

Guillermo Rodolfo Jordan Ibañez

Transição de Trincas Bidimensionais para Unidimensionais

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio.

Orientador: Prof. Luiz Fernando Campos Ramos Martha Co-orientador: Prof. Antonio Carlos de Oliveira Miranda Co-orientador: Prof. Timothy HamiltonTopper

> Rio de Janeiro Agosto de 2010

Guillermo Rodolfo Jordan Ibañez

Transição de Trincas Bidimensionais para Unidimensionais

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Área de Concentração: Estruturas.

Prof. Luiz Fernando Campos Ramos Martha

Orientador Departamento de Engenharia Civil - PUC-Rio

> Prof. Timothy Hamilton Topper Co- Orientador University of Waterloo

Prof. Antonio Carlos de Oliveira Miranda Co-Orientador UnB

Prof. Jaime Tupiassú Pinho de Castro Departamento de Engenharia Mecânica - PUC-Rio

Prof. Marco Antonio Meggiolaro Departamento de Engenharia Mecânica - PUC-Rio

Prof. José Alexander Araújo Departamento de Engenharia Mecânica - PUC-Rio

Prof. José Eugênio Leal Coordenador Setorial do Centro Científico - PUC-Rio

Rio de Janeiro, 19 de Agosto de 2010

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Guillermo Rodolfo Jordan Ibañez

Gradou-se em Engenharia Mecânica na Universidad Técnica de Oruro - Bolivia em 2001.

Ficha Catalográfica

Jordan Ibañez, Guillermo Rodolfo

Transição de trincas bidimensionais para unidimensionais / Guillermo Rodolfo Jordan Ibañez ; orientador: Luiz Fernando Martha ; co-orientador: Antonio Carlos de Oliveira Miranda; Timothy Hamilton Topper. – 2010.

171 f. : il. (color.) ; 1.7 cm

Dissertação (mestrado)-Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil, 2010. Inclui bibliografia

 Engenharia civil – Teses. 2. Transição bidimensional. 3. Trinca. 4. Fadiga. 5. Policarbonato.
 Propagação. 7. Elementos finitos. I. Martha, Luiz Fernando. II. Miranda, Antonio Carlos de Oliveira. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título.

CDD: 624

PUC-Rio - Certificação Digital Nº 0812397/CA

Á vida do meu irmão o melhor presente da minha vida.

Agradecimentos

A minha mãe, pela fortaleza, dedicação e carinho que me deu a vida toda e pela compreensão da distancia de todos estes anos.

Ao Eduardo Achá.

Ao Professor Antonio Miranda pela orientação, ensino, paciência e confiança comigo durante o desenvolvimento da tese.

Ao Professor Timothy Topper, pela grande ajuda e contribuição nos momentos difíceis desta tese.

Ao Professor Luiz F. Martha pelo imenso apoio na reta final desta tese.

Ao Professor Jaime Tupiassú pelas sábias sugestões, paciência e o grande apoio no laboratório ao longo desta tese.

Ao Gerardo Castillo pela ajuda ilimitada em cada momento.

Aos amigos da vida Walter Philippson e Maria Martinez pelo seu apoio em vários momentos de transição.

Aos amigos do laboratório: Marcos, Jesús, Sabrina, Hugo, Jaiminho, Rafael, por fazer do laboratório um lugar de trabalho agradável e feliz.

A Wagner Nahas, German Gonzales, Antonio Pellisari, Paul Ledezma, Pablo Perdomo, Antonio Nunes, por sua amizade, alegria e apoio.

A Heitor Guimarães, Freddy Ferreira, Marcos Henrique pela ajuda na fractografia.

A Teresa Brasil pelo seu apoio e carinho.

Ao Bruce Carter da Universidade de Cornell pela ajuda prestada no uso do FRANC3D.

A Silvania Silva administradora da loja ``Casa do Acrílico`` pela confiança inicial depositada em mim fornecendo o acrílico e policarbonato para fazer os préensaios desta tese. Ao Departamento de Engenharia Civil e Mecânica da PUC-Rio, seus professores e seus funcionários pela colaboração e ensino.

A CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico pela ajuda financeira.

A todas aquelas pessoas que de alguma outra forma participaram no desenvolvimento da dissertação.

Ao Brasil por sua cultura, alegria e ensino.

Resumo

Jordan Ibañez, Guillermo Rodolfo; Martha, Luiz Fernando Campos Ramos; Topper, Timothy Hamilton; Miranda, Antonio Carlos de Oliveira. **Transição de Trincas Bidimensionais para Unidimensionais.** Rio de Janeiro, 2010. 171p. Dissertação de Mestrado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

A falha por fadiga nas estruturas é um problema muito comum que é caracterizado pela geração e propagação paulatina de uma ou varias trincas, causada pela aplicação cíclica de cargas variáveis. Uma trinca é considerada unidimensional quando sua trajetória pode ser representada por uma curva, como no caso em que a superfície da trinca transpassa toda a espessura de uma peça. Quando a trinca penetra parcialmente na peca, ela é considerada bidimensional. Modelos matemáticos e físicos para a simulação de propagação de trincas unidimensionais por fadiga são de amplo conhecimento, e o principal parâmetro que controla a propagação é o fator de intensidade de tensão. Entretanto, a simulação da propagação de trincas bidimensionais ainda não tem o mesmo estado de desenvolvimento. Existem algumas expressões empíricas para trincas bidimensionais fornecidas na literatura que ajudam a descrever os fatores de intensidade de tensão. Essas equações estão limitadas a diversos fatores de forma que relacionam as características geométricas da peça, espessura, largura e o tipo de entalhe já que as trincas bidimensionais mudam de aspecto a cada ciclo de carga. Também existem métodos numéricos que ajudam a descrever aproximadamente valores do fator de intensidade de tensões ao longo da frente de uma trinca bidimensional. Uma questão importante nesse tipo de simulação é a transição de uma trinca parcialmente penetrante (bidimensional) para uma situação unidimensional (trinca passante), pois para calcular a vida total de uma trinca por fadiga é preciso também modelar a transição. Contudo, esse processo de transição não tem sido acompanhado por estudos experimentais nem analíticos. Um motivo para isso é que a transição acontece em poucos ciclos da aplicação da carga, o que dificulta a sua medição. Esta pesquisa tem como objetivo geral estudar o processo de transição das trincas bidimensionais para unidimensionais com a utilização de um material transparente e com boas propriedades mecânicas, como é o policarbonato. Foram realizados experimentos de propagação de trincas em placas com seção transversal retangular desse material. Em cada experimento, uma trinca foi induzida como um defeito com forma quarto-elíptica em uma das esquinas do corpo de prova. A propagação foi controlada com aplicações de cargas cíclicas de baixa frequência. Para calcular a vida total de uma trinca por fadiga, foram medidos valores de comprimentos característicos da forma da trinca bidimensional (a, c e c') no processo de transição, o que permitiu avaliar as taxas de variação desses parâmetros com o número de ciclos N da carga aplicada (da/dN, dc/dN e dc'/dN) e avaliar os fatores de intensidade de tensão normalizados que controlam a transição. Os valores experimentais são também usados como dados de entrada para um programa de análise numérica de propagação de trincas, o FRANC3D, o qual nos permite calcular e comparar os fatores de intensidade de tensão ao longo da frente da trinca quarto – elíptica.

Palavras – chave

Propagação de trinca Bidimensional; Fadiga; Transição; Policarbonato; Elementos Finitos

Abstract

Jordan Ibañez, Guillermo Rodolfo; Martha, Luiz Fernando Campos Ramos; Topper, Timothy Hamilton; Miranda, Antonio Carlos de Oliveira **Transition of Two Dimensional Cracks to One-Dimensional.** Rio de Janeiro, 2010. 171p. MSc. Dissertation - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

The fatigue failure of structures is a common problem that is characterized by the generation and propagation of one or several cracks caused by the cyclic application of variable loads. A crack is considered one-dimensional when the trajectory can be represented by a curve, as in the case where a surface crack pierces the entire thickness of a piece. If the crack penetrates partially in the specimen, it is considered to be two dimensional. Mathematical and physical models for simulating one-dimensional crack propagation by fatigue are widely known, and the main parameter that controls crack propagation is the stress intensity factor. However, the simulation of two-dimensional crack propagation has not yet reached the same state of development. There are some empirical expressions for two-dimensional cracks provided in the literature that help describe the stress intensity factors. These equations are limited to various form factors that relate the stress intensity to the geometrical characteristics of the piece. Also there are numerical methods that help describe some of the values of stress intensity factor along the crack front of a two-dimensional crack. An important question in calculating the total life of fatigue crack is describing the transition from a crack partially penetrating (two dimensional) for a onedimensional (passing crack), because to calculate the total life of a fatigue crack is also necessary to model the transition. However, this process of transition has not for many geometries been described by analytical or experimental studies. One reason for this is that the transition often happens in a few cycles of load application, which complicates measurements. This research was aimed at investigating the process of transition from the two-dimensional crack to a onedimensional crack with the use of polycarbonate a transparent material with good mechanical properties, polycarbonate. Experiments were conducted involving crack propagation in plates with a rectangular cross section. In each experiment, a crack was induced as a defect with a quarter-elliptical shape in one corner of the specimen. The propagation affected by the application of a low-frequency cyclic loading. Values of characteristic lengths of the two-dimensional shape of the crack (*a*, *c* and *c'*) were measured during the transition process, which allowed us to evaluate the rates of change of these parameters with the number of cycles N applied load and to evaluate the normalized stress intensity factors that control the transition. The experimental values are also used as input to a program for numerical analysis of crack propagation, the FRANC3D, which allows us to calculate the stress intensity factors along the front quarter-elliptical crack.

Keywords

Two-dimensional crack propagation; Fatigue; Transition; Polycarbonate; Finite Elements.

Sumário

1.	INTRODUÇÃO	25				
1.1.	Motivação	29				
1.2.	Revisão Bibliográfica	31				
1.3.	Objetivos da Dissertação	33				
1.4.	Estrutura da Dissertação	34				
2.	FUNDAMENTOS DE ELASTICIDADE E DA MECÂNICA DA	25				
	FRATURA LINEAR ELÁSTICA (MFLE)					
2.1.	Relações Tensão – Deformação	35				
2.1.1.	Função de Airy	37				
2.2.	Fundamentos da Mecânica da Fratura Linear Elástica	38				
2.2.1.	Concentração de Tensões	38				
2.2.2.	Furo Circular	40				
2.2.3.	Furo Elíptico	41				
2.3.	Trincas e Fator de Intensidade de Tensões	43				
2.4.	Propagação de Trincas por Fadiga	46				
2.4.1.	Curva da/dN versus ΔK	46				
2.4.2.	Ciclos de Tensão de Fadiga	49				
2.4.3.	Equações Semi- Empíricas de Propagação por Fadiga	50				
2.5.	Mecânica da Fratura Elastoplástica	51				
2.5.1.	Zona Plástica na Ponta da Trinca	52				
2.6.	Fenômeno de Coalescimento das Trincas	53				
2.6.1	Coalescimento das Trincas Bidimensionais no Policarbonato	55				
3.	PROPAGAÇÃO DE TRINCAS BI-DIMENSIONAL	58				
3.1.	Introdução	58				
3.2.	Trincas Superficiais ou Semi – Elípticas	59				

3.2.1. Trincas Semi-Elípticas, $a/t \le 1$ 62

3.2.2.	Trincas Semi-Elípticas, a/t>1	63
3.3.	Trincas Bidimensionais de Canto Quarto - Elípticas	66
3.3.1.	Trincas Quarto-Elípticas, a/t≤1	68
3.3.2.	Transição de Trincas Quarto-Elípticas, a/t>1	75
4.	ABORDAGEM EXPERIMENTAL	79
4.1.	Introdução	79
4.2.	Métodos de Aquisição de Dados	79
4.3.	Microscópio X-Y	80
4.4.	Maquina de Ensaio de Fadiga	81
4.5.	Comportamento dos Polímeros	81
4.6.	Pré- Ensaios com Polímeros	82
4.6.1.	Preparação do Corpo de Prova C(T)	82
4.6.2.	Ensaio do Corpo de Prova C(T)	83
4.7.	Lixado e Polimento dos Corpos de Prova	84
4.8.	Propriedades Mecânicas do Policarbonato	84
4.8.1.	Propriedades a Fadiga do Policarbonato	85
4.9.	Ensaios	87
4.9.1.	Preparação do Corpo de Prova ESE(T)	88
4.9.2	Ensaio <i>da/dN</i>	89
4.10.	Problemas encontrados previa seleção do corpo de prova definitivo para ensajo de propagação bidimensional	90
4.11.	Preparação do Corpo de Prova C2D	92
4.12.	Ensaio Propagação de Trincas Bidimensional	93
4.13.	Preparação do Corpo de Prova para Ensaio de Tração	96
4.13.1.	Ensaio de Tração	96
5.	ANÁLISE DE RESULTADOS	98
5.1.	Pré – Ensaios	98
5.2.	Ensaio <i>da/dN</i>	107
5.3.	Resultados Ensaio de Propagação de Trincas Bidimensional	112
5.3.1.	Primeiro Caso – Fratura Frágil	113
5.3.2.	Segundo Caso- Alta plasticidade e Tunneling	121
5.3.3	Terceiro Caso – Transição 2D-1D	126

5.4.	Fractografia da Propagação 2D e Transição 2D-1D	146
5.4.1.	Zona Plástica Epsilon	150
5.4.2	Problemas Encontrados na Experimentação dos C2D	151
5.5	Ensaio de Tração	152
	~ ~	
6.	AVALIAÇÃO E COMPARAÇÃO DOS RESULTADOS COM UM MODELO NUMÉRICO	154
6.1.	Introdução	154
6.2.	Software para Simulação	155
6.3.	Modelagem Numérico da Transição Bidimensional para Unidimensional	156
7.	CONCLUSÕES E SUGESTÕES	164
7.1.	Conclusões	164
7.2.	Sugestões	165
	BIBLIOGRAFIA	168

Lista de Figuras

Figura	1.1	Tipos de Trincas	26
Figura	1.2	Trinca semi-elíptica gerada a partir de um entalhe retangular	27
Figure	12	Trincas semi-elípticas e de canto em vasos de pressão, válvulas e	27
Figura	1.3	dutos.	
Figura	1.4	Parte da perna afetada por trincas de fadiga bidimensional na	
		catástrofe da plataforma semi-submersível Alexander Kielland	28
Figura	1.5	Transição de uma trinca superficial 2D em trinca passante 1D	29
Figura	1.6	Perfis de trincas de fadiga obtidos para o modelo duplo T carregada	
		em quatro pontos de flexão	30
Figura	1.7	Ensaio 1 Trinca Bidimensional	32
Figura	1.8	Ensaio 2 Trinca Bidimensional	32
Figura	1.9	Ensaio 3 Trinca Bidimensional	32
Figura	2.1	Resistência em placas com e sem descontinuidades	38
Figura	2.2	Uma placa infinita com e sem defeito	39
Figura	2.3	Furo circular numa placa infinita	40
Figura	2.4	Furo elíptico	41
Figura	2.5	Concentração de tensão	43
Figura	2.6	Modos de carregamento das trincas	45
Figura	2.7	Crescimento paulatino de uma pequena trinca por fadiga	46
Figura	2.8	Ciclos do Fator de Intensidade de Tensões	47
Figura	2.9	Curva típica de propagação de trincas por fadiga, $da/dN \times \Delta K$	48
Figura	2.10	Ciclos de Tensão de Fadiga	50
Figura	2.11	Comparação de zonas plásticas versus elastoplásticas	52
Figura	2.12	Campo de tensões atuantes na ponta da trinca	53
Figura	2.13	Típica configuração usando FEM para coalescimento coplanar de	
		trincas por fadiga	54
Figura	2.14	Simulação da propagação de uma fila de entalhes coplanares	
		inicialmente semicirculares	54

Figura 2.15	Interação de duas trincas coplanares, fenômeno de coalescimento	55
Figura 2.16	Pré-Coalescimento, crescimento semi- elíptico de múltiplas trincas	
	bidimensionais localizadas no meio de um entalhe ESE(T) (w,h,t) =	
	(65mm, 297mm, 10mm), policarbonato	56
Figura 2.17	Pré-Coalescimento, crescimento semi- elíptico de múltiplas trincas	
	bidimensionais localizadas no meio de um entalhe, corpo de prova	
	ESE(T) (w,h,t) = (65mm, 297mm, 10mm), policarbonato	56
Figura 2.18	Coalescimento, crescimento semi-eliptico de múltiplas trincas	
	bidimensionais localizadas no meio de um entalhe, corpo de prova	
	ESE(T) (w,h,t) = (65mm, 297mm, 10mm), policarbonato	57
Figura 2.19	Pós-Coalescimento, crescimento semi- elíptico de múltiplas trincas	
	bidimensionais localizadas no meio de um entalhe, corpo de prova	
	ESE(T) (w,h,t) = (65mm, 297mm, 10mm), policarbonato	57
Figura 3.1	Barra com trinca semi - elíptica	58
Figura 3.2	Definição das dimensões $a e c$ das trincas 2D	59
Figura 3.3	Comportamento da frente de uma trinca semi - elíptica para uma razão	
	constante sob tensão remota	61
Figura 3.4	Definição das dimensões $a \in c$ das trincas 2D, $a/t \le a/t \ge 1$	61
Figura 3.5	Comportamento trinca semi – elíptica para diferentes razões a/t,	
	<i>c/w</i> =0.1 e <i>a/c</i> =1	64
Figura 3.6	Distribuição do Fator de Intensidade de tensões ao longo da frente da	
	trinca para uma trinca semi - elíptica	
	$(a/c=1, a/t=1, 0.75, 0.5, 0, c/w=0-1, h/w=1, \phi=0-\pi)$	65
Figura 3.7	Distribuição do Fator de Intensidade de Tensões normalizado ao	
	longo da frente da trinca para uma trinca semi – elíptica (a/c=1,	
	<i>a/t</i> =0.4, <i>c/w</i> =0.1, <i>h/w</i> =1)	66
Figura 3.8	Geometria de uma trinca quarto – elíptica. a) $a/c \le 1$, b) $a/c > 1$	67
Figura 3.9	Placa de largura w , espessura t com trinca de canto quarto-eliptica, em	
	transição para passante)	68
Figura 3.10	Distribuição da pressão numa trinca quarto- elíptica	68
Figura 3.11	Simulação do comportamento de uma trinca quarto-elíptica	
	para <i>a/c</i> = 1, <i>a/c</i> =0.9, <i>a/c</i> =0.4	69
Figura 3.12	Distribuição do Fator de Intensidade de tensões ao longo da frente da	71

trinca quarto - elíptica (a/c=0.2, a/t=1, 0.75, 0.5, 0, c/w=0.1, h/w=1)

Figura 3.13.- Distribuição do Fator de Intensidade de tensões ao longo da frente da trinca para uma trinca quarto – elíptica

$$(a/c=0.2, a/t=1, 0.75, 0.5, 0, c/w=0-1, h/w=1)$$
 71

- Figura 3.14.- Distribuição do Fator de Intensidade de tensões ao longo da frente da trinca quarto-elíptica (a/c=0.5, a/t=1,0.75,0.5,0, c/w=0-1, h/w=1) 72
- Figura 3.15.- Distribuição do Fator de Intensidade de tensões ao longo da frente da trinca para uma trinca quarto elíptica

$$(a/c=0.5, a/t=1, 0.75, 0.5, 0, c/w=0-1, h/w=1)$$
 72

Figura 3.16.- Distribuição do Fator de Intensidade de tensões ao longo da frente da trinca para uma trinca quarto elíptica

$$(a/c=1, a/t=1, 0.75, 0.5, 0, c/w=0.1, h/w=1)$$
 73

Figura 3.17.- Distribuição do Fator de Intensidade de tensões ao longo da frente da trinca para uma trinca quarto elíptica (a/c=1, a/t=1, 0.75, 0.5, 0, c/w=0-1, h/w=1) 73

Figura	3.18	Distribuição do Fator de Intensidade de tensões ao longo da frente da	
		trinca para uma trinca quarto elíptica, a/t≤1.	74
Figura	3.19	Placa retangular com trinca quarto- elíptica em transição para passante,	
		(c/w < 1, a'/t > 1)	75

- Figura 3.20.- Placa com seção retangular com trinca quarto-elíptica em transição para passante, Fator de intensidade de tensões normalizado $K_I(c)/\sigma\sqrt{\pi c}$. 77
- Figura 4.1.-Microscópio X-Y80Figura 4.2.-Corpo de Prova tipo Compact Tension utilizado nos Pre ensaios de
comportamento de material PMMA e PC82Figura 4.3.-Pre-ensaios de fadiga com CPs tipo Compact Tension em PMMA e
policarbonato montados na MTS83Figura 4.4.-Lixado com diferente granulometria e pulimento84
- Figura 4.5.-Relação entre o comprimento a e o numero de ciclos N para
policarbonato tipo Lexan- 903086

Figura	4.6	Crescimento de trinca por fadiga para diferentes temperaturas de	
		recozimento	86
Figura	4.7	Taxas de propagação de trincas por fadiga v s $\varDelta K$ para vários plásticos	
		e metais	87
Figura	4.8	Usinado dos entalhes em corpos de prova tipo ESE(T)	88
Figura	4.9	ESE(T) - Eccentrically-Loaded Single Edge Crack Specimen utilizado	
		no ensaio <i>da/dN</i> para encontrar as propriedades a fadiga do material	88
Figura	4.10	Ensaio de K-Decreasing e K-Increasing para conhecer as propriedades	
		a fadiga do PC	90
Figura	4.11	Montagem de um corpo de prova com dimensões 10x200x380mm e	
		entalhe semi - elíptico no meio na placa	91
Figura	4.12	Diferentes problemas encontrados na seleção da geometria do C2D-PC	
		definitivo	92
Figura	4.13	Dimensões do C2D-PC 10x47x365 mm	93
Figura	4.14	Introdução do defeito de raio muito pequeno no C2D-PC com uso de	
		um Gillette de barbear	93
Figura	4.15	Arranjo de aquisição de dados para os ensaios de propagação	
		bidimensional em trincas quarto – elípticas	94
Figura	4.16	Arranjo dos dados obtidos para cada 0.5 mm de comprimento a.	
		Usando duas câmaras de alta resolução e um microscópio X-Y	95
Figura	4.17	Ensaio de tração uniaxial	96
Figura	5.1	Nascimento de uma trinca semi - elíptica bidimensional localizada no	
		meio do entalhe do corpo de prova CP-PC-010, (w,h,t) = (40mm,	
		40mm, 10mm), policarbonato, P = 400 N, N= 8902 ciclos	97
Figura	5.2	Propagação da trinca em forma bidimensional localizada no meio do	
		entalhe do corpo de prova CP-PC-010, (w,h,t) = (40mm, 40mm,	
		10mm), policarbonato, P = 400 N, N= 11529 ciclos	98
Figura	5.3	Propagação semi - elíptica de uma trinca bidimensional localizada no	
		meio do entalhe do corpo de prova CP-PC-010, (w,h,t) = (40mm,	
		40mm, 10mm), policarbonato, P = 400 N, N= 18084 ciclos	98
Figura	5.4	Propagação semi - elíptica de duas trincas bidimensionais uma maior e	
		outra menor localizadas no entalhe do corpo de prova CP-PC-010,	
		(w,h,t) = (40mm, 40mm, 10mm), policarbonato, P = 400 N, N= 23772	99

ciclos

Figura 5.5	Sobreposição fotográfica da propagação da trinca bidimensional antes	
	de atingir as paredes do corpo de prova	99
Figura 5.6	Comparação dimensional da propagação da trinca bidimensional para	
	carregamento constante P=400N, CP-PC-010	100
Figura 5.7	Comparação dimensional da propagação da trinca bidimensional para	
	carregamento constante P=400N, CP-PC-010	101
Figura 5.8	Iniciação de múltiplas trincas bidimensionais por fadiga em	
	policarbonato	101
Figura 5.9	Ensaios de fadiga em corpos de prova tipo CT-PP, PMMA	104
Figura 5.10	Nascimento de trinca bidimensional, CP-PC-023	104
Figura 5.11	Propagação de trincas, $C(T)$ (w,h,t) = (40mm, 40mm, 10mm a) CP-PP-	105
	003 b) CP-PPB-007 c) CP-PC-014	
Figura 5.12	Propagação de trinca, comparação a vs N, CP-PC-023	106
Figura 5.13	Ensaios de fadiga em corpos de prova tipo CT-PC, Policarbonato	106
Figura 5.14	Comportamento a vs N do Policarbonato e PMMA	107
Figura 5.15	Propriedade a fadiga do policarbonato	108
Figura 5.16	Propriedade da/dN vs ΔK do policarbonato	109
Figura 5.17	Comparação a vs N corpo de prova ESE(T)-02	110
Figura 5.18	Comparação $f(a/w)$ vs a/w , corpo de prova ESE(T)-02	111
Figura 5.19	Comparação P vs N , corpo de prova ESE(T)-02	111
Figura 5.20	Comparação a vs ΔK corpo de prova ESE(T)-02	112
Figura 5.21	Tipos de propagação bidimensional e transição 2D -1D	113
Figura 5.22	Trinca Bidimensional a/t≤1	114
Figura 5.23	Fratura frágil em trinca bidimensional a/t<1	115
Figura 5.24	Fratura frágil em trinca bidimensional a/t<1, C2D-12	116
Figura 5.25	Propagação Bidimensional e fratura frágil	117
Figura 5.26	Propagação Bidimensional a,c vs. N	118
Figura 5.27	Propagação Bidimensional <i>a,c</i> vs ∆K_New_Raj, ∆K_Elber, C2D-12	118
Figura 5.28	Propagação Bidimensional <i>AK_New_Raj vs AK_Elber</i> , C2D-12	119
Figura 5.29	Propagação Bidimensional (c/w), (a/t) vs. f(c/w), f(a/t), C2D-12	119
Figura 5.30	Propagação Bidimensional a vs $f(a/t, c/w)$ _calc_New_Raj vs. $f(a/t, c/w)$ _calc_New_Raj vs	120
	c/w)_ajust_Elber, C2D-12	

Figura 5.31 Propagação Bidimensional c vs . $f(a/t, c/w)$ _calc_New_Raj vs. $f(a/t, c/w)$	
c/w)_ajust_Elber, C2D-12	120
Figura 5.32 Propagação 2D e Transição 2D-1D	122
Figura 5.33 Sobreposição das fotografias tomadas no C2D-01	122
Figura 5.34 Transição trinca bidimensional para unidimensional, C2D-01	123
Figura 5.35 Transição de propagação de trinca bidimensional a/t>1 para	
unidimensional	124
Figura 5.36 Transição trinca bidimensional para unidimensional, C2D-05	125
Figura 5.37 Transição trinca bidimensional para unidimensional, C2D-06	125
Figura 5.38 Razoes <i>c/c</i> ' para diferentes corpos de prova C2D-01, C2D-05, C2D-07	126
Figura 5.39 Comparação a, c vs. N , trinca bidimensional, $a/t \le 1$, C2D-13	127
Figura 5.40 Comparação a vs. c , trinca bidimensional, a/t≤1, C2D-13	127
Figura 5.41 Transição de propagação de trinca bidimensional a/t>1 para	
unidimensional	128
Figura 5.42 Transição trinca bidimensional para unidimensional, C2D-10	129
Figura 5.43 Transição trinca bidimensional para unidimensional, C2D-11	129
Figura 5.44 Diminuição do carregamento aplicado para conseguir registrar a	
transição, C2D-13	130
Figura 5.45 Transição de trinca Bidimensional para Unidimensional por fadiga,	
C2D-13	135
Figura 5.46 Fratura final de um corpo de prova sob carregamento cíclico trativo	135
Figura 5.47 Transição de propagação de trinca bidimensional a/t>1 para	136
unidimensional	
Figura 5.48 Transição trinca bidimensional para unidimensional, C2D-13	136
Figura 5.49 Razões c/c' para diferentes corpos de prova C2D-10, C2D-11, C2D-	
13,	137
Figura 5.50 Mosaico de140 microfotografias mostrando Propagação 2D,	
Transição da trinca 2D para 1D e propagação 1D, C2D-13	138
Figura 5.51 $\Delta K_I(c)$ predominante controla a taxa de propagação dc/dN ao longo do	
semi-eixo c , C2D-13	139
Figura 5.52 <i>a</i> vs, $\Delta K_{I}(a)$, por Newman-Raju e Experimental ajustados a Elber,	
C2D-13, a/t≤1	139

Figura	5.53	c vs, $\Delta K_I(c)$, por Newman-Raju e Experimental ajustados a Elber,	
		C2D-13, a/t≤1	140
Figura	5.54	c vs. $\Delta K_I(c)$, c' vs. $\Delta K_I(c')$, Experimental ajustados a Elber, C2D-13,	
		a/t>1	141
Figura	5.55	$K_I(a)$ e $K_I(c)$ dados experimentais vs calculados, C2D-13, a/t≤1	141
Figura	5.56	f(a/t, c/w) dados experimentais vs calculados, C2D-13, a/t≤1	143
Figura	5.57	$f(a/t, c/w)$ dados experimentais vs calculados, C2D-13, $a/t \le 1$	143
Figura	5.58	f(a/t, c/w) dados experimentais vs calculados, C2D-13, a/t>1, c e c'	
		vs. $f(a/t, c/w)$ _ajust_Elber	144
Figura	5.59	Comparação dos <i>AKexp</i> e <i>AKcal</i> com dados <i>da/dN-exp</i> e <i>da/dN-Elber</i>	145
Figura	5.60	Inicio da propagação bidimensional para um entalhe linear,	
		fractografía C2D-13	146
Figura	5.61	Fechamento sob tensão plana nas faces laterais e deformação plana na	
		profundidade, C2D-13	147
Figura	5.62	Fractografías com microscópio Ótico 5X, C2D-11,	149
Figura	5.63	Zona plástica épsilon no CP2-01	150
Figura	5.64	Campo de tensões atuantes na zona plástica épsilon no CP2-01 usando	151
		técnicas de fotoelasticidade.	
Figura	5.65	Problemas inesperados na experimentação.	152
Figura	5.66	Teste de tração em policarbonato	153
Figura	5.67	Teste de tração em policarbonato	153
Figura	6.1	Mosaico de 45 fotografias, Transição trinca Bidimensional para	
		Unidimensional, C2D-11	154
Figura	6.2	Ambiente FRANC3D para modelagem de trincas	157
Figura	6.3	Inserção de trinca num modelo com uso do FRANC3D	158
Figura	6.4	Fator de intensidade de tensões ao longo da frente da trinca	
		bidimensional, C2D-13, a=2.49mm, c=2.5mm	159
Figura	6.5	Deformações e Tensões de Mises ao redor da trinca bidimensional,	
		C2D-13, $a=2.49$ mm, $c=2.5$ mm, $\sigma_{max}=12.857$ MPa usando ABAQUS	159
Figura	6.6	Fator de intensidade de tensões ao longo da frente da trinca ,C2D-13,	
		<i>a</i> =4.99mm, <i>c</i> =5.1mm, σ_{max} = 7.592 MPa	160

Figura 6.7.- Deformações e Tensões de Mises ao redor da trinca 160

	bidimensional,C2D-13, $a=4.99$ mm, $c=5.1$ mm, $\sigma_{max}=$ 7.592 MPa,	
	usando ABAQUS	
6.8	Fator de intensidade de tensões ao longo da frente da trinca na	
	transição bidimensional para unidimensional, C2D-13, σ_{max} = 4.483	
	MPa ,usando FRANC3D	161
6.9	Fator de intensidade de tensões ao longo dos semi $-$ eixos a , c e c '.	
	Modelagem vs Experimental. Inicio, transição 2D para 1D, C2D-13	162
6.10	Dados tabelados baseados na fractografia do C2D-13	
		163
7.1	Fotoelasticidade do policarbonato	166
7.2	Corpo de Prova com 3 furos tipo ESE(T), Trajetória da propagação	
	muda duas vezes de sentido	167
	 6.8 6.9 6.10 7.1 7.2 	 bidimensional,C2D-13, a=4.99mm, c=5.1mm, σ_{max}= 7.592 MPa, usando ABAQUS 6.8 Fator de intensidade de tensões ao longo da frente da trinca na transição bidimensional para unidimensional, C2D-13, σ_{max}= 4.483 MPa ,usando FRANC3D 6.9 Fator de intensidade de tensões ao longo dos semi – eixos a, c e c'. Modelagem vs Experimental. Inicio, transição 2D para 1D, C2D-13 6.10 Dados tabelados baseados na fractografia do C2D-13 7.1 Fotoelasticidade do policarbonato 7.2 Corpo de Prova com 3 furos tipo ESE(T), Trajetória da propagação muda duas vezes de sentido

Lista de Tabelas

Tabela	2.1	Regras Semi-Empíricas para Propagação a Fadiga	51
Tabela	3.1	Comparação das expressões analíticas versus os resultados da modelagem	66
		para valores predominantes $K_I(a)$ e $K_I(c)$.Trinca Semi-Elíptica	
Tabela	3.2	Comparação das expressões analíticas versus os resultados da modelagem	74
		pelo FRANC3D para $K_I(a)$ e $K_I(c)$, Trinca Quarto – Elíptica, a/t≤1	
Tabela	3.3	Comparação das expressões analíticas versus os resultados da modelagem	78
		pelo FRANC3D para $K_I(c')$ e $K_I(c)$, Trinca Quarto – Elíptica, a/t>1	
Tabela	4.1	Propriedades mecânicas do policarbonato	85
Tabela	5.1	Propagação da trinca bidimensional anteriormente mostrada	100
Tabela	5.2	Resumo de ensaios com CP-PP	103
Tabela	5.3	Valores experimentais do fator de forma na transição 2D-1D, C2D-13	144

Lista de abreviaturas e símbolos

ABREVIATURAS

da/dN	Método de previsão de dano à fadiga (propagação de trinca).
MFLE	Mecânica da Fratura Linear Elástica.

SÍMBOLOS

2a	Largura do furo elíptico em uma placa infinita.
2 <i>b</i>	Comprimento do furo elíptico em uma palaca infinita.
a	Comprimento de trinca.
С	Comprimento de trinca.
с'	Comprimento de trinca.
da/dN	Taxa de propagação de trinca.
Α	Coeficiente linear.
т	Coeficiente angular.
Ε	Módulo elástico.
3	Deformação unidirecional.
Δε	Amplitude das deformações.
f(a/w)	Fator de forma (Função adimensional).
D_{ijkl}	Tensor de quarto ordem.
δ_{ij}	Delta de Kronecker
Κ	Fator de intensidade de tensões.
K_T	Fator de concentração de tensões.
K _I , K _{II} , K _{III}	Fatores de intensidade de tensões nos modos I, II e III de carregamento, respectivamente
$K_{I}(a)$	Fator de intensidade de tensões, modo I em a
$K_{I}(c)$	Fator de intensidade de tensões, modo I em c
<i>K</i> _{<i>I</i>} (<i>c</i> ')	Fator de intensidade de tensões, modo I em c'
K_c	Tenacidade à fratura.

ΔK	Amplitude do fator de intensidade de tensões.
ΔK_{th}	Fator de intensidade de tensões limiar.
K _{max}	Fator de intensidade de tensões máximo.
K _{min}	Fator de intensidade de tensões mínimo.
Ν	Número de ciclos.
Р	Carregamento.
R	Taxa tensão máxima, tensão mínima
σ	Tensão.
σ_a	Tensão alternada.
σ_m	Tensão media.
σ_n	Tensão nominal.
σ_{max}	Tensão máxima.
σ_{min}	Tensão mínima.
Δσ	Amplitude das tensões.
σ_{ij}	Tensor de tensões.
σ_x	Tensão normal na direção x.
σ_y	Tensão normal na direção y.
$\sigma_{r,}\sigma_{ heta,}\mathrm{e} au_{r heta}$	Tensões nas vizinhanças da ponta da trinca em coordenadas polares.
S_E	Tensão de escoamento do material.
S _{ut}	Tensão de ruptura.
u_x, u_y	Deslocamentos nas direções dos eixos x e y, respectivamente.
U_s	Energia de deformação.
v	Coeficiente de Poisson.
λ	Modulo de Lame.
μ	Modulo de Cisalhamento.