	9	18	9	17	ð	22	13	16	1	20	11	16	1
1,197	13	12	0	11	0	22	9	15	2	13	0	20	7
1 286	5	14	9	12	0	11	6	9	4	14	9	4	0
1 202	10	7	0	11	0	7	0	11	. 1	0	0	E	0
1,302	10	1	U	11	U	1	U	11	1	9	U	5	U
1,486	3	8	5	6	0	4	1	10	7	10	7	6	3
1.596	2	6	4	8	0	12	10	10	8	18	16	3	1
1 715	4	Δ	0	Δ	0	11	7	Δ	0	6	2	3	0
1,110		- +	~		~				~		-		4
1,843	4	1	U	4	U	0	U	1	U	5	1	5	1
1,981	1	7	6	0	0	4	3	1	0	5	4	7	6
2,129	1	3	2	2	1	3	2	2	1	6	5	3	2
2,120	· 2	2	-	-	•	6	-	-	•	2	0	Ē	2
2,200	2	3		2	U	0	4	1	0	2	U	5	3
2,458	2	2	0	1	0	4	2	1	0	3	1	2	0
2,642	1	3	2	1	0	3	2	1	0	1	0	1	0
2,839	0	3	3	2	2	4	4	1	1	5	5	1	1
2,000	0	0	0	2	-	-		1		4	4		
3,051	0	0	U	0	U	3	3		-		1	2	2
3,278	0	0	0	0	0	1	1	1	1	2	2	1	1
3.523	0	1	1	0	0	0	0	0	0	1	1	0	0
3 786	0	2	2	0	0	1	1	0	Ô	2	2	3	3
3,700	0	2	~	0	0	-		0	0	2	~	5	5
4,068	0	0	U	1	1	1	1	1	1	1	1	0	U
4,371	0	1	1	2	2	0	0	1	1	0	0	2	2
4 698	0	3	3	1	1	2	2	0	0	4	4	0	0
5.049	ů 0	2	2	2	2	2	2	0	0			1	1
5,046	0		2	2	2	2	2	0	0	0	U	1	1
5,425	0	1	1	1	1	3	3	2	2	2	2	1	1
5,829	0	3	3	2	2	2	2	2	2	1	1	1	1
6 264	0	2	2	1	1	1	1	2	2	4	4	2	2
6 700	0	2	-	· ·		- -	· •	4	4			<u>_</u>	~
0,132	U	2	2	U	U	2	2					U	U
7,234	0	3	3	2	2	2	2	1	1	3	3	1	1
7,774	0	2	2	1	1	2	2	0	0	0	0	1	1
8 354	0	2	2	1	1	2	2	2	2	0	0	1	1
0,004	0	~	-			~	-	~	-		4		-
8,977	U	1	1	1	1	1	1	1	1	1	1	2	2
9,647	0	2	2	1	1	1	1	0	0	0	0	1	1
10.366	1	2	1	1	0	1	0	0	0	1	0	1	0
11 140	0	1	1	<u> </u>	Ô	<u> </u>	n n	0	n n	0	n n	<u> </u>	0
11,140	0			0	0	0		0	0	0		0	0
11,971	0	1	1	1	1	1	1	U	U	U	0	1	1
12,864	0	1	1	0	0	3	3	0	0	0	0	2	2
13 824	0	0	0	0	0	0	n	0	0	0	0	0	0
14 055	° °	0	õ	0	ň	0	Ň	0	~ ^	0	Ň	0	0
14,855	U	U	U	U	U	U	U	U	U	U	U	U	U
15,963	0	1	1	0	0	0	0	1	1	0	0	1	1
17.154	0	1	1	2	2	1	1	0	0	0	0	0	0
18 / 3/	0	1	1	0	Ō	0 0	n i	0 0	n n	0 0	n n	1	1
10,434	0			0	0								1
19,810	U	U	U	U	U	1	1	1	1	1	1	U	U
1		Total	5073	37800	4265	39800	4975	36300	4195	43400	5786	37400	4937
	Eficiê	ncia		16%				16%				15%	
		070 40		7 40/				7 30/				7 20/	
	incert	eza u0 /	450	1,170				1,270				1,2%	

d) Estágio 2,5 µm – geração de partículas de 0,5 µm – Posição Girando 600 rpm

Tabela 64: Estágio 2,5 µm - geração de partículas de 0,5 µm - Posição Girando 600 rpm

MEDIA	σ	u _A	u _{APS}	u _C	$V_{efetivo}$	k	U
15%	0,006576	0,003797	0,0724	0,072499	265915,3	2,000012	14%

Tabela 65: Análise de Incertezas - Estágio 2,5 µm – geração de partículas de 0,5 µm – Posição Girando 600 rpm

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

-				1									
dp (um)	dp _{branco}	А	AL	D	AL	А	AL	D	AL	А	AL	D	AL
(µIII)	+ upagua	000	000	770	COF	054	960	960	775	1050	056	0.05	024
0,542	94	090	002	119	000	954	000	609	115	1050	950	925	031
0,583	81	399	310	300	200	504	423	486	405	499	410	436	300
0,626	78	231	153	221	143	302	224	234	156	308	230	289	211
0,673	62	184	122	170	108	201	139	158	96	198	136	184	122
0,723	39	120	81	100	61	127	88	101	62	123	84	108	69
0,777	29	83	55	87	59	74	46	74	46	77	49	68	40
0,835	24	63	40	57	34	57	34	35	12	59	36	52	29
0,898	11	38	27	26	15	45	34	36	25	37	26	27	16
0,965	25	29	4	15	0	33	8	7	0	27	2	18	0
1.037	7	21	14	10	3	16	9	15	8	10	3	16	9
1,114	9	14	5	9	0	13	4	6	0	11	2	16	7
1 197	13	13	0	7	0	11	0	11	0	14	1	5	0
1,107	5	4	0	9	4	11	6	5	Ő	13	8	6	1
1 382	10	9	0	3	0	6	ů n	5	0	7	0	6	0
1,302	2	5	2	3	0	10	7	3	0	5	2	1	0
1,400	ა ე	5	2	<u>ა</u>	0	10	0	ა ი	0	5	2	2	1
1,090	Δ	ن ۲	<u>з</u>	2	0	2	0	2	0	ა -	ა ი	3	1
1,715	4	4	U	2	0	0	2	<u></u> ১	U	/	3		U
1,843	4	1	3	0	U	6	2	5	1	2	U	2	U
1,981	1	1	U	1	U	6	5	2	1	3	2	2	1
2,129	1	3	2	0	0	2	1	1	0	2	1	2	1
2,288	2	3	1	0	0	2	0	0	0	1	0	2	0
2,458	2	2	0	0	0	4	2	0	0	2	0	0	0
2,642	1	0	0	1	0	0	0	0	0	1	0	1	0
2,839	0	0	0	1	1	0	0	0	0	1	1	0	0
3,051	0	4	4	1	1	1	1	0	0	0	0	1	1
3,278	0	0	0	1	1	1	1	0	0	1	1	0	0
3,523	0	2	2	0	0	0	0	0	0	0	0	0	0
3,786	0	0	0	0	0	3	3	3	3	1	1	0	0
4,068	0	0	0	1	1	1	1	0	0	0	0	2	0
4,371	0	1	1	0	0	1	1	0	0	1	1	1	0
4,698	0	1	1	1	1	0	0	1	1	1	1	0	0
5,048	0	0	0	0	0	0	0	1	1	0	0	0	0
5.425	0	1	1	1	1	0	0	0	0	0	0	0	0
5,829	0	1	1	1	1	0	0	1	1	1	1	0	0
6,264	0	1	1	0	Ō	2	2	0	0	0	0	1	0
6,232	0	0	0	1	1	0	0	0	0	1	1	1	0
7 234	0	2	2	0	0	0	Ő	1	1	0	0	1	0
7 774	0 0	0	0	0	Õ	1	1	1	1	1	1	0	Õ
8 354	0	0	n n	1	1	0	0	1	1	1	1	0	0
8 077	0	2	2	1	1	0	0	0	0	0	0	0	0
0,977	0		1	0	0	1	1	0	0	0	0	0	0
3,047	1	0	0	2	2		0	0	0	0	0	0	0
11 4 4 0		0	2	3	2	0	0	0	0	0	0	0	0
11,140	0	<u> ৩</u>	 	0	0	0	U 4	0	0	0	0	0	0
12,971	0	1		0	0	4		0	0	0	4	0	0
12,004	0	0	U C	U	U			0	0			0	U
13,824	0	0	U	1	1	0	0	0	U	0	U	0	U
14,855	U	0	U	0	U	0	U	0	U	0	U	0	U
15,963	0	0	U	0	U	0	U	0	U	0	U	0	U
17,154	0	0	0	0	0	0	0	0	0	0	0	1	1
18,434	0	0	U	0	U	1		1	1	0	U	0	U
19,810	0	0	0	0	0	0	0	1	1	0	0	0	0
		Total	1651	16900	1408	14800	1906	14700	1597	16300	1970	17400	1694
	Eficiêr	ncia		15%				16%				14%	
	Incert	eza do A	\PS	7,2%				7,1%				7,3%	

e) Estágio 2,5 μm – geração de partículas de 0,5 μm – Posição Girando 1200 rpm

Tabela 66: Estágio 2,5 µm - geração de partículas de 0,5 µm - Posição Girando 1200 rpm

MEDIA	σ	u _A	u _{APS}	u _C	$V_{efetivo}$	k	U
15%	0,01135	0,006553	0,0730	0,073266	31251,23	2,000082	15%
		-					

Tabela 67: Análise de incertezas - Estágio 2,5 μm – geração de partículas de 0,5 μm – Posição Girando 1200 rpm

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

		/	U /		<u> </u>			,						
dp (um)	dp _{branco}	dp_{agua}	А	AL	D	DL	А	AL	D	DL	А	AL	D	DL
0.542	924	61	612	0	808	0	675	0	696	0	626	0	619	0
0.583	555	55	394	0	504	Ō	399	0	457	0	368	0	382	0
0.626	389	43	284	0	320	0	266	0	305	0	278	0	267	0
0.673	271	18	223	0	243	0	210	0	208	0	173	0	168	0
0.723	188	13	140	0	167	0	149	0	163	0	161	0	152	0
0.777	126	7	445	313	391	259	439	307	367	235	404	272	345	213
0.835	103	0	2611	2508	1856	1753	2761	2658	2041	1938	2553	2450	1895	1792
0.898	107	15	10547	10425	6995	6873	10574	10452	7236	7114	10235	10113	6589	6467
0.965	68	0	6951	6883	5723	5655	6853	6785	5029	4961	6899	6831	5628	5560
1.037	33	0	2954	2921	1434	1401	2841	2808	1423	1390	2897	2864	1156	1123
1.114	12	5	310	293	237	220	519	502	343	326	425	408	322	305
1.197	2	0	45	43	36	34	130	128	76	/4	90	88	77	75
1.286	4	0	24	20	27	23	41	37	22	18	30	26	27	23
1.382	2	0	19	17	22	20	34	32	19	17	22	20	23	21
1.400	4	0	C C	1	2	1	12	0	4	0	9) 0	1	3
1.390	3	0	4	1	3	0	5 5	2 1	C A	2	11	0	4	0
1.713	4	0	2	2 1	7	0	3 3	2	4	6	4	2	3	2
1.043	2	0	2	0	1	0	1	0	0	0	4	2	3	1
2 129	1	0	7	6	4	0	4	3	1	0	3	2	0	0
2.288	0	0	0	0	3	0	3	3	1	1	4	4	3	3
2.458	3	0	6	3	3	0 0	5	2	5	2	3	0	1	0
2.642	0	0	5	5	3	3	3	3	0	0	3	3	1	1
2.839	1	0	2	1	3	2	3	2	4	3	2	1	1	0
3.051	0	0	3	3	1	1	4	4	2	2	2	2	2	2
3.278	1	0	1	0	5	4	4	3	2	1	3	2	0	0
3.523	0	0	2	2	1	1	2	2	1	1	3	3	1	1
3.786	1	0	3	2	2	1	4	3	1	0	6	5	3	2
1.068	0	0	1	1	0	0	2	2	3	3	1	1	0	0
1.371	1	0	2	1	1	0	1	0	3	2	2	1	4	3
1.698	1	0	1	0	2	1	3	2	1	0	3	2	3	2
5.048	0	0	3	3	2	2	3	3	2	2	2	2	1	1
5.425	0	0	5	5	1	1	4	4	1	1	1	1	2	2
5.829	1	0	0	0	4	3	4	3	2	1	4	3	2	1
3.264	0	0	3	3	3	3	1	1	2	2	4	4	4	4
5.732	0	0	2	2	1	1	5	5	2	2	0	0	5	5
7.234	1	0	5	4	2	1	2	1	1	0	0	0	0	0
2.114	0	0	о 0	D	2	2	3	3 2	3	3	1		3	3
2.004	2	0	0 3	0	3 2	2	3 0	2 0	∠ ∧	1	2	0	1	0
) 647	0	0	1	1	2	3	1	1	4	1	5	5	5	5
0 37	0	0	6	6	1	1	1	1	3	3	0	0	3	3
1 14	0	0	1	1	3	3	4	4	0	0	2	2	2	2
1.97	0	0	0	0	1	1	1	1	3	3	0	ō	0	ō
12.86	0	0	4	4	1	1	4	4	1	1	3	3	1	1
13.82	0	0	2	2	2	2	1	1	3	3	1	1	0	0
14.86	0	0	2	2	1	1	0	0	0	0	0	0	0	0
15.96	0	0	1	1	1	1	0	0	0	0	2	2	0	0
17.15	0	0	1	1	0	0	0	0	1	1	1	1	3	3
18.43	0	0	0	0	0	0	2	2	2	2	0	0	1	1
19.81	0	0	1	1	1	1	0	0	1	1	0	0	0	0
			Total	23491		16288		23785		16122		23138		15629
		Efici	ência		31%				32%				32%	
1		Ince	erteza do l	APS	5,9%			1	5,8%				5,7%	

DL = número de partículas depois de chegar ao impactador, limpas.
f) Estágio 2,5 μm – geração de partículas de 1,0 μm – Posição B

Tabela 68: Estágio 2,5 µm - geração de partículas de 1,0 µm - Posição B

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

dp (µm)	dp _{branco} (µm)	dp _{agua} (μm)	А	AL	D	DL	А	AL	D	DL	А	AL	D	DL
0.542	924	61	42	0	29	0	68	0	75	0	50	0	50	0
0.583	555	55	27	0	17	0	38	0	49	0	33	0	36	0
0.626	389	43	26	0	15	0	33	0	35	0	25	0	30	0
0.673	271	18	22	0	12	0	31	0	25	0	18	0	24	0
0.723	188	13	26	0	18	0	21	0	31	0	29	0	27	0
0.777	126	7	89	0	73	0	58	0	68	0	72	0	75	0
0.835	103	0	399	296	267	164	228	125	186	83	356	253	308	205
0.898	107	15	986	864	756	634	958	836	659	537	956	834	725	603
0.965	68	0	352	284	305	237	362	294	302	234	421	353	299	231
1.037	33	0	79	46	65	32	133	100	97	64	105	72	48	15
1.114	12	5	23	6	21	4	25	8	19	2	23	6	17	0
1.197	2	0	18	16	12	10	14	12	8	6	9	7	9	7
1.286	4	0	14	10	8	4	7	3	6	2	4	0	0	0
1.382	2	0	7	5	5	3	5	3	0	0	6	4	0	0
1.486	4	0	4	0	2	0	7	3	0	0	4	0	0	0
1.596	3	0	9	6	3	0	8	5	0	0	3	0	0	0
1.715	4	0	2	0	0	0	3	0	0	0	2	0	0	0
1.843	1	0	1	0	0	0	5	4	0	0	2	1	0	0
1.981	2	0	2	0	0	0	0	0	0	0	4	2	0	0
2.129	1	0	0	0	0	0	2	1	0	0	0	0	1	0
2.288	0	0	1	1	1	1	3	3	0	0	3	3	0	0
2.458	3	0	0	0	1	0	1	0	0	0	1	0	1	0
2.642	0	0	2	2	0	0	0	0	0	0	0	0	0	0
2.839	1	0	2	1	0	0	3	2	1	0	1	0	1	0
3.051	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.278	1	0	0	0	0	0	1	0	1	0	0	0	0	0
3.523	0	0	0	0	0	0	0	0	0	0	1	1	1	0
3.786	1	0	0	0	0	0	0	0	0	0	0	0	0	0
4.068	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4.371	1	0	0	0	0	0	0	0	0	0	0	0	0	0
4.698	1	0	0	0	0	0	0	0	0	0	1	1	0	0
5.048	0	0	0	0	0	0	0	0	1	1	0	0	0	0
5.425	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5.629	1	0	0	0	0	0	0	0	0	0	0	0	0	0
6 722	0	0	0	0	0	0	0	0	0	0	0	0	1	0
7.224	1	0	0	0	0	0	0	0	0	0	0	0	0	0
7.234	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8 354	1	0	0	0	0	0	1	1	0	0	0	0	1	1
8 977	3	0	0	0	0	0	0	0	0	0	1	1	1	1
9.647	0	0	0	0	0	Õ	0	0	0	0	1	1	0	0
10.37	0	0	0	0	0	0	0	0	0	0	1	1	0	0
11.14	0	0	0	0	0	0	1	1	0	0	1	1	0	0
11.97	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12.86	0	0	0	0	1	1	0	0	0	0	0	0	0	0
13.82	0	0	0	0	0	0	0	0	0	Õ	0	0	0	0
14.86	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15.96	0	0	0	0	0	0	0	0	1	1	0	0	0	0
17.15	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18.43	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19.81	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Total	1748	1537	1611	1090	1817	1401	1592	930	1887	1541	1693	1063
	Eficiê	ncia			29%				34%				31%	
	Incert	teza do A	NPS		6,0%				5,6%				5,9%	

Tabela 69: Estágio 2,5 µm - geração de partículas de 1,0 µm - Posição B - continuação

	MEDIA	σ	u _A	u _{APS}	u _C	$V_{efetivo}$	k	U
	32%	0,015924	0,009194	0,0602	0,060867	3841,943	2,000653	12%
Т	abela 70: A	nálise de inc	certezas - Est	tágio 2,5 μn	ı – geração d	le partículas	de 1,0 µm -	Posição B

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

	6,				0	· · · · F		, , , ,		- 5				
dp (um)	dp _{branco} (um)	dp _{agua} (μm)	А	AL	D	DL	А	AL	D	DL	А	AL	D	DL
0.542	924	61	638	0	562	0	821	0	786	0	873	0	659	0
0.583	555	55	384	0	256	0	549	0	502	0	553	0	534	0
0.626	389	43	248	0	204	0	358	0	326	0	390	0	360	0
0.673	271	18	187	0	163	0	256	0	216	0	290	1	251	0
0.723	188	13	134	0	101	0	157	0	129	0	199	0	189	0
0.777	126	7	460	328	369	237	245	113	222	90	204	72	195	63
0.835	103	0	2703	2600	2145	2042	1699	1596	1486	1383	1224	1121	785	682
0.898	107	15	9311	9189	3687	3565	8448	8326	4867	4745	5620	5498	3896	3774
0.965	68	0	7849	7781	6150	6082	10363	10295	6524	6456	6331	6263	3201	3133
1.037	33	0	1914	1881	2544	2511	3900	3867	3487	3454	2287	2254	1984	1951
1.114	12	5	295	278	330	313	507	490	327	310	360	343	360	343
1.197	2	0	63	61	85	83	116	114	103	101	83	81	59	57
1.286	4	0	28	24	20	16	40	36	23	19	26	22	8	4
1.382	2	0	20	18	22	20	24	22	20	18	12	10	8	6
1.486	4	0	9	5	10	6	6	2	6	2	5	1	0	0
1.596	3	0	3	0	4	1	4	1	5	2	1	0	0	0
1.715	4	0	4	0	6	2	2	0	3	0	2	0	0	0
1.843	1	0	4	3	6	5	3	2	3	2	6	5	0	0
1.981	2	0	1	0	8	6	3	1	2	0	4	2	0	0
2.129	1	0	/	0	1	0	1	5	2	0	4	3 6	0	0
2.200	0	0	2	2	2	2	2 2	5	0	0	0	0	0	0
2.400	3	0	1	1	<u> </u>	1	<u>১</u>	5	 1	1	4	1	0	0
2.042	1	0	1	0	2	1	1	0	3	2	3	2	0	0
3 051	0	0	4	4	2	2	1	1	2	2	4	<u>2</u> <u>1</u>	0	0
3 278	1	0	4		2	2	3	2	1	0	2	1	0	0
3 523	0	0	5	5	2	2	0	0	1	1	4	4	1	1
3 786	1	0	1	Ő	1	0	4	3	0	0	2	1	1	0
4 068	0	0	2	2	1	1	2	2	4	4	2	2	0	0
4.371	1	0	3	2	1	0	5	4	0	0	1	0	2	1
4.698	1	0	0	0	1	0	1	0	1	0	2	1	1	0
5.048	0	0	3	3	1	1	3	3	0	0	1	1	5	5
5.425	0	0	1	1	4	4	1	1	1	1	4	4	2	2
5.829	1	0	5	4	2	1	2	1	0	0	3	2	3	2
6.264	0	0	1	1	1	1	0	0	2	2	0	0	4	4
6.732	0	0	2	2	2	2	2	2	0	0	3	3	1	1
7.234	1	0	1	0	2	1	1	0	1	0	0	0	3	2
7.774	0	0	1	1	2	2	3	3	1	1	2	2	1	1
8.354	1	0	1	0	0	0	3	2	1	0	1	0	1	0
8.977	3	0	1	0	1	0	3	0	1	0	2	0	3	0
9.647	0	0	3	3	1	1	0	0	0	0	3	3	1	1
10.37	0	0	0	0	3	3	2	2	1	1	0	0	1	1
11.14	0	0	0	0	0	0	2	2	1	1	0	0	0	0
11.97	0	0	1	1	2	2	2	2	<u> </u>	 	0	0	0	0
12.86	0	0	2	2	0	0	4	4	1	2	<u> </u>	<u> </u>	3	3
13.02	0	0	2	2	3	3 1	1	1	3	3 2	1	1	2	2
14.00	0	0	2	2	0	0	2	2	2	2	0	0	2	2
17 15	0	0	1	1	0	0	 ∩	2 0	1	1	0	0	1	1
18.43	0	0	0	0	0	0	1	1	0	0	3	3	0	0
19.81	0	0	0	0	1	1	1	1	0	0	0	0	1	1
			Total	22213	1	14921	- 1	24914		16606	5	15719	1	10041
		Eficiá	incia		33%			1.0.1	33%				36%	
			rtoze de		5570								5070	
		Ince	ne∠a u0	AFO	5.7%				5.7%				5.4%	

g) Estágio 2,5 μm - geração de partículas de 1,0 μm - Posição C

Tabela 71: Estágio 2,5 μm – geração de partículas de 1,0 μm – Posição C

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

dp (µm)	dp _{branco}	dp _{agua} (µm)	А	AL	D	DL	А	AL	D	DL	А	AL	D	DL
0.542	924	61	76	0	66	0	69	0	61	0	64	0	56	0
0.583	555	55	50	0	47	0	45	0	39	0	41	0	34	0
0.626	389	43	33	0	26	0	29	0	22	0	36	0	26	0
0.673	271	18	32	0	12	0	29	0	21	0	33	0	21	0
0.723	188	13	26	0	8	0	32	0	17	0	25	0	16	0
0.777	126	7	75	0	56	0	76	0	66	0	78	0	55	0
0.835	103	0	363	260	256	153	331	228	302	199	373	270	343	240
0.898	107	15	903	781	569	447	925	803	756	634	1010	888	869	747
0.965	68	0	584	516	498	430	688	620	389	321	681	613	405	337
1.037	33	0	123	90	119	86	155	122	97	64	160	127	79	46
1.114	12	5	31	14	29	12	49	32	24	7	35	18	28	11
1.197	2	0	15	13	12	10	24	22	16	14	16	14	12	10
1.286	4	0	19	15	8	4	13	9	11	7	13	9	5	1
1.382	2	0	8	6	6	4	9	7	9	7	7	5	1	0
1.486	4	0	8	4	7	3	7	3	7	3	6	2	0	0
1.596	3	0	6	3	3	0	8	5	3	0	8	5	0	0
1.715	4	0	4	0	3	0	8	4	2	0	5	1	0	0
1.843	1	0	7	6	2	1	1	0	2	1	6	5	0	0
1.981	2	0	1	0	3	1	6	4	0	0	2	0	0	0
2.129	1	0	1	0	1	0	2	1	2	1	2	1	0	0
2.288	0	0	6	6	0	0	0	0	1	1	1	1	0	0
2.458	3	0	1	0	0	0	2	0	1	0	1	0	1	0
2.642	0	0	0	0	0	0	1	1	0	0	0	0	0	0
2.839	1	0	0	0	0	0	1	0	0	0	0	0	0	0
3.051	0	0	0	0	0	0	1	1	1	1	0	0	0	0
3.278	1	0	1	0	0	0	0	0	1	0	0	0	0	0
3.523	0	0	0	0	0	0	0	0	0	0	0	0	1	1
3.700	1	0	2	1	0	0	0	0	0	0	0	0	0	0
4.000	1	0	0	0	0	0	0	0	0	0	1	1	0	0
4.371	1	0	0	0	0	0	1	1	0	0	1	1	1	1
5.048	0	0	1	1	0	0	0	0	0	0	0	0	0	0
5 4 2 5	0	0	1	1	0	0	0	Ő	0	Ő	1	1	0	0
5 829	1	0	0	0	0	0	0	Ő	1	1	0	0	1	1
6 264	0	0	0	0	0	0	1	1	0	0	0	0	0	0
6.732	0	0	0	0	0	0	0	0	0	0	1	1	0	0
7.234	1	0	0	0	1	1	0	0	0	0	1	1	0	0
7.774	0	0	0	0	1	1	0	0	0	0	1	1	0	0
8.354	1	0	0	0	0	0	0	0	0	0	0	0	0	0
8.977	3	0	0	0	0	0	2	2	0	0	0	0	0	0
9.647	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10.37	0	0	0	0	0	0	0	0	1	1	0	0	0	0
11.14	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11.97	0	0	1	1	0	0	0	0	0	0	0	0	0	0
12.86	0	0	0	0	0	0	0	0	1	1	0	0	0	0
13.82	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14.86	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15.96	0	0	0	0	0	0	1	1	0	0	0	0	0	0
17.15	0	0	2	2	1	1	1	1	0	0	0	0	0	0
18.43	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19.81	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Total	2004	1719	1471	1154	2148	1867	1568	1263	2259	1965	1724	1395
	Eficiê	ncia			33%				32%				29%	
	Incert	teza do A	\PS		5,7%				5,7%				6,0%	

Tabela 72: Estágio 2,5 µm - geração de partículas de 1,0 µm - Posição C - continuação

MEDIA	σ	u _A	u _{APS}	u _C	$V_{efetivo}$	k	U
33%	0,022809	0,013169	0,0602	0,061672	962,0816	2,002604	12%
	/1. 1 .		1 . 0 .	~ 1	1	1 1 0	\mathbf{D} : $\tilde{\mathbf{C}}$

Tabela 73: Análise de incertezas - Estágio 2,5 µm - geração de partículas de 1,0 µm - Posição C

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

dp	dp _{branco}	dp _{agua}	А	AL	D	DL	А	AL	D	DL	А	AL	D	DL
(μ m)	(μ m)	(μ m)	1011		_		0.0.4	_	-		075	_		
0.542	924	61	1311	326	862	0	981	0	911	0	975	0	847	0
0.583	555	55	799	189	502	0	550	0	528	0	564	0	469	0
0.626	389	43	495	63	423	0	396	0	360	0	346	0	357	0
0.673	271	18	311	22	286	0	254	0	235	0	235	0	254	0
0.723	188	13	208	8	159	0	182	0	150	0	170	0	198	0
0.777	126	7	297	165	95	0	325	193	112	0	339	207	94	0
0.835	103	0	1761	1658	1028	925	1649	1546	1124	1021	2006	1903	1843	1740
0.898	107	15	7710	7588	4869	4747	7408	7286	4863	4741	7985	7863	4532	4410
0.965	68	0	8330	8262	6891	6823	7746	7678	6241	6173	7566	7498	5841	5773
1.037	33	0	2968	2935	2531	2498	2556	2523	1742	1709	2368	2335	2049	2016
1.114	12	5	372	355	235	218	427	410	374	357	360	343	257	240
1.197	2	0	100	98	62	60	91	89	73	71	84	82	59	57
1.286	4	0	34	30	21	17	38	34	29	25	23	19	17	13
1.382	2	0	19	17	12	10	24	22	18	16	22	20	13	11
1.486	4	0	8	4	6	2	12	8	2	0	5	1	2	0
1.596	3	0	6	3	4	1	3	0	1	0	5	2	1	0
1.715	4	0	6	2	4	0	10	6	1	0	7	3	1	0
1.843	1	0	7	6	2	1	5	4	1	0	8	7	0	0
1.981	2	0	5	3	3	1	2	0	0	0	1	0	0	0
2.129	1	0	1	0	2	1	5	4	1	0	6	5	0	0
2.288	0	0	1	1	4	4	5	5	1	1	7	7	0	0
2.458	3	0	6	3	3	0	4	1	1	0	6	3	0	0
2.642	0	0	2	2	0	0	6	6	1	1	4	4	0	0
2.839	1	0	1	0	2	1	2	1	1	0	1	0	0	0
3.051	0	0	3	3	3	0	4	4	1	1	0	0	0	0
3.278	1	0	5	4	5	0	2	1	1	0	0	0	0	0
3.523	0	0	1	1	5	0	2	2	0	0	1	1	0	0
3.786	1	0	2	1	1	0	2	1	2	1	4	3	4	3
4.068	0	0	2	2	3	0	2	2	2	2	1	1	1	1
4.371	1	0	2	1	3	0	1	0	2	1	1	0	0	0
4.698	1	0	4	3	2	1	1	0	2	1	3	2	2	1
5.048	0	0	3	3	4	0	2	2	4	4	2	2	2	2
5.425	0	0	1	1	1	0	1	1	1	1	1	1	3	3
5.829	1	0	2	1	0	0	4	3	1	0	2	1	1	0
6.264	0	0	1	1	3	3	1	1	0	0	2	2	2	2
6.732	0	0	1	1	3	3	2	2	0	0	3	3	5	5
7.234	1	0	2	1	5	0	2	1	0	0	3	2	2	1
7.774	0	0	1	1	3	0	5	5	0	0	3	3	2	2
8.354	1	0	0	0	2	0	6	5	0	0	2	1	5	4
8.977	3	0	0	0	2	0	1	0	0	0	1	0	1	0
9.647	0	0	1	1	0	0	5	5	1	1	0	0	1	1
10.37	0	0	1	1	0	0	3	3	1	1	3	3	0	0
11.14	0	0	2	2	2	0	1	1	1	1	3	3	1	1
11.97	0	0	3	3	0	0	0	0	2	2	1	1	2	2
12.86	0	0	3	3	3	0	2	2	1	1	3	3	4	4
13.82	0	0	1	1	1	0	1	1	2	2	0	0	0	0
14.86	0	0	1	1	1	0	1	1	1	1	0	0	1	1
15.96	0	0	0	0	1	0	1	1	2	2	4	4	1	1
17.15	0	0	1	1	1	0	2	2	2	2	0	0	2	2
18.43	0	0	2	2	2	0	1	1	1	1	0	0	2	2
19.81	0	0	1	1	1	0	0	0	1	1	0	0	0	0
			Total	21777		15316		19861		14140		20336		14297
		Eficiê	encia		30%				29%				30%	
		Ince	rteza do	APS	6,0%				6,0%				6,0%	
			-											

h) Estágio 2,5 µm - geração de partículas de 1,0 µm - Posição Girando 900 rpm

Tabela 74: Estágio 2,5 µm - geração de partículas de 1,0 µm - Posição Girando 900 rpm

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

dp (µm)	dp _{branco} (μm)	dp _{agua} (μm)	А	AL	D	DL	А	AL	D	DL	А	AL	D	DL
0.542	924	61	75	0	87	0	51	0	58	0	63	0	89	0
0.583	555	55	44	0	44	0	30	0	36	0	30	0	50	0
0.626	389	43	40	0	41	0	36	0	28	0	22	0	41	0
0.673	271	18	30	0	30	0	20	0	18	0	21	0	35	0
0.723	188	13	38	0	23	0	16	0	26	0	24	0	23	0
0.777	126	7	79	0	60	0	78	0	71	0	91	0	59	0
0.835	103	0	333	230	258	155	387	284	358	255	416	313	324	221
0.898	107	15	1010	888	621	499	1160	1038	786	664	1150	1028	842	720
0.965	68	0	619	551	547	479	784	716	556	488	748	680	568	500
1.037	33	0	142	109	127	94	160	127	148	115	127	94	121	88
1.114	12	5	48	31	31	14	32	15	29	12	31	14	29	12
1.197	2	0	16	14	19	17	16	14	14	12	15	13	11	9
1.286	4	0	14	10	9	5	12	8	5	1	7	3	6	2
1.382	2	0	8	6	3	1	4	2	5	3	14	12	4	2
1.486	4	0	15	11	3	0	2	0	3	0	4	0	4	0
1.596	3	0	11	8	4	1	7	4	10	7	5	2	3	0
1.715	4	0	8	4	1	0	4	0	1	0	6	2	1	0
1.843	1	0	3	2	0	0	2	1	1	0	1	0	2	1
1.981	2	0	2	0	3	1	3	1	3	1	2	0	0	0
2.129	1	0	6	5	2	1	4	3	1	0	2	1	2	1
2.288	0	0	1	1	0	0	2	2	1	1	2	2	1	1
2.458	3	0	0	0	0	0	0	0	0	0	2	0	1	0
2.642	0	0	2	2	0	0	1	1	0	0	0	0	0	0
2.839	1	0	0	0	0	0	0	0	0	0	1	0	0	0
3.051	0	0	1	1	0	0	4	4	0	0	0	0	0	0
3.278	1	0	1	0	1	0	0	0	0	0	0	0	0	0
3.523	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.786	1	0	0	0	1	0	0	0	0	0	0	0	0	0
4.068	0	0	0	0	1	1	0	0	0	0	0	0	0	0
4.371	1	0	0	0	0	0	0	0	0	0	0	0	0	0
4.698	1	0	2	1	0	0	0	0	0	0	0	0	0	0
5.048	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5.425	0	0	0	0	0	0	0	0	1	1	0	0	0	0
5.829	1	0	0	0	0	0	0	0	0	0	0	0	0	0
6.264	0	0	0	0	0	0	0	0	0	0	0	0	1	1
6.732	0	0	0	0	1	1	0	0	0	0	0	0	0	0
7.234	1	0	0	0	0	0	0	0	0	0	0	0	0	0
0.054	0	0	1	1	0	0	0	0	0	0	0	0	0	0
0.304	- 1	0	0	0	0	0	U 1	0	0	0	0	0	1	0
0.9//	3 0	0	0	0	0	0	0	0	0	0	0	0	1	1
9.047 10.27	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11 14	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11.14	0	0	0	0	0	0	2	2	0	0	1	1	0	0
12.86	0	0	0	0	0	0	2	- 2	0	0	0	0	1	1
12.00	0	0	0	0	0	0	1	1	0	0	0	0	0	0
14.86	0	0	0	0	0	0	0	0	0	0	1	1	0	õ
15.06	0	0	0	0	0	0	0	0	0	0	1	1	0	õ
17 15	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18.43	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19.45	0	0	0	0	0	0	0	0	0	0	1	1	0	0
10.01	5	Total	2152	1875	1562	1269	2523	2223	2210	1560	2472	2168	1625	1560
	Fficiê	ncia	2102		32%		2020		30%			2.00	28%	
	Incer	eza do A	PS		5.7%				6.0%				6.1%	
					5,. 70				5,570				-, 170	

Tabela 75: Estágio 2,5 µm - geração de partículas de 1,0 µm - Posição Girando 900 rpm - continuação

MEDIA	σ	u _A	u _{APS}	u _C	$V_{efetivo}$	k	U
30%	0,01428	0,008244	0,0610	0,061591	6229,507	2,000404	12%

Tabela 76: Análise de incertezas - Estágio 2,5 μm – geração de partículas de 1,0 μm – Posição Girando 900 rpm

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

1) Lot	ugio 2,.	γµm	geraç	uo ue	puritie	and a	- 1,0 p	un i	Usiça	JOIL		<u>, orpm</u>	
dp	dp _{branco}			_				_				_	
(um)	+	A	AL	D	DL	A	AL	D	DL	A	AL	D	DL
(μ)	dp _{agua}		_										
0.542	167	97	0	85	0	89	0	82	0	88	0	85	0
0.583	131	62	0	41	0	50	0	47	0	63	0	39	0
0.626	95	39	0	34	0	47	0	38	0	47	0	28	0
0.673	71	28	0	33	0	29	0	33	0	35	0	30	0
0.723	57	23	0	35	0	39	0	32	0	31	0	30	0
0.777	43	91	49	63	21	83	41	60	18	95	53	76	38
0.835	31	442	412	329	299	532	502	426	396	524	494	369	339
0.898	13	1640	1627	1127	1114	1880	1867	1359	1346	2030	2017	1423	1410
0.965	37	1380	1343	963	926	1640	1603	1149	1112	1700	1663	1069	1032
1037	13	357	344	290	277	457	444	326	313	442	429	350	337
1114	9	85	76	54	41	93	84	78	51	83	74	61	62
1197	12	34	22	16	4	31	19	24	9	28	16	20	15
1286	10	17	7	11	1	21	11	16	6	22	12	19	9
1382	7	13	6	11	4	15	8	13	6	6	0	10	3
1486	10	17	7	3	0	9	0	12	2	16	6	7	0
1596	4	7	3	5	1	4	Ő	6	2	8	4	6	2
1715	7	, 0	6	7	4	- 0	6	5	2	4	1	5	2
19/2	2	5	2	0	-	3	0	2	0	4	0	0	0
1043	3	2		0	0	5	0	2	0	7	5	1	0
1901	2	3	1	0	0	0	4	3	0	1	5	1	0
2129	0	2	2	2	0	1	1	1	0	5	5		0
2288	1	3	2	2	1	4	3	2	0	2	1	0	0
2458	1	2	1	1	0	3	2	0	0	1	0	0	0
2642	1	2	1	2	0	0	0	0	0	0	0	1	0
2839	0	1	1	0	0	3	3	0	0	1	1	1	0
3051	0	3	3	1	1	3	3	0	0	1	1	0	0
3278	0	1	1	0	0	0	0	1	0	1	1	1	0
3523	0	4	4	0	0	0	0	0	0	1	1	1	1
3786	0	0	0	0	0	0	0	2	0	0	0	0	0
4068	0	0	0	0	0	0	0	0	0	1	1	0	0
4371	0	0	0	1	0	0	0	0	0	1	1	1	0
4698	0	0	0	0	0	0	0	0	0	1	1	0	0
5048	0	0	0	1	0	0	0	1	0	0	0	1	0
5425	0	0	0	1	0	0	0	1	0	1	1	0	0
5829	1	0	0	0	0	2	1	1	0	1	0	0	0
6264	0	1	1	1	0	0	0	0	0	1	1	0	0
6732	1	1	0	1	0	0	0	0	0	0	0	0	0
7234	0	0	Ő	1	Ő	1	1	0	Ő	0	Ő	0	Ő
7774	0	0	0	0	0	0	0	0	0	0	0	0	0
8351	0	1	1	0	0	0	0	1	0	0	0	0	0
8077	0	1	1	0	0	0	0	0	0	0	0	0	0
0647	0		0	0	0	0	0	0	0	0	0	0	0
9047	0	0	0	0	0	0	0	0	U 4	0	U 4	0	U 4
10300	0	0	U	0	0	0	0		1	1	1		
11140	0	U	U	0	0		1	U	U	2	2		
119/1	U	1		U	U	1	1	1		U	U	0	U
12864	0	0	0	1	0	0	0	0	0	0	0	0	0
13824	0	0	0	0	0	0	0	0	0	0	0	0	0
14855	0	1	1	0	0	0	0	0	0	0	0	1	1
15963	0	0	0	0	0	1	1	0	0	0	0	0	0
17154	0	0	0	0	0	0	0	0	0	0	0	0	0
18434	0	0	0	0	0	0	0	0	0	0	0	0	0
19810	0	0	0	0	0	0	0	0	0	0	0	0	0
		Total	3924	2763	2693	4602	4605	3338	3264	4779	4799	3272	3252
	Eficiê	ncia		31%				29%				32%	
	Incert	eza do /	APS	5,8%				5,9%				5,9%	

i) Estágio 2,5µm – geração de partículas de 1,0 µm – Posição Girando 600rpm

Tabela 77: Estágio 2,5µm – geração de partículas de 1,0 µm – Posição Girando 600rpm

MEDIA	σ	u _A	u _{APS}	u _C	V _{efetivo}	k	U
31%	0,003966	0,00229	0,0589	0,05896	879175,4	2,000005	12%

Tabela 78: Análise de incertezas - Estágio 2,5µm - geração de partículas de 1,0 µm - Posição Girando 600rpm

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

1													
dp (um)	dp _{branco}	А	AL	D	DL	А	AL	D	DL	А	AL	D	DL
0.542	+ upagua 167	65	0	51	0	67	0	66	0	49	0	69	0
0.583	131	32	Ő	50	Ő	37	ů 0	36	Ő	33	Ő	50	0
0.626	95	30	0	37	0	30	0	28	0	27	0	35	0
0.673	71	25	0	26	0	22	0	20	0	22	0	26	0
0.723	57	28	0	23	0	21	0	26	0	26	0	32	0
0.777	43	59	17	58	16	49	7	64	6	46	4	57	3
0.835	31	248	218	194	164	236	206	175	145	259	229	185	155
0.898	13	742	729	570	527	801	788	386	373	869	856	632	619
0.965	37	486	449	374	298	574	537	548	511	568	531	376	339
1.037	13	116	103	86	73	124	111	126	113	118	105	99	86
1.114	9	40	31	31	22	33	24	33	24	39	30	27	18
1.197	12	12	0	16	4	15	3	8	0	17	5	7	0
1.286	10	7	0	12	2	3	0	4	0	8	0	5	0
1.382	7	3	0	11	4	6	0	5	0	7	0	7	0
1.486	10	3	0	5	0	5	0	5	0	5	0	4	0
1.596	4	7	3	2	0	4	0	5	1	4	0	5	1
1.715	3	6	3	4	1	5	2	1	0	5	2	6	3
1.843	3	5	2	3	0	5	2	2	0	4	1	4	1
1.981	2	3	1	3	1	0	0	0	0	1	0	1	0
2.129	0	2	2	0	0	2	2	0	0	0	0	0	0
2.288	1	1	0	1	0	0	0	0	0	4	3	0	0
2.458	1	2	1	1	0	0	0	0	0	1	0	0	0
2.642	1	0	0	0	0	1	0	0	0	0	0	1	0
2.839	0	1	1	0	0	2	2	0	0	0	0	1	1
3.051	0	0	0	0	0	1	1	1	1	0	0	0	0
3.278	0	0	0	0	0	1	1	1	1	0	0	0	0
3.523	0	0	0	0	0	0	0	1	1	0	0	1	1
3.786	0	1	1	0	0	0	0	0	0	1	1	0	0
4.068	0	0	0	0	0	1	1	1	1	0	0	0	0
4.371	0	0	0	0	0	0	0	0	0	0	0	0	0
4.698	0	0	0	0	0	0	0	0	0	0	0	1	1
5.048	0	1	1	0	0	0	0	0	0	0	0	0	0
5.425	0	0	0	1	1	1	1	0	0	0	0	0	0
5.829	1	0	0	1	0	0	0	1	0	0	0	0	0
6 722	1	1	0	0	0	0	0	1	0	0	0	0	0
7.224	0	0	0	0	0	0	0	0	0	0	0	0	0
7.234	0	0	0	0	0	0	0	0	0	0	0	0	0
8 354	0	0	0	0	0	0	0	0	0	0	0	0	0
8 977	0	0	0	0	0	0	0	0	0	0	0	0	0
9.647	0	0	0	0	0	0	0	0	0	0	0	0	0
10 366	0	0	Ő	0	Ő	0	Ő	0	Ő	0	Ő	0	Ő
11 140	0	0	Ő	0	Ő	1	1	1	1	1	1	1	1
11.971	0	0	0	0	0	1	1	0	0	0	0	0	0
12.864	0	0	0	0	0	0	0	0	0	0	0	0	0
13.824	0	0	0	0	0	0	0	0	0	0	0	0	0
14.855	0	1	1	0	0	0	0	0	0	0	0	0	0
15.963	0	0	0	0	0	0	0	0	0	1	1	0	0
17.154	0	0	0	0	0	0	0	0	0	0	0	0	0
18.434	0	0	0	1	1	0	0	0	0	0	0	0	0
19.810	0	0	0	1	1	1	1	0	0	0	0	0	0
	-	Total	1562	1255	1114	1768	1691	1268	1178	1853	1768	1319	1229
	Eficiê	ncia		29%				30%				31%	
	Incert	eza do A	PS	6,1%				5,9%				5,9%	

j) Estágio 2,5 μm – geração de partículas de 1,0 μm – Posição Girando 1200 rpm

Tabela 79: Estágio 2,5 µm - geração de partículas de 1,0 µm - Posição Girando 1200 rpm

MEDIA	σ	u _A	u _{APS}	u _C	$V_{efetivo}$	k	U	
30%	0,010035	0,005794	0,0605	0,06079	24237,22	2,000106	12%	
 			-					. <u> </u>

Tabela 80: Análise de incertezas - Estágio 2,5 µm - geração de partículas de 1,0 µm - Posição Girando 1200 rpm

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

N	Dottag	2,5	4111	Beray	zuo uo	puiti	Culub	<u>uc 3</u>	,0 µ111	10	oiguo	D		
dp (um)	dp _{branco}	dp _{agua}	А	AL	D	DL	А	AL	D	DL	А	AL	D	DL
(μm) 0.542	(μΠ) 281	(μΠ) 61	251	0	260	0	200	0	281	0	255	0	232	0
0.542	171	55	153	0	154	0	200	0	180	0	151	0	111	0
0.505	12/	/3	100	0	110	0	160	0	155	0	110	0	106	0
0.020	106	18	05	0	01	0	110	0	05	0	00	0	0/	0
0.073	76	13	- 55 - 66	0	63	0	80	0	- 60 - 60	0	60	0	63	0
0.723	80	7	76	0	51	0	72	0	53	0	62	0	54	0
0.835	215	0	200	0	182	0	103	0	135	0	130	0	121	0
0.000	600	15	200	0	102	0	105	0	232	0	201	0	100	0
0.030	417	0	234	0	218	0	263	0	217	0	201	0	212	0
1.037	109	0	101	0	68	0	95	0	96	0	100	0	94	0
1 114	23	5	23	0	23	0	18	0	Q	0	20	0	14	0
1 1 1 9 7	15	0	8	0	6	0	10	0	8	0	6	0	2	0
1.137	3	0	2	0	1	0	3	0	2	0	1	0	2	0
1.200	3	0	5	2	2	0	1	0	1	0	1	0	2	0
1.302	J 1	0	2	0	1	0	0	0	3	0	0	0	0	0
1.400	5	0	2	0	0	0	0	0	2	0	0	0	0	0
1.390	1	0	2	0	0	0	0	0	2	0	0	0	0	0
1.713	2	0	2	0	0	0	0	0	1	0	0	0	0	0
1.045	1	0	2	1	0	0	0	0	0	0	0	0	0	0
2 120	2	0	2 1	0	0	0	0	0	0	0	0	0	0	0
2.129	1	0	0	0	0	0	0	0	0	0	0	0	0	0
2.200	0	0	05	05	55	55	80	80	59	59	95	95	20	20
2.400	0	0	90	260	42	42	256	256	40	<u> </u>	210	210	30	30
2.042	0	0	209	196	42	42	200	105	40	40	210	142	39	39
2.059	1	0	17	16	0	10	195	195	9	9	2	142	9	9
2 279	0	0	17	10	0	0	5	5	0	0	0	2	0	0
3.270	2	0	4	4	0	0	5	3	1	0	0	0	0	0
2 796	2	0	0	0	0	0	1	3	0	0	0	0	0	0
4.069	0	0	0	0	0	0	1	1	0	0	0	0	0	0
4.000	0	0	0	0	0	0	2	2	0	0	1	1	1	1
4.371	1	0	0	0	2	1	2	0	0	0	0	0	0	0
5.049	1	0	0	0	2	0	2	1	0	0	0	0	0	0
5.040	0	0	0	0	0	0	2	0	0	0	0	0	1	1
5.820	0	0	0	0	0	0	1	1	0	0	2	2	0	0
6.264	0	0	0	0	0	0	1	1	0	0	2	2	0	0
6 732	0	0	1	1	0	0	0	0	0	0	2	0	0	0
7 234	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7.234	0	0	0	0	0	0	0	0	0	0	1	1	0	0
8 354	0	0	2	2	0	0	0	0	0	0	0	0	0	0
8 977	0	0	0	0	0	0	1	1	0	0	0	0	0	0
9.647	0	0	1	1	0	0	0	0	0	0	0	0	0	0
10 37	1	0	0	0	0	0	1	0	0	0	0	0	0	0
11 14	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11.14	0	0	0	0	1	1	0	0	0	0	1	1	0	0
12.86	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13.82	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14.86	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15.00	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17 15	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18 / 3	0	0	0	0	0	0	0	0	0	0	0	0	2	2
10.43	0	0	0	0	0	0	0	0	0	0	0	0	2 0	2 0
19.01	0	Total	0	577	0	115	0	555	0	107	0	446	U	82
	Eficiô		<u> </u>	5/1	80%	113		333	81%	107		+0	82%	02
			De		1 70/				1 60/				1 60/	
	incert	eza do A	1 3		1,170	l			1,0%				1,0%	

k) Estágio 2,5 µm – geração de partículas de 3,0 µm – Posição B

Tabela 81: Estágio 2,5 µm – geração de partículas de 3,0 µm – Posição B

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	dp	dp _{branco}	dp _{agua}	Δ	A1	р	וח	Δ	A1	П	וח	Δ	ΔΙ	П	וח
0.542 281 61 60 0 58 0 60 0 64 0 66 0 58 0 0.638 171 55 50 0 47 0 43 0 60 0 39 0 41 0 0.673 106 18 22 0 29 0 30 0 32 0 33 0 33 0 33 0 33 0 33 0 33 0 33 0 33 0 33 0 33 0 33 0 33 0 33 0 33 0 33 0 33 0 33 0 33 0 33 0 34 0 34 0 34 0 34 0 34 0 34 0 34 0 34 0 34 0 34 0 34 0 <	(μ m)	(μ m)	(μ m)	~		D		~		D		~		D	DL
0.583 171 55 50 0 50 0 47 0 43 0 60 0 52 0 0.626 124 43 30 0 44 0 77 0 36 0 32 0 39 0 0.723 76 13 25 0 29 0 37 0 32 0 31 0 0.777 80 7 29 0 19 0 31 0 37 0 23 0 34 0 0.838 600 15 0 17 0 16 0 19 0 17 0 1.037 109 0 27 0 26 0 12 0 4 0 17 0 16 0 13 0 17 0 16 3 2 0 14 0 16 3 2	0.542	281	61	60	0	58	0	60	0	64	0	66	0	58	0
0.626 124 43 30 0 44 0 47 0 38 0 39 0 44 0 47 0 38 0 39 0 39 0 0.673 106 18 22 0 29 0 37 0 32 0 39 0 0.777 80 7 29 0 19 0 31 0 34 0 34 0 34 0 0.835 215 0 38 0 45 0 17 0 41 0 34 0 34 0 34 0 34 0 34 0 34 0 34 0 34 0 34 0 14 0 16 0 19 0 17 0 16 0 19 0 17 0 16 0 10 1 0 1	0.583	171	55	50	0	50	0	47	0	43	0	60	0	52	0
0.673 106 18 22 0 29 0 32 0 32 0 39 0 0.723 76 13 25 0 29 0 27 0 36 0 37 0 38 0 0.835 215 0 38 0 45 0 17 0 41 0 34 0 34 0 0.898 600 15 5 0 35 0 49 0 45 0 34 0 1.037 109 0 27 0 26 0 15 0 19 0 17 0 1.141 23 5 17 0 14 0 77 0 16 3 2 0 17 0 116 0 117 0 117 0 117 0 117 0 117 0 110 110	0.626	124	43	30	0	44	0	47	0	38	0	39	0	41	0
0.723 76 13 25 0 29 0 27 0 36 0 37 0 39 0 0.835 215 0 38 0 45 0 17 0 411 0 34 0 34 0 0.885 215 0 38 0 45 0 35 0 49 0 45 0 34 0 0.985 417 0 28 0 40 0 44 0 37 0 40 0 44 0 17 0 16 0 19 0 17 0 16 0 19 0 13 0 13 0 13 0 13 0 14 0 14 0 14 0 14 0 11 0 12 0 0 13 0 14 0 14 0 14 <	0.673	106	18	22	0	29	0	30	0	32	0	32	0	39	0
0.777 80 7 29 0 19 0 31 0 37 0 23 0 31 0 0.835 215 0 38 0 35 0 49 0 45 0 39 0 0.966 417 0 28 0 40 0 44 0 37 0 40 0 44 0 39 0 1.037 109 0 27 0 26 0 15 0 19 0 13 0 1.141 23 5 17 0 14 0 17 0 16 3 2 0 11 8 5 2 11 8 2 0 1 0 14 0 11 0 11 0 11 0 11 0 11 0 11 0 11 0 11 0	0.723	76	13	25	0	29	0	27	0	36	0	37	0	39	0
0.838 215 0 38 0 45 0 17 0 411 0 34 0 33 0 0.898 600 15 52 0 680 0 35 0 400 0 440 0 37 0 45 0 39 0 0.965 417 0 22 0 22 0 144 0 17 0 144 0 16 0 19 0 17 0 1.114 23 5 1 40 1 0 1	0.777	80	7	29	0	19	0	31	0	37	0	23	0	31	0
0.898 600 15 52 0 34 0 49 0 45 0 39 0 0.965 417 0 28 0 40 0 17 0 44 0 17 0 40 0 19 0 44 0 17 0 16 0 19 0 13 0 13 0 13 0 13 0 13 0 13 0 13 0 13 0 13 0 13 0 13 0 13 0 14 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 <td>0.835</td> <td>215</td> <td>0</td> <td>38</td> <td>0</td> <td>45</td> <td>0</td> <td>17</td> <td>0</td> <td>41</td> <td>0</td> <td>34</td> <td>0</td> <td>34</td> <td>0</td>	0.835	215	0	38	0	45	0	17	0	41	0	34	0	34	0
0.965 417 0 28 0 40 0 37 0 40 0 44 0 1.037 109 0 27 0 26 0 15 0 19 0 17 0 1.114 23 5 17 0 14 0 17 0 16 0 19 0 17 0 1.286 3 0 1 0 66 3 2 0 18 5 1 2 0 4 0 1	0.898	600	15	52	0	58	0	35	0	49	0	45	0	39	0
1.037 109 0 27 0 26 0 15 0 19 0 22 0 17 0 1.1147 23 5 17 0 14 0 17 0 16 0 19 0 133 0 1.187 15 0 14 0 6 3 2 0 11 8 5 2 1.382 3 0 1 0 6 3 2 0 4 0 1 0 1.382 3 0 1 0 1 0 1 0 4 0 1 0 1.715 4 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 </td <td>0.965</td> <td>417</td> <td>0</td> <td>28</td> <td>0</td> <td>40</td> <td>0</td> <td>44</td> <td>0</td> <td>37</td> <td>0</td> <td>40</td> <td>0</td> <td>44</td> <td>0</td>	0.965	417	0	28	0	40	0	44	0	37	0	40	0	44	0
1.114 23 5 17 0 17 0 16 0 19 0 17 0 1.187 15 0 14 0 6 0 12 0 5 0 9 0 13 0 1.286 3 0 1 0 65 1 2 0 6 3 2 0 14 0 1 0 1 2 0 6 3 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 1 <td>1.037</td> <td>109</td> <td>0</td> <td>27</td> <td>0</td> <td>26</td> <td>0</td> <td>15</td> <td>0</td> <td>19</td> <td>0</td> <td>22</td> <td>0</td> <td>19</td> <td>0</td>	1.037	109	0	27	0	26	0	15	0	19	0	22	0	19	0
1.197 15 0 14 0 6 0 12 0 5 0 9 0 133 0 1.382 3 0 2 0 8 5 6 3 2 0 1 8 5 2 1.486 4 0 1 0 1 0 1 0 4 0 1 0 1.596 5 0 1 0 1 0 1 0 1 0	1.114	23	5	17	0	14	0	17	0	16	0	19	0	17	0
1.286 3 0 2 0 8 5 6 3 2 0 11 8 5 2 1.382 3 0 1 0 6 3 2 0 2 0 6 3 2 0 1.486 4 0 1 0 1 0 1 0 4 0 1 0 1.715 4 0 1 0 1 0 1 0 1 0 4 0 1 0 1.843 2 0 1 0 0 0 0 0 0 0 0 0 1 0 2.129 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0	1.197	15	0	14	0	6	0	12	0	5	0	9	0	13	0
1.382 3 0 1 0 6 3 2 0 2 0 6 3 2 0 1.486 4 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.286	3	0	2	0	8	5	6	3	2	0	11	8	5	2
1.486 4 0 1 0 5 1 2 0 4 0 1 0 1.596 5 0 1 0 1 0 1 0 4 0 1 0 1.715 4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0	1.382	3	0	1	0	6	3	2	0	2	0	6	3	2	0
1.596 5 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 <td>1.486</td> <td>4</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>5</td> <td>1</td> <td>2</td> <td>0</td> <td>4</td> <td>0</td> <td>1</td> <td>0</td>	1.486	4	0	1	0	1	0	5	1	2	0	4	0	1	0
1.715 4 0 1 0 1 0 1 0 0 0 1 0 1.843 2 0 1 0 2 0 0 0 10 8 0 0 4 2 1.891 1 0	1.596	5	0	1	0	1	0	1	0	1	0	4	0	1	0
1.843 2 0 1 0 2 0 0 10 8 0 0 4 2 1.981 1 0 <td< td=""><td>1.715</td><td>4</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td><td>1</td><td>0</td></td<>	1.715	4	0	1	0	1	0	1	0	1	0	0	0	1	0
1.881 1 0 <td>1.843</td> <td>2</td> <td>0</td> <td>1</td> <td>0</td> <td>2</td> <td>Ō</td> <td>0</td> <td>Ō</td> <td>10</td> <td>8</td> <td>0</td> <td>Ō</td> <td>4</td> <td>2</td>	1.843	2	0	1	0	2	Ō	0	Ō	10	8	0	Ō	4	2
1.11 0	1 981	1	0	0	0	0	0	0	0	0	0	0	0	1	0
2.288 1 0 21 20 0 17 16 2 1 20 19 1 0 2.458 0 0 39 39 6 6 35 35 5 7 42 42 10 15 2.639 0 0 6 6 0 9 9 0 2 9 9 0 0 3.051 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0	2,129	2	0	0	0	0	0	0	0	0	0	0	0	1	0
I_1 I_2 <t< td=""><td>2 288</td><td>1</td><td>0</td><td>21</td><td>20</td><td>0</td><td>Ō</td><td>17</td><td>16</td><td>2</td><td>1</td><td>20</td><td>19</td><td>1</td><td>0</td></t<>	2 288	1	0	21	20	0	Ō	17	16	2	1	20	19	1	0
1.100 0 00	2 458	0	0	39	39	6	6	35	35	5	. 7	42	42	10	15
1.01 0 0 1 1 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 <td>2.400</td> <td>0</td> <td>0</td> <td>20</td> <td>20</td> <td>4</td> <td>4</td> <td>32</td> <td>32</td> <td>2</td> <td>3</td> <td>31</td> <td>31</td> <td>4</td> <td>9</td>	2.400	0	0	20	20	4	4	32	32	2	3	31	31	4	9
2.053 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 <td>2.042</td> <td>0</td> <td>0</td> <td>6</td> <td>6</td> <td>-</td> <td>0</td> <td>02</td> <td>92</td> <td>0</td> <td>2</td> <td>0</td> <td>9</td> <td>-</td> <td>0</td>	2.042	0	0	6	6	-	0	02	92	0	2	0	9	-	0
3.278 0 0 1 0 0 0 0 0 1 0 0 3.278 0 0 0 0 0 0 0 1 0 0 0 3.786 0 0 0 0 0 0 0 0 1 1 0 0 4.088 0 <td>2.053</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>3</td> <td>0</td> <td>2</td> <td>3</td> <td>3</td> <td>0</td> <td>0</td>	2.053	1	0	0	0	0	0	0	3	0	2	3	3	0	0
J.2/3 O	2 279	0	0	1	1	0	0	0	0	0	0	4	3 1	0	0
3.785 2 0 1 0 0 0 0 0 0 0 1 1 0 0 3.786 0 <t< td=""><td>3.270</td><td>2</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td></t<>	3.270	2	0	1	0	0	0	0	0	0	0	1	0	0	0
3.760 0 <td>2 706</td> <td>2</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td>	2 706	2	0	0	0	0	0	0	0	0	0	1	1	0	0
4.060 0 <td>3.700</td> <td>0</td>	3.700	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4.698 1 0 <td>4.000</td> <td>0</td>	4.000	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4.696 1 0 <td>4.371</td> <td>0</td>	4.371	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5.048 1 0 <td>4.090</td> <td>1</td> <td>0</td>	4.090	1	0	0	0	0	0	0	0	0	0	0	0	0	0
5.825 0 0 0 0 0 1 1 0 <td>5.046</td> <td>1</td> <td>0</td>	5.046	1	0	0	0	0	0	0	0	0	0	0	0	0	0
5.829 0 <td>5.425</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	5.425	0	0	0	0	0	0	1	1	0	0	0	0	0	0
6.264 0 0 0 0 0 0 0 1 1 0 0 6.732 0 <td< td=""><td>5.829</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></td<>	5.829	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6.732 0 <td>6.264</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td>	6.264	0	0	0	0	0	0	0	0	0	0	1	1	0	0
7.234 0 <td>6.732</td> <td>0</td>	6.732	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7.774 0 0 0 0 0 1 1 0 <td>7.234</td> <td>0</td>	7.234	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8.354 0 <td>1.114</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	1.114	0	0	0	0	0	0	1	1	0	0	0	0	0	0
8.977 0 <td>8.354</td> <td>0</td>	8.354	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9.647 0 <td>8.977</td> <td>0</td>	8.977	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10.37 1 0 <td>9.647</td> <td>0</td>	9.647	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11.14 0 <td>10.37</td> <td>1</td> <td>0</td>	10.37	1	0	0	0	0	0	0	0	0	0	0	0	0	0
11.97 0 <td>11.14</td> <td>0</td>	11.14	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12.86 0 <td>11.97</td> <td>0</td>	11.97	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13.82 0 <td>12.86</td> <td>0</td>	12.86	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14.86 0 <td>13.82</td> <td>0</td>	13.82	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15.96 0 <td>14.86</td> <td>0</td>	14.86	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17.15 0 <td>15.96</td> <td>0</td>	15.96	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18.43 0 <td>17.15</td> <td>0</td>	17.15	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19.81 0 <td>18.43</td> <td>0</td>	18.43	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total 95 18 98 21 117 28 Eficiência 81% 79% 76% Incerteza do APS 1,6% 1,8% 2.0%	19.81	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Eficiência 81% 79% 76% Incerteza do APS 1,6% 1,8% 2,0%			Total		95		18		98		21		117		28
Incerteza do APS 1,6% 1,8% 2.0%		Eficiê	ncia			81%				79%				76%	
		Incerte	za do Al	PS		1,6%				1,8%				2,0%	

Tabela 82: Estágio 2,5 µm - geração de partículas de 3,0 µm - Posição B - continuação

MEDIA	σ	u _A	u _{APS}	u _C	$V_{efetivo}$	k	U
80%	0,019085	0,011019	0,0201	0,022947	37,61824	2,069865	5%

Tabela 83: Análise de incertezas - Estágio 2,5 µm - geração de partículas de 3,0 µm - Posição B

A = número de partículas antes de chegar ao impactador

DL = número de partículas depois de chegar ao impactador, limpas

I) Esta	<u>gio 2,:</u>) μπ	– gera	içao ue	: part	Icula	s ue :	5,0 μΠ	I - PC	osiçao	U		
dp (μm)	dp _{branco} (μm)	dp _{agua} (μm)	А	AL	D	DL	А	AL	D	DL	А	AL	D	DL
0.542	281		290	0	275	0	295	0	174	0	285	0	165	0
0.583	171	55	186	0	171	0	173	0	170	0	169	0	155	0
0.626	124	43	135	0	126	0	136	0	120	0	126	0	102	0
0.673	106	18	122	0	98	0	120	0	86	0	115	0	88	0
0.723	76	13	86	0	82	0	81	0	69	0	75	0	63	0
0.777	80	7	79	0	71	0	63	0	52	0	59	0	53	0
0.835	215	0	149	0	126	0	132	0	131	0	129	0	113	0
0.898	600	15	257	0	236	0	222	0	205	0	216	0	209	0
0.965	417	0	288	0	276	0	286	0	276	0	282	0	262	0
1.037	109	0	105	0	99	0	102	0	106	0	95	0	86	0
1.114	23	5	24	0	18	0	19	0	15	0	18	0	14	0
1.197	15	0	11	0	5	0	3	0	2	0	9	0	5	0
1.286	3	0	1	0	0	0	0	0	0	0	2	0	0	0
1.382	3	0	2	0	0	0	0	0	0	0	0	0	0	0
1.486	4	0	0	0	0	0	0	0	0	0	0	0	0	0
1.596	5	0	0	0	0	0	0	0	0	0	0	0	0	0
1.715	4	0	0	0	0	0	0	0	0	0	0	0	0	0
1.843	2	0	0	0	0	0	0	0	0	0	0	0	0	0
1.981	1	0	0	0	0	0	0	0	0	0	0	0	0	0
2.129	2	0	0	0	0	0	0	0	0	0	0	0	0	0
2.288	1	0	0	0	0	0	1	0	0	0	0	0	0	0
2.458	0	0	108	108	86	86	111	111	18	18	78	78	26	26
2.642	0	0	743	743	123	123	490	490	130	130	1037	1037	306	306
2.839	0	0	251	251	6	6	204	204	6	6	395	395	4	4
3.051	1	0	2	1	1	0	6	5	1	0	17	16	1	0
3.278	0	0	0	0	1	1	3	3	0	0	3	3	0	0
3.523	2	0	0	0	0	0	2	0	1	0	0	0	0	0
3.786	0	0	0	0	1	1	0	0	0	0	0	0	0	0
4.068	0	0	0	0	2	2	1	1	1	1	0	0	0	0
4.371	0	0	0	0	0	0	0	0	0	0	0	0	1	1
4.698	1	0	0	0	0	0	0	0	0	0	1	0	0	0
5.046	1	0	0	1	2	1	0	0	1	0	1	1	1	0
5.425	0	0	0	0	0	0	0	0	1	1	1	1	0	1
6 264	0	0	0	0	1	1	0	0	0	0	0	0	0	0
6 732	0	0	2	2	1	1	0	0	1	1	0	0	0	0
7 234	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7 774	0	0	0	Ő	0	Ő	1	1	0	Ő	1	1	0	0
8.354	0	0	1	1	0	0	0	0	0	0	0	0	0	0
8.977	0	0	2	2	0	0	1	1	0	0	0	0	0	0
9.647	0	0	1	1	0	Ō	0	0	1	1	1	1	0	0
10.37	1	0	0	0	0	0	1	0	2	1	0	0	0	0
11.14	0	0	0	0	1	1	0	0	1	1	0	0	0	0
11.97	0	0	0	0	0	0	0	0	0	0	0	0	1	1
12.86	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13.82	0	0	0	0	2	2	0	0	0	0	0	0	0	0
14.86	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15.96	0	0	0	0	0	0	0	0	0	0	1	1	0	0
17.15	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18.43	0	0	0	0	0	0	1	1	0	0	0	0	0	0
19.81	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Total		1110		225		817		160		1534		339
	Eficiô	ncia			80%				80%				78%	
	Elicie	noia			00 /0				0070				10/0	

l) Estágio 2,5 μm – geração de partículas de 3,0 μm – Posição C

Tabela 84: Estágio 2,5 µm – geração de partículas de 3,0 µm – Posição C

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

dp	dp _{branco}	dp _{agua}	А	AL	D	DL	А	AL	D	DL	А	AL	D	DL
(μ m)	(μ m)	(μ m)	50	•	00	•	50	_	50	•		_	00	•
0.542	281	61	50	0	62	0	53	0	56	0	55	0	62	0
0.583	1/1	55	53	0	55	0	55	0	44	0	40	0	40	0
0.626	124	43	42	0	43	0	54	0	37	0	32	0	47	0
0.673	106	18	48	0	33	0	43	0	44 57	0	43	0	31	0
0.723	70	13	40	0	30	0	20	0	57	0	33	0	29	0
0.777	00	1	40	0	32	0	23	0	34	0	41	0	31	0
0.000	210	15	40	0	54	0	64	0	47	0	50	0	- 30 - 60	0
0.090	417	15	5Z 47	0	42	0	64 50	0	30	0	12	0	24	0
0.905	417	0	47	0	42	0	21	0	34	0	42	0	34	0
1.037	109	5	10	0	12	0	22	4	17	0	24	0	19	0
1.114	15	0	24	a	0	0	16	- 7	0	0	12	0	6	0
1.197	3	0	24	5	9	5	5	2	9	1	6	3	2	0
1.200	3	0	6	3	2	0	2	0	2	0	2	0	0	0
1.302	4	0	2	0	1	0	0	0	0	0	0	0	0	0
1.506	5	0	0	0	0	0	0	0	0	0	0	0	0	0
1.330	4	0	0	0	0	0	0	0	0	0	0	0	0	0
1.713	2	0	0	0	0	0	0	0	0	0	0	0	0	0
1.040	1	0	0	Ő	0	0	0	Ő	0	0	0	Ő	0	Ő
2.129	2	0	0	Ő	0	0	0	0	0	0	0	0	0	0
2.288	1	0	21	20	1	0	22	21	3	2	18	17	3	2
2.458	0	0	65	65	3	3	77	77	8	8	67	67	8	8
2.642	0	0	46	46	22	22	49	49	26	26	52	52	15	15
2.839	0	0	20	20	1	1	16	16	0	0	26	26	2	2
3.051	1	0	2	1	1	0	0	0	0	0	1	0	0	0
3.278	0	0	2	2	0	0	1	1	0	0	1	1	0	Ō
3.523	2	0	0	0	0	0	0	0	0	0	0	0	1	0
3.786	0	0	0	0	0	0	0	0	1	1	0	0	0	0
4.068	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4.371	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4.698	1	0	0	0	0	0	0	0	0	0	0	0	0	0
5.048	1	0	0	0	0	0	0	0	0	0	0	0	0	0
5.425	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5.829	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6.264	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6.732	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7.234	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7.774	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8.354	0	0	0	0	0	0	1	1	0	0	0	0	0	0
8.977	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9.647	0	0	0	0	0	0	1	1	0	0	0	0	0	0
10.37	1	0	0	0	0	0	0	0	0	0	0	0	0	0
11.14	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11.97	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12.86	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13.82	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14.86	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15.96	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17.15	0	0	0	0	0	0	1	1	0	0	0	Ű	0	0
18.43	0	0	0	0	0	0	0	U	0	0	0	U	0	U
19.81	U	0	U	0	0	0	U	0	0	0	U	U	0	0
	F (1.1)	Iotal		1/2	000/	31		1/4	700/	38		166	0.49/	27
	ETICIË	ncia			82%				18%				84%	
	Incerte	eza do Al-	-5		1,5%				1,9%				1,4%	

Tabela 85: Estágio 2,5 μm – geração de partículas de 3,0 μm – Posição C - continuação

MEDIA	σ	u _A	u _{APS}	u _C	$V_{efetivo}$	k	U
80%	0,021733	0,012547	0,0188	0,022566	20,92277	2,133028	5%

Tabela 86: Analise de incertezas - Estágio 2,5 µm - geração de partículas de 3,0 µm - Posição C

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

m)	Estágio	2,5 μr	n – ge	ração	de par	tícula	as de	3,0 μι	m – Po	osição) Gira	ando 9	900 rpi	m
dp (μm)	dp _{branco} (μm)	dp _{agua} (μm)	А	AL	D	DL	А	AL	D	DL	А	AL	D	DL
0.542	281	61	320	0	309	0	319	0	306	0	314	0	295	0
0.583	171	55	182	0	168	0	195	0	199	0	191	0	184	0
0.626	124	43	135	0	115	0	145	0	142	0	142	0	130	0
0.673	106	18	121	0	106	0	119	0	95	0	113	0	102	0
0.723	76	13	82	0	64	0	86	0	81	0	82	0	71	0
0.777	80	7	73	0	59	0	75	0	62	0	71	0	56	0
0.835	215	0	209	0	195	0	200	0	185	0	184	0	167	0
0.898	600	15	314	0	295	0	308	0	295	0	265	0	142	0
0.965	417	0	367	0	315	0	347	0	324	0	241	0	213	0
1.037	109	0	95	0	84	0	82	0	71	0	77	0	62	0
1.114	23	5	19	0	17	0	28	0	23	0	18	0	14	0
1.197	15	0	5	0	2	0	8	0	2	0	3	0	2	0
1.286	3	0	3	0	0	0	2	0	0	0	0	0	0	0
1.382	3	0	0	0	0	0	1	0	0	0	0	0	0	0
1.486	4	0	0	0	0	0	0	0	0	0	0	0	0	0
1.596	5	0	0	0	0	0	0	0	0	0	0	0	0	0
1.715	4	0	0	0	0	0	0	0	0	0	0	0	0	0
1.843	2	0	0	0	0	0	0	0	0	0	0	0	2	0
1.981	1	0	0	0	0	0	0	0	0	0	0	0	1	0
2.129	2	0	0	0	0	0	0	0	0	0	0	0	0	0
2.288	1	0	0	0	0	0	0	0	0	0	0	0	0	0
2.458	0	0	77	11	26	26	107	107	31	31	109	109	42	42
2.642	0	0	1073	1073	296	296	966	966	269	269	703	703	210	210
2.839	0	0	419	419	6	6	394	394	3	3	290	290	6	6
3.051	1	0	10	9	1	0	13	12	1	0	11	10	1	0
3.278	0	0	1	1	1	1	3	3	1	1	1	1	1	
3.523	2	0	1	0	1	0	0	0	0	0	1	0	0	0
3.700	0	0	0	0	0	0	1	1	0	0	0	0	0	0
4.000	0	0	0	0	0	0		0	1	0	0	0	0	1
4.571	1	0	0	0	2	1	0	0	0	0	0	0	0	
5.048	1	0	0	0	2	0	0	0	0	0	0	0	0	0
5 425	0	0	0	0	2	2	1	1	0	0	2	2	0	0
5 829	0	0	0	0	0	0	0	0	1	1	1	1	1	1
6 264	0	0	0	0	0	0	0	0	0	0	1	1	0	0
6 732	0	0	0	0	0	0	0	0	0	Ő	0	0	0	Ő
7 234	0	0	0	0 0	0	Ő	0	0	0	Ő	1	1	0	0
7 774	0	0	0	0	0	0	0	0	0	0	1	1	0	0
8.354	0	0	0	0	1	1	1	1	0	0	0	0	2	0
8.977	0	0	0	0	0	0	1	1	0	0	0	0	0	0
9.647	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10.37	1	0	1	0	0	0	0	0	0	0	1	0	0	0
11.14	0	0	0	0	0	0	0	0	0	0	0	0	1	1
11.97	0	0	0	0	1	1	0	0	0	0	0	0	0	0
12.86	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13.82	0	0	0	0	0	0	0	0	0	0	0	0	1	1
14.86	0	0	0	0	0	0	0	0	0	0	0	0	1	1
15.96	0	0	1	1	0	0	0	0	0	0	0	0	0	0
17.15	0	0	0	0	1	1	0	0	0	0	0	0	0	0
18.43	0	0	0	0	1	1	0	0	0	0	0	0	1	1
19.81	0	0	0	0	0	0	1	1	0	0	0	0	0	0
		Total		1586		337		1487		306		1119		265
	Eficiê	ncia			79%				79%				76%	
	Incer	teza do A	\PS		1,8%		_		1,7%				2,0%	

DL = número de partículas depois de chegar ao impactador, limpas

m) Estágio 2,5 µm – geração de partículas de 3,0 µm – Posição Girando 900 rpm

Tabela 87: Estágio 2,5 µm – geração de partículas de 3,0 µm – Posição Girando 900 rpm

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

dp	dp _{branco}	dpagua			_				_				_	
(um)	(um)	(um)	A	AL	D	DL	A	AL	D	DL	A	AL	D	DL
0.542	281	61	81	0	71	0	76	0	71	0	63	0	76	0
0.583	171	55	60	0	41	ő	10	Ő	60	ő	62	0	44	ő
0.626	124	43	52	Ő	37	0	43	Ő	53	0	45	Ő	34	Ő
0.673	106	18	47	Ő	43	Ő	46	Ő	40	Ő	39	Ő	45	Ő
0.723	76	13	44	0	39	0	50	0	36	0	30	Ő	28	0
0.720	80	7	30	0	40	ő	43	Ő	35	ő	31	0	36	ő
0.835	215	0	30	0	45	0	32	0	48	0	42	0	36	0
0.000	600	15	53	0	40	0	47	0	52	0	63	0	41	0
0.000	/17	0	5/	0	33	ő	18	0	31	Ő	15	0	28	ő
1.037	100	0	30	0	26	0	37	0	17	0	34	0	16	0
1 1 1 1	23	5	22	0	17	0	26	0	15	0	25	0	10	0
1.114	15	0	17	2	0	0	10	4	6	0	15	0	6	0
1.197	3	0	16	13	9	5	10	16	3	0	1/	11	0	0
1.200	3	0	12	10	4	1	13	0	1	0	14	12	0	0
1.302	3	0	1/	10	4	0	1/	10	0	0	0 0	5	0	0
1.400	5	0	0	10	4	0	0	2	0	0	6	3	0	0
1.390	5	0	9	4	0	0	5	3	0	0	5	1	0	0
1.713	4	0	4	2	0	0	5	1	0	0	1	0	0	0
1.043	1	0	4	2	0	0	7	-	0	0	2	1	0	0
2 1 2 0	2	0	3	1	0	0	2	0	0	0	2	1	0	0
2.123		0	5	4	0	0	10	9	0	0	8	7	0	0
2.200	0	0	5	4 60	6	6	60	60	0	0	50	50	12	12
2.400	0	0	80	80	22	22	09	80	42	3	23	39	26	26
2.042	0	0	45	45	32	2	41	41	42	42	0Z 47	47	20	20
2.059	1	0	40	45	0	0	41	41	0	0	47	4/	0	0
2 279	0	0	1	1	0	0	0	0	1	1	4	0	0	0
3.270	2	0	0	0	0	0	0	0	0	0	0	0	0	0
3 786	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4.068	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4 371	0	0	0	0	0	0	0	0	0	0	1	1	1	1
4.698	1	0	0	0	0	0	0	0	0	0	0	0	0	0
5.048	1	0	0	ő	0	0	0	Ő	0	0	0	ő	0	Ő
5 4 2 5	0	0	0	0	0	Ő	0	Ő	0	Ő	0	Ő	0	Ő
5.829	0	0	0	0	0	0	0	Ő	0	0	0	Ő	0	0
6 264	0	0	0	0	0	0	0	Ő	0	0	0	Ő	1	1
6 7 3 2	0	0	0	0	0	0	0	Ő	0	0	0	Ő	0	0
7 234	0	0	0	0	0	0	0	Ő	0	0	1	1	0	0
7.774	0	0	0	Ő	1	1	õ	0	0	0	0	0	0	Ő
8.354	0	0	0	Ő	0	0	õ	0	0	0	0	0	0	Ő
8.977	0	0	0	0	Ő	0	0	Ō	Ő	0	0	0	0	0
9.647	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10.37	1	0	0	0	0	0	0	0	0	0	0	0	0	0
11.14	0	0	Ő	0	0	0	0	0	0	0	0	0	0	0
11.97	0	0	0	0	0	0	0	Ō	0	0	0	0	0	0
12.86	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13.82	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14.86	0	0	0	0	0	0	0	Ō	0	0	0	0	0	0
15.96	0	0	1	1	0	0	0	0	0	0	0	0	0	0
17.15	0	0	0	0	0	Ō	0	Ō	0	0	0	0	0	0
18.43	0	0	1	1	0	0	0	0	0	0	0	0	0	0
19.81	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Total		243		48		260		58		232		43
	Eficiê	ncia			80%				78%				81%	
	Incerte	za do Al	S	1	1,7%		ĺ		1,9%				1,6%	

Tabela 88: Estágio 2,5 μm – geração de partículas de 3,0 μm – Posição Girando 900 rpm - continuação

I	MEDIA	σ	u _A	u _{APS}	u _C	$V_{efetivo}$	k	U
	79%	0,018382	0,010613	0,0201	0,022756	42,26785	2,061302	5%

Tabela 89: Análise de incertezas - Estágio 2,5 µm - geração de partículas de 3,0 µm - Posição Girando 900 rpm

A = número de partículas antes de chegar ao impactador

	<u> </u>	P0111	D***	3	- r			-,		3			0 0 0 0	
dp (m)	dp _{branco}	dp _{agua}	А	AL	D	DL	А	AL	D	DL	А	AL	D	DL
(μm) 0.542	(μΠ) 31	(μm) 68	63	0	80	0	88	0	86	0	7/	0	80	0
0,542	16	61	61	0	79	0	59	0	57	0	74	0	71	0
0.626	14	55	51	0	58	0	68	0	56	0	62	0	60	0
0.673	12	43	45	0	26	0	52	0	52	0	43	Ŭ Ŭ	46	0
0.723	34	18	34	0	22	0	50	0	49	0	39	0	44	0
0,777	30	13	50	0	33	0	39	0	41	0	35	0	40	0
0,835	57	7	52	0	48	0	48	0	44	0	41	0	54	0
0,898	66	0	66	0	55	0	49	0	57	0	40	0	34	0
0,965	52	15	43	0	27	0	42	0	48	0	48	0	25	0
1,037	23	0	20	0	5	0	22	0	16	0	22	0	22	0
1,114	11	0	11	0	4	0	6	0	8	0	0	0	11	0
1,197	9	5	2	0	9	0	0	0	0	0	0	0	0	0
1,286	8	0	0	0	6	0	0	0	0	0	0	0	0	0
1,382	5	0	0	0	0	0	0	0	0	0	0	0	0	0
1,486	5	0	0	0	0	0	0	0	0	0	0	0	0	0
1,596	2	0	0	0	0	0	0	0	0	0	0	0	0	0
1,715	5	0	0	0	0	0	0	0	0	0	0	0	0	0
1,843	3	0	0	0	0	0	0	0	0	0	0	0	0	
1,981	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2,129	4	0	8	4	0	0	0	0	0	0	0	0	0	0
2,288	0	0	26	26	6	6	13	13	6	6	16	16	0	0
2,458	2	0	86	84	30	28	96	94	32	30	112	110	31	29
2,642	1	0	73	12	9	8 0	98	97	9	8	129	128	22	21
2,839	2	0	21	19	2	0	43	41	6	4	47	45	8	6
3,051	1	0	2	0	0	0	1	0	1	0	4	3	0	0
3,270	0	0	1	1	0	0	2	2	0	0	1	1	0	0
3,323	0	0	0	0	0	0	0	0	0	0	1	1	0	0
3,700	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4 371	0	0	1	1	0	0	0	0	0	0	0	0	0	ő
4 698	0	0	0	0	0	0	0	0	0	0	0	0	1	1
5 048	0	0	0	Ő	0	0	0	Ő	0	0	0	Ő	0	0
5.425	0	0	0	Ő	0	Ō	0	Ő	0	0	0	0	0	0
5.829	0	0	0	Ő	0	Ō	0	Ő	0	0	0	0	0	0
6.264	0	0	0	0	0	Ō	0	0	0	Ō	0	Ō	0	Ō
6,732	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7,234	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7,774	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8,354	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8,977	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9,647	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10,366	0	0	0	0	0	0	0	0	0	0	1	1	0	0
11,140	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11,971	0	0	1	1	0	0	0	0	0	0	1	1	0	0
12,864	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13,824	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14,855	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15,963	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17,154	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18,434	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19,810	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Total		209		42		247		48		306		57
	Eficiê	encia			80%				80%				81%	<u> </u>
	Incerte	eza do Al	22		1,7%		I		1,7%	1		1	1,6%	1

n) Estágio 2,5 µm – geração de partículas de 3,0 µm – Posição Girando 600 rpm

Incerteza do APS1,7%1,7%1,6Tabela 90: Estágio 2,5 μm – geração de partículas de 3,0 μm – Posição Girando 600 rpm

MEDIA	σ	u _A	u _{APS}	u _C	$V_{efetivo}$	k	U
80%	0,007397	0,004271	0,0172	0,017683	587,7744	2,00427	4%

Tabela 91: Analise de incertezas - Estágio 2,5 µm - geração de partículas de 3,0 µm - Posição Girando 600 rpm

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

0 <u>)</u>	Estag	g10 2,5	μm – g	geraç	ao de	e parti	culas	s ae	<u>3,0 μ</u>	<u>m – P</u>	OS1Ça	10 G	irand	0 120	<u>o rpn</u>
	dp (μm)	dp _{branco} (μm)	dp _{agua} (μm)	А	AL	D	DL	А	AL	D	DL	А	AL	D	DL
	0,542	31	68	51	0	53	0	48	0	44	0	44	0	50	0
	0,583	16	61	44	0	32	0	29	0	39	0	42	0	35	0
	0,626	14	55	26	0	30	0	31	0	31	0	39	0	34	0
	0,673	12	43	32	0	35	0	33	0	29	0	31	0	16	0
	0,723	34	18	27	0	37	0	29	0	24	0	29	0	39	0
	0,777	30	13	31	0	36	0	27	0	30	0	36	0	49	0
	0,835	57	7	39	0	43	0	33	0	25	0	43	0	32	0
	0,898	66	0	41	0	41	0	35	0	31	0	32	0	23	0
	0,965	52	15	40	0	24	0	32	0	33	0	32	0	30	0
	1,037	23	0	19	0	17	0	19	0	11	0	25	2	21	0
	1,114	11	0	13	2	22	0	11	0	0	0	16	5	29	0
	1,197	9	5	9	0	10	0	17	3	12	0	13	0	9	0
	1,286	8	0	10	2	12	0	18	10	5	0	18	10	3	0
	1,382	5	0	7	2	4	0	8	3	7	0	13	8	7	0
	1,486	5	0	14	9	4	0	4	0	10	0	2	0	3	0
	1,596	2	0	4	2	2	0	5	3	2	0	5	3	1	0
	1,715	5	0	8	3	3	0	6	1	5	0	5	0	3	0
	1,843	3	0	6	3	4	0	3	0	3	0	1	0	1	0
	1,981	0	0	2	2	3	0	6	6	4	0	3	3	0	0
	2,129	4	0	2	0	0	0	1	0	2	0	4	0	3	0
	2,288	0	0	31	31	9	9	26	26	9	9	24	24	5	5
	2,458	2	0	52	50	20	18	77	75	24	22	70	68	30	28
	2,642	1	0	31	30	6	5	57	56	9	8	62	61	6	5
	2,839	2	0	16	14	2	0	15	13	0	0	16	14	1	0
	3,051	1	0	0	0	0	0	1	0	0	0	2	1	0	0
	3,278	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3,523	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	3,786	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	4,068	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	4,371	0	0	0	0	0	0	1	1	0	0	0	0	0	0
-	4,698	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	5,048	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	5,425	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	5,829	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	0,264	0	0	0	0	0	0	0	0	0	0	0	0	1	1
-	6,73Z	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	7,234	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	9 254	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	8 077	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	0,977	0	0	0	0	0	0	0	0	0	0	1	1	0	0
-	9,047	0	0	1	1	0	0	0	0	0	0	0	0	0	0
+	11 1/0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
+	11 071	0	0	0	0	0	0	0	0	0	0	0	0	1	1
+	12 864	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	13 824	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	14 855	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	15 963	0	0	0	0	0	0	0	õ	0	0	0	0	0	0
-	17 154	0	0	0	0	0	0	0	õ	0	0	0	0	0	0
F	18 434	0	0	0	0	0	0	0	õ	0	0	0	0	0	0
-	19.810	0	0 0	0 0	n n	0	Ő	0 0	Ő	0	Ő	0	0	0	0 0
	,	Ŭ	Total	Ť	151	Ŭ	32	Ť	197	Ŭ	39		200	Ŭ	40
F		Eficiê	incia			79%				80%				80%	
		Incerte	eza do Al	s		1,8%				1,7%				1,7%	
	1 00	T	2.5	-	~	1	1	1 0			~ ~ ~	·	1000	· · · · · · ·	

a) Estério 2.5 um conceão de nortículos de 2.0 um Desição Circondo 1200

DL = número de partículas depois de chegar ao impactador, limpas

Tabela 92: Estágio 2,5 µm – geração de partículas de 3,0 µm – Posição Girando 1200 rpm

MEDIA	σ	u _A	u _{APS}	u _C	$V_{efetivo}$	k	U
80%	0,00886	0,005115	0,0182	0,018876	370,8574	2,006782	4%
1 1 0 0 1	/11 1 1			~ `		1 0 0	D : ~

Tabela 93: Análise de incertezas - Estágio 2,5 μm – geração de partículas de 3,0 μm – Posição Girando 1200 rpm

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

	p) Est	ágio 2,5 µ	ım –	geraç	ção de p	partíc	ulas	de 5,0) µm –	Posi	ção E	}	
dp (μm)	dp _{branco} (μm)	dp _{agua} (μm)	А	AL	D	DL	А	AL	D	DL	А	AL	D
0.542	65	68	39	0	42	0	42	0	44	0	48	0	45
0.583	56	61	36	0	36	0	36	0	39	0	42	0	41
0.626	53	55	49	0	44	0	35	0	32	0	37	0	43
0.673	50	43	83	0	76	0	44	0	41	0	33	0	37
0.723	48	18	52	0	45	0	48	0	44	0	26	0	35
0.777	40	13	43	0	39	0	31	0	38	0	21	0	25
0.835	45	7	51	0	49	0	24	0	22	0	12	0	23
0.898	39	0	34	0	31	0	19	0	15	0	11	0	18
0.965	32	15	28	0	25	0	22	0	13	0	9	0	17
1.037	25	0	21	0	16	0	14	0	9	0	5	0	13
1.114	19	0	15	0	12	0	15	0	5	0	0	0	5
1.197	16	5	9	0	8	0	12	0	9	0	0	0	3
1.286	23	0	5	0	3	0	7	0	7	0	0	0	0
1.382	11	0	8	0	1	0	8	0	4	0	0	0	0
1.486	8	0	2	0	2	0	3	0	1	0	0	0	0
1.596	9	0	3	0	2	0	7	0	1	0	0	0	0
1.715	11	0	2	0	3	0	1	0	0	0	0	0	0
1.843	3	0	2	0	1	0	1	0	0	0	0	0	0
1.981	1	0	2	1	0	0	0	0	0	0	0	0	0
2.129	3	0	1	0	0	0	0	0	2	0	0	0	0
2.288	2	0	1	0	0	0	0	0	0	0	0	0	0
2.458	0	0	2	2	0	0	0	0	0	0	0	0	0
2.642	0	0	3	3	0	0	0	0	0	0	0	0	0
2.839	0	0	5	5	0	0	0	0	0	0	0	0	0
3.051	1	0	0	0	0	0	0	0	0	0	0	0	0
3.278	0	0	0	0	0	0	0	0	0	0	0	0	0
3.523	1	0	0	0	0	0	0	0	0	0	0	0	0
3.786	1	0	34	33	0	0	23	22	0	0	23	22	0
4.068	0	0	226	226	0	0	222	222	0	0	185	185	0
4.371	1	0	39	38	0	0	32	31	0	0	33	32	0
4.698	0	0	0	0	0	0	8	8	0	0	7	7	0
5.048	0	0	0	0	0	0	2	2	0	0	1	1	0
5.425	0	0	0	0	0	0	1	1	0	0	0	0	0
5.829	0	0	0	0	0	0	1	1	0	0	0	0	0
6.264	0	0	0	0	0	0	0	0	0	0	0	0	0
6.732	0	0	0	0	0	0	1	1	0	0	0	0	0
7.234	0	0	0	0	0	0	0	0	0	0	0	0	0
7.774	0	0	0	0	0	0	0	0	0	0	0	0	0
8.354	0	0	0	0	0	0	0	0	0	0	0	0	0
8.977	0	0	0	0	0	0	0	0	0	0	0	0	0
9.647	0	0	0	0	0	0	0	0	0	0	0	0	0
10.37	0	0	0	0	0	0	1	1	0	0	0	0	0
11.14	0	0	0	0	0	0	0	0	0	0	0	0	0
11.97	0	0	0	0	0	0	0	0	1	1	0	0	0
12.86	0	0	0	0	0	0	2	2	0	0	0	0	0
13.82	0	0	0	0	0	0	0	0	0	0	0	0	0
14.86	0	0	0	0	0	0	0	0	0	0	0	0	0
15.96	0	0	0	0	0	0	1	1	0	0	0	0	0
17.15	0	0	0	0	0	0	1	1	0	0	0	0	0
18 43			0	0	0	0		0	0	0		0	0

DL = número de	partículas de	pois de chegar	ao impactado	r, limpas
			1	/

Incerteza do APS 0,01% Tabela 94: Estágio 2,5 µm – geração de partículas de 5,0 µm – Posição B

100%

100%

0,04%

100%

0,01%

A = número de partículas antes de chegar ao impactador

Eficiência

Total

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

DL = número de partículas depois de chegar ao impactador, limpas

19.81

dp (um)	dp _{branco} (µm)	dp _{agua} (µm)	А	AL	D	DL	А	AL	D	DL	А	AL	D	DL
0.542	65	68	102	0	98	0	106	0	110	0	121	0	109	0
0.583	56	61	96	0	87	0	99	0	92	0	110	0	100	0
0.626	53	55	92	0	85	0	92	0	86	0	99	0	99	0
0.673	50	43	81	0	76	0	82	0	74	0	85	0	85	0
0.723	48	18	66	0	63	0	65	0	62	0	62	0	62	0
0.777	40	13	52	0	50	0	51	0	50	0	51	0	46	0
0.835	45	7	51	0	42	0	43	0	47	0	42	0	38	0
0.898	39	0	27	0	37	0	39	0	32	0	33	0	33	0
0.965	32	15	27	0	27	0	25	0	29	0	26	0	25	0
1.037	25	0	17	0	20	0	18	0	21	0	22	0	20	0
1.114	19	0	15	0	14	0	12	0	14	0	17	0	17	0
1.197	16	5	10	0	14	0	11	0	12	0	16	0	11	0
1.286	23	0	10	0	11	0	3	0	8	0	10	0	9	0
1.382	11	0	5	0	8	0	6	0	3	0	8	0	1	0
1.486	8	0	4	0	3	0	0	0	3	0	5	0	2	0
1.596	9	0	6	0	3	0	6	0	3	0	3	0	2	0
1.715	11	0	5	0	5	0	3	0	3	0	7	0	0	0
1.843	3	0	2	0	0	0	2	0	2	0	5	2	0	0
1.981	1	0	6	5	0	0	1	0	1	0	0	0	0	0
2.129	3	0	0	0	0	0	2	0	0	0	3	0	0	0
2.288	2	0	1	0	0	0	0	0	1	0	1	0	0	0
2.458	0	0	2	2	0	0	3	3	0	0	0	0	0	0
2.642	0	0	2	2	0	0	0	0	0	0	1	1	0	0
2.839	0	0	0	0	0	0	0	0	0	0	2	2	0	0
3.051	1	0	0	0	0	0	0	0	0	0	0	0	0	0
3.278	0	0	0	Ō	0	Ō	0	Ō	0	Ō	0	Ō	0	Ō
3.523	1	0	1	0	0	0	0	0	0	0	1	0	0	0
3.786	1	0	4	3	0	0	6	5	0	0	10	9	0	0
4.068	0	0	30	30	0	0	30	30	1	1	28	28	1	1
4.371	1	0	0	0	0	0	4	3	0	0	0	0	0	0
4.698	0	0	6	6	0	0	1	1	0	0	0	0	0	0
5.048	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5.425	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5.829	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6.264	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6.732	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7.234	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7.774	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8.354	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8.977	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9.647	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10.37	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11.14	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11.97	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12.86	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13.82	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14.86	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15.96	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17.15	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18.43	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19.81	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Total		48		0		42		1		42		1
		Eficiência			100%				98%				98%	
		Incerteza	a do AF	S	0,0%				0,2%				0,2%	

Tabela 95: Estágio 2,5 µm - geração de partículas de 5,0 µm - Posição B - continuação

MEDIA	σ	u _A	u _{APS}	u _C	${\it v}_{efetivo}$	k	U
99%	0,011493	0,006635	0,0020	0,006936	2,388	4,526551	3%

Tabela 96: Análise de incertezas - Estágio 2,5 µm - geração de partículas de 5,0 µm - Posição B

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

	q) Est	ágio 2,5 µ	ım –	geraç	ção de p	partíc	ulas	de 5,0	0 μm –	Posi	ção C	7	
dp (μm)	dp _{branco} (μm)	dp _{agua} (μm)	А	AL	D	DL	А	AL	D	DL	А	AL	D
0.542	65	68	125	0	112	0	115	0	124	0	121	0	109
0.583	56	61	102	0	96	0	95	0	92	0	105	0	99
0.626	53	55	96	0	91	0	91	0	82	0	96	0	81
0.673	50	43	85	0	84	0	88	0	74	0	81	0	76
0.723	48	18	64	0	60	0	60	0	62	0	66	0	65
0.777	40	13	50	0	51	0	53	1	50	0	51	0	50
0.835	45	7	47	0	42	0	44	0	39	0	45	0	43
0.898	39	0	36	0	33	0	32	0	33	0	37	0	37
0.965	32	15	32	0	27	0	27	0	21	0	31	0	33
1.037	25	0	22	0	21	0	22	0	23	0	25	0	25
1.114	19	0	19	0	9	0	18	0	14	0	19	0	14
1.197	16	5	9	0	6	0	11	0	3	0	20	0	4
1.286	23	0	4	0	12	0	6	0	3	0	9	0	2
1.382	11	0	9	0	4	0	11	0	1	0	5	0	1
1.486	8	0	3	0	1	0	3	0	0	0	6	0	0
1.596	9	0	3	0	0	0	2	0	0	0	10	1	0
1.715	11	0	8	0	1	0	2	0	0	0	8	0	1
1.843	3	0	1	0	1	0	5	2	0	0	3	0	0
1.981	1	0	0	0	0	0	6	5	0	0	2	1	0
2.129	3	0	1	0	1	0	6	3	1	0	6	3	0
2.288	2	0	0	0	0	0	3	1	0	0	4	2	0
2.458	0	0	3	3	0	0	3	3	0	0	5	5	0
2.642	0	0	1	1	1	1	2	2	0	0	4	4	0
2.839	0	0	1	1	0	0	2	2	0	0	7	7	0
3.051	1	0	0	0	0	0	1	0	0	0	5	4	0
3.278	0	0	0	0	0	0	0	0	0	0	3	3	0
3.523	1	0	1	0	0	0	1	0	0	0	6	5	0
3.786	1	0	32	31	0	0	19	18	0	0	30	29	0
4.068	0	0	202	202	0	0	221	221	0	0	187	187	0
4.371	1	0	38	37	0	0	44	43	0	0	37	36	0
4.698	0	0	6	6	0	0	8	8	0	0	9	9	0
5.048	0	0	2	2	0	0	2	2	0	0	5	5	0
5.425	0	0	1	1	0	0	0	0	0	0	2	2	0
5.829	0	0	0	0	0	0	0	0	0	0	0	0	0
6.264	0	0	0	0	0	0	0	0	0	0	0	0	0
6.732	0	0	1	1	0	0	0	0	0	0	0	0	0
7.234	0	0	1	1	0	0	0	0	0	0	0	0	0
7.774	0	0	0	0	0	0	1	1	0	0	0	0	0
8.354	0	0	0	0	0	0	0	0	0	0	0	0	0
8.977	0	0	0	0	0	0	0	0	0	0	0	0	0
9.647	0	0	1	1	0	0	0	0	0	0	0	0	0
10.37	0	0	0	0	0	0	0	0	0	0	0	0	0
11.14	0	0	0	0	0	0	0	0	0	0	0	0	0
11.97	0	0	0	0	0	0	0	0	0	0	0	U	0
12.86	0	0	0	0	0	0	0	0	0	0	0	U	0
13.82	0	0	0	0	0	0	0	0	0	0	0	0	0
14.86	0	0	0	0	U	0	0	0	U	0	0	U	0
15.96	0	0	1	1	0	0	0	0	0	0	0	0	0
17.15	0	0	0	0	0	0	0	0	0	0	0	0	0

DL = numero de particulas depois de chegar ao mipactador, impas	DL = número de p	partículas dep	ois de chegar ao	impactador, limp	as
--	------------------	----------------	------------------	------------------	----

Incerteza do APS 0,04% 0,01% Tabela 97: Estágio 2,5 µm - geração de partículas de 5,0 µm - Posição C

100%

100%

100%

0,01%

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

DL = número de partículas depois de chegar ao impactador, limpas

DL

18.43

19.81

Eficiência

Total

dp (μm)	dp _{branco} (μm)	dp _{agua} (μm)	А	AL	D	DL	А	AL	D	DL	А	AL	D	DL
0.542	65	68	124	0	116	0	109	0	132	0	124	0	120	0
0.583	56	61	101	0	104	0	92	0	106	0	107	0	114	0
0.626	53	55	92	0	96	0	82	0	95	0	92	0	97	0
0.673	50	43	85	0	87	0	73	0	87	0	81	0	86	0
0.723	48	18	66	0	61	0	60	0	63	0	64	0	64	0
0.777	40	13	52	0	50	0	51	0	51	0	51	0	52	0
0.835	45	7	43	0	41	0	47	0	43	0	42	0	39	0
0.898	39	0	34	0	31	0	39	0	35	0	38	0	31	0
0.965	32	15	36	0	26	0	31	0	30	0	23	0	22	0
1.037	25	0	35	10	25	0	24	0	22	0	19	0	17	0
1.114	19	0	14	0	16	0	19	0	19	0	14	0	12	0
1.197	16	5	10	0	14	0	15	0	16	0	9	0	8	0
1.286	23	0	20	0	14	0	20	0	10	0	6	0	5	0
1.382	11	0	9	0	7	0	5	0	8	0	2	0	4	0
1.486	8	0	9	1	9	1	3	0	8	0	0	0	0	0
1.596	9	0	7	0	0	0	8	0	2	0	0	0	0	0
1.715	11	0	3	0	0	0	7	0	4	0	0	0	0	0
1.843	3	0	15	12	0	0	4	1	0	0	0	0	0	0
1.981	1	0	4	3	0	0	3	2	0	0	0	0	0	0
2.129	3	0	3	0	0	0	3	0	0	0	0	0	0	0
2.288	2	0	1	0	0	0	3	1	0	0	0	0	0	0
2.458	0	0	1	1	0	0	4	4	0	0	2	2	0	0
2.642	0	0	1	1	0	0	2	2	0	0	4	4	0	0
2.839	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.051	1	0	0	0	0	0	1	1	0	0	0	0	0	0
3.278	0	0	0	0	0	0	1	1	0	0	0	0	0	0
3.323	1	0	50	50	0	1	2	0	0	0	0	6	0	0
3.700	0	0	- 59 - 45	30	2 1	1	9	0	0	0	11	0	0	0
4.000	1	0	40	45	0	0	3	2	0	0	3	2	0	0
4.571	0	0	0	0	0	0	1	1	0	0	1	1	0	0
5.048	0	0	0	0	0	0	0	0	0	0	1	1	0	0
5.425	0	0	0	0	0	0	0	0	0	0	0	0	0	Ő
5.829	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6 264	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6.732	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7.234	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7.774	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8.354	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8.977	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9.647	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10.37	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11.14	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11.97	0	0	1	1	0	0	0	0	0	0	0	0	0	0
12.86	0	0	0	0	0	0	1	1	0	0	0	0	0	0
13.82	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14.86	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15.96	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17.15	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18.43	0	0	0	0	0	0	0	0	0	0	1	1	0	0
19.81	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Total		132		3		39		0		28		0
		Eficiência			98%				99%				99%	
		Incertez	a do AF	PS	0,2%				0,1%				0,1%	

Tabela 98: Estágio 2,5 µm - geração de partículas de 5,0 µm - Posição C - continuação

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

(1	Estagic	ο 2,3 μm -	- gera	içao (le parti	culas	s de J	,0 μι	n - Pos	içao	Giral	100 9	oo rpn	1
dp	dp _{branco}	dp _{agua}	۸	A1	D	ы	۸	A1	D	ы	۸	A1	Р	ы
(μm)	(μ m)	(μ m)	А	AL	D	DL	А	AL	D	DL	А	AL	D	DL
0.542	65	68	125	0	127	0	121	0	128	0	132	0	127	0
0.583	56	61	106	0	107	0	101	0	92	0	112	0	116	0
0.626	53	55	92	0	96	0	89	0	82	0	94	0	94	0
0.673	50	43	87	0	82	0	82	0	73	0	86	0	82	0
0.070	48	18	60	Ő	61	0	62	Ő	61	0	66	ů 0	63	ů 0
0.723	40	10	45	0	46	0	46	0	52	0	40	0	42	0
0.777	40	13	40	0	40	0	40	0	32	0	40	0	42	0
0.000	40	7	39	0	37	0	32	0	41	0	41	0	30	0
0.898	39	0	31	0	29	0	25	0	37	0	32	0	31	0
0.965	32	15	28	U	25	0	17	0	26	0	27	0	25	0
1.037	25	0	19	0	1/	0	12	0	21	0	21	0	19	0
1.114	19	0	14	0	11	0	8	0	12	0	16	0	14	0
1.197	16	5	6	0	5	0	7	0	9	0	11	0	0	0
1.286	23	0	6	0	0	0	7	0	0	0	12	0	0	0
1.382	11	0	7	0	0	0	3	0	0	0	6	0	0	0
1.486	8	0	5	0	0	0	4	0	0	0	6	0	0	0
1.596	9	0	4	0	0	0	4	0	0	0	1	0	0	0
1.715	11	0	3	0	0	0	6	0	0	0	1	0	0	0
1.843	3	0	2	0	0	0	1	0	0	0	2	0	0	0
1.981	1	0	0	0	0	0	3	2	0	0	0	0	0	0
2.129	3	0	1	0	0	0	3	0	0	0	2	0	0	0
2.288	2	0	1	0	0	0	1	0	0	0	2	0	0	0
2.458	0	0	0	0	0	0	2	2	0	0	2	2	0	0
2.642	0	0	3	3	0	0	7	7	0	0	5	5	0	0
2.839	0	0	4	4	0	0	0	0	0	0	2	2	0	0
3.051	1	0	2	1	0	0	0	0	0	0	0	0	0	0
3.278	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.523	1	0	1	0	0	0	0	0	0	0	2	1	0	0
3.786	1	0	24	23	0	0	22	21	0	0	14	13	0	0
4.068	0	0	166	166	0	0	234	234	0	0	211	211	0	0
4.371	1	0	27	26	0	0	30	29	0	0	47	46	0	0
4.698	0	0	6	6	0	0	3	3	0	0	8	8	0	0
5.048	0	0	0	0	0	0	3	3	0	0	1	1	0	0
5.425	0	0	1	1	0	0	1	1	0	0	2	2	0	0
5.829	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6 264	0	0	0	0	0	0	0	0	0	0	1	1	0	0
6 732	0	0	0	Ő	0	0	0	Ő	0	Ő	1	1	0	Ő
7 234	0	0	1	1	0	0	0	Ő	0	Ő	0	0	0	0
7 774	0	0	0	0	0	0	0	Ő	0	0	0	Ő	0	Õ
8 354	0	0	1	1	0	0	1	1	0	0 0	1	1	0	õ
8 977	0	0	0	0	0	0	0	0	0	0 0	0	0	0	õ
9.647	0	0	0	õ	0	0	0	õ	0	0	0	n n	0	0
10 37	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11 1/	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11.07	0	0	1	1	0	0	0	0	0	0	1	1	0	0
12.86	0	0	0	0	0	0	1	1	0	0	0	0	0	0
13.82	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14.86	0	0	1	1	0	0	0	0	0	0	0	0	0	0
15.00	0	0	1	1	0	0	0	0	0	0	0	0	0	0
17 15	0	0	0		0	0	0	0	0	0	0	0	0	0
10.10	0	0	0	0	0	0	0	0	0	0	1	1	0	0
10.43	0	0	0	0	0	0	0	4	0	0			0	0
19.01	U	U	U	0	U	0		205	U	0	U	U 205	U	U A
		Ficiância		235	100%	U		305	100%	U		290	1000/	U
			a de Ar		0.040/				0.040/				0.040/	
		incerteza	a uu Al	-0	0,01%				0,01%				0,01%	

r) Estágio 2.5 um – geração de partículas de 5.0 um – Posição Girando 900 rpm

Tabela 100: Estágio 2,5 µm - geração de partículas de 5,0 µm - Posição Girando 900 rpm

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

dn	dn.	dn										1		
(up)	(upbranco	(upagua	Α	AL	D	DL	Α	AL	D	DL	Α	AL	D	DL
(μπ)	(μΠ)	(μΠ)	404	•	400	•	440	•	440	•	404	•	407	•
0.542	65	68	121	0	132	0	119	0	118	0	131	0	107	0
0.583	56	61	107	0	108	0	105	0	104	0	112	0	95	0
0.626	53	55	94	0	92	0	94	0	98	0	96	0	85	0
0.673	50	43	79	0	71	0	83	0	88	0	84	0	73	0
0.723	48	18	64	0	63	0	65	0	64	0	64	0	60	0
0.777	40	13	51	0	49	0	51	0	51	0	50	0	52	0
0.835	45	7	46	0	41	0	43	0	45	0	42	0	42	0
0.898	39	0	38	Ō	30	Ō	37	Ô	36	Ō	37	Ō	31	Ō
0.000	32	15	28	ő	22	ő	33	ů 0	33	Ő	26	Ő	28	Ő
1.027	25	15	10	0	17	0	24	0	16	0	20	0	10	0
1.037	23	0	19	0	47	0	24	0	10	0	21	0	19	0
1.114	19	0	15	0	17	0	17	0	13	0	19	0	14	0
1.197	16	5	11	0	18	U	19	0	16	0	1/	0	0	U
1.286	23	0	11	0	12	0	9	0	5	0	17	0	0	0
1.382	11	0	9	0	7	0	10	0	10	0	8	0	0	0
1.486	8	0	5	0	4	0	5	0	5	0	11	3	0	0
1.596	9	0	4	0	0	0	6	0	4	0	4	0	0	0
1.715	11	0	6	0	0	0	8	0	3	0	5	0	0	0
1.843	3	0	8	5	0	0	3	0	0	0	8	5	0	0
1.981	1	0	1	0	0	0	4	3	1	0	4	3	0	0
2.129	3	0	5	2	0	0	6	3	0	0	3	0	0	0
2.288	2	0	2	0	0	0	0	0	0	0	1	0	0	0
2 458	0	0	3	3	0	Ō	3	3	0	Ō	2	2	0	Ō
2.642	0	0	1	1	0	ő	3	3	0	Ő	4	4	0	ő
2.042	0	0	0		0	0	1	1	0	0		-	0	0
2.059	1	0	1	0	0	0	1	1	0	0	2	1	0	0
3.001	0	0	1	1	0	0		0	0	0		1	0	0
3.270	0	0			0	0	0	0	0	0	1		0	0
3.523	1	0	0	0	0	0	1	0	0	0		0	0	0
3.786	1	0	11	10	0	0	11	10	0	0	/	6	0	0
4.068	0	0	28	28	0	0	34	34	1	1	37	37	0	0
4.371	1	0	6	5	0	0	5	4	0	0	5	4	0	0
4.698	0	0	0	0	0	0	2	2	0	0	1	1	0	0
5.048	0	0	0	0	0	0	0	0	0	0	1	1	0	0
5.425	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5.829	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6.264	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6.732	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7.234	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7,774	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8 354	Õ	0	1	1	Õ	Ő	Õ	0	0	Ő	õ	ñ	Ő	Ő
8 077	0	0	0	0	0	n n	0	n n	0	ñ	0	0	0	n n
9.647	0	0	0	0	0	0	0	0	0	0	1	1	0	0
9.047	0	0	0	0	0	0	0	0	0	0		0	0	0
11.37	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11.14	0	0	0	0	0	0	0	U	0	0	0	0	0	0
11.97	0	0	U	U	0	U	0	U	0	U C	0	0	0	U
12.86	0	0	0	U	0	U	0	U	0	U	0	U	0	U
13.82	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14.86	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15.96	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17.15	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18.43	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19.81	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Total	1	56		0	1	63		1		69		0
		Eficiência			99%				98%				100%	
		Incerteza	a do AF	Ś	0,1%		1		0,1%			1	0,0%	

Tabela 101: Estágio 2,5 µm – geração de partículas de 5,0 µm – Posição Girando 900 rpm - continuação

MEDIA	σ	u _A	u _{APS}	u _C	$V_{efetivo}$	k	U
99%	0,005713	0,003298	0,0014	0,003564	2,726727	4,526551	2%

Tabela 102: Analise de incertezas - Estágio 2,5 µm - geração de partículas de 5,0 µm - Posição Girando 900 rpm

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Incerteza	a do AF	S	0.2%				0.04%				0.1%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Eficiência			98%	-			100%				99%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13,01	0	Total	U	95	0	2	0	80	0	0	0	97	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19.81	0	0	0	0	0	0	0	0	0	0	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18 434	0	0	0	0	0	0	0	0	0	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17 15/	0	0	0	0	0	0	0	0	0	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14,000	0	0	0	0	0	0	0	0	0	0	0	0	0
0.542 65 66 121 0 118 0 125 0 119 0 109 0 107 0.583 55 97 0 85 0 92 0 91 0 87 0 85 0.673 50 43 83 0 74 0 83 0 81 0 60 62 0 52 0 60 52 0 43 63 0 52 0 41 0 48 0 32 0 32 0 32 0 32 0 28 0 29 0 965 32 15 31 0 31 0 27 0 31 0 28 0 21 15 13 0 13 0 13 0 13 0 13 12 0 13 14 15 11 15 0 13 10<	13,024	0	0	0	0	0	0	0	0	0	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12,004	0	0	1	1	0	0	0	0	0	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11,9/1	0	0	0	0	0	0	0	0	0	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11,14	0	0	0	0	0	0		0	0	0	0	0	0
0.642 65 68 121 0 118 0 125 0 119 0 109 0 107 0.583 56 61 102 0 93 0 100 0 103 0 99 0 96 0 96 0 96 0 97 0 85 0 92 0 91 0 87 0 85 0.626 53 55 97 0 85 0 65 0 65 0 65 0 65 0 65 0 62 0 52 0 41 0 44 0 44 0 44 0 39 0 33 0 31 0 27 0 31 0 23 0 21 0 13 0 13 0 13 0 13 0 13 0 13 0 13 12	11 4 4	0	0	U	0	0	0	0	U	0	0	0	U	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9,047	0	0	U	0	0	0	0	U	0	0	0	U	0
0.542 65 68 121 0 118 0 125 0 119 0 109 0 107 0.583 56 61 102 0 93 0 100 0 103 0 99 0 96 0 96 0 96 0 97 0 85 0 92 0 91 0 87 0 85 0.626 53 55 97 0 85 0 64 0 65 0 66 0 652 0 52 0 41 0,777 40 13 50 0 51 0 27 0 31 0 32 0 22 0 22 0 23 0 21 0 148 0 12 0 11 0 15 0 122 0 1 15 121 1 0 1 15 </td <td>0,9//</td> <td>0</td>	0,9//	0	0	0	0	0	0	0	0	0	0	0	0	0
0.542 65 68 121 0 118 0 125 0 119 0 109 0 100 0 0.583 56 61 102 0 93 0 100 0 103 0 99 0 96 0.626 53 55 97 0 85 0 92 0 91 0 87 0 85 0.626 53 55 97 0 85 0 81 0 73 0 62 0.777 40 13 50 0 51 0 52 0 52 0 44 0.835 45 7 42 0 43 0 41 0 41 0 48 0 32 0 21 0 28 0 21 0 33 0 21 0 13 14 14 14 14	8,354	0	0	U	0	0	0	0	U	0	0	0	U	1
0.542 65 68 121 0 118 0 125 0 119 0 109 0 100 0 0.583 56 61 102 0 93 0 100 0 103 0 99 0 96 0.626 53 55 97 0 85 0 92 0 91 0 87 0 85 0,673 50 43 83 0 74 0 83 0 811 0 73 0 62 0,777 40 13 50 0 51 0 50 0 52 0 28 0 21 0 441 0 48 0 32 0 28 0 21 0 23 0 21 0 23 0 21 0 13 13 13 0 11 13 14 0	1,174	0	0	0	U	0	U	0	U	0	U	0	U	0
0.542 65 68 121 0 118 0 125 0 119 0 109 0 100 0 0.583 56 61 102 0 93 0 100 0 103 0 99 0 96 0.626 53 55 97 0 85 0 92 0 91 0 87 0 85 0.673 50 43 83 0 74 0 83 0 811 0 73 0 62 0,777 40 13 50 0 51 0 50 0 52 0 20 41 0,835 45 7 42 0 43 0 41 0 44 0 22 0 20 21 0 23 0 21 0 28 0 21 0 21 0 21	7,234	0	0	0	U	0	U	0	U	0	U	0	U	0
0.542 65 68 121 0 118 0 125 0 119 0 109 0 107 0,583 56 61 102 0 93 0 100 0 103 0 99 0 96 0,626 53 55 97 0 85 0 92 0 91 0 87 0 85 0,673 50 43 83 0 74 0 83 0 81 0 73 0 62 0,777 40 13 50 0 51 0 52 0 52 0 41 0 48 0 32 0 29 0,88 39 0 37 0 39 0 38 0 32 0 28 0 21 1 10 11 10 11 10 11 11 10 11	6,732	0	0	0	U	0	U	0	U	0	U	1	1	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6,264	0	0	0	U	0	0	0	U	0	0	0	U	0
0.542 65 68 121 0 118 0 125 0 119 0 109 0 107 0.583 56 61 102 0 93 0 100 0 103 0 99 0 96 0.626 53 55 97 0 85 0 92 0 91 0 87 0 85 0.673 50 43 83 0 74 0 83 0 81 0 73 0 62 0,777 40 13 50 0 51 0 041 0 41 0 42 0 43 0 39 0 38 0 39 0 32 0 29 0,855 32 15 0 13 0 13 0 13 0 13 0 13 0 13 10 15 10	5,829	0	0	0	U	0	U	0	U	0	U	0	U	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,425	0	0	U	0	0	0	0	U	0	0	0	U	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5,048	0	0	0	U	0	0	1	1	0	0	0	U	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4,698	0	0	0	U	0	U	0	U	0	U	3	3	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4,371	1	0	6	5	0	0	3	2	0	0	7	6	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4,068	0	0	40	40	0	0	44	44	0	0	51	51	0
0.542 65 68 121 0 118 0 125 0 119 0 109 0 107 0.583 56 61 102 0 93 0 100 0 103 0 99 0 96 0.626 53 55 97 0 85 0 92 0 91 0 87 0 85 0.673 50 43 83 0 74 0 83 0 81 0 73 0 62 0.723 48 18 63 0 0 64 0 65 0 0 52 0 52 0 52 0 52 0 52 0 41 0 44 0 48 0 32 0.835 45 7 42 0 43 0 41 0 41 0 48 0 32 0.898 39 0 37 0 39 0 38 0 39 0 32 0 21 0 18 $1,037$ 25 0 25 0 22 0 23 0 21 0 18 0 19 0 13 $1,037$ 25 0 25 0 21 0 23 0 21 0 18 $1,037$ 25 0 25 0 21 0 0 0 0 <	3,786	1	0	28	27	0	0	18	17	0	0	17	16	0
0.542 65 68 121 0 118 0 125 0 119 0 109 0 107 0.583 56 61 102 0 93 0 100 0 103 0 99 0 96 $0,626$ 53 55 97 0 85 0 92 0 91 0 87 0 85 $0,673$ 50 43 83 0 74 0 83 0 81 0 73 0 85 $0,773$ 48 18 63 0 66 0 664 0 655 0 60 52 $0,777$ 40 13 50 0 51 0 50 0 52 0 52 0 41 $0,835$ 45 7 42 0 43 0 41 0 41 0 48 0 32 $0,898$ 39 0 37 0 39 0 38 0 39 0 32 0 21 $1,037$ 25 0 25 0 25 0 21 0 23 0 21 0 $1,114$ 19 0 15 0 20 1 19 0 15 0 21 0 $1,984$ 23 0 15 0 13 0 13 0 13 0 0 0 0 </td <td>3,523</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	3,523	1	0	0	0	0	0	1	0	0	0	0	0	0
0,542 65 68 121 0 118 0 125 0 119 0 109 0 107 $0,583$ 56 61 102 0 93 0 100 0 103 0 99 0 96 $0,626$ 53 55 97 0 85 0 92 0 91 0 87 0 85 $0,673$ 50 43 83 0 74 0 83 0 81 0 73 0 62 $0,723$ 48 18 63 0 60 0 64 0 65 0 60 0 52 $0,777$ 40 13 50 0 51 0 50 0 52 0 52 0 41 $0,835$ 45 7 42 0 43 0 41 0 41 0 48 0 32 $0,898$ 39 0 37 0 39 0 38 0 39 0 32 0 21 0 $1,037$ 25 0 25 0 21 0 23 0 21 0 20 1 15 $1,197$ 16 5 17 0 18 0 15 0 13 0 13 2 0 1 $1,197$ 16 5 17 0 18 0 10 0 <td>3,278</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	3,278	0	0	1	1	0	0	0	0	0	0	0	0	0
0.542 65 68 121 0 118 0 125 0 119 0 109 0 107 0.583 56 61 102 0 93 0 100 0 103 0 99 0 96 0.626 53 55 97 0 85 0 92 0 91 0 87 0 85 0.673 50 43 83 0 74 0 83 0 81 0 73 0 62 0.773 48 118 63 0 60 0 64 0 65 0 0 62 0.773 48 118 63 0 60 0 64 0 65 0 0 64 0.835 45 7 42 0 43 0 41 0 41 0 48 0 32 0.898 39 0 37 0 39 0 38 0 39 0 32 0 29 0.965 32 15 31 0 31 0 27 0 31 0 28 0 21 1.037 25 0 25 0 21 0 23 0 21 0 18 1.141 19 0 15 0 13 0 11 15 0 10 11 1.197 1	3,051	1	0	0	0	0	0	0	0	0	0	3	2	0
0,542 65 68 121 0 118 0 125 0 119 0 109 0 107 $0,583$ 56 61 102 0 93 0 100 0 103 0 99 0 96 $0,626$ 53 55 97 0 85 0 92 0 91 0 87 0 85 $0,673$ 50 43 83 0 74 0 83 0 81 0 73 0 62 $0,773$ 48 18 63 0 60 0 64 0 65 0 60 0 52 $0,777$ 40 13 50 0 51 0 50 0 52 0 41 0 48 0 32 $0,777$ 40 13 50 0 51 0 50 0 52 0 41 0 48 0 32 $0,777$ 40 13 50 0 43 0 41 0 41 0 48 0 32 $0,777$ 40 13 0 31 0 27 0 31 0 28 0 21 $0,88$ 39 0 37 0 25 0 21 0 23 0 21 0 $1,985$ 31 0 25 0 21 0 23 0 <	2,839	0	0	0	0	0	0	3	3	0	0	0	0	0
0,542 65 68 121 0 118 0 125 0 119 0 109 0 107 $0,583$ 56 61 102 0 93 0 100 0 103 0 99 0 96 $0,626$ 53 55 97 0 85 0 92 0 91 0 87 0 85 $0,673$ 50 43 83 0 74 0 83 0 81 0 73 0 62 $0,723$ 48 18 63 0 60 0 64 0 65 0 60 0 62 $0,777$ 40 13 50 0 51 0 50 0 52 0 52 0 41 $0,835$ 45 7 42 0 43 0 41 0 48 0 32 $0,898$ 39 0 37 0 39 0 38 0 39 0 32 0 21 $1,037$ 25 0 25 0 21 0 23 0 21 0 13 $1,114$ 19 0 15 0 23 0 21 0 21 0 21 0 $1,326$ 23 0 15 0 13 0 13 0 18 0 0 13 4 0 <t< td=""><td>2,642</td><td>0</td><td>0</td><td>4</td><td>4</td><td>1</td><td>1</td><td>5</td><td>5</td><td>0</td><td>0</td><td>1</td><td></td><td>0</td></t<>	2,642	0	0	4	4	1	1	5	5	0	0	1		0
0,542 65 68 121 0 118 0 125 0 119 0 109 0 107 $0,583$ 56 61 102 0 93 0 100 0 103 0 99 0 96 $0,626$ 53 55 97 0 85 0 92 0 911 0 87 0 85 $0,673$ 50 43 83 0 74 0 83 0 811 0 73 0 62 $0,773$ 48 18 63 0 60 0 64 0 65 0 60 0 52 $0,777$ 40 13 50 0 51 0 50 0 52 0 52 0 41 $0,835$ 45 7 42 0 43 0 41 0 44 0 32 0 29 $0,965$ 32 15 31 0 31 0 27 0 31 0 28 0 21 $1,037$ 25 0 25 0 25 0 21 0 23 0 21 0 $1,197$ 16 5 17 0 18 0 15 0 18 0 13 2 0 $1,197$ 16 5 17 0 18 0 13 0 13 0 13	2,458	0	0	1		0	0	2	2	0	0	3	3	0
0,542 65 68 121 0 118 0 125 0 119 0 109 0 107 $0,583$ 56 61 102 0 93 0 100 0 103 0 99 0 96 $0,626$ 53 55 97 0 85 0 92 0 91 0 87 0 85 $0,673$ 50 43 83 0 74 0 83 0 81 0 73 0 62 $0,773$ 48 18 63 0 60 0 64 0 65 0 60 0 52 $0,777$ 40 13 50 0 51 0 50 0 52 0 52 0 41 $0,835$ 45 7 42 0 43 0 41 0 48 0 32 $0,898$ 39 0 37 0 39 0 38 0 39 0 32 0 29 $0,965$ 32 15 31 0 31 0 27 0 31 0 28 0 21 $1,037$ 25 0 25 0 21 0 23 0 21 0 13 $1,197$ 16 5 17 0 18 0 15 0 22 0 0 13 22 0 <	2,288	2	0	2	0	0	0	0	0	0	0	1	0	0
0,542 65 68 121 0 118 0 125 0 119 0 109 0 107 $0,583$ 56 61 102 0 93 0 100 0 103 0 99 0 96 $0,626$ 53 55 97 0 85 0 92 0 911 0 87 0 85 $0,673$ 50 43 83 0 74 0 83 0 811 0 73 0 62 $0,773$ 48 18 63 0 60 0 64 0 655 0 60 0 52 $0,777$ 40 13 50 0 51 0 50 0 52 0 52 0 411 $0,835$ 45 7 42 0 43 0 41 0 411 0 48 0 32 $0,898$ 39 0 37 0 39 0 38 0 39 0 32 0 21 $0,965$ 32 15 31 0 31 0 27 0 31 0 28 0 21 $1,037$ 25 0 25 0 21 0 13 0 13 0 13 0 13 2 0 $1,1037$ 25 0 25 0 21 0 13 <td< td=""><td>2,129</td><td>3</td><td>0</td><td>4</td><td>1</td><td>0</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td><td>7</td><td>4</td><td>0</td></td<>	2,129	3	0	4	1	0	0	1	0	0	0	7	4	0
0,542 65 68 121 0 118 0 125 0 119 0 109 0 107 $0,583$ 56 61 102 0 93 0 100 0 103 0 99 0 96 $0,626$ 53 55 97 0 85 0 92 0 911 0 87 0 85 $0,673$ 50 43 83 0 74 0 83 0 811 0 73 0 62 $0,723$ 48 18 63 0 60 0 64 0 655 0 60 0 52 $0,777$ 40 13 50 0 51 0 50 0 52 0 52 0 411 $0,835$ 45 7 42 0 43 0 411 0 48 0 32 $0,898$ 39 0 37 0 39 0 38 0 39 0 32 0 21 $0,965$ 32 15 31 0 31 0 27 0 31 0 28 0 21 $1,037$ 25 0 25 0 21 0 23 0 21 0 18 $1,114$ 19 0 15 0 13 0 13 0 18 0 22 0 9 <td>1,981</td> <td>1</td> <td>0</td> <td>2</td> <td>1</td> <td>0</td> <td>0</td> <td>6</td> <td>5</td> <td>0</td> <td>0</td> <td>4</td> <td>3</td> <td>0</td>	1,981	1	0	2	1	0	0	6	5	0	0	4	3	0
0,542 65 68 121 0 118 0 125 0 119 0 109 0 107 $0,583$ 56 61 102 0 93 0 100 0 103 0 99 0 96 $0,626$ 53 55 97 0 85 0 92 0 911 0 87 0 85 $0,673$ 50 43 83 0 74 0 83 0 811 0 73 0 62 $0,723$ 48 18 63 0 60 0 64 0 655 0 60 0 52 $0,777$ 40 13 50 0 511 0 50 0 522 0 52 0 411 $0,835$ 45 7 42 0 43 0 411 0 448 0 32 $0,898$ 39 0 37 0 39 0 38 0 39 0 32 0 21 $0,965$ 32 15 31 0 31 0 27 0 31 0 28 0 21 $1,037$ 25 0 25 0 21 0 23 0 21 0 18 $1,114$ 19 0 15 0 13 0 13 0 13 0 13 2 0 <	1,843	3	0	11	8	0	0	3	0	0	0	3	0	0
0,542 65 68 121 0 118 0 125 0 119 0 109 0 107 $0,583$ 56 61 102 0 93 0 100 0 103 0 99 0 96 $0,626$ 53 55 97 0 85 0 92 0 911 0 87 0 85 $0,673$ 50 43 83 0 74 0 83 0 811 0 73 0 62 $0,723$ 48 18 63 0 60 0 64 0 65 0 60 0 52 $0,777$ 40 13 50 0 51 0 50 0 52 0 52 0 41 $0,835$ 45 7 42 0 43 0 41 0 41 0 48 0 32 $0,898$ 39 0 37 0 39 0 38 0 39 0 32 0 21 $0,965$ 32 15 31 0 31 0 27 0 31 0 28 0 21 $1,037$ 25 0 25 0 21 0 23 0 21 0 13 $1,114$ 19 0 15 0 13 0 13 0 18 0 19 0	1,715	11	0	7	0	0	0	8	0	0	0	10	0	0
0,542 65 68 121 0 118 0 125 0 119 0 109 0 107 $0,583$ 56 61 102 0 93 0 100 0 103 0 99 0 96 $0,626$ 53 55 97 0 85 0 92 0 911 0 87 0 85 $0,673$ 50 43 83 0 74 0 83 0 811 0 73 0 62 $0,723$ 48 18 63 0 60 0 64 0 655 0 60 0 52 $0,777$ 40 13 50 0 51 0 50 0 52 0 52 0 41 $0,835$ 45 7 42 0 43 0 41 0 44 0 28 0 21 $0,898$ 39 0 37 0 39 0 38 0 39 0 32 0 21 0 $0,965$ 32 15 31 0 27 0 31 0 28 0 21 $1,037$ 25 0 25 0 21 0 23 0 21 0 13 $1,107$ 16 5 17 0 18 0 15 0 18 0 22 0 9	1,596	9	0	11	2	0	0	6	0	0	0	13	4	0
0,542 65 68 121 0 118 0 125 0 119 0 109 0 107 $0,583$ 56 61 102 0 93 0 100 0 103 0 99 0 96 $0,626$ 53 55 97 0 85 0 92 0 911 0 87 0 85 $0,673$ 50 43 83 0 74 0 83 0 811 0 73 0 62 $0,723$ 48 18 63 0 60 0 64 0 655 0 60 0 52 $0,777$ 40 13 50 0 511 0 50 0 52 0 52 0 411 $0,835$ 45 7 42 0 43 0 411 0 418 0 32 $0,898$ 39 0 37 0 39 0 38 0 39 0 32 0 211 $0,965$ 32 15 31 0 31 0 27 0 31 0 28 0 211 $1,037$ 25 0 25 0 21 0 23 0 21 0 13 $1,197$ 16 5 17 0 18 0 15 0 13 0 18 0 19 <td>1,486</td> <td>8</td> <td>0</td> <td>9</td> <td>1</td> <td>4</td> <td>0</td> <td>2</td> <td>0</td> <td>0</td> <td>0</td> <td>8</td> <td>0</td> <td>0</td>	1,486	8	0	9	1	4	0	2	0	0	0	8	0	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,382	11	0	14	3	10	0	10	0	0	0	13	2	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,286	23	0	15	0	13	0	13	0	18	0	22	0	9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,197	16	5	17	0	18	0	15	0	18	0	19	0	13
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,114	19	0	15	0	20	1	19	0	15	0	20	1	15
0,542 65 68 121 0 118 0 125 0 119 0 109 0 107 0,583 56 61 102 0 93 0 100 0 103 0 99 0 96 0,626 53 55 97 0 85 0 92 0 91 0 87 0 85 0,673 50 43 83 0 74 0 83 0 81 0 73 0 62 0,723 48 18 63 0 60 0 64 0 655 0 60 0 52 0,777 40 13 50 0 51 0 50 52 0 52 0 41 0,835 45 7 42 0 43 0 41 0 48 0 32	1,037	25	0	25	0	25	0	21	0	23	0	21	0	18
0,542 65 68 121 0 118 0 125 0 119 0 109 0 107 0,583 56 61 102 0 93 0 100 0 103 0 99 0 96 0,626 53 55 97 0 85 0 92 0 91 0 87 0 85 0,673 50 43 83 0 74 0 83 0 81 0 73 0 62 0,723 48 18 63 0 60 0 64 0 655 0 60 0 52 0,777 40 13 50 0 51 0 50 52 0 52 0 41 0,835 45 7 42 0 43 0 39 0 32 0 29	0,965	32	15	31	0	31	0	27	0	31	0	28	0	21
0,542 65 68 121 0 118 0 125 0 119 0 109 0 107 0,583 56 61 102 0 93 0 100 0 103 0 99 0 96 0,626 53 55 97 0 85 0 92 0 91 0 87 0 85 0,673 50 43 83 0 74 0 83 0 81 0 73 0 62 0,723 48 18 63 0 60 0 64 0 65 0 60 0 52 0,777 40 13 50 0 51 0 50 52 0 52 0 41 0,835 45 7 42 0 43 0 41 0 41 0 48 0	0,898	39	0	37	0	39	0	38	0	39	0	32	0	29
0,542 65 68 121 0 118 0 125 0 119 0 109 0 107 0,583 56 61 102 0 93 0 100 0 103 0 99 0 96 0,626 53 55 97 0 85 0 92 0 91 0 87 0 85 0,673 50 43 83 0 74 0 83 0 81 0 73 0 62 0,723 48 18 63 0 60 0 64 0 65 0 60 0 52 0,777 40 13 50 0 51 0 50 52 0 52 0 41	0,835	45	7	42	0	43	0	41	0	41	0	48	0	32
0,542 65 68 121 0 118 0 125 0 119 0 109 0 107 0,583 56 61 102 0 93 0 100 0 103 0 99 0 96 0,626 53 55 97 0 85 0 92 0 91 0 87 0 85 0,673 50 43 83 0 74 0 83 0 81 0 73 0 62 0,723 48 18 63 0 60 0 64 0 65 0 0 52	0,777	40	13	50	0	51	0	50	0	52	0	52	0	41
0,542 65 68 121 0 118 0 125 0 119 0 109 0 107 0,583 56 61 102 0 93 0 100 0 103 0 99 0 96 0,626 53 55 97 0 85 0 92 0 91 0 87 0 85 0,673 50 43 83 0 74 0 83 0 81 0 73 0 62	0,723	48	18	63	0	60	0	64	0	65	0	60	0	52
0,542 65 68 121 0 118 0 125 0 119 0 109 0 107 0,583 56 61 102 0 93 0 100 0 103 0 99 0 96 0,626 53 55 97 0 85 0 92 0 91 0 87 0 85	0,673	50	43	83	0	74	0	83	0	81	0	73	0	62
0,542 65 68 121 0 118 0 125 0 119 0 109 0 107 0,583 56 61 102 0 93 0 100 0 103 0 99 0 96	0,626	53	55	97	0	85	0	92	0	91	0	87	0	85
0,542 65 68 121 0 118 0 125 0 119 0 109 0 107	0,583	56	61	102	0	93	0	100	0	103	0	99	0	96
	0,542	65	68	121	0	118	0	125	0	119	0	109	0	107
	(μ m)	(μ m)	(μ m)	А		U		А		U		А		U
dp dp _{branco} dp _{agua} A AI D DI A AI D DI A AI D	dp	dp _{branco}	dp _{agua}	Δ	Δι	П	וח	Δ	Δι	П	וח	Δ	Δι	П

DL = número de partículas depois de chegar ao impactador, limpas

s) Estágio 2,5 µm – geração de partículas de 5,0 µm – Posição Girando 600 rpm

Tabela 103: Estágio 2,5 µm – geração de partículas de 5,0 µm – Posição Girando 600 rpm

MEDIA	σ	u _A	u _{APS}	u _C	$V_{efetivo}$	k	U
99%	0,01026	0,005924	0,0021	0,006283	2,531701	4,526551	3%

Tabela 104: Análise de incertezas - Estágio 2,5 µm - geração de partículas de 5,0 µm - Posição Girando 600 rpm

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

DL = número de partículas depois de chegar ao impactador, limpas

dp (um)	dp _{branco}	dp _{agua}	А	AL	D	DL	А	AL	D	DL	А	AL	D	DL
(μΠ) 0.542	(μΠ) 65	(μπ) 68	131	0	124	0	130	0	125	0	120	0	120	0
0,542	56	61	115	0	124	0	11/	0	125	0	129	0	104	0
0,505	53	55	102	0	94	0	95	0	96	0	94	0	92	0
0,020	50	43	92	0	63	0	84	0	83	Ő	83	0	84	0
0,073	48	18	64	0	51	0	66	0	65	Ő	63	0	63	0
0,723	40	13	52	0	46	0	50	0	49	Ő	48	0	49	0
0.835	45	7	41	0	39	0	41	0	42	0	39	Ō	38	Ō
0.898	39	0	32	0	28	0	33	0	36	0	32	0	32	0
0.965	32	15	39	Ō	21	0	26	0	30	0	27	0	20	0
1.037	25	0	25	Ō	16	0	21	0	7	0	19	0	15	0
1.114	19	0	14	Ō	15	0	17	0	0	0	14	0	0	0
1.197	16	5	12	0	12	0	13	0	0	0	12	0	0	0
1.286	23	0	11	0	9	0	12	0	0	0	8	0	0	0
1,382	11	0	4	0	0	0	8	0	0	0	3	0	0	0
1,486	8	0	11	3	0	0	5	0	0	0	4	0	0	0
1,596	9	0	5	0	0	0	9	0	0	0	3	0	0	0
1,715	11	0	11	0	0	0	1	0	0	0	1	0	0	0
1,843	3	0	2	0	0	0	8	5	0	0	2	0	0	0
1,981	1	0	4	3	0	0	2	1	0	0	4	3	0	0
2,129	3	0	1	0	0	0	4	1	0	0	2	0	0	0
2,288	2	0	4	2	0	0	0	0	0	0	2	0	0	0
2,458	0	0	1	1	0	0	3	3	0	0	1	1	0	0
2,642	0	0	2	2	0	0	2	2	0	0	1	1	0	0
2,839	0	0	1	1	0	0	1	1	0	0	0	0	0	0
3,051	1	0	0	0	0	0	0	0	0	0	0	0	0	0
3,278	0	0	0	0	0	0	0	0	0	0	2	2	0	0
3,523	1	0	1	0	0	0	0	0	0	0	0	0	0	0
3,786	1	0	6	5	0	0	11	10	0	0	17	16	0	0
4,068	0	0	27	27	0	0	18	18	0	0	17	17	1	1
4,371	1	0	6	5	0	0	3	2	0	0	2	1	0	0
4,698	0	0	2	2	0	0	0	0	0	0	0	0	0	0
5,048	0	0	0	0	0	0	0	0	0	0	1	1	0	0
5,425	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5,829	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6,264	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6,732	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7,234	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7,774	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8,354	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8,977	0	U	0	U	0	U	0	0	0	0	0	U	0	
9,647	0	U	U	U	0	U	0	0	0	0		U	0	
11,366	0	0	0	0	0	0	0	0	0	0	0	0	0	
11,14	0	0	0	0	0	0	0	0	0	0	0	0	0	
12 06/	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12,004	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1/ 855	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15 062	0	0	0	0	0	0	0	0	0	0	1	1	0	0
17 15/	0	0	1	1	0	0	0	0	0	0	0	0	0	0
18 434	0	0	0	0	0	0	0	0	0	0	0	0	0	n
19.81	0	0	0	0	0	0	0	0	0	0	0	n n	0	n
13,01	0	Total	0	52	0	0	0	43	0	0		42	0	1
		Fficiência			99%				99%		<u> </u>		98%	⊢
		Incertez	a do AF	S	0.1%				0.1%		<u> </u>		0.2%	<u> </u>
<u> </u>	I	mooneze		5	0,170	1	l	I	0,170	1	I		,≃,0	11

t) Estágio 2,5 μm – geração de partículas de 5,0 μm – Posição Girando 1200 rpm

Tabela 105: Estágio 2,5 µm - geração de partículas de 5,0 µm - Posição Girando 1200 rpm

MEDIA	σ	u _A	u _{APS}	u _C	$V_{efetivo}$	k	U
99%	0,009559	0,005519	0,0020	0,005872	2,5624	4,526551	3%

Tabela 106: Análise de incertezas - Estágio 2,5 µm - geração de partículas de 5,0 µm - Posição Girando 1200 rpm

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

dp	dp _{branco}	dp _{agua}		<u></u>	P	יח	· ·	<u>م</u>	P	יח
(μ m)	(μ m)	(μ m)	А	AL	U	UL	А	AL	U	DL
0.542	15	68	9940	9857	7036	6953	10186	10103	7221	7138
0.583	12	61	5811	5738	3469	3396	6141	6068	4263	4190
0.626	13	55	4559	4491	2269	2201	4737	4669	2360	2292
0.673	16	43	3482	3423	1567	1508	3492	3433	1620	1561
0.723	13	18	2309	2278	1326	1295	2491	2460	1302	1271
0.777	17	13	1710	1681	896	867	1800	1771	896	867
0.835	32	7	1380	1342	562	524	1427	1389	579	541
0.898	38	0	833	795	315	277	1014	976	296	258
0.965	44	15	596	537	179	120	689	630	138	79
1.037	8	0	313	305	62	54	315	307	55	47
1.114	9	0	128	119	39	30	151	142	27	18
1.197	4	5	48	39	12	3	65	56	9	0
1.286	3	0	24	21	5	2	21	18	5	2
1.382	1	0	11	10	5	4	16	15	2	1
1.486	1	0	7	6	4	3	7	6	7	6
1.596	3	0	6	3	9	6	5	2	5	2
1.715	1	0	9	8	3	2	8	7	11	10
1.843	1	0	4	3	4	3	11	10	2	1
1.981	2	0	6	4	7	5	5	3	4	2
2.129	1	0	8	7	7	6	11	10	5	4
2.288	0	0	8	8	5	5	10	10	7	7
2.458	0	0	8	8	6	6	9	9	9	9
2.642	0	0	6	6	9	9	9	9	5	5
2.839	0	0	6	6	9	9	7	7	6	6
3.051	2	0	6	4	6	4	3	1	3	1
3.278	1	0	9	8	3	2	5	4	3	2
3.523	0	0	7	7	3	3	8	8	4	4
3.786	0	0	8	8	4	4	7	7	4	4
4.068	0	0	11	11	4	4	3	3	4	4
4.371	0	0	9	9	6	6	10	10	4	4
4.698	0	0	6	6	8	8	4	4	4	4
5.048	0	0	7	7	4	4	5	5	6	6
5.425	0	0	4	4	4	4	2	2	2	2
5.829	0	0	5	5	4	4	14	14	4	4
6.264	0	0	7	7	2	2	9	9	5	5
6.732	0	0	4	4	3	3	8	8	7	7
7.234	0	0	7	7	7	7	6	6	7	7
7.774	0	0	7	7	9	9	3	3	6	6
8.354	0	0	6	6	5	5	5	5	4	4
8.977	0	0	6	6	3	3	3	3	9	9
9.647	0	0	5	5	1	1	6	6	5	5
10.37	0	0	4	4	1	1	5	5	2	2
11.14	0	0	2	2	1	1	3	3	6	6
11.97	0	0	2	2	3	3	7	7	4	4
12.86	0	0	2	2	4	4	5	5	4	4
13.82	0	0	7	7	1	1	4	4	0	0
14.86	0	0	3	3	6	6	1	1	5	5
15.96	0	0	5	5	2	2	4	4	1	1
17.15	0	0	4	4	4	4	1	1	4	4
18.43	0	0	0	0	1	1	1	1		0
19.81	0	0	1	1	1	1	2	2		0
		Total		30833	4.40/	17382		32238	400/	18418
	Eficiê	ncia			44%				43%	
	Incer	teza do A	APS .		4,8%				4,8%	

u) Estágio 1,0 μm – geração de partículas de 0,5 μm – Posição B

Tabela 107: Estágio 1,0 µm – geração de partículas de 0,5 µm – Posição B

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

dp	dp												
(um)	(um)	Α	AL	D	DL	A	AL	D	DL	Α	AL	D	AL
(μπ)	(μπ)	000	000	000	000	0.00	000	000	000	074	077	050	050
0.542	94	380	286	333	239	362	268	302	208	371	2//	350	256
0.583	81	168	87	158	77	204	123	185	104	170	89	158	77
0.626	78	180	102	89	11	185	107	83	5	193	115	89	11
0.673	62	86	24	54	0	88	26	71	9	97	35	53	0
0.723	39	55	16	40	1	56	17	34	0	64	25	33	0
0.777	29	47	19	20	0	41	13	21	0	52	24	21	0
0.835	24	47	24	15	0	23	0	11	0	41	18	12	0
0.898	11	24	13	6	0	28	17	3	0	.31	20	2	0
0.000	25	10	0	0	0	24	0	1	0	25	0	1	0
1.027	7	11	1	2	0	0	2	0	0	10	3	6	0
1 11/	1	0	-	2	0	7	-	2	0	7	0	2	0
1.114	9	10	0	2 1	0	1	0	2	0	10	0	2	0
1.197	13	13	0	1	0	0	0	1	0	10	0	0	0
1.286	5	8	3	1	0	6	1	1	0	4	0	2	U
1.382	10	4	0	0	0	8	0	0	0	9	0	1	0
1.486	3	6	3	0	0	8	5	0	0	7	4	1	0
1.596	2	3	1	0	0	0	0	0	0	2	0	1	0
1.715	4	2	0	0	0	2	0	1	0	7	3	0	0
1.843	4	6	2	0	0	4	0	0	0	5	1	1	0
1.981	1	0	0	2	1	5	4	0	0	0	0	0	0
2.129	1	5	4	0	0	2	1	0	0	3	2	0	0
2.288	2	2	0	0	0	0	0	0	0	4	2	1	0
2.458	2	1	0	0	0	1	0	0	0	0	0	1	0
2.642	1	0	0	0	0	0	0	0	0	2	1	0	0
2.839	0	1	1	0	0	0	0	0	0	0	0	0	0
3.051	0	0	0	0	0	2	2	1	1	0	0	2	2
3.278	0	0	0	0	0	0	0	0	0	0	0	0	0
3.523	0	0	0	0	0	1	1	0	0	0	0	0	0
3.786	0	1	1	0	0	1	1	1	1	1	1	0	0
4.068	0	1	1	0	0	0	0	0	0	0	0	0	0
4.371	0	0	0	2	2	0	0	0	0	0	0	0	0
4 698	0	0	0	0	0	0	0	0	0	0	0	0	0
5.048	0	0	0	1	1	0	0	0	0	1	1	1	1
5 425	0	1	1	1	1	0	0	0	0	0	0	1	1
5 820	0	1	1	0	0	0	0	0	0	0	0	0	0
6.264	0	0	0	0	0	1	1	0	0	1	1	0	0
6 722	0	0	0	0	0	0	0	0	0	0	0	0	0
7.024	0	0	0	0	0	0	0	0	0	0	2	0	0
7.234	0	0	0	0	0	0	0	0	0	2 1	1	1	1
0.054	0	0	0	0	0	1	1	0	0	0	1	1	1
0.334	0	0	0	0	0	1		0	0	0	1	1	1
0.9//	U	0	0	0	0	0	0	0	0	1	1	0	0
9.047	U	0	0	0	0	0	0	0	0	0	0	0	U
10.37	1	0	U	U	U	0	U	U	U	U	U	2	1
11.14	U	0	U	0	U	0	U	0	U	U	U	0	U
11.97	U	1	1	0	U	0	U	1	1	U	U	0	U
12.86	0	0	U	0	U	0	U	0	U	0	U	0	U
13.82	0	0	U	0	U	0	U	0	U	0	U	0	U
14.86	0	0	0	0	0	0	0	0	0	0	0	0	0
15.96	0	0	0	0	0	0	0	0	0	0	0	0	0
17.15	0	0	0	0	0	0	0	0	0	0	0	0	0
18.43	0	0	0	0	0	0	0	0	0	0	0	0	0
19.81	0	1	1	0	0	0	0	0	0	0	0	0	0
		Total	594	727	333	1077	590	719	330	1121	625	743	351
	Eficiência			44%				44%				44%	
	Incerteza do	APS		4,8%				4,7%				4,8%	

Tabela 108: Estágio 1,0 µm - geração de partículas de 0,5 µm - Posição B - continuação

MEDIA	σ	u _A	u _{APS}	u _C	$V_{efetivo}$	k	U
44%	0,001203	0,000695	0,0485	0,048483	47466562	2,000002	10%

Tabela 109: Análise de incertezas - Estágio 1,0 µm - geração de partículas de 0,5 µm - Posição B

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

			80103	<u>sus as p</u>			, miii	1 001340	<u> </u>	
dp (um)	dp _{branco} (um)	dp _{agua} (µm)	А	AL	D	DL	А	AL	D	DL
0.542	15	68	7704	7621	4358	4275	9024	8941	6389	6306
0.542	12	61	1608	1625	20/7	2874	5630	5557	3852	3770
0.505	12	55	2510	3442	1962	1705	2010	3750	1622	1555
0.020	16	42	2657	2509	1003	1202	2067	3008	1620	1620
0.073	10	43	2007	2330	1902	1093	3007	2111	1009	11030
0.723	13	18	1886	1600	1123	1092	2142	2111	1212	1101
0.777	17	13	1419	1390	802	962	1561	1532	855	826
0.835	32	1	1147	1109	395	357	1215	1177	4/4	436
0.898	38	0	742	704	297	259	845	807	211	1/3
0.965	44	15	541	482	120	61	609	550	125	66
1.037	8	0	310	302	75	67	356	348	62	54
1.114	9	0	121	112	26	17	176	167	29	20
1.197	4	5	55	46	12	3	67	58	11	2
1.286	3	0	24	21	7	4	26	23	3	0
1.382	1	0	14	13	4	3	23	22	4	3
1.486	1	0	5	4	4	3	8	7	3	2
1.596	3	0	6	3	2	0	4	1	4	1
1.715	1	0	3	2	4	3	4	3	4	3
1.843	1	0	6	5	4	3	6	5	7	6
1.981	2	0	4	2	6	4	5	3	6	4
2.129	1	0	9	8	9	8	8	7	4	3
2.288	0	0	6	6	7	7	6	6	6	6
2.458	0	0	6	6	12	12	6	6	7	7
2.642	0	0	10	10	7	7	4	4	6	6
2.839	0	0	6	6	7	7	6	6	6	6
3.051	2	0	11	9	4	2	6	4	2	0
3.278	1	0	8	7	2	1	5	4	5	4
3.523	0	0	4	4	11	11	0	0	4	4
3 786	0	0	3	3	6	6	3	3	5	5
4 068	0	0	7	7	3	3	7	7	4	4
4.000	0	0	4	4	5	5	2	2	7	7
4 698	0	0	3	3	3	3	6	6	5	5
5.048	0	0	2	2	7	7	5	5	3	3
5 4 2 5	0	0	2	2	5	5	5	5	4	4
5 820	0	0	5	5	2	2	7	7		4
6.264	0	0	0	9	2	0	6	6	5	-
6 722	0	0	0 /	0 /	9 6	e F	2	2	2	2
7 23/	0	0	4	-4	2	2	3 7	3 7	5	5
7 774	0	0	4 0	* 2		7	2	2	2	2
9.254	0	0	0	0 2	I F	F	5 F	5 F	3	3
0.304	0	0	2	2	C I		5 6	5	7	7
0.977	0	0	১ F	১ F	1	1	0	0	1	1
9.047	0	0	о С	о С	4	4	4	4	4	4
10.37	0	0	b C	0	1		4	4	<u>১</u>	3
11.14	U	0	2	2	4	4	U	U	3	3
11.97	U	0	1		3	<u>১</u>	1	1	1	1
12.86	0	0	1	1	0	U	3	3	3	3
13.82	0	0	2	2	4	4	3	3	3	3
14.86	0	0	4	4	5	5	1	1	5	5
15.96	0	0	0	0	4	4	2	2	4	4
17.15	0	0	1	1	2	2	3	3	1	1
18.43	0	0	1	1	0	0	0	0	2	2
19.81	0	0	1	1	2	2	1	1	3	3
			Total	24468		13818		28191		16173
		Eficié	ência		44%				43%	
		Ince	erteza do	APS	4,8%				4,9%	

v) Estágio 1,0 µm – geração de partículas de 0,5 µm – Posição C

Tabela 110: Estágio 1,0 µm – geração de partículas de 0,5 µm – Posição C

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

dp	dp _{agua + branco}	А	AL	D	DL	А	AL	D	DL	А	AL	D	DL
(μm)	(μ m)	004	200	004	407	000	040	000	000	504	407	400	200
0.542	94	294	200	281	187	336	242	330	236	501	407	482	388
0.583	81	156	/5	148	67	165	84	158	11	256	1/5	238	157
0.626	78	196	118	111	33	186	108	92	14	230	152	94	16
0.673	62	106	44	51	0	121	59	71	9	742	80	60	0
0.723	39	57	10	40	0	63	24	23	14	12	33	40	1
0.777	29	52	24	25	0	52	24	20	0	60	32	23	0
0.835	24	43	20	10	0	49	20	12	0	44	21	7	0
0.696	25	25	14	1	0	30	19	4	0	39	20	1	0
0.900	20	21	<u> </u>	3	0	32	10		0	27	19	2	0
1.037	7	13	4	4	0	10	10	3	0	20	10	 	0
1 107	13	13	-	 1	0	16	3	0	0	10	0	4	0
1.137	5	10	5	1	0	0	3	1	0	7	2	2	0
1.200	10	10	0	1	0	7	-	1	0	11	1	1	0
1.486	3	3	0	1	0	5	2	2	0	10	7	1	0
1.596	2	3	1	1	0	5	2	0	0	6	4	0	0
1.330	4	6	2	1	0	3	0	1	0	3	0	2	0
1.843	4	2	0	0	0	3	ő	1	0	7	3	0	0
1.981	1	2	1	1	0	3	2	1	0	1	Ő	0	0
2.129	1	3	2	0	0	5	4	0	0	1	0	0	0
2.288	2	0	0	0	0	1	0	0	0	2	0	0	0
2.458	2	1	0	0	0	2	0	1	0	2	0	0	0
2.642	1	3	2	0	0	1	0	1	0	4	3	1	0
2.839	0	1	1	0	0	0	0	0	0	4	4	2	2
3.051	0	1	1	0	0	0	Ō	0	0	0	0	1	1
3.278	0	0	0	0	0	0	0	1	1	0	0	0	0
3.523	0	0	0	1	1	1	1	1	1	0	0	0	0
3.786	0	0	0	0	0	0	0	0	0	1	1	0	0
4.068	0	0	0	0	0	0	0	0	0	2	2	0	0
4.371	0	1	1	0	0	1	1	1	1	1	1	0	0
4.698	0	0	0	0	0	0	0	0	0	0	0	0	0
5.048	0	0	0	0	0	0	0	0	0	2	2	0	0
5.425	0	0	0	1	1	1	1	0	0	1	1	0	0
5.829	0	0	0	0	0	0	0	1	1	1	1	0	0
6.264	0	0	0	1	1	0	0	1	1	0	0	0	0
6.732	0	0	0	0	0	1	1	0	0	0	0	0	0
7.234	0	0	0	0	0	0	0	0	0	0	0	1	1
7.774	0	0	0	0	0	0	0	0	0	0	0	0	0
8.354	0	0	0	0	0	1	1	0	0	0	0	0	0
8.977	0	1	1	0	0	0	0	0	0	0	0	0	0
9.647	0	1	1	4	4	0	0	0	0	0	0	2	2
10.37	1	0	0	0	0	0	0	0	0	0	0	0	0
11.14	0	0	0	0	0	0	0	0	0	1	1	0	0
11.97	0	1	1	0	0	1	1	0	0	0	0	0	0
12.86	0	0	0	0	0	0	0	1	1	0	0	1	1
13.82	0	0	0	0	0	0	0	0	0	0	0	0	0
14.86	0	0	0	0	0	0	0	0	0	0	0	0	0
15.96	0	0	0	0	0	0	0	0	0	0	0	0	0
17.15	0	0	0	0	0	2	2	0	0	0	0	0	0
18.43	0	0	U	0	0	0	U	0	U	0	U	0	U
19.81	U	0	0	U	0	0	0	U	0	0	0	υ	0
		Iotal	541	450/	300		638	4 407	356		991	400/	569
	Eficiencia			45%				44%				43%	
	incerteza d	0 APS		4,1%		l	l	4,1%		l		4,9%	

Tabela 111: Estágio 1,0 µm - geração de partículas de 0,5 µm - Posição C - continuação

MEDIA	σ	u _A	u _{APS}	u _C	$V_{efetivo}$	k	U
44%	0,010553	0,006093	0,0487	0,049095	8431,694	2,000299	10%

Tabela 112: Analise de incertezas - Estágio 1,0 µm - geração de partículas de 0,5 µm - Posição C

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

	0 '	. 0	5	1				5		1
dp (um)	dp _{branco}	dp _{agua}	А	AL	D	DL	А	AL	D	DL
(μΠ) 0.542	(μΠ) 15	(μΠ) 68	9887	9804	9014	8931	12327	12244	9204	9121
0.542	12	61	5884	5811	4998	4925	8308	8235	7369	7296
0.626	13	55	4402	4334	1259	1191	5228	5160	1239	1171
0.673	16	43	3400	3341	11200	1065	3646	3587	1026	967
0.723	13	18	2449	2418	678	647	2462	2431	598	1689
0.777	17	13	1787	1758	322	293	1612	1583	321	292
0.835	32	7	1390	1352	156	118	1203	1165	154	116
0.898	38	0	981	943	138	100	843	805	201	163
0.965	44	15	734	675	87	28	650	591	134	75
1.037	8	0	445	437	40	32	357	349	66	58
1.114	9	0	201	192	22	13	179	170	25	16
1.197	4	5	68	59	8	0	83	74	14	5
1.286	3	0	34	31	7	4	27	24	4	1
1.382	1	0	13	12	2	1	18	17	1	0
1.486	1	0	6	5	4	3	18	17	3	2
1.596	3	0	5	2	2	0	13	10	2	0
1.715	1	0	9	8	6	5	10	9	5	4
1.843	1	0	5	4	7	6	4	3	7	6
1.981	2	0	6	4	5	3	7	5	4	2
2.129	1	0	9	8	1	0	7	6	8	7
2.288	0	0	10	10	8	8	9	9	6	6
2.458	0	0	13	13	7	7	8	8	8	8
2.642	0	0	10	10	4	4	5	5	7	7
2.839	0	0	5	5	6	6	5	5	4	4
3.051	2	0	3	1	6	4	5	3	4	2
3.278	1	0	1	6	6	5	5	4	4	3
3.523	0	0	4	4	4	4	6	6	2	2
3.786	0	0	2	2	9	9	12	12	10	0
4.068	0	0	6	0	4	4	5	5	1	0
4.371	0	0	Z 7	2	3	2	9	9	<u> </u>	0
4.090	0	0	5	5	5	6	- 5 - 10	10	0	0
5.425	0	0	9 9	9	2	2	10	1	1	0
5 820	0	0	8	8	2	2	9	9	4	0
6 264	0	0	6	6	5	5	5	5	7	0
6 732	0	0	6	6	5	5	2	2	3	0
7.234	0	0	9	9	4	4	7	7	5	5
7.774	0	0	4	4	6	6	4	4	1	1
8.354	0	0	3	3	2	2	7	7	2	0
8.977	0	0	7	7	6	6	1	1	5	5
9.647	0	0	4	4	6	6	5	5	6	6
10.37	0	0	2	2	4	4	3	3	4	4
11.14	0	0	1	1	4	4	3	3	4	4
11.97	0	0	0	0	1	1	6	6	3	3
12.86	0	0	4	4	1	1	3	3	4	4
13.82	0	0	5	5	1	1	0	0	2	2
14.86	0	0	3	3	1	1	2	2	1	1
15.96	0	0	4	4	5	5	0	0	2	2
17.15	0	0	0	0	2	2	3	3	5	5
18.43	0	0	2	2	0	0	1	1	3	3
19.81	0	0	1	1	2	2	3	3	2	2
	ļ		Total	31344		17484		36628	4654	21068
		Eficié	encia		44%				42%	
		Ince	erteza do	APS	4,7%				4,9%	

w) Estágio 1,0 μm – geração de partículas de 0,5 μm – Posição Girando 900 rpm

Tabela 113: Estágio 1,0 µm - geração de partículas de 0,5 µm - Posição Girando 900 rpm

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

dp	dp _{agua + branco}	۸	A1	D	ы	۸	A1	D	Ы	٨	A1	D	ы
(μ m)	(μ m)	A	AL	D	DL	A	AL	D	DL	A	AL	U	DL
0.542	94	520	426	452	358	601	507	524	430	634	540	523	429
0.583	81	252	171	100	19	320	239	167	86	287	206	157	76
0.626	78	169	91	98	20	168	90	95	17	187	109	99	21
0.673	62	121	59	82	20	130	68	120	58	116	54	83	21
0.723	39	74	35	55	16	93	54	56	17	86	47	42	3
0.777	29	61	33	32	4	53	25	36	8	69	41	30	2
0.835	24	50	27	15	0	43	20	21	0	51	28	32	9
0.898	11	27	16	/	0	34	23	11	0	41	30	/	0
0.965	25	25	0	/	0	25	10	3	0	21	0	<u> </u>	0
1.037	7	15	6	 1	0	20	19	0	0	10	5	1	0
1 1 97	13	7	0	1	0	10	0	0	0	14	0	2	0
1.137	5	5	0	1	0	8	3	3	0	10	5	1	0
1.382	10	9	0	1	0	8	0	0	0	6	0	0	0
1.486	3	3	0	1	0	11	8	0	0	6	3	1	0
1.596	2	7	5	1	0	4	2	0	0	4	2	0	0
1.715	4	7	3	0	0	3	0	0	0	2	0	0	Ō
1.843	4	0	0	0	0	1	0	0	0	2	0	0	0
1.981	1	5	4	0	0	5	4	0	0	4	3	0	0
2.129	1	1	0	0	0	1	0	2	1	1	0	0	0
2.288	2	1	0	0	0	4	2	1	0	3	1	0	0
2.458	2	0	0	2	0	2	0	0	0	2	0	1	0
2.642	1	1	0	1	0	1	0	1	0	0	0	0	0
2.839	0	0	0	0	0	3	3	1	1	1	1	2	2
3.051	0	1	1	0	0	2	2	1	1	0	0	0	0
3.278	0	2	2	0	0	2	2	2	2	1	1	0	0
3.523	0	0	0	0	0	1	1	0	0	0	0	1	1
5.700 1.068	0	2	2	0	0	1	1	0	0	2	2	 1	1
4.000	0	0	0	0	0	0	0	0	0	0	0	1	1
4.698	0	0	0	0	0	0	0 0	0	0	0	0	0	0
5.048	0	0	0	0	0	1	1	0	0	0	0	0	0
5.425	0	1	1	0	0	1	1	0	0	0	0	0	0
5.829	0	0	0	2	2	0	0	0	0	0	0	1	1
6.264	0	0	0	1	1	0	0	0	0	0	0	2	2
6.732	0	2	2	0	0	0	0	0	0	0	0	1	1
7.234	0	0	0	0	0	2	2	0	0	0	0	0	0
7.774	0	1	1	0	0	2	2	1	1	0	0	1	1
3.354	0	0	0	1	1	0	0	0	0	0	0	0	0
3.977	0	1	1	0	0	0	0	0	0	0	0	0	0
9.647	0	0	0	0	0	0	0	0	0	0	0	1	1
11.37	1	0	0	1	1	0	0	0	0	0	0	0	0
11.14	0	0	0	0	0	0	0	0	0	1	1	0	0
12.86	0	0	0	0	0	0	0	0	0	0	0	0	0
13.82	0	1	1	0	0	0	0	1	1	0	0	0	0
14.86	0	1	1	0	0	0	Ő	0	0	0	0	0	0
15.96	0	1	1	0	0	1	1	0	0	0	0	0	0
17.15	0	2	2	0	0	0	0	0	0	1	1	1	1
18.43	0	0	0	0	0	0	0	0	0	0	0	0	0
19.81	0	0	0	1	1	0	0	0	0	0	0	0	0
		Total	896	10900	443	10800	1090	10300	623	12900	1082	11600	573
	Eficiência			51%				43%				47%	
	Incerteza do	APS		4,2%				4,8%				4,5%	

Tabela 114: Estágio 1,0 µm - geração de partículas de 0,5 µm - Posição Girando 900 rpm - continuação

MEDIA	σ	u _A	u _{APS}	u _C	$V_{efetivo}$	k	U
47%	0,038329	0,022129	0,0488	0,053589	68,7834	2,037439	11%

Tabela 115: Analise de incertezas - Estágio 1,0 µm - geração de partículas de 0,5 µm - Posição Girando 900 rpm

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

\	D // '	1 0	~ 1			D '	~ ~	1 (00)
V V	Hotomo	1 () um	aprocoo d	a norticu		$\mu m = D c c c c$	no l'iron	do 600 rnm
~ ~ /		1.0 0.00	- צדומנמט ט	E DALIUU	148 UE V.J	$\mu m = r osc$.au (111 au	
/								
	()	/	<i>(</i>) 1					

	A) Loto	1510 1,	ο μπ	gerugue	o de pu	liculus	uc 0,5	um ro	siçuo (Jiranao	000 10		
dp (um)	dp _{agua + branco}	А	AL	D	DL	А	AL	D	DL	А	AL	D	DL
(μΠ)	(μm) 04	012	910	700	600	1240	1246	060	966	1640	1546	1220	1226
0,542	94	400	242	242	000	740	662	500	420	052	770	620	550
0,565	70	423	342	120	201	143	252	274	420	401	112	175	07
0,020	62	242	180	129	33	200	237	105	/3	225	273	110	56
0,073	20	1/1	100	90	27	299	175	06	43 57	221	182	02	53
0,723	39	141	83	42	20	127	1/0	90 79	50	120	102	92	13
0,777	29	02	60	42	20	102	70	50	27	92	60	41	0
0,835	11	52	<u> </u>	10	0	102	38	15	4	57	46	10	1
0,030	25	37	12	7	0	40	15	12	0	41	16	12	0
1 037	7	20	13	2	0	30	23	3	0	25	18	1	0
1 1 1 1 4	9	19	10	1	Ő	20	11	7	0	12	3	4	0
1 197	13	9	0	2	Ő	13	0	1	0	19	6	2	0
1,101	5	11	6	3	Ő	10	5	1	0	11	6	2	0
1,382	10	12	2	0	Ő	2	0	2	0	11	1	0	0
1 486	3	7	4	0	Ő	3	ů 0	0	0	8	5	0	0
1,100	2	9	7	0	Ő	8	6	3	1	4	2	3	1
1 715	4	4	0	0	Ő	7	3	0	0	. 11	7	1	0
1 843	4	5	1	2	Ő	10	6	0	0	8	4	0	0
1,818	1	6	5	0	Ő	3	2	1	0	7	6	1	0
2 129	1	4	3	2	1	3	2	0	0	7	6	2	1
2 288	2	3	1	1	0	4	2	0	0	4	2	1	0
2 458	2	5	3	1	0	2	0	2	0	7	5	3	1
2,642	1	4	3	0	0	3	2	1	0	2	1	4	3
2,839	0	1	1	0	0	2	2	1	1	3	3	0	0
3.051	0	1	1	0	0	1	1	1	1	2	2	2	2
3 278	0	2	2	0	0	2	2	1	1	4	4	0	0
⊲ 23	0	2	2	1	0	4	4	2	2	4	4	1	1
$\vec{Q} = \frac{10}{86}$	0	1	1	1	0	1	1	1	1	3	3	0	0
$\frac{1}{68}$	0	1	1	0	0	1	1	0	0	2	2	1	1
$\overline{1}$	0	1	1	1	0	1	1	0	0	1	1	2	2
80 98	0	1	1	0	0	1	1	0	0	0	0	2	2
o <u>48</u>	0	0	0	1	0	0	0	0	0	0	0	0	0
Z 25	0	0	0	0	0	2	2	2	2	2	2	0	0
<u>rg</u> 29	0	0	0	1	0	0	0	0	0	2	2	0	0
19 <u>64</u>	0	1	1	0	0	2	2	0	0	0	0	0	0
$\Box \frac{1}{32}$	0	2	2	1	0	0	0	1	1	1	1	1	1
0 20 34	0	1	1	1	0	0	0	1	1	1	1	0	0
0 <u>74</u>	0	2	2	0	0	0	0	1	1	1	1	0	0
iji 54	0	0	0	0	0	1	1	0	0	0	0	1	1
ta 77	0	0	0	1	0	1	1	0	0	0	0	0	0
Ŭ 47	0	0	0	0	0	1	1	0	0	2	2	1	1
366	1	0	0	0	0	1	0	0	0	2	1	0	0
iž <u>140</u>	0	0	0	0	0	0	0	0	0	0	0	0	0
ပ်) 71	0	0	0	1	0	1	1	0	0	1	1	2	2
<u>∂</u> <u>364</u>	0	0	0	0	0	0	0	2	2	2	2	1	1
13,824	0	0	0	1	0	0	0	2	2	1	1	0	0
14,855	0	1	1	0	0	1	1	0	0	0	0	0	0
15,963	0	0	0	0	0	2	2	2	2	1	1	0	0
17,154	0	2	2	0	0	0	0	0	0	1	1	0	0
18,434	0	2	2	0	0	0	0	1	1	1	1	1	1
19,810	0	0	0	0	0	0	0	0	0	0	0	0	0
		Total	1962	20600	1081	24900	2998	21800	1688	26000	3515	19800	2024
		Efici	ência	45%				44%				42%	
	Incertez	za do AP	S	4,7%				4,8%				4,9%	
	TE 1 1 1		. 1.0		~ 1		1 0 5	D '	~ ~ ~	1 (00	•		

Tabela 116: Estágio 1,0 µm - geração de partículas de 0,5 µm - Posição Girando 600 rpm

MEDIA	σ	u _A	u _{APS}	u _C	$V_{efetivo}$	k	U
44%	0,012224	0,007057	0,0488	0,049355	4783,575	2,000525	10%

Tabela 117: Análise de incertezas - Estágio 1,0 µm - geração de partículas de 0,5 µm - Posição Girando 600 rpm

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

dp (um)	dp _{agua + branco} (µm)	А	AL	D	DL	А	AL	D	DL	А
0.542	94	501	407	350	256	513	419	342	248	591
0.583	81	218	137	173	92	265	184	250	169	268
0.626	78	138	60	119	41	157	79	131	53	140
0.673	62	115	53	84	22	107	45	74	12	107
0.723	39	65	26	36	0	72	33	37	0	68
0,777	29	52	24	32	4	71	43	36	8	45
0.835	24	33	10	19	0	42	19	12	0	50
0.898	11	19	8	6	0	30	19	4	0	29
0.965	25	16	0	3	0	19	0	2	0	26
1.037	7	12	5	1	0	17	10	0	0	15
1 114	9	8	0	4	Ő	14	5	0	0	5
1 197	13	7	0	1	0	10	0	0	0	6
1,107	5	3	0	1	0	10	5	1	0	5
1,200	10	5	Ő	2	ů 0	7	0	2	0	2
1,486	3	7	4	1	0	11	8	1	0	1
1,596	2	6	4	0	0 0	1	0	0	0	8
1,715	4	5	1	1	0	5	1	2	0	2
1,843	4	10	6	1	0	4	0	0	0	3
1,981	1	5	4	0	0	1	0	0	0	4
2,129	1	1	0	0	0	3	2	0	0	2
2.288	2	1	0	0	0	2	0	0	0	0
2,458	2	3	1	0	0	5	3	0	0	0
2.642	1	1	0	2	1	4	3	0	0	2
2.839	0	4	4	0	0	0	0	0	0	1
3.051	0	0	0	0	0	2	2	1	1	0
3.278	0	0	0	0	0	1	1	0	0	0
3.523	0	2	2	1	1	1	1	0	0	1
3,786	0	1	1	0	0	0	0	0	0	1
4,068	0	0	0	1	1	0	0	0	0	0
4,371	0	1	1	0	0	1	1	1	1	0
4,698	0	0	0	1	1	0	0	0	0	0
5,048	0	0	0	0	0	0	0	0	0	0
5,425	0	0	0	0	0	1	1	1	1	1
5,829	0	1	1	0	0	0	0	0	0	0
6,264	0	0	0	1	1	0	0	0	0	0
6,732	0	0	0	0	0	0	0	0	0	0
7,234	0	0	0	1	1	0	0	0	0	2
7,774	0	0	0	0	0	0	0	0	0	0
8,354	0	0	0	0	0	1	1	0	0	0
8,977	0	0	0	0	0	0	0	0	0	1
9,647	0	0	0	1	1	0	0	0	0	0
10,366	1	0	0	0	0	0	0	1	0	0
11,140	0	1	1	0	0	0	0	0	0	0
11,971	0	0	0	0	0	0	0	0	0	0
12,864	0	0	0	0	0	0	0	0	0	0
13,824	0	0	0	0	0	0	0	0	0	0
14,855	0	0	0	0	0	1	1	0	0	0
15,963	0	0	0	0	0	0	0	0	0	0
17,154	0	0	0	0	0	0	0	0	0	0
18,434	0	0	0	0	0	1	1	0	0	0
19,810	0	0	0	0	0	0	0	0	0	0
		Total	759	9060	422	9270	886	7320	493	9870
		Eticiá	ancia	44%	1	1		44%		

y) Estágio 1,0 μm – geração de partículas de 0,5 μm – Posição Girando 1200 rpm

Tabela 118: Estágio 1,0 µm - geração de partículas de 0,5 µm - Posição Girando 1200 rpm

4,7%

Μ	EDIA	σ	u _A	u _{APS}	u _C	$V_{efetivo}$	k	U		
4	45%	0,003249	0,001876	0,0472	0,04727	806679,6	2,000005	9%		
F .1.1	1 1 110 F ((1 1 0) (1 1 1 0 5) (1 1 1 0 5) (1 1 1 0 0)									

Tabela 119: Estágio 1,0 µm - geração de partículas de 0,5 µm - Posição Girando 1200 rpm

A = número de partículas antes de chegar ao impactador

Incerteza do APS

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

DL = número de partículas depois de chegar ao impactador, limpas

AL

4,7%

D

45%

4,7%

DL

dn	dn.	dn	5			,	•	5		
(µm)	up _{branco} (μ m)	up _{agua} (μm)	А	AL	D	DL	А	AL	D	DL
0.542	924	61	816	0	785	0	774	0	855	0
0.583	555	55	608	0	544	0	578	0	531	0
0.626	389	43	366	0	352	0	333	0	323	0
0.673	271	18	222	Ő	199	Ő	232	Ő	205	Ő
0.723	188	13	147	Ő	131	0	147	ů 0	124	Ő
0.723	126	7	212	80	0/	0	232	100	06	0
0.025	102	0	1555	1452	440	337	1956	1753	401	388
0.000	103	15	9407	8285	2276	2154	0041	8010	2056	103/
0.090	68	0	12357	12280	3320	3261	12328	12260	2000	3137
1.027	22	0	5271	5229	1205	1262	5060	5026	1650	1626
1 1 1 1	12	5	601	674	1255	1/18	685	668	130	112
1.114	12	0	192	190	20	20	154	152	21	10
1.197		0	57	52	11	20	50	55	21	5
1 292	4	0	36	24	2	1	52	50	9	5
1.302	2	0	17	12	3	1	32	20	0	0
1.400	4	0	12	10	2	0	24	20	0	0
1.390	3	0	13	10	2	0	24	21	0	0
1.715	4	0	10	44	0	0	20	42	1	0
1.043	1	0	12			1	13	12	2	1
1.961	2	0	10	0	1	0	19	17	3	1
2.129	1	0	8	/ E	0	0	13	12	2	1
2.288	0	0	5	5	2	2	14	14	1	1
2.458	3	0	1	0	2	0	9	0	1	0
2.642	0	0	2	2	0	0	9	9	1	1
2.839	1	0	3	2	0	0	5	4	0	0
3.051	0	0	1	1	2	2	3	3	1	1
3.278	1	0	1	0	1	0	8	1	0	0
3.523	0	0	1	1	1	1	6	6	1	1
3.786	1	0	2	1	2	1	1	0	0	0
4.068	0	0	3	3	2	2	0	0	0	0
4.371	1	0	2	1	1	0	6	5	1	0
4.698	1	0	1	0	2	1	2	1	0	0
5.048	0	0	3	3	1	1	3	3	2	2
5.425	0	0	4	4	0	0	3	3	1	1
5.829	1	0	4	3	1	0	1	0	0	0
6.264	0	0	3	3	3	3	3	3	1	1
6.732	0	0	2	2	0	0	4	4	0	0
7.234	1	0	0	U	1	U	2	1	1	U
1.114	0	0		2	0	0	2	2	0	0
8.354		0	5	4		0	4	<u></u>	2	
0.9//	3	0	্র ₄	U	0	0	1	0	0	0
9.047	0	0	4	4		1	3	ა ი	0	U 4
11 14	0	0	0	2	0	0	2	2	1	1
11.14	0	0	<u> </u>	4	0	2		<u> </u>		0
10.97	0	0	1			1	4	4	0	1
12.00	0	0	4	4		1	4	4		1
11.02	0	0	1	1	2	2	1	1		0
14.00	0	0	0	0	2	2	1	1	0	0
17 15	0	0	0	0	2	2	0	0	0	0
18 / 2	0	0	1	1	0	0	1	1	1	1
10.43	0	0	1	1	1	1	1	1	0	0
19.01	0	Total	1	28383	1	7220	1	29186	0	7244
	Fficiência	Total		20000	75%	. 220		20100	75%	
					2.2%				2 1%	
L	IIIGEIIEZd (l	I	∠,∠/0		I	I	£,1/0	I

z) Estágio 1,0 μm – geração de partículas de 1,0 μm – Posição B

Tabela 120: Estágio 1,0 µm – geração de partículas de 1,0 µm – Posição B

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

dn	dn .												
(m)	upagua + branco	A	AL	D	DL	Α	AL	D	DL	Α	AL	D	DL
(μm)	(µm)				-								
0.542	167	68	0	51	0	50	0	46	0	59	0	43	0
0.583	131	52	0	35	0	41	0	28	0	29	0	26	0
0.626	95	39	0	34	0	32	0	28	0	25	0	26	0
0.673	71	29	0	22	0	27	0	14	0	22	0	17	0
0.723	57	25	0	21	0	24	0	20	0	20	0	19	0
0 777	43	80	38	45	3	68	26	46	4	73	31	64	22
0.925	21	410	290	210	280	470	440	100	160	512	492	250	220
0.000	10	410	1507	405	472	4760	443	130 E1E	502	1070	1057	550	520
0.090	13	1000	1307	400	4/2	1700	1/4/	000	302	1970	1937	004	050
0.965	37	1450	1413	297	260	1450	1413	322	285	1540	1503	289	252
1.037	13	411	398	59	46	358	345	71	58	428	415	45	32
1.114	9	82	73	10	1	67	58	9	0	71	62	14	5
1.197	12	22	10	2	0	24	12	3	0	28	16	2	0
1.286	10	23	13	3	0	16	6	1	0	14	4	0	0
1.382	7	7	0	0	0	11	4	2	0	14	7	2	0
1.486	10	8	0	0	0	6	0	0	0	8	0	1	0
1 596	4	13	9	1	0	5	1	0	0	10	6	1	0
1 715	3	3	Ő	0	Ő	12	9	0	0	6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	ů 0
1.713	3	1	0	0	0	12	1	1	0	2	0	0	0
1.043	5	1	0	0	0	4	1	1	0	2	1	0	0
1.981	2	4	2	0	0	1	0	0	0	3	1	0	0
2.129	0	3	3	0	U	2	2	0	U	3	3	0	0
2.288	1	3	2	0	0	0	0	0	0	4	3	0	0
2.458	1	2	1	0	0	2	1	0	0	1	0	1	0
2.642	1	1	0	1	0	3	2	0	0	3	2	1	0
2.839	0	2	2	0	0	0	0	0	0	0	0	1	1
3.051	0	2	2	0	0	1	1	1	1	3	3	0	0
3.278	0	0	0	0	0	2	2	0	0	2	2	0	0
3.523	0	1	1	0	0	2	2	0	0	1	1	0	0
3 786	0	3	3	0	0	0	0	0	0	0	0	0	0
4.069	0	0	0	0	0	1	1	0	0	0	0	0	0
4.000	0	0	0	0	0	1	4	0	0	1	4	0	0
4.371	0	0	0	0	0	1	1	0	0	1	1	0	0
4.698	0	0	0	0	0	0	0	0	0	0	0	1	1
5.048	0	0	0	0	0	0	0	0	0	0	0	0	0
5.425	0	1	1	0	0	0	0	0	0	0	0	0	0
5.829	1	0	0	0	0	2	1	0	0	0	0	0	0
6.264	0	0	0	0	0	0	0	0	0	0	0	0	0
6.732	1	1	0	1	0	0	0	1	0	0	0	0	0
7.234	0	0	0	0	0	1	1	0	0	3	3	0	0
7.774	0	0	0	0	0	0	0	0	0	0	0	0	0
8.354	0	0	0	0	0	0	0	0	0	0	0	0	0
8 977	0	0	Õ	1	1	1	1	0 0	Õ	1	1	0 0	Õ
9 647	0	0	Ő	0	O	1	1	0	Ő	0	0	0	Õ
10 37	0	0	0	0	0	0	0	0	0	1	1	0	0
11 1 /	0	0	0	0	0	0	0	0	0	1	1	0	0
11.14	0	0	0	0	0	0	0	0	0	1	1	0	0
11.97	U	U	U	1		U	0	0	U	1	1	0	U
12.86	U	U	U	U	U	U	U	U	U	U	U	U	U
13.82	0	0	U	0	U	0	U	0	U	1	1	0	U
14.86	0	0	0	0	0	0	0	0	0	0	0	0	0
15.96	0	0	0	0	0	0	0	0	0	0	0	0	0
17.15	0	1	1	0	0	0	0	0	0	0	0	1	1
18.43	0	0	0	0	0	0	0	0	0	0	0	0	0
19.81	0	0	0	0	0	0	0	0	0	0	0	0	0
		Total	3938	1161	1063	4114	4085	1107	1009	4522	4510	1252	1174
		Eficiência		73%				75%				74%	
		Incerteza d	0 APS	2.3%				2 1%				2 2%	
		inconcea u	5740	-,570				£,170				-,-/u	

Tabela 121: Estágio 1,0 µm - geração de partículas de 1,0 µm - Posição B - continuação

MEDIA	σ	u _A	u _{APS}	u _C	$V_{efetivo}$	k	U
74%	0,011523	0,006653	0,0229	0,023855	330,6055	2,007606	5%

Tabela 122: Análise de incertezas - Estágio 1,0 µm - geração de partículas de 1,0 µm - Posição B

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

- uu) L	ottagio i	,0 pill	Serage	ao ao pa	11110414		pilli	1 001940	Č	1
dp (um)	dp _{branco}	dp _{agua}	А	AL	D	DL	А	AL	D	DL
(μπ)	(μπ)	(μπ) 61	672	0	020	0	707	0	024	0
0.542	924	61	073	0	630	0	101	0	634	0
0.583	555	55	488	0	482	0	557	0	556	0
0.626	389	43	289	0	266	0	314	0	327	U
0.673	271	18	182	0	180	0	222	0	205	0
0.723	188	13	143	0	107	0	139	0	126	0
0.777	126	7	249	117	99	0	251	119	95	0
0.835	103	0	1632	1529	521	418	1742	1639	440	337
0.898	107	15	6752	6630	1971	1849	6892	6770	1792	1670
0.965	68	0	7129	7061	1878	1810	7254	7186	2020	1952
1.037	33	0	2239	2206	574	541	2156	2123	675	642
1.114	12	5	502	485	74	57	604	587	73	56
1.197	2	0	115	113	17	15	137	135	16	14
1.286	4	0	46	42	5	1	49	45	8	4
1.382	2	0	21	19	4	2	43	41	4	2
1.486	4	0	12	8	1	0	11	7	2	0
1 596	3	0	4	1	2	0	10	7	1	0
1.000	4	0	6	2	0	0	1/	10	0	0
1.8/3	1	0	7	2 6	0	0	7	6	2	1
1.045	2	0	2 2	6	2	0	0	7	2	0
1.901	<u>∠</u>	0	0	0	2	0	9	1	0	0
2.129		0	<u>∠</u>		0	0	4	<u></u> з	0	0
2.288	0	0	4	4	0	0	3	3	0	0
2.458	3	0	0	0	2	0	2	0	2	0
2.642	0	0	3	3	1	1	4	4	3	3
2.839	1	0	1	0	0	0	8	7	0	0
3.051	0	0	1	1	0	0	2	2	1	1
3.278	1	0	1	0	0	0	2	1	0	0
3.523	0	0	6	6	1	1	1	1	0	0
3.786	1	0	1	0	4	3	0	0	0	0
4.068	0	0	3	3	3	3	2	2	1	1
4.371	1	0	1	0	2	1	1	0	3	2
4.698	1	0	3	2	2	1	3	2	2	1
5.048	0	0	1	1	0	0	2	2	0	0
5.425	0	0	5	5	0	0	2	2	1	1
5.829	1	0	2	1	1	0	1	0	1	0
6 264	0	0	- 3	3	1	1	2	2	0	0
6 732	0	0	3	3	2	2	3	3	1	1
7 234	1	0	3	2	0	0	0	ů ů	2	1
7 774	0	0	1	1	1	1	4	4	0	0
8 35/	1	0	0	0	0	0	-† -1	0	1	0
0.004	۱ ۵	0	1	0	1	0	0	0		0
0.9//	3	0	1	U 4	1	0	0	0	0	0
9.647	0	0					0	0	1	1
10.37	U	U	1	1	1	1	2	2	U	U
11.14	0	0	2	2	4	4	3	3	1	1
11.97	0	0	0	0	0	0	1	1	1	1
12.86	0	0	0	0	0	0	2	2	0	0
13.82	0	0	0	0	0	0	5	5	1	1
14.86	0	0	1	1	0	0	0	0	1	1
15.96	0	0	0	0	0	0	1	1	1	1
17.15	0	0	0	0	1	1	1	1	0	0
18.43	0	0	0	0	0	0	1	1	0	0
19.81	0	0	0	0	1	1	0	0	1	1
			Total	18264		4714	-	18734	1	4695
		Eficié	ência		74%			-	75%	
		Ince	erteza do	APS	2.2%				2.1%	
L	I	1100						I	_,.,.	I

aa) Estágio 1,0 μm – geração de partículas de 1,0 μm – Posição C

Tabela 123: Estágio 1,0 µm - geração de partículas de 1,0 µm - Posição C

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

dp (μm)	dp _{agua +} dp _{branco} (um)	A	AL	D	DL	А	AL	D	DL	A	AL	D	DL
0.542	167	66	0	50	0	71	0	68	0	70	0	43	0
0.583	131	50	0	28	0	51	0	39	0	40	0	27	0
0.626	95	30	0	20	0	40	0	20	0	26	0	22	0
0.673	71	42	0	19	0	28	0	24	0	30	0	27	0
0.723	57	45	0	24	0	32	0	23	0	31	0	30	0
0.777	43	102	60	65	23	109	67	66	24	112	70	80	38
0.835	31	568	538	261	231	539	509	286	256	496	466	229	199
0.898	13	1865	1852	611	598	1685	1672	539	526	1328	1315	477	464
0.965	37	1327	1290	264	227	1127	1090	211	174	923	886	216	179
1037	13	444	431	44	31	441	428	28	15	352	339	37	24
1114	9	94	85	8	0	115	106	8	0	76	67	8	0
1197	12	36	24	5	0	35	23	6	0	35	23	3	0
1286	10	25	15	0	0	24	14	1	0	12	2	2	0
1382	7	18	11	1	0	22	15	6	0	11	4	1	0
1486	10	13	3	0	0	18	8	0	0	15	5	1	0
1596	4	8	4	2	0	3	0	2	0	5	1	1	0
1715	3	8	5	0	0	4	1	1	0	5	2	1	0
1843	3	9	6	0	0	5	2	0	0	5	2	0	0
1981	2	2	0	0	0	2	0	0	0	3	1	0	0
2129	0	2	2	0	0	3	3	0	0	4	4	0	0
2288	1	1	0	0	0	4	3	0	0	1	0	0	0
2458	1	2	1	0	0		1	0	0	1	0	0	0
2042	0	1	1	0	0	1	1	0	0	3	2	0	0
2039	0	1	1	0	0	1	1	0	0	0	1	0	0
3051	0	0	0	0	0	1	0	0	0	1	1	0	1
3270	0	2	2	1	1	0	1	0	0	1	2 1	1	1
2796	0	0	2	1	0	0	0	1	1	0	0	0	0
4068	0	2	0	0	0	0	0	0	0	0	0	0	0
4000	0	2	2	0	0	1	1	1	1	1	1	0	0
4698	0	0	0	0	0	0	0	0	0	0	0	0	0
5048	0	0	0	0	0	0	0	0	0	0	Ő	0	0
5425	0	0	0	1	1	0	0	0	0	0	Ő	0	0
5829	1	0	0	0	0	0	0	0	0	0	0	0	0
6264	0	0	0	0	0	1	1	0	0	1	1	1	1
6732	1	0	0	0	0	1	0	0	0	1	0	0	0
7234	0	0	0	0	0	2	2	0	0	1	1	0	0
7774	0	0	0	1	1	0	0	1	1	0	0	0	0
8354	0	0	0	0	0	0	0	0	0	0	0	0	0
8977	0	1	1	0	0	2	2	0	0	2	2	0	0
9647	0	0	0	0	0	1	1	0	0	1	1	0	0
10.37	0	0	0	0	0	2	2	0	0	0	0	0	0
11.14	0	0	0	0	0	0	0	0	0	0	0	0	0
11.97	0	1	1	0	0	1	1	0	0	2	2	0	0
12.86	0	1	1	0	0	0	0	0	0	0	0	2	2
13.82	0	1	1	0	0	0	0	0	0	0	0	0	0
14.86	0	0	0	0	0	1	1	0	0	0	0	0	0
15.96	0	0	0	0	0	0	0	0	0	0	0	1	1
17.15	0	0	0	0	0	0	0	0	0	0	0	0	0
18.43	0	0	0	0	0	0	0	0	0	0	0	0	0
19.81	0	0	0	0	0	0	0	0	0	0	0	0	0
		total	4338	1405	1112	4376	3955	1331	997	3597	3200	1211	909
	1	Eticié	encia	74%				/5%				12%	
	Incerte	za do APS	2	2,2%				2,1%		l	l	Z,4%	

Tabela 124: Estágio 1,0 µm - geração de partículas de 1,0 µm - Posição C - continuação

MEDIA	σ	u _A	u _{APS}	u _C	$V_{efetivo}$	k	U
74%	0,017299	0,009987	0,0241	0,026086	93,07657	2,027242	5%
1.1.1.105	A /1' 1 '	E E	11.10	~ .	1 1	. 1. 1.0	D ~ . (

Tabela 125: Análise de incertezas - Estágio 1,0 µm - geração de partículas de 1,0 µm - Posição C

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

dn	dn	dn	3			•		3		_
up (um)	(um)	(um)	А	AL	D	DL	А	AL	D	DL
(μm) 0.542	(μΠ) 024	(μπ) 61	707	0	665	0	746	٥	575	0
0.542	924 555	55	547	0	409	0	/40	0	375	0
0.505	200	42	201	0	400	0	200	0	227	0
0.620	309	43	301	0	243	0	200	0	237	0
0.673	2/1	10	200	0	150	0	109	0	144	0
0.723	188	13	145	0	84	0	136	100	93	0
0.777	126	1	298	100	104	0	262	130	154	22
0.835	103	0	1938	1835	535	432	1807	1/04	/6/	664
0.898	107	15	8243	8121	2340	2218	7664	7542	2//4	2159
0.965	68	0	8433	8365	2487	2419	7998	7930	2447	1965
1.037	33	0	2748	2/15	812	//9	2494	2461	609	5/6
1.114	12	5	427	410	85	68	377	360	102	85
1.197	2	0	104	102	21	19	92	90	21	19
1.286	4	0	46	42	7	3	48	44	11	7
1.382	2	0	36	34	3	1	23	21	4	2
1.486	4	0	15	11	3	0	8	4	4	0
1.596	3	0	11	8	2	0	8	5	4	1
1.715	4	0	11	7	2	0	1	0	1	0
1.843	1	0	11	10	0	0	4	3	1	0
1.981	2	0	8	6	2	0	7	5	2	0
2.129	1	0	16	15	2	1	3	2	1	0
2.288	0	0	5	5	0	0	3	3	1	1
2.458	3	0	5	2	1	0	3	0	2	0
2.642	0	0	7	7	5	5	6	6	0	0
2.839	1	0	6	5	3	2	6	5	2	1
3.051	0	0	2	2	0	0	3	3	2	2
3.278	1	0	4	3	0	0	2	1	0	0
3.523	0	0	5	5	0	0	2	2	1	1
3.786	1	0	2	1	1	0	6	5	0	0
4.068	0	0	4	4	2	2	2	2	1	1
4.371	1	0	1	0	2	1	2	1	1	0
4.698	1	0	3	2	1	0	2	1	0	0
5.048	0	0	3	3	0	0	3	3	2	2
5.425	0	0	1	1	1	1	3	3	0	0
5.829	1	0	1	0	1	0	0	0	0	0
6.264	0	0	2	2	1	1	2	2	1	1
6.732	0	0	4	4	1	1	2	2	0	0
7.234	1	0	1	0	0	0	3	2	0	0
7.774	0	0	0	0	2	2	4	4	1	1
8.354	1	0	5	4	1	0	2	1	0	0
8.977	3	0	1	0	0	0	3	0	0	0
9.647	0	0	3	3	0	0	4	4	1	1
10.37	0	0	3	3	0	0	5	5	0	0
11.14	0	0	0	0	2	2	1	1	1	1
11.97	0	0	0	0	1	1	1	1	0	0
12.86	0	0	3	3	0	0	2	2	0	0
13.82	0	0	0	0	1	1	3	3	0	0
14.86	0	0	2	2	2	2	1	1	0	0
15.96	0	0	0	0	1	1	1	1	0	0
17.15	0	0	3	3	0	0	0	0	0	0
18.43	0	0	0	0	0	0	0	0	0	0
19.81	0	0	0	0	1	1	3	3	0	0
_			Total	21909		5963		20366		5511
	-	Eficié	ència	1	73%	1		-	73%	
		Ince	erteza do	APS	2,3%				2,3%	

bb) Estágio 1,0 µm – geração de partículas de 1,0 µm – Posição Girando 900 rpm

Tabela 126: Estágio 1,0 µm - geração de partículas de 1,0 µm - Posição Girando 900 rpm

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

dp (m)	dp _{agua + branco}	А	AL	D	DL	А	AL	D	DL	А	AL	D	DL
(μΠ) 0.542	(μπ) 167	55	0	42	0	68	0	53	0	52	0	43	0
0.542	131	30	0	21	0	35	0	23	0	37	0	29	0
0.626	95	28	0	18	0	36	0	33	0	40	0	15	0
0.673	71	31	0	16	0	30	0	19	0	31	0	12	0
0.723	57	35	0	24	0	32	0	16	0	29	0	17	0
0.777	43	151	109	59	53	109	67	64	22	88	46	42	0
0.835	31	858	828	227	197	704	674	201	171	617	587	213	183
0.898	13	2610	2597	566	759	2310	2297	900	689	2170	2157	657	644
0.965	37	1750	1713	286	358	1720	1683	320	283	1630	1593	470	433
1.037	13	404	391	42	89	389	376	79	66	430	417	76	63
1.114	9	91	82	10	1	109	100	15	6	113	104	19	10
1.197	12	36	24	5	0	31	19	0	0	34	22	3	0
1.286	10	18	8	0	0	24	14	0	0	14	4	1	0
1.382	7	15	8	1	0	20	13	1	0	8	1	0	0
1.486	10	8	0	0	0	18	8	3	0	13	3	1	0
1.596	4	3	0	1	0	4	0	0	0	7	3	0	0
1.715	3	7	4	2	0	6	3	2	0	5	2	1	0
1.843	3	5	2	1	0	6	3	1	0	6	3	0	0
1.981	2	2	0	1	0	6	4	0	0	4	2	0	0
2.129	0	1	1	0	0	3	3	0	0	5	5	0	0
2.288	1	4	3	1	0	1	0	0	0	2	1	0	0
2.458	1	2	1	0	0	5	4	0	0	3	2	2	1
2.642	1	1	0	1	0	3	2	2	1	0	0	0	0
2.839	0	1	1	0	0	1	1	1	1	1	1	0	0
3.051	0	0	0	0	0	0	0	0	0	3	3	1	1
3.278	0	0	0	1	1	2	2	0	0	1	1	0	0
3.523	0	0	0	0	0	0	0	0	0	0	0	0	0
3.700	0	0	0	0	0	0	0	1	1	0	1	0	0
4.000	0	1	1	0	0	1	0	0	0	1	1	0	0
4.571	0	1	1	0	0	0	0	0	0	0	0	0	0
5.048	0	0	0	0	0	0	0	0	0	1	1	0	0
5.425	0	1	1	0	0	2	2	0	0	0	0	0	0
5.829	1	0	0	1	0	0	0	0	0	0	0	0	0
5.025 5.264	0	0	Ő	0	0	0	0	0	0	0	0	0	0
3.732	1	0	0	0	0	0	0	0	0	0	0	0	0
7.234	0	0	0	0	0	1	1	0	0	1	1	0	0
7.774	0	1	1	0	0	0	0	0	0	1	1	0	0
3.354	0	0	0	0	0	0	0	0	0	0	0	0	0
3.977	0	0	0	0	0	1	1	0	0	0	0	0	0
9.647	0	1	1	0	0	0	0	0	0	0	0	0	0
10.37	0	0	0	0	0	0	0	0	0	1	1	0	0
11.14	0	0	0	0	0	0	0	0	0	0	0	0	0
11.97	0	0	0	1	1	0	0	0	0	0	0	0	0
12.86	0	0	0	0	0	0	0	0	0	0	0	0	0
13.82	0	0	0	0	0	0	0	0	0	0	0	1	1
14.86	0	0	0	0	0	0	0	0	0	0	0	0	0
15.96	0	2	2	0	0	0	0	0	0	0	0	0	0
17.15	0	0	0	0	0	0	0	0	0	1	1	0	0
18.43	0	0	0	0	0	0	0	0	0	0	0	0	0
19.81	0	0	0	0	0	0	0	0	0	0	0	0	0
		Total	5778	1327	1459	5677	5277	1734	1239	5349	4961	1603	1336
	Eficiência	1.50		75%				77%				73%	
	Incerteza do	APS		2,1%				2,0%				2,3%	

Tabela 127: Estágio 1,0 µm – geração de partículas de 1,0 µm – Posição Girando 900 rpm – continuação.

MEDIA	σ	u _A	u _{APS}	u _C	$V_{efetivo}$	k	U
75%	0,017199	0,00993	0,0231	0,025137	82,1416	2,030951	5%

Tabela 128: Estágio 1,0 µm - geração de partículas de 1,0 µm - Posição Girando 900 rpm - continuação

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

,			<u> </u>	,	1							1
dp (μm)	dp _{agua + branco} (μm)	А	AL	D	DL	А	AL	D	DL	А	AL	D
0.542	167	54	0	44	0	55	0	47	0	49	0	40
0.583	131	36	0	35	0	32	0	26	0	35	0	28
0.626	95	37	0	27	0	43	0	19	0	36	0	19
0.673	71	34	0	23	0	37	0	23	0	35	0	22
0.723	57	32	0	16	0	34	0	20	0	41	0	21
0.777	43	157	115	54	12	173	131	69	27	214	172	80
0.835	31	1040	1010	329	299	1340	1310	378	348	1240	1210	414
0.898	13	3560	3547	943	930	4470	4457	1475	1462	3760	3747	1095
0.965	37	2560	2523	682	645	3200	3163	601	564	2650	2613	728
1.037	13	514	501	130	117	714	701	103	90	517	504	102
1.114	9	101	92	26	17	113	104	8	0	95	86	15
1.197	12	42	30	4	0	38	26	1	0	29	17	1
1.286	10	28	18	1	0	13	3	1	0	23	13	3
1.382	7	14	7	1	0	16	9	1	0	12	5	0
1.486	10	5	0	1	0	7	0	3	0	12	2	2
1.596	4	5	1	0	0	8	4	1	0	9	5	1
1.715	3	5	2	0	0	16	13	1	0	3	0	1
1.843	3	7	4	0	0	5	2	2	0	6	3	1
1.981	2	2	0	0	0	3	1	0	0	6	4	0
2.129	0	1	1	0	0	1	1	0	0	4	4	0
2.288	1	3	2	0	0	2	1	0	0	2	1	1
2.458	1	3	2	0	0	4	3	0	0	5	4	0
2.642	1	2	1	0	0	2	1	0	0	3	2	0
2.839	0	1	1	2	2	1	1	0	0	1	1	0
3.051	0	3	3	0	0	1	1	0	0	0	0	0
3.278	0	1	1	0	0	1	1	0	0	1	1	1
3.523	0	0	0	1	1	2	2	0	0	0	0	2
3.786	0	1	1	0	0	2	2	0	0	2	2	0
4.068	0	2	2	1	1	3	3	0	0	0	0	0
4.371	0	0	0	1	1	1	1	0	0	1	1	0
4.090	0	0	0	0	0	0	0	0	0	0	0	0
5.040	0	0	0	0	0	0	0	0	0	1	1	0
5 820	1	0	0	0	0	0	0	0	0	2	1	0
6 264	0	1	1	0	0	1	1	0	0	1	1	0
6.732	1	0	0	0	0	0	0	0	0	0	0	0
7.234	0	0	Ő	0	0	0	Ő	0	0	0	Ő	0
7.774	0	2	2	0	0	0	0	0	0	2	2	Ũ
8.354	0	1	1	1	1	1	1	0	0	1	1	0
8.977	0	0	0	0	0	0	0	0	0	0	0	0
9.647	0	0	0	2	2	0	0	0	0	2	2	0
10.366	0	0	0	0	0	0	0	0	0	1	1	0
11.140	0	0	0	0	0	0	0	1	1	1	1	0
11.971	0	1	1	0	0	1	1	0	0	1	1	0
12.864	0	0	0	0	0	0	0	0	0	1	1	0
13.824	0	0	0	0	0	1	1	1	1	0	0	0
14.855	0	0	0	0	0	0	0	1	1	0	0	0
15.963	0	1	1	0	0	0	0	0	0	0	0	0
17.154	0	1	1	0	0	0	0	0	0	0	0	0
18.434	0	0	0	0	0	0	0	0	0	0	0	0
19.810	0	0	0	0	0	1	1	0	0	0	0	0
	Total	8257	7870	2324	2027	10342	9944	2782	2493	8804	8407	2577
	Eficiência			74%				75%				73%
	Incerteza do	APS		2,2%				2,1%				2,3%

cc) Estágio 1,0 µm – geração de partículas de 1,0 µm – Posição Girando 600 rpm

Incerteza do APS2,2%2,1%Tabela 129: Estágio 1,0 μm – geração de partículas de 1,0 μm – Posição Girando 600 rpm

MEDIA	σ	u _A	u _{APS}	u _C	$V_{efetivo}$	k	U
74%	0,011205	0,006469	0,0231	0,024019	380,0535	2,006603	5%

Tabela 130: Análise de incertezas - Estágio 1,0 µm - geração de partículas de 1,0 µm - Posição Girando 600 rpm

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

DL = número de partículas depois de chegar ao impactador, limpas

	pin				-								
dp	dp _{agua + branco}	А	AL	D	DL	А	AL	D	DL	А	AL	D	DL
(μm)	(μ m)	24	0	21	0	26	0	20	0	40	0	10	0
0.542	107	29	0	27	0	20	0	29	0	42	0	40	0
0.505	95	10	0	26	0	1/	0	23	0	24	0	18	0
0.020	71	15	0	17	0	20	0	12	0	10	0	17	0
0.073	57	21	0	24	0	20	0	12	0	27	0	13	0
0.723	43	88	46	70	28	84	42	49	7	76	34	44	2
0.835	31	509	479	219	189	470	440	158	. 128	514	484	191	161
0.898	13	1630	1617	515	502	1510	1497	436	423	1570	1557	384	371
0.965	37	1180	1143	182	145	1160	1123	296	259	1100	1063	390	353
1.037	13	241	228	32	19	240	227	59	46	284	271	38	25
1.114	9	49	40	9	0	61	52	12	3	58	49	8	0
1.197	12	24	12	3	0	19	7	2	0	27	15	3	0
1.286	10	16	6	2	0	12	2	4	0	18	8	0	0
1.382	7	9	2	2	0	6	0	1	0	11	4	0	0
1.486	10	4	0	0	0	3	0	2	0	7	0	0	0
1.596	4	9	5	0	0	5	1	1	0	6	2	1	0
1.715	3	4	1	1	0	3	0	1	0	5	2	3	0
1.843	3	4	1	0	0	1	0	0	0	3	0	0	0
1.981	2	4	2	0	0	3	1	1	0	5	3	2	0
2.129	0	1	1	0	0	0	0	0	0	3	3	0	0
2.288	1	3	2	0	0	0	0	0	0	3	2	0	0
2.458	1	3	2	0	0	0	0	0	0	1	0	0	0
2.642	1	0	0	0	0	2	1	1	0	1	0	0	0
2.839	0	0	0	0	0	0	0	0	0	0	0	0	0
3.051	0	0	0	0	0	0	0	0	0	0	0	0	0
3.278	0	1	1	1	1	0	0	0	0	0	0	0	0
3.523	0	0	0	0	0	0	0	0	0	0	0	0	0
3.786	0	0	0	0	0	0	0	0	0	0	0	0	0
4.068	0	0	0	0	0	0	0	0	0	0	0	0	0
4.371	0	1	1	1	1	0	0	0	0	0	0	1	1
4.698	0	0	0	0	0	0	0	0	0	2	2	0	0
5.048	0	0	0	0	0	2	2	0	0	1	1	0	0
5.425	0	0	0	0	0	0	0	0	0	0	0	0	0
5.829	1	1	0	1	0	0	0	0	0	0	0	0	0
6.204	0	0	0	0	0	1	0	0	0	0	0	0	0
0.732	0	0	0	0	0	0	0	0	0	0	0	0	0
7 77/	0	0	0	0	0	1	1	0	0	0	0	0	0
8 354	0	0	0	0	0	0	0	1	1	0	0	0	0
8,977	0	0	0	0	0	0	n n	0	0	1	1	0	0
9.647	0	0	Ő	0	ő	0	n n	0	n n	0	0	0	ő
10.366	0	0	Ő	0	Ő	0	0	0	0	0	0	0	0
11.140	0	0	Ő	Ő	0	0	Ő	0	Ő	0	Ő	Ő	Ō
11.971	0	0	0	0	0	0	0	0	0	0	0	0	Ō
12.864	0	0	0	0	Ō	0	0	0	0	0	0	0	0
13.824	0	0	0	0	0	1	1	1	1	1	1	0	0
14.855	0	0	0	0	0	0	0	0	0	1	1	0	0
15.963	0	0	0	0	0	1	1	0	0	0	0	0	0
17.154	0	0	0	0	0	0	0	0	0	1	1	1	1
18.434	0	0	0	0	0	1	1	0	0	0	0	0	0
19.810	0	0	0	0	0	1	1	0	0	0	0	0	0
	Total	3899	3588	1163	884	3697	3400	1127	867	3838	3503	1197	913
	Eficiência			75%				74%				74%	
	Incerteza do	APS		2,1%				2,2%				2,2%	
			-				-		-		-	-	

dd) Estágio 1,0 μm – geração de partículas de 1,0 μm – Posição Girando 1200 rpm

Tabela 131: Estágio 1,0 µm - geração de partículas de 1,0 µm - Posição Girando 1200 rpm

75% 0,007227 0,004172 0,0221 0,022511 1694,494 2,001479 5%	MEDIA	σ	u _A	u _{APS}	u _C	$V_{efetivo}$	k	U
	75%	0,007227	0,004172	0,0221	0,022511	1694,494	2,001479	5%

Tabela 132: Análise de incertezas - Estágio 1,0 µm - geração de partículas de 1,0 µm - Posição Girando 1200 rpm

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

LStagt	51,0 µm ge	Taya	U UC	partie	ulus uv	0,0	μΠ	1 051	çao D	
dp	dp _{agua} +dp _{branco}		А	AL	D	DL	А	AL	D	DL
(μm)	(μm)		0.40		0.40	_	000		005	•
0.542	281	61	643	301	340	0	602	260	325	0
0.583	171	55	482	256	196	0	434	208	192	0
0.626	124	43	372	205	152	0	331	164	145	0
0.673	106	18	286	162	96	0	257	133	94	0
0.723	76	13	204	116	86	0	155	67	82	0
0.777	80	7	118	32	73	0	108	22	71	0
0.835	215	0	98	0	56	0	108	0	55	0
0.898	600	15	227	0	48	0	234	0	43	0
0.965	417	0	295	0	39	0	275	0	35	0
1.037	109	0	114	5	14	0	116	7	5	0
1.114	23	5	27	0	2	0	25	0	2	0
1,197	15	0	16	1	1	0	10	0	1	0
1 286	3	0	10	7	1	Ō	5	2	1	Ō
1 382	3	0	8	5	0	0	5	2	2	Õ
1.486	4	0	2	0	0	0	2	0	0	ů 0
1 506	5	0	2	0	0	0	7	2	0	0
1 715	3	0	1	0	1	0	2	2 0	0	0
1./10	4	0	1	0	1	0	1	0	0	0
1.043	Ζ	0	1	0	1	0	1	0	0	0
1.981	1	0	0	0	0	0	2	1	0	0
2.129	2	0	1	0	0	0	1	0	0	0
2.288	1	0	1	0	9	8	0	0	6	5
2.458	0	0	68	68	49	49	81	81	48	48
2.642	0	0	681	681	21	21	647	647	44	44
2.839	0	0	359	359	5	5	315	315	14	14
3.051	1	0	7	6	0	0	9	8	0	0
3.278	0	0	3	3	0	0	3	3	1	1
3.523	2	0	1	0	0	0	1	0	1	0
3.786	0	0	0	0	0	0	1	1	0	0
4.068	0	0	0	0	0	0	0	0	0	0
4.371	0	0	0	0	0	0	1	1	1	1
4.698	1	0	0	0	0	0	0	0	1	0
5.048	1	0	1	0	0	0	0	0	0	0
5.425	0	0	0	0	0	0	1	1	0	0
5 829	0	0	0	0	0	0	0	0	0	0
6 264	0	0	0	0	0	0	0	0	0	0
6 732	0	0	0	Ő	1	1	0	0	1	1
7.224	0	0	0	0	0	0	0	0	0	0
7.234	0	0	0	0	0	0	0	0	0	0
0.254	0	0	0	0	0	0	0	0	0	0
0.004	0	0	0	0	0	0	0	0	0	0
0.9//	0		0	0	0	U	0	0	0	0
9.647	U	0	0	U	0	U	0	U	0	U
10.37	1	0	0	U	0	U	0	U	0	U
11.14	0	0	0	0	0	0	0	0	0	0
11.97	0	0	1	1	0	0	0	0	0	0
12.86	0	0	0	0	0	0	0	0	0	0
13.82	0	0	1	1	0	0	0	0	0	0
14.86	0	0	0	0	0	0	0	0	0	0
15.96	0	0	1	1	0	0	0	0	1	1
17.15	0	0	0	0	0	0	0	0	0	0
18.43	0	0	0	0	0	0	0	0	0	0
19.81	0	0	0	0	0	0	0	0	0	0
	Total			2209		84		1924		115
	Eficiência				96%				94%	-
	Incerteza do A	PS		1	0.3%				0.5%	
1. 122		~	~	1 1	1 1	2.0	т	. · ~	D	

DL = número de partículas depois de chegar ao imp	pactador, limpas	
---	------------------	--

ee) Estágio 1,0 μm – geração de partículas de 3,0 μm – Posição B

Tabela 133: Estágio 1,0 µm – geração de partículas de 3,0 µm – Posição B

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

dp	dp _{branco}	dp _{agua}	А	AL	D	DL	А	AL	D	DL	А	AL	D	DL
(μm)	(μm) 24	(μm) 69	70	•	47	0	70	•	E A	•	60	•	6F	0
0.542	31	68	10	0	47	0	12	0	54	0	62	0	65	0
0.563	10	55	40	0	41	0	42	0	40	0	57	0	30	0
0.020	14	42	20	0	26	0	40	0	20	0	40	0	25	0
0.073	3/	43	29	0	20	0	20	0	20	0	26	0	23	0
0.723	30	10	35	0	26	0	26	0	10	0	20	0	23	0
0.835	57	7	48	0	20	0	47	0	15	0	<u>41</u>	0	12	0
0.898	66	0	64	Ő	18	0	68	2	21	0	58	Ő	15	0
0.965	52	15	33	0	3	0	38	0	2	0	43	0	5	0
1.037	23	0	22	0	1	0	21	0	0	0	18	0	2	0
1.114	11	0	10	0	0	0	5	0	3	0	10	0	1	0
1.197	9	5	4	0	1	0	7	0	0	0	12	0	0	0
1.286	8	0	6	0	0	0	9	1	1	0	9	1	1	0
1.382	5	0	5	0	1	0	11	6	0	0	8	3	1	0
1.486	5	0	4	0	1	0	4	0	1	0	4	0	1	0
1.596	2	0	4	2	1	0	8	6	0	0	4	2	0	0
1.715	5	0	2	0	0	0	2	0	0	0	4	0	0	0
1.843	3	0	2	0	0	0	1	0	0	0	2	0	0	0
1.981	0	0	0	0	0	0	1	1	0	0	1	1	0	0
2.129	4	0	2	0	0	0	1	0	0	0	2	0	0	0
2.288	0	0	63	63	7	7	49	49	3	3	38	38	5	4
2.458	2	0	85	83	8	6	76	74	4	2	91	89	11	6
2.642	1	0	71	70	1	0	58	57	1	0	63	62	0	0
2.839	2	0	18	16	1	0	23	21	0	0	34	32	0	0
3.051	1	0	0	0	0	0	1	0	0	0	1	0	1	0
3.278	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.523	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.786	0	0	0	0	0	0	1	1	0	0	0	0	0	0
4.068	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4.371	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4.090	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5.040	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5.829	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6 264	0	0	0	Ő	0	Ő	0	Ő	0	0	0	0	0	Ō
6.732	0	0	1	1	0	0	1	1	0	0	0	0	0	0
7.234	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7.774	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8.354	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8.977	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9.647	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10.37	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11.14	0	0	0	0	0	0	0	0	1	1	0	0	0	0
11.97	0	0	1	1	0	0	0	0	0	0	0	0	0	0
12.86	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13.82	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14.86	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15.96	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17.15	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18.43	0	0	0	0	0	0	0	0	0	0	0	U	0	0
19.81	U	U Tatal	U	0	U	0	U	U	U	U	U	U	U	0
		I UTAI		230	049/	13		219	070/	Ø		228	069/	10
		Efficier			94%				9/%				90%	
		incerte	za u0	AFO	0,3%				U,2%				U,4%	

Tabela 134: Estágio 1,0 µm - geração de partículas de 3,0 µm - Posição B - continuação

MEDIA	σ	u _A	u _{APS}	u _C	$V_{efetivo}$	k	U
96%	0,013913	0,008033	0,0051	0,009508	3,92581	3,30683	3%

Tabela 135: Análise de incertezas - Estágio 1,0 µm - geração de partículas de 3,0 µm - Posição B

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

Dotagic	, 1,0 pill	<u> </u>	uo uo	Partie	uius u	• 5,0	print	1 0 51	guo o	
dp (um)	dp _{branco}	dp _{agua}	А	AL	D	DL	А	AL	D	DL
(μΠ) 0.542	(µ11) 281	(μΠ) 61	1054	712	335	0	677	335	331	0
0.542	171	55	766	5/0	210	0	520	303	215	0
0.000	124	43	623	456	162	0	302	225	153	0
0.020	124	18	/02.5	374	05	0	317	103	06	0
0.073	76	10	384	296	- 55 - 68	0	230	142	- 60 - 60	0
0.723	80	7	252	167	40	0	120	142	42	0
0.835	215	0	202	0	35	0	133		40	0
0.898	600	15	361	Ő	25	Ő	310	0	29	Ő
0.000	417	0	378	0	21	0	366	0	21	Ő
1.037	109	0	179	70	16	0	172	63	15	Ő
1 114	23	5	50	22	4	0	42	14	4	Ő
1 107	15	0	38	23	1	0	8	0	1	Ő
1.107	3	0	27	24	1	ő	12	ğ	1	ő
1 382	3	0	17	14	1	Ő	12	ğ	0	Ő
1.302	4	0	27	23	1	0	6	2	1	Ő
1.596	5	0	14	9	0	Ő	4	0	0	Ő
1 715	4	0	17	13	0	0	2	0	0	Ő
1.713	2	0	10	17	0	0	4	2	0	Ő
1.040	1	0	11	10	1	Ő	3	2	0	Ő
2 129	2	0	13	11	0	0	1	0	0	ŏ
2.120	1	0	8	7	1	0	1	0	4	3
2.200	0	0	69	69	3	3	85	85	44	44
2.430	0	0	850	850	05	95	468	468	30	23
2.042	0	0	458	458	17	17	195	195	<u> </u>	<u>2</u> 5
3.051	1	0	10	9	0	0	12	11	1	0
3 278	0	0	7	7	0	0	0	0	0	0
3 523	2	0	2	0	1	Ő	1	0	0	Ő
3 786	0	0	3	3	0	0	0	0	0	0
4.068	0	0	0	Ő	0	ő	0	Ő	1	1
4.371	0	0	0	0 0	0	Ő	0	0	0	0
4 698	1	0	1	0 0	0	Ő	0	0	1	Ő
5.048	1	0	1	0 0	0	Ő	0	0	0	Ő
5.425	0	0	0	0	0	0	0	0	0	0
5 829	0	0	1	1	0	Ő	0	0	1	1
6.264	0	0	0	0	0	0	0	0	0	0
6.732	0	0	1	1	0	Ō	0	0	0	0
7.234	0	0	1	1	0	0	0	0	0	0
7.774	0	0	0	0	0	Ō	0	0	0	0
8.354	0	0	0	0	0	0	0	0	0	0
8.977	0	0	0	0	0	0	0	0	0	0
9.647	0	0	0	0	1	1	0	0	0	0
10.37	1	0	0	0	0	0	0	0	0	0
11.14	0	0	0	0	1	1	0	0	0	0
11.97	0	0	0	0	0	0	0	0	0	0
12.86	0	0	0	0	0	0	0	0	0	0
13.82	0	0	0	0	0	0	0	0	0	0
14.86	0	0	1	1	0	0	0	0	0	0
15.96	0	0	0	0	0	0	0	0	0	0
17.15	0	0	0	0	0	0	0	0	0	0
18.43	0	0	0	0	0	0	0	0	0	0
19.81	0	0	0	0	0	0	0	0	0	0
	Total			4187		117		2101		81
	Eficiência				97%				96%	
	Incerteza c	lo APS			0,2%				0,3%	

DL = número de partículas depois de chegar ao impactador, limpas

ff) Estágio 1,0 μm – geração de partículas de 3,0 μm – Posição C

Tabela 136: Estágio 1,0 µm – geração de partículas de 3,0 µm – Posição C

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

dp (um)	dp _{branco} (µm)	dp _{agua} (µm)	А	AL	D	DL	А	AL	D	DL	А	AL	D	DL
0.542	31	68	92	0	49	0	80	0	56	0	89	0	39	0
0.583	16	61	59	0	35	0	63	0	43	0	75	0	40	0
0.626	14	55	55	0	29	0	67	0	31	0	50	0	17	0
0.673	12	43	43	0	33	0	53	0	23	0	41	0	27	0
0.723	34	18	47	0	29	0	45	0	24	0	46	0	16	0
0.777	30	13	42	0	31	0	29	0	31	0	46	4	18	0
0.835	57	7	57	0	23	0	43	0	25	0	61	0	14	0
0.898	66	0	92	26	18	0	73	7	9	0	72	6	16	0
0.965	52	15	50	0	5	0	50	0	1	0	56	0	8	0
1.037	23	0	22	0	1	0	22	0	2	0	22	0	3	0
1.114	11	0	16	5	1	0	19	8	4	0	19	8	2	0
1.197	9	5	13	0	2	0	13	0	1	0	11	0	0	0
1.286	8	0	12	4	0	0	7	0	4	0	19	11	1	0
1.382	5	0	10	5	0	0	5	0	0	0	7	2	0	0
1.486	5	0	3	0	0	0	6	1	0	0	8	3	0	0
1.596	2	0	6	4	0	0	3	1	0	0	5	3	0	0
1.715	5	0	4	0	1	0	1	0	0	0	5	0	1	0
1.843	3	0	0	0	0	0	2	0	0	0	6	3	0	0
1.981	0	0	2	2	0	0	0	0	0	0	3	3	0	0
2.129	4	0	6	2	0	0	2	0	0	0	1	0	0	0
2.288	0	0	30	30	1	1	29	29	1	1	31	31	4	4
2.458	2	0	69	67	6	4	103	101	8	6	86	84	7	5
2.642	1	0	74	73	2	1	63	62	4	3	86	85	0	0
2.839	2	0	42	40	0	0	38	36	0	0	34	32	1	0
3.051	1	0	0	0	0	0	2	1	0	0	2	1	0	0
3.278	0	0	1	1	2	2	0	0	0	0	0	0	0	0
3.523	0	0	1	1	0	0	0	0	0	0	0	0	0	0
3.786	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4.068	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4.371	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4.698	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5.048	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5.425	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5.829	0	0	0	0	0	0	0	0	0	0	1	1	0	0
6.264	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0.732	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7.234	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.254	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.304	0	0		1	0	0	0	0	0	0	0	0	0	0
0.977	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9.047	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11 1/	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11.14	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12.86	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13.00	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14.86	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15.00	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17 15	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18.43	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19.43	0	0	0	0	0	0	0	0	0	0	0	n n	0	0
10.01	Total	0	0	261	0	9	0	246	0	10	0	277	0	9
	Fficiência			231	97%			2.40	96%				97%	
	Incerteza	IN APS			0.3%				0.3%				0.3%	
L	moonozu u			1	0,070			I	0,070				0,070	1

Tabela 137: Estágio 1,0 µm - geração de partículas de 3,0 µm - Posição C - continuação

MEDIA	σ	u _A	u _{APS}	u _C	$v_{efetivo}$	k	U
96%	0,004463	0,002576	0,0034	0,004302	15,53994	2,181166	1%

Tabela 138: Analise de incertezas - Estágio 1,0 µm - geração de partículas de 3,0 µm - Posição C

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

dn	dn	dn								
up (um)	(um)	(um)	Α	AL	D	DL	Α	AL	D	DL
(μπ) 0.542	(μπ) 281	(μΠ) 61	250	0	152	0	214	0	108	0
0.542	171	55	120	0	52	0	121	0	92	0
0.565	171	42	120	0	26	0	02	0	66	0
0.620	124	43	100	0	20	0	92	0	41	0
0.673	106	10	92	0	20	0	52	0	41	0
0.723	76	13	00	0	22	0	40	0	40	0
0.777	80	1	39	0	15	0	38	0	25	0
0.835	215	0	99	0	6	0	100	0	60	0
0.898	600	15	220	0	5	0	176	0	76	0
0.965	417	0	295	0	2	0	273	0	56	0
1.037	109	0	46	0	1	0	95	0	20	0
1.114	23	5	12	0	5	0	22	0	3	0
1.197	15	0	24	9	1	0	18	3	2	0
1.286	3	0	2	0	0	0	1	0	0	0
1.382	3	0	1	0	0	0	1	0	0	0
1.486	4	0	0	0	1	0	1	0	0	0
1.596	5	0	0	0	1	0	1	0	2	0
1.715	4	0	0	0	0	0	4	0	0	0
1.843	2	0	2	0	0	0	2	0	0	0
1.981	1	0	1	0	1	0	1	0	1	0
2.129	2	0	1	0	0	0	3	1	1	0
2.288	1	0	3	2	3	2	0	0	2	1
2.458	0	0	78	78	9	9	75	75	12	12
2.642	0	0	537	537	6	6	639	639	28	28
2.839	0	0	197	197	5	5	268	268	6	6
3.051	1	0	8	7	1	0	6	5	1	0
3.278	0	0	3	3	1	1	1	1	0	0
3.523	2	0	4	2	1	0	2	0	0	0
3.786	0	0	2	2	0	0	0	0	0	0
4.068	0	0	0	0	0	0	0	0	0	0
4.371	0	0	1	1	0	0	0	0	0	0
4.698	1	0	3	2	0	0	0	0	0	0
5.048	1	0	0	0	0	0	1	0	0	0
5.425	0	0	0	0	0	0	0	0	0	0
5.829	0	0	0	0	0	0	0	0	0	0
6.264	0	0	0	0	0	0	0	0	0	0
6.732	0	0	0	0	0	0	0	0	0	0
7.234	0	0	0	0	0	0	0	0	0	0
7.774	0	0	0	0	0	0	0	0	0	0
8.354	0	0	0	0	0	0	0	0	0	0
8.977	0	0	0	0	0	0	0	0	0	0
9.647	0	0	0	0	0	0	0	0	0	0
10.37	1	0	0	0	0	0	0	0	0	0
11.14	0	0	0	0	0	0	0	0	0	0
11.97	0	0	0	0	0	0	0	0	0	0
12.86	0	0	0	0	0	0	0	0	0	0
13.82	0	0	0	0	0	0	0	0	0	0
14.86	0	0	0	0	0	0	0	0	0	0
15.96	0	0	0	0	0	0	0	0	0	0
17.15	0	0	0	0	0	0	0	0	0	0
18.43	0	0	0	0	0	0	0	0	0	0
19.81	0	0	0	0	0	0	0	0	0	0
			Total	840		23		992		47
		Eficiê	ncia		97%				95%	
		Incert	eza do A	APS	0,2%				0,4%	

gg) Estágio 1,0 µm – geração de partículas de 3,0 µm – Posição Girando 900 rpm

DL = número de partículas depois de chegar ao impactador, limpas

Tabela 139: Estágio 1,0 µm - geração de partículas de 3,0 µm - Posição Girando 900 rpm

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

dp (um)	dp _{branco}	dp _{agua} (µm)	А	AL	D	DL	А	AL	D	DL	А	AL	D	AL
0.542	(µ.11.) 31	68 68	60	0	40	0	62	0	35	0	66	0	46	0
0.583	16	61	52	Ő	28	0	45	Ő	28	Ő	40	0	39	0
0.626	14	55	42	0	25	Ō	40	0	25	-	38	0	27	0
0.673	12	43	31	0	25	0	40	0	22	0	35	0	27	0
0.723	34	18	30	0	22	0	37	0	16	0	30	0	17	0
0.777	30	13	39	0	27	0	31	0	24	0	22	0	18	0
0.835	57	7	53	0	12	0	28	0	10	0	40	0	19	0
0.898	66	0	70	4	16	0	75	9	18	0	48	0	15	0
0.965	52	15	44	0	7	0	30	0	5	0	47	0	10	0
1.037	23	0	18	0	3	0	20	0	2	0	24	1	1	0
1.114	11	0	20	9	3	0	15	4	1	0	8	0	7	0
1.197	9	5	15	1	2	0	13	0	4	0	8	0	2	0
1.286	8	0	13	5	1	0	13	5	2	0	10	2	0	0
1.382	5	0	11	6	0	0	10	5	0	0	14	9	0	0
1.486	5	0	9	4	0	0	5	0	0	0	6	1	0	0
1.596	2	0	4	2	0	0	5	3	1	0	6	4	1	0
1.715	5	0	6	1	0	0	2	0	0	0	2	0	0	0
1.843	3	0	2	0	1	0	1	0	0	0	7	4	1	0
1.981	0	0	3	3	0	0	1	1	0	0	5	5	0	0
2.129	4	0	2	0	0	0	7	3	0	0	1	0	0	0
2.288	0	0	40	40	5	5	30	30	2	2	29	29	5	5
2.458	2	0	64	62	4	2	97	95	2	0	79	77	8	6
2.642	1	0	73	72	1	0	51	50	2	1	71	70	0	0
2.839	2	0	28	26	1	0	23	21	0	0	24	22	1	0
3.051	1	0	1	0	0	0	0	0	1	0	2	1	0	0
3.278	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.523	0	0	0	0	0	0	1	1	0	0	1	1	1	1
3.786	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4.068	0	0	1	1	0	0	0	0	0	0	1	1	0	0
4.371	0	0	0	0	0	0	0	0	0	0	1	1	0	0
4.698	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5.048	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5.425	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5.829	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6.264	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6.732	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7.234	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7.774	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8.354	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8.977	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9.647	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10.37	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11.14	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11.97	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12.86	0	0	1		0	0	0	0	0	0	0	U	0	U
13.82	0	0	0	0	0	0	1	1	0	0	0	U	0	U
14.86	0	0	0	U	0	0	0	U	0	0	0	U	0	U
15.96	0	0	0	0	0	0	0	0	0	0	0	U	0	U
17.15	0	0	0	0	0	0	0	0	0	0	0	U	0	U
18.43	0	0	0	0	0	0	0	0	0	0	0	U	0	U
19.81	U	U	U	0	U	0	U	0	U	0	U	0	U	0
		Lt:*:	rotai	231	070/	1		228	000/	3		228	0E0/	12
					91%				99%				93%	
		incer	ieza do A	172	0,3%				U,1%				U,4%	

Tabela 140: Estágio 1,0 µm - geração de partículas de 3,0 µm - Posição Girando 900 rpm - continuação

MEDIA	σ	u _A	u _{APS}	u _C	$V_{efetivo}$	k	U
97%	0,019854	0,011463	0,0045	0,012303	2,654255	4,526551	6%

]Tabela 141: Análise de incertezas - Estágio 1,0 µm - geração de partículas de 3,0 µm - Posição Girando 900 rpm

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

DL = número	de partículas	depois de	chegar ao	impactador, limp	pas
-------------	---------------	-----------	-----------	------------------	-----

hh) Estágio 1,0 μm – geração de partículas de 3,0 μm – Posição Girando 600 rpm

	0 ,		0	5	1			/		5			1	
dp (um)	dp _{branco}	dp _{agua}	А	AL	D	DL	А	AL	D	DL	А	AL	D	DL
0,542	(μπ) 31	68	63	0	80	0	88	0	86	0	74	0	80	0
0,583	16	61	61	0	75	0	59	0	57	0	71	0	71	0
0,626	14	55	51	0	58	0	68	0	56	0	71	2	60	0
0,673	12	43	45	0	54	0	62	7	51	0	43	0	46	0
0,723	34	18	34	0	38	0	55	3	49	0	39	0	44	0
0,777	30	13	50	8	33	0	47	5	40	0	35	0	40	0
0,835	57	7	52	0	48	0	48	0	35	0	41	0	54	0
0,898	66	0	66	0	55	0	49	0	31	0	69	3	34	0
0,965	52	15	43	0	0	0	42	0	29	0	48	0	25	0
1,037	23	0	25	2	0	0	31	8	22	0	31	8	21	0
1,114	11	0	31	20	0	0	30	19	11	0	29	18	11	0
1,197	9	5	22	8	0	0	25	11	8	0	23	9	9	0
1,286	8	0	14	6	0	0	20	12	6	0	24	16	6	0
1,382	5	0	12	7	0	0	16	11	0	0	20	15	5	0
1,486	5	0	12	7	0	0	20	15	0	0	19	14	0	0
1,596	2	0	9	7	0	0	9	7	0	0	11	9	0	0
1,715	5	0	7	2	0	0	12	7	0	0	11	6	0	0
1,843	3	0	4	1	0	0	3	0	0	0	7	4	0	0
1,981	0	0	7	7	0	0	3	3	0	0	6	6	0	0
2,129	4	0	8	4	0	0	2	0	0	0	3	0	0	0
2,288	0	2,9	26	23	3	0	13	10	1	0	16	13	2	0
2,458	2	3,1	86	81	9	4	96	91	9	4	112	107	11	6
2,642	1	3,3	73	69	5	1	98	94	7	3	129	125	9	5
2,839	2	3,5	21	16	2	0	43	38	1	0	47	42	2	0
3,051	1	0	2	1	0	0	1	0	1	0	4	3	0	0
3,278	0	0	0	0	0	0	2	2	0	0	1	1	0	0
3,523	0	0	1	1	0	0	0	0	0	0	1	1	0	0
3,786	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4,068	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4,371	0	0	1	1	0	0	0	0	0	0	0	0	0	0
4,698	0	0	0	0	0	0	0	0	0	0	0	0	1	1
5,048	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5,425	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5,829	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6,264	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6,732	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7,234	0	0	0	0	0	0	0	0	1	1	0	0	0	0
7,774	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8,354	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8,977	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9,647	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10,366	0	0	0	0	0	0	0	0	0	0	1	1	0	0
11,140	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11,971	0	0	1	1	0	0	0	0	0	0	1	1	0	0
12,864	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13,824	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14,855	0	0	0	0	0	0		0	0	0	0	U	0	0
15,963	0	0	0	0	0	0		0	0	0	0	U	0	0
17,154	0	0	0	0	0	0		0	0	0	0	U	0	0
10,434	0	0	0	0	0	0		0	0	0	0	0	0	0
19,810	U	U	0	0	0	0	U	0	U	U	0	0	U	10
		TOTAL Eficiên		2/1	0.00/	3	<u> </u>	341	0.00/	Ő		403	070/	12
			iula za da		90% 0 15%				90% 0 10%				0 240/	
L			za u0	AL9	0,15%	L	1	I	0,19%	L	L	I	U, ∠4%	1

Tabela 142: Estágio 1,0 µm – geração de partículas de 3,0 µm – Posição Girando 600 rpm

	MEDIA	σ	u _A	u _{APS}	u _C	$V_{efetivo}$	k	U
	98%	0,005736	0,003311732	0,0024	0,004116	4,772331	2,869315	2%
. –	1 1 2 1 (1)		T (1 1 1	2	~ 1 /	1 1 0 0	D . ~	a: 1 6

Tabela 143: Análise de incertezas - Estágio 1,0 µm - geração de partículas de 3,0 µm - Posição Girando 600 rpm

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

<u></u>	1							-				-		
dp (um)	dp _{branco}	dp _{agua}	А	AL	D	DL	А	AL	D	DL	А	AL	D	DL
0.542	(μπ) 31	(μπ) 68	49	0	43	0	43	0	38	0	72	0	38	0
0.583	16	61	36	0	38	0	41	0	32	0	65	0	44	0
0.626	14	55	26	0	22	0	35	0	28	0	50	0	33	0
0.673	12	43	22	0	26	0	28	0	20	0	39	0	21	0
0.723	34	18	34	0	19	0	40	0	9	0	24	0	12	0
0.777	30	13	41	0	15	0	38	0	8	0	36	0	17	0
0.835	57	7	45	0	16	0	39	0	14	0	38	0	11	0
0,898	66	0	42	0	8	0	50	0	10	0	44	0	16	0
0,965	52	15	32	0	4	0	46	0	2	0	24	0	8	0
1.037	23	0	17	0	3	0	19	0	1	0	11	0	1	0
1,114	11	0	15	4	3	0	16	5	1	0	15	4	2	0
1,197	9	5	11	0	4	0	14	0	2	0	12	0	0	0
1,286	8	0	14	6	3	0	7	0	2	0	10	2	0	0
1,382	5	0	5	0	1	0	11	6	0	0	11	6	0	0
1,486	5	0	7	2	2	0	9	4	0	0	2	0	0	0
1,596	2	0	5	3	1	0	3	1	0	0	3	1	0	0
1,715	5	0	7	2	0	0	6	1	1	0	3	0	1	0
1,843	3	0	2	0	1	0	3	0	0	0	2	0	0	0
1,981	0	0	2	2	2	2	4	4	2	2	1	1	0	0
2,129	4	0	2	0	0	0	4	0	2	0	3	0	2	0
2,288	0	2,9	29	26	3	0	31	28	3	0	17	14	7	4
2,458	2	3,1	60	55	2	0	66	61	2	0	63	58	2	0
2,642	1	3,3	30	26	0	0	36	32	0	0	44	40	1	0
2,839	2	3,5	9	4	0	0	10	5	0	0	20	15	1	0
3,051	1	0	1	0	0	0	0	0	0	0	0	0	0	0
3,278	0	0	0	0	1	1	1	1	0	0	0	0	0	0
3,523	0	0	0	0	0	0	0	0	0	0	1	1	0	0
3,786	0	0	0	0	0	0	1	1	0	0	0	0	0	0
4,068	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4,371	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4,698	0	0	0	0	0	0	1	1	0	0	1	1	0	0
5,048	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5,425	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5,829	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6,264	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6,732	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7,234	0	0	1	1	0	0	0	0	0	0	0	0	0	0
7,774	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0,354	0	0	0	0	0	0	0	0	0	0		1	0	0
0,977	0	0	0	0	0	0	0	U 4	0	0	0	0	0	0
9,047	0	0	0	0	0	0		0	0	0	0	0	0	1
11 140	0	0	0	0	0	0	0	0	0	0	0	0		0
11,140	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12 864	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13 824	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14 855	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15 963	0	0	2	2	0	n	0	0	0	0	0	0	0	n
17,154	0	0 0	0	ō	0	Ő	n n	0	0	Ő	0	Ő	0	Ő
18,434	0	Ő	Ő	Ő	0	Ő	Ő	0	0	Ő	0	Ő	0	Ő
19,810	0 0	0 0	ñ	0	0	0	ñ	0	0	0	õ	0	0	Ō
	-	Total		132	-	3		150	-	2		143	-	5
		Eficiêr	ncia		98%		1		99%				97%	
		Incerte	za do	APS	0,17%		1		0,11%				0,29%	
L		•		-		•								

ii) Estágio 1,0 μm – geração de partículas de 3,0 μm – Posição Girando 1200 rpm

Tabela 144: Estágio 1,0 µm - geração de partículas de 3,0 µm - Posição Girando 1200 rpm

MEDIA	σ	u _A	u _{APS}	u _C	${\cal V}_{efetivo}$	k	U
98%	0,011028	0,006367	0,0029	0,007007	2,934493	4,526551	3%

Tabela 145: Análise de incertezas - Estágio 1,0 µm - geração de partículas de 3,0 µm - Posição Girando 1200 rpm

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

0		0		r					5	
dp (um	dp _{branco}	dp _{agua}	А	AL	D	DL	А	AL	D	DL
(μπ 0.54	2 57	(μΠ) 68	124	0	112	0	122	0	106	0
0.58	3 45	61	106	Ő	96	0	104	Ő	92	0
0.62	6 32	55	86	Ő	82	0	82	Ő	76	0
0.62	3 28	43	70	Ő	68	0	68	Ő	59	Õ
0.72	3 26	18	43	0	41	0	41	0	34	0
0.72	7 27	13	30	0	26	0	29	0	22	0
0.83	5 39	7	25	0	21	0	22	0	16	0
0.89	8 48	0	16	0	9	0	12	0	8	0
0.96	5 28	15	0	0	0	0	0	0	0	0
1.03	7 15	0	0	0	0	0	0	Ō	0	0
1.11	4 4	0	0	0	0	0	0	0	0	0
1.19	7 3	5	0	0	0	0	0	0	0	0
1.28	6 2	0	0	0	0	0	0	0	0	0
1.38	2 3	0	0	0	0	0	0	0	0	0
1.48	6 0	0	0	0	0	0	0	0	0	0
1.59	6 0	0	0	0	0	0	0	0	0	0
1.71	5 2	0	0	0	0	0	0	0	0	0
1.84	3 1	0	0	0	0	0	0	0	0	0
1.98	1 0	0	0	0	0	0	0	0	0	0
2.12	9 1	0	0	0	0	0	0	0	0	0
2.28	8 0	0	0	0	0	0	0	0	0	0
2.45	8 1	0	0	0	0	0	0	0	0	0
2.64	2 0	0	0	0	0	0	0	0	0	0
2.83	9 0	0	0	0	0	0	0	0	0	0
3.05	1 0	0	0	0	0	0	0	0	0	0
3.27	8 0	0	0	0	0	0	0	0	0	0
3.52	3 2	0	11	9	0	0	0	0	0	0
3.78	6 1	0	32	31	0	0	20	19	1	0
4.06	8 0	0	109	109	1	1	130	130	4	4
4.37	1 0	0	25	25	0	0	20	20	0	0
4.69	8 0	0	8	8	0	0	5	5	0	0
5.04	8 0	0	3	3	0	0	3	3	0	0
5.42	5 0	0	1	1	0	0	0	0	0	0
5.82	9 0	0	0	0	0	0	0	0	0	0
6.26	4 0	0	0	0	0	0	0	0	0	0
6.73	2 0	0	1	1	0	0	0	0	0	0
7.23	4 0	0	1	1	0	0	0	0	0	0
7.77	4 0	0	0	0	0	0	0	0	0	0
8.35	4 0	0	0	0	0	0	0	0	0	0
8.97	7 0	0	1	1	0	0	0	0	0	0
9.64	/ 0	0	0	0	0	0	0	0	0	0
10.3	/ 0	0	0	0	0	0	0	0	0	0
11.1	4 0	0	0	U	0	U	0	U	0	U
11.9	/ 0	0	0	U	0	U	0	U	0	U
12.8	<u>ь</u> 0		0	U	0	U	0	U	0	0
13.8	∠ U	0	0	U	0	0	0	U	0	U
14.8		0	0	0	0	0	0	0		1
15.9		0	0	0	0	0	0	0	0	0
17.1		0	0	0	0	0	0	0	0	0
10.4	3 U 1 0	0	0	0	0	0	0	0	0	0
19.8		U	U	180	U	1	U	177	0	5
	Eficiôncia			103	90%			1//	97%	J
					0 050/				0.2%	
	incerteza (10 AP 3			0,00%				U,270	

jj) Estágio 1,0 μm – geração de partículas de 5,0 μm – Posição B

Tabela 146: Estágio 1,0 µm - geração de partículas de 5,0 µm - Posição B

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

0.542 65 68 122 0 106 0 124 0 103 0 0.583 56 61 109 0 66 0 74 0 98 0 0.625 53 55 82 0 76 0 86 0 74 0 92 0 76 0 0.723 48 18 66 0 77 0 63 0 78 0 68 0 0.777 40 13 52 0 24 0 49 0 29 0 34 0 34 0 34 0 34 0 34 0 34 0 36 0 38 0 30 39 0 55 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </th <th>dp (μm)</th> <th>dp_{branco} (μm)</th> <th>dp_{agua} (μm)</th> <th>А</th> <th>AL</th> <th>D</th> <th>DL</th> <th>А</th> <th>AL</th> <th>D</th> <th>DL</th> <th>А</th> <th>AL</th> <th>D</th> <th>DL</th>	dp (μm)	dp _{branco} (μ m)	dp _{agua} (μm)	А	AL	D	DL	А	AL	D	DL	А	AL	D	DL
0.583 56 61 109 0 96 0 107 0 91 0 108 0 89 0 0.626 53 55 82 0 76 0 86 0 73 0 63 0 78 0 68 0 0.723 48 18 66 0 47 0 63 0 65 0 43 0 0.777 40 13 52 0 77 0 31 0 84 0 0.888 39 0 34 0 34 0 33 0 33 0 30	0.542	65	68	122	0	106	0	125	0	106	0	124	0	103	0
0.626 53 55 82 0 76 0 86 0 74 0 92 0 76 0 0.673 50 43 71 0 66 0 47 0 62 0 45 0 66 0 49 0 0.777 40 13 52 0 24 0 49 0 29 0 52 0 34 0 0.835 45 7 42 0 9 0 43 0 11 0 14 0 34 0 3 0 39 0 5 0 18 0 3 0 39 0 5 0 11 0	0.583	56	61	109	0	96	0	107	0	91	0	108	0	89	0
0.673 50 43 71 0 66 0 78 0 66 0 49 0 0.773 44 13 52 0 24 0 49 0 29 0 52 0 34 0 0.835 45 7 42 0 9 0 43 0 11 0 41 0 34 0 0.886 39 0 34 0 3 0 3 0 34 0 3 0 34 0 3 0 34 0 3 0 34 0 3 0 34 0 3 0 34 0 3 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<	0.626	53	55	82	0	76	0	86	0	74	0	92	0	76	0
0.723 48 18 66 0 47 0 66 0 49 0 0.835 45 7 42 0 9 0 43 0 11 0 41 0 0.888 39 0 34 0 7 0 27 0 31 0 84 0 0.965 32 15 33 0 34 0 34 0 30 0 20 11 0 20 0 11 0 20 0 11 0 20 0 11 0 20 0 11 0 20 0 11 0 <	0.673	50	43	71	0	66	0	73	0	63	0	78	0	68	0
0.777 40 13 52 0 24 0 43 0 11 0 141 0 141 0 141 0 141 0 141 0 141 0 141 0 141 0 141 0 141 0 141 0 141 0 141 0 141 0 141 0 141 0 25 0 2 0 7 0 31 0 8 0 1.037 25 0 22 0 9 0 0 0 11 0 20 0 11 0 20 0 11 0 10 0 11 0 10 0 11 0 11 0 11 0 11 0 11 0 11 0 11 0 11 0 11 0 11 0 11 0 11 0	0.723	48	18	66	0	47	0	62	0	45	0	66	0	49	0
0.835 45 7 42 0 9 0 43 0 11 0 44 0 0.986 32 15 33 0 3 0 3 0 3 0 31 0 85 0 1.037 25 0 22 0 5 0 18 0 3 0 39 0 11 0 2 0 1.114 19 0 14 0 2 0	0.777	40	13	52	0	24	0	49	0	29	0	52	0	34	0
0.888 39 0 34 0 7 0 31 0 88 0 0.965 32 15 33 0 3 0 3 0 39 0 5 0 1.137 16 5 15 0 0 0 0 0 0 17 0 0 0 1.282 11 0	0.835	45	7	42	0	9	0	43	0	11	0	41	0	14	0
0.965 32 15 33 0 3 0 3 0 3 0 3 0 3 0 5 0 1.037 25 0 22 0 9 0 0 0 11 0 2 0 1.187 16 5 15 0 0 0 0 0 0 11 0 2 0 1.286 23 0 14 0	0.898	39	0	34	0	7	0	27	0	7	0	31	0	8	0
1.037 25 0 18 0 3 0 20 0 1 0 1.114 19 0 14 0 2 0 9 0 0 0 11 0 2 0 1.197 16 5 15 0 0 0 0 0 0 0 17 0 0 0 0 1.382 11 0	0.965	32	15	33	0	3	0	34	0	3	0	39	0	5	0
1.114 19 0 14 0 2 0 9 0 0 0 1 0 2 0 1.197 16 5 15 0	1.037	25	0	22	0	5	0	18	0	3	0	20	0	1	0
1.197 16 5 0 </td <td>1.114</td> <td>19</td> <td>0</td> <td>14</td> <td>0</td> <td>2</td> <td>0</td> <td>9</td> <td>0</td> <td>0</td> <td>0</td> <td>11</td> <td>0</td> <td>2</td> <td>0</td>	1.114	19	0	14	0	2	0	9	0	0	0	11	0	2	0
1.286 23 0 14 0 </td <td>1.197</td> <td>16</td> <td>5</td> <td>15</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>17</td> <td>0</td> <td>0</td> <td>0</td>	1.197	16	5	15	0	0	0	0	0	0	0	17	0	0	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.286	23	0	14	0	0	0	0	0	0	0	6	0	0	0
1.486 8 0 <td>1.382</td> <td>11</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>9</td> <td>0</td> <td>0</td> <td>0</td>	1.382	11	0	0	0	0	0	0	0	0	0	9	0	0	0
1.596 9 0 <td>1.486</td> <td>8</td> <td>0</td>	1.486	8	0	0	0	0	0	0	0	0	0	0	0	0	0
1.715 11 0 </td <td>1.596</td> <td>9</td> <td>0</td>	1.596	9	0	0	0	0	0	0	0	0	0	0	0	0	0
1.843 3 0 <td>1./15</td> <td>11</td> <td>0</td>	1./15	11	0	0	0	0	0	0	0	0	0	0	0	0	0
1.981 1 0 <td>1.843</td> <td>3</td> <td>0</td>	1.843	3	0	0	0	0	0	0	0	0	0	0	0	0	0
2.129 3 0 <td>1.981</td> <td>1</td> <td>0</td>	1.981	1	0	0	0	0	0	0	0	0	0	0	0	0	0
2.288 2 0 <td>2.129</td> <td>3</td> <td>0</td>	2.129	3	0	0	0	0	0	0	0	0	0	0	0	0	0
2.435 0	2.288	2	0	0	0	0	0	0	0	0	0	0	0	0	0
2.842 0	2.458	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.8.39 0 <td>2.642</td> <td>0</td>	2.642	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.051 1 0 <td>2.839</td> <td>0</td>	2.839	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.273 0 <td>3.051</td> <td>1</td> <td>0</td>	3.051	1	0	0	0	0	0	0	0	0	0	0	0	0	0
3.323 1 0 2 1 0 0 0 0 0 2 1 0 0 3.786 1 0 11 10 0 0 13 12 1 0 12 11 0 0 4.068 0 0 20 1 1 15 1 1 30 30 1 1 4.371 1 0 5 4 0 0 2 1 0 0 3 2 0 0 5.425 0 <td>3.278</td> <td>0</td>	3.278	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.760 1 0 11 10 0 13 12 1 0 12 11 0 0 4.068 0 0 20 1 1 15 1 1 13 30 30 1 1 4.371 1 0 5 4 0 0 2 1 0 0 3 2 0 0 4.698 0 0 1 1 0	3.323	1	0		10	0	0	12	12	0	0	∠ 10	1	0	0
4.066 0 20 20 1 1 15 13 1 1 30 30 1 1 4.371 1 0 5 4 0 0 2 1 0 0 33 2 0 0 4.698 0 0 1 1 0<	3.700	0	0	20	20	1	1	15	12	1	1	12	20	1	1
H. 571 I <td>4.000</td> <td>1</td> <td>0</td> <td>20</td> <td>20</td> <td>0</td> <td>0</td> <td>2</td> <td>13</td> <td>0</td> <td>0</td> <td>30</td> <td>2</td> <td>0</td> <td>0</td>	4.000	1	0	20	20	0	0	2	13	0	0	30	2	0	0
H.030 D <thd< th=""> <thd< th=""> <thd< th=""> <thd< th=""></thd<></thd<></thd<></thd<>	4.371	0	0	0	4	0	0	2	0	0	0	0	2	0	0
3.640 0 <td>4.030 5.048</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td>	4.030 5.048	0	0	1	1	0	0	0	0	0	0	0	0	0	0
5.829 0 <td>5.425</td> <td>0</td>	5.425	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.100 0 <td>5 829</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>Ő</td> <td>0</td> <td>ő</td> <td>0</td> <td>Ő</td> <td>0</td> <td>0</td>	5 829	0	0	0	0	0	0	0	Ő	0	ő	0	Ő	0	0
0 0	6 264	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7.234 0 <td>6 7 3 2</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>Ő</td> <td>0</td> <td>Ő</td> <td>0</td> <td>Ő</td>	6 7 3 2	0	0	0	0	0	0	0	0	0	Ő	0	Ő	0	Ő
7.774 0 0 1 0 <td>7.234</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td>	7.234	0	0	0	0	0	0	0	0	0	0	1	1	0	0
8.354 0	7.774	0	0	1	1	0	0	0	0	0	0	0	0	0	0
8.977 0 <td>8.354</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>Ō</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	8.354	0	0	0	0	0	0	0	0	0	Ō	0	0	0	0
9.647 0 <td>8.977</td> <td>0</td> <td>0</td> <td>0</td> <td>Ō</td> <td>0</td> <td>Ō</td> <td>0</td> <td>0</td> <td>0</td> <td>Ō</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	8.977	0	0	0	Ō	0	Ō	0	0	0	Ō	0	0	0	0
10.37 0 <td>9.647</td> <td>0</td>	9.647	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11.14 0 0 0 0 0 1 1 0 0 0 0 0 0 11.97 0 <th< td=""><td>10.37</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></th<>	10.37	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11.97 0 <td>11.14</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	11.14	0	0	0	0	0	0	1	1	0	0	0	0	0	0
12.86 0 <td>11.97</td> <td>0</td>	11.97	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13.82 0 <td>12.86</td> <td>0</td>	12.86	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14.86 0 <td>13.82</td> <td>0</td>	13.82	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15.96 0 <td>14.86</td> <td>0</td>	14.86	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17.15 0 <td>15.96</td> <td>0</td>	15.96	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18.43 0 <td>17.15</td> <td>0</td>	17.15	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19.81 0 <td>18.43</td> <td>0</td>	18.43	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total 37 1 29 1 45 1 Eficiência 97% 97% 98% 98% Incerteza do APS 0,2% 0,3% 0,2%	19.81	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Eficiência 97% 97% 98% Incerteza do APS 0,2% 0,3% 0,2%		Total			37		1		29		1		45		1
Incerteza do APS 0,2% 0,3% 0,2%		Eficiência				97%				97%				98%	
		Incerteza c	lo APS			0,2%				0,3%				0,2%	

Tabela 14	7: Estágio	1,0 μm -	- geração	de partícula	as de 5,0 µ1	n – Posição B	B - continuação
-----------	------------	----------	-----------	--------------	--------------	---------------	-----------------

MEDIA	σ	u _A	u _{APS}	u _C	${\cal V}_{efetivo}$	k	U	
97%	0,006169	0,003562	0,0029	0,00461	5,609731	2,648654	2%	

Tabela 148: Análise de incertezas - Estágio 1,0 µm - geração de partículas de 5,0 µm - Posição B

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

0	/	0 5		1					5	
dp (um)	dp _{branco}	dp _{agua}	А	AL	D	DL	А	AL	D	DL
(μm) 0.542	(μπ) 57	(μΠ) 61	113	0	99	0	111	0	96	0
0.583	45	55	95	Ő	86	0	92	Ő	82	Ő
0.626	32	43	74	Ő	69	Ő	72	Ő	65	Ő
0.673	28	18	46	Ő	44	Ő	41	Ő	30	Ő
0.073	26	13	32	ů 0	28	ů 0	28	0	22	0
0.723	20	7	21	0	13	Ő	16	0	<u> </u>	0
0.835	39	0	19	Ő	0	0	8	Ő	0	Ő
0.898	48	15	11	Ő	0	0	0	Ő	0	Ő
0.965	28	0	0	Ő	0	0	0	Ő	0	Ő
1.037	15	0	0	0	0	0	0	0	0	0
1.114	4	5	0	0	0	Ō	0	0	0	0
1.197	3	0	0	0	0	0	0	0	0	0
1.286	2	0	0	0	0	0	0	0	0	0
1.382	3	0	0	0	0	0	0	0	0	0
1.486	0	0	0	0	0	0	0	0	0	0
1.596	0	0	0	0	0	0	0	0	0	0
1.715	2	0	0	0	0	0	0	0	0	0
1.843	1	0	0	0	0	0	0	0	0	0
1.981	0	0	0	0	0	0	0	0	0	0
2.129	1	0	0	0	0	0	0	0	0	0
2.288	0	0	0	0	0	0	0	0	0	0
2.458	1	0	0	0	0	0	0	0	0	0
2.642	0	0	0	0	0	0	0	0	0	0
2.839	0	0	0	0	0	0	0	0	0	0
3.051	0	0	0	0	0	0	0	0	0	0
3.278	0	0	0	0	0	0	0	0	0	0
3.523	2	0	3	1	0	0	2	0	0	0
3.786	1	0	19	18	0	0	19	18	0	0
4.068	0	0	72	72	1	1	97	97	0	0
4.371	0	0	7	7	0	0	14	14	0	0
4.698	0	0	1	1	0	0	3	3	0	0
5.048	0	0	2	2	0	0	0	0	0	0
5.425	0	0	0	0	0	0	0	0	0	0
5.829	0	0	0	0	0	0	0	0	0	0
6.264	0	0	0	0	0	0	0	0	0	0
6.732	0	0	0	0	0	0	0	0	0	0
7.234	0	0	0	0	0	U	0	0	0	0
1.//4	0	0	0	0	0	U	0	U	0	U
0.354 0.77	0	0	0	0	0	U	1		0	0
0.911	0	0	0	0	0	0	0	0	0	0
9.047	0	0	0	0	0	0	0	0	0	0
11.37	0	0	1	1	0	0	0	0	0	0
11.14	0	0	1	1	0	0	0	0	0	0
12.86	0	0	0	0	0	0	0	n	0	0
13.82	0	0	1	1	0	0	0	n	0	0
14.86	0	0	0	0	0	0	2	2	0	0
15.96	0	0	0	0	0	0	0	0	0	0
17.15	0	0 0	0	0	0	0	Õ	0	0	0
18.43	0 0	Ő	0	Ő	0	0	0	0	0	0
19.81	0	, j	0	0	0	0	0	0	0	0
	Total		Ť	104		1	~	135		0
	Eficiência			-	99%				100%	
	Incerteza d	lo APS			0,1%				0,02%	

kk) Estágio 1,0 µm – geração de partículas de 5,0 µm – Posição C

Tabela 149: Estágio 1,0 µm - geração de partículas de 5,0 µm - Posição C

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

dp (μm)	dp _{branco} (μm)	dp _{agua} (μm)	А	AL	D	DL	А	AL	D	DL	А	AL	D	DL
0.542	65	68	106	0	95	0	102	0	89	0	105	0	92	0
0.583	56	61	92	0	84	0	89	0	76	0	88	0	83	0
0.626	53	55	81	0	64	0	76	0	66	0	71	0	65	0
0.673	50	43	76	0	53	0	68	0	43	0	62	0	60	0
0.723	48	18	28	0	22	0	46	0	19	0	53	0	57	0
0.777	40	13	19	0	14	0	25	0	11	0	44	0	29	0
0.835	45	7	0	0	0	0	0	0	0	0	33	0	12	0
0.898	39	0	0	0	0	0	0	0	0	0	26	0	8	0
0.965	32	15	0	0	0	0	0	0	0	0	0	0	7	0
1.037	25	0	0	0	0	0	0	0	0	0	0	0	0	0
1.114	19	0	0	0	0	0	0	0	0	0	0	0	2	0
1.197	16	5	0	0	0	0	0	0	0	0	0	0	0	0
1.286	23	0	0	0	0	0	0	0	0	0	0	0	0	0
1.382	11	0	0	0	0	0	0	0	0	0	0	0	0	0
1.486	8	0	0	0	0	0	0	0	0	0	0	0	0	0
1.596	9	0	0	0	0	0	0	0	0	0	0	0	0	0
1.715	11	0	0	0	0	0	0	0	0	0	0	0	0	0
1.843	3	0	0	0	0	0	0	0	0	0	0	0	0	0
1.981	1	0	0	0	0	0	0	0	0	0	0	0	0	0
2.129	3	0	0	0	0	0	0	0	0	0	0	0	0	0
2.288	2	0	0	0	0	0	0	0	0	0	0	0	0	0
2.458	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.642	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.839	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.051	1	0	0	0	0	0	0	0	0	0	0	0	0	0
3.278	0	0	1	1	0	0	0	0	0	0	0	0	0	0
3.523	1	0	0	0	0	0	1	0	0	0	1	0	0	0
3.786	1	0	13	12	0	0	15	14	1	0	6	5	1	0
4.068	0	0	16	16	0	0	6	6	0	0	12	12	0	0
4.371	1	0	1	0	0	0	1	0	0	0	4	3	0	0
4.698	0	0	0	0	0	0	1	1	0	0	1	1	0	0
5.048	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5.425	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5.829	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6.264	0	0	1	1	0	0	0	0	0	0	0	0	0	0
6.732	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7.234	0	0	1	1	0	0	0	0	0	0	0	0	0	0
7.774	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8.354	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8.977	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9.647	0	0	0	0	0	0	0	0	0	0	1	1	0	0
10.37	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11.14	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11.97	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12.86	0	0	1	1	0	0	0	0	0	0	0	0	0	0
13.82	0	0	0	U	0	U	0	U	0	U	0	U	0	U
14.86	0	0	0	U	0	0	0	U	0	U	0	U	0	0
15.96	0	0	0	U	0	0	0	U	0	U	0	U	0	0
17.15	0	0	0	U	0	0	0	U	0	U	0	U	0	0
18.43	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19.81	U	0	0	U	U	0	0	U	0	U	0	U	U	0
		Iotal		32	0001	U		21	0001	U		22	0001	U
		Eficiencia	4.000		99%				98%				98%	
		Incerteza do	APS		0,1%	l	l		0,1%	l			0,1%	

Tabela 150: Estágio 1,0 µm - geração de partículas de 5,0 µm - Posição C - continuação

MEDIA	σ	u _A	u _{APS}	u _C	$V_{efetivo}$	k	U
99%	0,002896	0,001672	0,0013	0,002147	5,43843	2,648654	1%

Tabela 151: Anãlise de incertezas - Estágio 1,0 µm - geração de partículas de 5,0 µm - Posição C

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

U		0 3	1	-		<u> </u>	-			
dp (m)	dp _{branco}	dp _{agua}	А	AL	D	DL	А	AL	D	DL
(μm)	(μm) 57	(μm) 61	110	0	02	0	110	0	00	0
0.542	57	01 55	100	0	93	0	112	0	99	0
0.563	40	22	102	2	62	0	96	0	92	0
0.620	32	43	/1	0	00	0	74	0	/1	0
0.073	20	10	43	0	41	0	40	0	41	0
0.723	20	7	29	0	11	0	32	0	22	0
0.777	20	0	0	0	0	0	0	0	9	0
0.000	19	15	0	0	0	0	0	0	0	0
0.090	28	0	0	0	0	0	0	0	0	0
1.037	15	0	0	0	0	0	0	0	0	0
1 114	4	5	0	0	0	0	0	0	0	0
1 197	3	0	0	0	0	0	0	0	0	0
1.107	2	0	0	Ő	0	0	0	Ő	0	0
1.382	3	0	0	0	0	0	0	0	0	0
1.486	0	0	0	0	0	0	0	0	0	0
1.596	0	0	0	Ő	0	Ő	Ő	0	Ő	0
1.715	2	0	0	0	0	0	0	0	0	0
1.843	1	0	0	0	0	0	0	0	0	Ō
1.981	0	0	0	0	0	0	0	0	0	Ō
2.129	1	0	0	0	0	0	0	0	0	0
2.288	0	0	0	0	0	0	0	0	0	0
2.458	1	0	0	0	0	0	0	0	0	0
2.642	0	0	0	0	0	0	0	0	0	0
2.839	0	0	0	0	0	0	0	0	0	0
3.051	0	0	0	0	0	0	0	0	0	0
3.278	0	0	0	0	0	0	0	0	0	0
3.523	2	0	0	0	0	0	0	0	0	0
3.786	1	0	20	19	0	0	18	17	0	0
4.068	0	0	180	180	0	0	219	219	0	0
4.371	0	0	32	32	0	0	50	50	0	0
4.698	0	0	8	8	0	0	7	7	0	0
5.048	0	0	3	3	0	0	3	3	0	0
5.425	0	0	1	1	0	0	1	1	0	0
5.829	0	0	1	1	0	0	0	0	0	0
6.264	0	0	0	0	0	0	0	0	0	0
6.732	0	0	0	0	0	0	0	0	0	0
7.234	0	0	0	0	0	0	0	0	0	0
7.774	0	0	2	2	0	0	0	0	0	0
8.354	0	0	0	0	0	0	0	0	0	0
8.977	0	0	0	0	0	0	0	0	0	0
9.647	0	0	1	1	0	0	0	0	0	0
10.37	0	0	0	0	0	0	0	0	0	U
11.14	0	0	0	U	0	0	0	U	0	U
11.97	0	0	0	0	0	0	0	0	0	0
12.86	0	0	0	0	0	0	0	0	0	U
13.82	0	0	0	0	0	0	0	0	0	0
14.00	0	0	0	0	0	0	0	0	0	0
17.15	0	0	0	0	0	0	0	0	0	0
18.42	0	0	0	0	0	0	0	0	0	0
10.43	0	0	0	0	0	0	1	1	0	0
19.01	U	Total	0	2/0	0	0	1	208	0	0
	Efició	iolai		243	100%			230	100%	
	Incer	teza do AE	25		0.01%				0.01%	
	11001		5						0,01/0	

ll) Estágio 1,0 μm – geração de partículas de 5,0 μm – Posição Girando 900 rpm

Tabela 152: Estágio 1,0 µm - geração de partículas de 5,0 µm - Posição Girando 900 rpm

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

dp (um)	dp _{branco} (um)	dp _{agua} (µm)	А	AL	D	DL	А	AL	D	DL	А	AL	D	DL
0.542	65	68	106	0	92	0	102	0	99	0	112	0	92	0
0.583	56	61	92	0	76	0	93	0	72	0	96	0	80	0
0.626	53	55	68	0	56	0	69	0	52	0	73	0	65	0
0.673	50	43	40	0	32	0	36	0	24	0	46	0	35	0
0.723	48	18	29	0	22	0	21	0	16	0	32	0	30	0
0.777	40	13	0	0	0	0	0	0	0	0	0	0	0	0
0.835	45	7	0	0	0	0	0	0	0	0	0	0	0	0
0.898	39	0	0	0	0	0	0	0	0	0	0	0	0	0
0.965	32	15	0	0	0	0	0	0	0	0	0	0	0	0
1.037	25	0	0	0	2	0	0	0	0	0	0	0	0	0
1.114	19	0	0	0	0	0	0	0	0	0	0	0	0	0
1.197	16	5	0	0	0	0	0	0	0	0	0	0	0	0
1.286	23	0	0	0	0	0	0	0	0	0	0	0	0	0
1.382	11	0	0	0	0	0	0	0	0	0	0	0	0	0
1.486	8	0	0	0	0	0	0	0	0	0	0	0	0	0
1.596	9	0	0	0	0	0	0	0	0	0	0	0	0	0
1.715	11	0	0	0	0	0	0	0	0	0	0	0	0	0
1.843	3	0	0	0	0	0	0	0	0	0	0	0	0	0
1.981	1	0	0	0	0	0	0	0	0	0	0	0	0	0
2.129	3	0	0	0	0	0	0	0	0	0	0	0	0	0
2.288	2	0	0	0	0	0	0	0	0	0	0	0	0	0
2.458	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.642	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.839	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.051	1	0	0	0	0	0	0	0	0	0	0	0	0	0
3.278	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.523	1	0	0	0	0	0	0	0	0	0	0	0	0	0
3.786	1	0	17	16	1	0	17	16	0	0	21	20	0	0
4.068	0	0	12	12	1	1	19	29	1	1	28	28	0	0
4.371	1	0	3	3	0	0	0	0	0	0	9	9	0	0
4.698	0	0	1	1	0	0	0	0	0	0	2	0	0	0
5.048	0	0	0	0	0	0	1	1	0	0	0	0	0	0
5.425	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5.829	0	0	1	1	0	0	0	0	0	0	0	0	0	0
6.264	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6.732	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7.234	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7.774	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8.354	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8.977	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9.647	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10.37	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11.14	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11.97	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12.86	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13.82	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14.86	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15.96	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17.15	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18.43	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19.81	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			Total	33		1		46		1		57		0
		Eficiêr	ncia		96%				97%				99%	
		Incerte	eza do A	NPS .	0,3%				0,2%				0,05%	

Tabela 153: Estágio 1,0 µm - geração de partículas de 5,0 µm - Posição Girando 900 rpm - continuação

MEDIA	σ	u _A	u _{APS}	u _C	$V_{efetivo}$	k	U
97%	0,017696	0,010217	0,0034	0,010782	2,480903	4,526551	5%

Tabela 154: Análise de incertezas - Estágio 1,0 µm - geração de partículas de 5,0 µm - Posição Girando 900 rpm

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

- dp	do	da				r –								r
up (um)	(up)	(upagua	Α	AL	D	DL	Α	AL	D	DL	Α	AL	D	DL
(μΠ)	(μΠ) 65	(μπ)	106	0	06	0	105	0	05	0	100	0	106	•
0,542	60 50	61	106	0	90	0	105	0	95	0	120	0	106	0
0,583	50	61	92	0	70	0	96	0	11	0	103	0	69 70	0
0,626	53	55	81	0	68	0	83	0	82	0	97	0	12	0
0,673	50	43	73	0	53	0	76	0	64	0	76	0	64	0
0,723	48	18	62	0	46	0	66	0	53	0	63	0	53	0
0,777	40	13	50	0	34	0	49	0	39	0	46	0	41	0
0,835	45	1	44	0	29	0	42	0	28	0	35	0	29	0
0,898	39	0	0	0	0	0	0	0	0	0	0	0	0	0
0,965	32	15	0	0	0	0	0	0	0	0	0	0	0	0
1.037	25	0	0	0	0	0	0	0	0	0	0	0	0	0
1.114	19	0	0	0	0	0	0	0	0	0	0	0	0	0
1.197	16	5	0	0	0	0	0	0	0	0	0	0	0	0
1.286	23	0	0	0	0	0	0	0	0	0	0	0	0	0
1.382	11	0	0	0	0	0	0	0	0	0	0	0	0	0
1.486	8	0	0	0	0	0	0	U	0	0	0	0	0	0
1.596	9	0	0	0	0	0	0	0	0	0	0	0	0	0
1.715	11	0	0	0	0	0	0	0	0	0	0	0	0	0
1.843	3	0	0	0	0	0	0	0	0	0	0	0	0	0
1.981	1	0	0	0	0	0	0	0	0	0	0	0	0	0
2.129	3	0	0	0	0	0	0	0	0	0	0	0	0	0
2.288	2	0	0	0	0	0	0	0	0	0	0	0	0	0
2.458	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.642	0	0	1	1	0	0	0	0	0	0	0	0	0	0
2.839	0	0	3	3	0	0	0	0	0	0	0	0	0	0
3.051	1	0	2	1	0	0	0	0	0	0	0	0	0	0
3.278	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.523	1	0	0	0	0	0	0	0	0	0	0	0	0	0
3.786	1	0	12	11	0	0	13	12	0	0	9	8	0	0
4.068	0	0	29	29	0	0	45	45	1	1	29	29	0	0
4.371	1	0	5	4	0	0	2	1	0	0	4	3	0	0
4.698	0	0	0	0	0	0	0	0	0	0	2	2	0	0
5.048	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5.425	0	0	1	1	0	0	0	0	0	0	0	0	0	0
5.829	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6.264	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6.732	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7.234	0	0	0	U	0	0	0	U	0	0	0	0	0	0
1.114	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.354	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.9//	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9.047	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10.366	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11.140	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12.964	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12.004	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13.024	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14.800	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12.903	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17.154	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10.434	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19.810	U	U	U	0	U	0	U	0	U	U A	U	40	U	0
		Eficiêncie	Total	50	000/	U		50	0.99/			42	000/	U
					33%	<u> </u>			90%				99% 0.07%	<u> </u>
		incerteza d	U APS		0,00%				0,15%				0,07%	

mm) Estágio 1,0 μm – geração de partículas de 5,0 μm – Posição Girando 600 rpm

Tabela 155: Estágio 1,0 µm - geração de partículas de 5,0 µm - Posição Girando 600 rpm

MEDIA	σ	u _A	u _{APS}	u _C	$V_{efetivo}$	k	U
99%	0,005774	0,003333	0,0015	0,00364	2,844641	4,526551	2%

Tabela 156: Análise de incertezas - Estágio 1,0 µm - geração de partículas de 5,0 µm - Posição Girando 600 rpm

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

1	pin	1		r		r					1			
dp (um)	dp _{branco}	dp _{agua}	А	AL	D	DL	А	AL	D	DL	А	AL	D	DL
(μΠ)	(μΠ) 65	(μπ) 68	129	0	102	0	122	0	100	0	110	0	06	0
0,542	56	61	120	0	86	0	00	0	05	0	102	0	90 72	0
0,505	53	55	02	0	76	0	99 82	0	95 61	0	02	0	53	0
0,020	50	 	92	0	53	0	72	0	62	0	93 70	0	11	0
0,073	19	43	60	2	40	0	61	0	24	0	62	0	26	0
0,723	40	13	40	0	20	0	50	0	27	0	50	0	26	0
0,777	40	7	43	0	23	0	34	0	7	0	48	0	20	0
0,000	30	0	0	0	0	0	23	0	0	0	40	0	0	0
0,000	32	15	0	0	0	ő	15	ő	0	0	0	0	0	0
1.037	25	0	0	0	0	ő	0	ő	0	0	0	0	0	0
1 114	19	0	0	0	0	0	0	0	0	0	0	0	0	0
1 197	16	5	0	0	0	ő	0	Ő	0	0	0	0	0	0
1 286	23	0	0	0	0	Ő	0	Ő	0	0	0	0	0	0
1.382	11	0	0	0	0	Ő	0	Ő	0	0	0	0	0	0
1 486	8	0	0	0	0	Ő	0	Ő	0	0	0	0	0	0
1.596	9	0	0	0	0	Ő	0	Ő	0	0	0	0	0	0
1 715	11	0	0	0	0	Ő	0	Ő	0	0	0	0	0	0
1.843	3	0	0	Ő	Ő	Ő	0	Ő	0	Ő	0	Ő	õ	Ő
1.981	1	0	0	0	0	0	0	0	0	0	0	0	0	Ő
2.129	3	0	0	0	0	0	0	Ő	0	Ő	0	Ő	0	Ő
2.288	2	0	0	0	0	0	0	0	0	0	0	0	0	0
2.458	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.642	0	0	1	1	0	Ő	0	Ő	0	0	0	0	0	0
2.839	0	0	0	0	0	Ő	0	Ő	0	0	0	0	0	0
3 051	1	0	0	0	0	Ő	0	Ő	0	0	0	0	0	0
3 278	0	0	0	0	0	Ő	0	Ő	0	0	1	1	0	0
3.523	1	0	0	0	0	Ō	0	0	0	0	0	0	0	0
3 786	1	0	9	8	0	Ō	6	5	0	0	8	7	0	0
4.068	0	0	25	25	1	1	26	26	1	1	9	9	0	0
4.371	1	0	10	9	0	0	9	8	0	0	0	0	0	0
4.698	0	0	0	0	0	Ō	0	0	0	0	0	0	0	0
5.048	0	0	0	0	0	Ō	0	0	0	0	0	0	0	0
5.425	0	0	1	1	0	0	0	0	0	0	0	0	0	0
5.829	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6.264	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6.732	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7.234	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7.774	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8.354	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8.977	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9.647	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10.366	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11.140	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11.971	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12.864	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13.824	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14.855	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15.963	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17.154	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18.434	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19.810	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			Total	47		1		39		1		17		0
		Eficiência		1	98%	1			97%				98%	
		Incerteza d	o APS	1	0,18%	1			0,29%				0,17%	
I			-							•				

nn) Estágio 1,0 μm – geração de partículas de 5,0 μm – Posição Girando 1200 rpm

Tabela 157: Estágio 1,0 µm - geração de partículas de 5,0 µm - Posição Girando 1200 rpm

MEDIA	σ	u _A	u _{APS}	u _C	$V_{efetivo}$	k	U
97%	0,00783	0,004521	0,0029	0,005372	3,986118	3,30683	2%
 # 0 1 111							

Tabela 158: Análise de incertezas - Estágio 1,0 µm - geração de partículas de 5,0 µm - Posição Girando 1200 rpm

A = número de partículas antes de chegar ao impactador

AL = número de partículas antes de chegar ao impactador, limpas.

D = número de partículas depois de chegar ao impactador

Anexo VI - Certificado de calibração dos equipamentos utilizados.

a) Termohigrômetro

LABORATÓRIO DE METROLOGIA - VISOMES CERTIFICADO DE CALIBRAÇÃO Nº LV 1490/11

INTERESSADO: MULTIMEDIÇÃO COMÉRCIO DE EQUIPAMENTOS E REPRESENTAÇÃO LTDA-EPP IRUA SERRA DA DOCAINA, 541 - BELEM - SÃO PAULO - SP

Umidade Relativa (%UR)

MÍCIA DAS LEITURAS DO PADRÃO	MÉDIA DAS LEITURAS DO INSTRUMENTO	ERRO	INCERTEZA OE NEDIÇÃO (U)	FATOR DE ABRANGÊNCIA k	veff	TEMPERATURA DE REFERÈNCIA (°C)
40	42	2	2	2,00	infinito	20
60	54	4	2	2,00	Infinito	20
80	86	6	3	2,00	Infinito	20

RESULTADOS OBTIDOS

Nota: Os valores de umidade relativa apresentados foram medidos à pressão atmosferica

NEDIA DAS LEITURAS DO PADRÃO	MEDIA DAS LIEITURAS DO INSTRUMENTO	EHIRO	INCERTEZA DE MEDIÇÃO (U)	FATOR DE ABRANGÉNCIA N	vett
20,0	20.1	0,1	0.3	2,00	Infinito
24,9	24.9	0,0	0.3	2,00	Infinito
30,1	30,0	-0,1	0.3	2,00	Infinito

Temperatura (°C)

A

Página 2/2

Rua Joaquim dos Santos, 325 - Cidade Dutra - CEP 04823-080 - São Paulo - SP - PABX: [11] 5662.9911
b) Anemômetro de fio quente

6. DESCREÇÃO DO PADRÃO DE TRABALHO:

Avenéretre ultressieico medelo UA-5, marce Airflow, número de párie 099312, certificado de calibração nº 000333, com validade até autubro de 2012, celibrade pelo Leboratório Airflow, acreditado pelo DKD azó o sámero DKD-K-26901.

7. RESULTADOS NO SISTEMA INTERNACIONAL DE UNIDADES (SI).

7.1 Faixe selecionada no instrumento: 0 a 3 m/s

Valor mõdio indicedo ne instrumento	Valor midilo Indicado na Indicado na Indicado na Indicado na Indicado na Indicado na Indicado na					Docerteau expandidu (m/s)
(1/4)	1ª letters	2ª leiture	3ª leiturs	4ª leitura	Visi-Vist	U.
0,11	0,17	0,16	0,17	0,17	-0,06	0,06
0.50	0,53	0.54	0,54	0,54	-0.04	0,07
3,00	3,14	3,16	3,25	3,16	-0,15	0,15

7.2 Folies selectoredo no instrumento: O o 7 m/s

Valor estala Indicado na (25/4) Instrumento					Erre médie de indicação (m/k)	Incerteze expandide (m/s)
(m/s)	1" leitura	2* kelhara	3" leiture	4° leitura	Vesi-Vest	U. U.
7,00	7,49	7,51	7,53	7,90	-0,51	0,37

7.3 Faixa selecionada no instrumenta: 0 a 30 m/s

Valor mielie indicado ne instrumento (m/s)	∵va	ones medides re (m	Erre médie de indicação (m/s)	Incerteza expandida (m/s)		
	1° keltura	2° leitura	3ª leiture	4ª leiture	Veil-Veot	Ure
4.85	30,01	30,04	29,96	30,02	-1,41	0,45
			60 (1/2)		ABOV CON	

pég. (1/2)

SKILLTECH INSTRUMENTOS DE PRECISÃO LTDA.

Rus Manoel Jorge Ribeiro, 335 - CEP 03618-010 - Vile Salete - São Paulo - SP Tala.: (11) 2684-9506 / 2682-2108 - Fax: (11) 2958-5667

Site, www.skillersb.com.le - E-mail: abbasch@skilliach.com.to

LABORATÓRIO DE METROLOGIA - VISOMES CERTIFICADO DE CALIBRAÇÃO № LV 1475/11R1

INTERESSADO:

INST, FEB, DO BIO DE JANEIRO/CAMPUS VOLTA REDONDA Ilim Atorio Hotnino, 212 - Volta Redonda - Rio de Janeiro - RJ

RESULTADOS OBTIDOS

LEITURAS EFETUADAS

CARREG	AMENTO	DESCARRE	GAMENTO
Valor Médio Indicado no	Valor Médio Indicado no Padrão	Valor Medio Indicado no Instrumento	Indicado no Padrão
(mbar)	(mbar)	(mbar)	(mbar)
795.00	790,70	795,00	790,74
853.00	649,62	863,00	849,58
603.00	899.68	903.00	809,55
953.00	949.43	953.00	949,47
1.003.00	999.43	1.003,00	999,47
1.060,00	1.040.36	1.050.00	1.046,37
		10	

RESULTADO DA CALIBRAÇÃO

Leitura no Instrumento / mbar)	Valor verdadeiro convencional (mbar)	Valor verdadeiro convencional (kPa)	Emo (mbar)	ĸ	Incerteza de Medição (U) (mbar)	vall
795.00	798.72	79.1	4,28	2,00	0,59	519050
963.00	849.59	85.0	3.41	2,00	0,69	185836
002.00	899.92	90.0	3,35	2,00	0,59	13447
0575.00	949.45	64.9	3,55	2,00	0,59	825592
4,009,00	999.45	89.9	3,50	2,00	0,59	620173
1.050,00	1,048,39	104,6	3,64	2,00	0,59	680142

NOTA: o barómetro não foi ajustado

H

Página 2/2

Rua Joaquim dos Santos, 325 - Cidade Dutra - CEP 04823-080 - São Paulo - SP - PABX: (11) 5662.9911

1	È		IEG		Co	rrel	atec	l Fle	ow '	Tab	ole
Tuba	Sizo					D	141 A.D.				
1 000	once	8 9.				Der	nsiry o	0.00120	grams,	/nl	
Float	: Typ	e clas	s 5 St	inles	s Steel	Vis	cosity	0.0181	200 cp	5	
Sario	1 Ma			- 1	-1120	X F	3.2 _ 1	1421	1 mil		
Della	1.140	+ 53TO	-52200	- Q		1.12		101.1	1 min		
Date	09/3	21/1995		Ke R	asured at 0= 1	a flow: .20 R	ing at at 50-	1.00	atn i Rat	and 100=	70 °F 25.08
PLON L/MIN GLASS S	CALE	FLOW L/MIN 5.5.	FLOW L/MIN GLASS	SCALE	FLOW L/MIN S.S.	FLOW L/MIN GLASS	SCALE	FLOW L/MIN S.S.	FLOW L/MIN GLASS	BCALE	FLOS L/HIN S.S.
1.78	신날리	4.16	20.9	26	10.1	1.4			20.0		
2,39	2	5.10	21.7	27	40.7	13.2	24	191.7	03.3	1.00	
3.02	- S-	6.68	22.5	28	42.1	42.2	94 53	78.8	65 A	70	
3.71	4	8.07	23.3	29	43.6	44.0	54	80.3	65.0	2.9	1.13
4.44	5	9.44	24.1	30	45.0	44.9	5.5	81.8	66.8	80	1.2
5.16	6	10.8	24.9	31	46.4	45.8	56	83.3	67.7	81	12;
5.83	7	12.1	25.7	32	47.9	46.6	57	84.8	68.6	82	12
6.58	8	13.5	26.6	33	49.3	47.5	5.0	86.3	69.5	83	123
7.35	9	15.0	27.4	34	50.7	48.3	59	87.9	70.4	6.4	12
8.12	10	16.4	28.2	35	52.2	49.2	60	89.4	71.3	85	123
8.90	1.1	17.9	29,0	36	53.6	50.1	61	90.9	72.2	86	13(
9.68	12	19.3	29.8	37	55.1	50.9	62	92.5	73.1	87	13;
10.5	13	20.7	30.6	38	56.5	51.8	63	94.0	74.0	8.8	133
11.3	14	22.2	31.5	39	58.0	52.7	64	95.6	74,9	89	135
12.1	15	23.6	38.3	40	59.4	53.6	65	97.1	75.8	90	137
12.9	16	25.0	33.1	42	60.9	54.4	6.6	98:27	76.7	91	138
13.7	17	26.5	33.9	42	62.4	55.3	67	100	77.5	92	140
14.5	18	27.9	34.8	43	63.8	56.2	6.0	102	78.4	93	143
15.3	19	29.3	35.6	4.4	65.3	57.1	6.9	103	79.3	94	142
16.1	20	30.8	36.4	45	66.8	57.9	20	105	80.2	95	1.4:
16.9	21	32.2	37.3	46	68.3	58.8	71	106	81.1	96	146
17.7	22	33.6	38.1	42	69.8	59.7	72	108	\$2.0	97	1.48
18.5	2.3	35.0	39.0	4.8	71.3	69.6	73	110	82.9	98	149
19+3	2.4	3614	39.8	4.9	72.7	61.5	74	331	83.8	9.9	151
20.1	2.5	37.9	40.6	50	74.2	62.4	7.5	113	84.7	100	1.52

GB-105432-0001

Anexo VII - Cálculo de incerteza de medição da vazão na câmara de calibração

a) Valor da área da seção na saída da câmara sua incerteza de medição.

O aerossol sai pela parte inferior da câmara, passando por filtro. Sua seção tem formato de um quadrado de lado $L = (0,2300 \pm 0,0005)m$. Foi adotada a metade da menor divisão da trena, como sua incerteza de medição. A área da seção é então:

$$A = L^2 = 0,2300^2 = 0,0529m^2$$

Sua incerteza de medição vale:

$$U_A = A \sqrt{\left(\frac{uL}{L}\right)^2 + \left(\frac{uL}{L}\right)^2}$$
$$U_A = 0,0529x0,003074$$
$$U_A = \pm 0,0002m^2$$

 $A = (0,0529 \pm 0,0002)m^2$

b) Valor da velocidade do ar na saída da câmara e sua incerteza de medição.

N ^o . de	600 rpm	700 rpm	800 rpm	900 rpm	1000 rpm	1100 rpm	1200 rpm
medições	v(m/s)						
1	0,15	0,2	0,27	0,35	0,5	0,46	0,49
2	0,13	0,2	0,3	0,38	0,45	0,49	0,54
3	0,13	0,2	0,26	0,3	0,33	0,42	0,52
4	0,14	0,18	0,24	0,35	0,41	0,49	0,54
5	0,14	0,15	0,31	0,43	0,42	0,48	0,51
6	0,17	0,24	0,26	0,35	0,5	0,45	0,66
	média	média	média	media	média	média	média
	0,14	0,20	0,27	0,36	0,44	0,47	0,54
	Valor						
	corrigido						
	(m /s)						
	0,20	0,26	0,32	0,41	0,48	0,51	0,58

Tabela 159: velocidade do ar na saída da câmara.

Incerteza de medição da velocidade do ar na saída da câmara.

$$\Rightarrow$$
 Incerteza tipo A: $u_A = \frac{\sigma}{\sqrt{6}}$

0.0061464	0.012042	0.010853	0.017512	0.026173	0.01118	0.024585
ua						
0,20	0,26	0,32	0,41	0,48	0,51	0,58
(m/s)						
corrigido						
Valor						

Tabela 160: incerteza tipo A da velocidade do ar na saída da câmara.

⇒ Incerteza do anemômetro de fio quente pad	rão.
---	------

| Valor |
|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| corrigido |
| (m/s) |
| 0,20 | 0,26 | 0,32 | 0,41 | 0,48 | 0,51 | 0,58 |
| u _{padrão} |
| 0,03 | 0,035 | 0,035 | 0,035 | 0,035 | 0,035 | 0,035 |

Tabela 161: incerteza do anemômetro padrão.

⇒ Incerteza combinada da velocidade do ar na saída da câmara.

$$u_C = \sqrt{(u_A)^2 + (u_{padrão})^2}$$

| Valor |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| corrigido |
| (m/s) |
| 0,20 | 0,26 | 0,32 | 0,41 | 0,48 | 0,51 | 0,58 |
| u _C |
| 0,0306232 | 0,037014 | 0,036644 | 0,039137 | 0,0437035 | 0,036742 | 0,042772 |

Tabela 162: incerteza combinada da velocidade do ar na saída da câmara.

Incerteza expandida da velocidade do ar na saída da câmara. k = 2,648654254

| Valor |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| corrigido |
| (m/s) |
| 0,20 | 0,26 | 0,32 | 0,41 | 0,48 | 0,51 | 0,58 |
| U (m/s) |
| 0,08 | 0,10 | 0,10 | 0,10 | 0,12 | 0,10 | 0,11 |

Tabela 163: incerteza expandida da velocidade do ar na saída da câmara.

c) Valor da vazão na saída da câmara e sua incerteza de medição.

A vazão na saída da câmara é dada pela expressão:

$$Q = A.v$$

onde A é a área da seção de saída e v sua velocidade. Sua incerteza de medição é dada pela equação:

$$U_{\mathcal{Q}} = Q_{\sqrt{\left(\frac{UA}{A}\right)^2 + \left(\frac{Uv}{v}\right)^2}}$$

A tabela abaixo apresenta a vazão volumétrica do ar na câmara e sua incerteza de medição.

Vazão para	Vazão para 700	Vazão para				
600 rpm	rpm	800 rpm	900 rpm	1000 rpm	1100 rpm	1200 rpm
(m^{3}/s)	(m^{3}/s)	(m^{3}/s)	(m^{3}/s)	(m^{3}/s)	(m^{3}/s)	(m^{3}/s)
0,011±0,004	0,014±0,005	0,017±0,005	0,022±0,005	0,025±0,006	0,027±0,005	0,031±0,006

Tabela 164: incerteza expandida (em m³/s) da vazão volumétrica do ar na saída da câmara.

Valores em L/min.

Vazão para	Vazão para	Vazão para	Vazão para	Vazão para	Vazão para	Vazão para
600 rpm	700 rpm	800 rpm	900 rpm	1000 rpm	1100 rpm	1200 rpm
(L/min)	(L/min)	(L/min)	(L/min)	(L/min)	(L/min)	(L/min)
660 ± 240	840 ± 300	1020 ± 300	1320 ± 300	1500 ± 360	1620 ± 300	1860 ± 360

Tabela 165: incerteza expandida (em L/min) da vazão volumétrica do ar na saída da câmara.

Como não declaramos incertezas com mais que dois algarismos significativos, temos:

Vazão para 600 rpm (L/min) x10 ³	Vazão para 700	Vazão para 800	Vazão para 900	Vazão para 1000	Vazão para	Vazão para
	rpm	rpm	rpm	rpm	1100 rpm	1200 rpm
	(L/min)	(L/min)	(L/min)	(L/min)	(L/min)	(L/min)
	x 10 ³					
$0,66 \pm 0,24$	$0,84 \pm 0,30$	$1,02 \pm 0,30$	$1,32 \pm 0,30$	$1,50 \pm 0,36$	$1,62 \pm 0,30$	$1,86 \pm 0,36$

Tabela 166: incerteza expandida (em L/min) da vazão volumétrica do ar na saída da câmara, com dois algarismos significativos.

 d) Valor da velocidade do ar no interior da câmara e sua incerteza de medição.

Pelo principio da conservação de massa, a vazão será constante. Deste modo, teremos no interior da câmara a mesma vazão da saída.

A área da seção transversal da câmara tem formato quadrado de lado $L = (1,0000 \pm 0,0005)m$. Foi adotada a metade da menor divisão da trena, como sua incerteza de medição. A área da seção é então:

 $A = L^2 = 1,0000^2 = 1,0000 m^2$

Sua incerteza de medição vale:

$$U_{A} = A \sqrt{\left(\frac{uL}{L}\right)^{2} + \left(\frac{uL}{L}\right)^{2}}$$
$$U_{A} = 1,0000 \sqrt{\left(\frac{0,0005}{1}\right)^{2} + \left(\frac{0,0005}{1}\right)^{2}}$$
$$U_{A} = \pm 0,0007m^{2}$$

$$A = (1,0000 \pm 0,0007)m^2$$

A velocidade do ar é dada pela equação:

$$v = \frac{Q}{A}$$

E sua incerteza pela expressão:

$$U_{v} = v \sqrt{\left(\frac{U_{Q}}{Q}\right)^{2} + \left(\frac{U_{A}}{A}\right)^{2}}$$

A tabela abaixo apresenta os valores da velocidade do ar no interior da câmara de calibração e sua incerteza.

Vazão para	Vazão para					
600 rpm	700 rpm	800 rpm	900 rpm	1000 rpm	1100 rpm	1200 rpm
(cm/s)	(cm/s)	(cm/s)	(cm/s)	(cm/s)	(cm/s)	(cm/s)
$1,1 \pm 0,4$	$1,4 \pm 0,5$	$1,7 \pm 0,5$	$2,2 \pm 0,6$	$2,5 \pm 0,6$	$2,7 \pm 0,5$	3,1 ± 0,6

Tabela 167: Velocidade do ar no interior da câmara de calibração e sua incerteza.