

Lucas Boabaid Ibrahim

Análise numérica e experimental da mecânica de formação de aneurismas da aorta abdominal

Tese de Doutorado

Tese apresentada ao programa de Pós-Graduação em Engenharia Civil como requisito parcial para obtenção do título de Doutor em Engenharia Civil.

Orientadora: Djenane Cordeiro Pamplona

PUC-Rio - Certificação Digital Nº 0621274/CA

Rio de Janeiro, agosto de 2010

Lucas Boabaid Ibrahim

Análise numérica e experimental da mecânica de formação de aneurismas da aorta abdominal

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> **Prof^a. Djenane Cordeiro Pamplona** Orientadora Departamento de Engenharia Civil – PUC-Rio

> Prof. Ney Augusto Dumont Departamento de Engenharia Civil – PUC-Rio

> Prof. Paulo Batista Gonçalves Departamento de Engenharia Civil – PUC-Rio

> > Prof. Agenor de Toledo Fleury Centro Universitário da FEI

Prof. Carlos Eduardo Virgini Magalhães UERJ

> Prof. Claudio Ribeiro Carvalho UFF

Prof. Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC – Rio

Rio de janeiro, 03 de agosto de 2010

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Lucas Boabaid Ibrahim

Graduou-se Engenheiro Civil em Dezembro de 2003, pela Faculdade de Engenharia Industrial (FEI)

Possui Mestrado em Engenharia Civil pelo Departamento de Engenharia Civil – PUC-Rio

Ficha Catalográfica

Ibrahim, Lucas Boabaid

Análise numérica e experimental da mecânica de formação de aneurismas da aorta abdominal / Lucas Boabaid Ibrahim ; orientadora: Djenane Cordeiro Pamplona. – 2010.

272 f. : il. (color.) ; 30 cm

Tese (Doutorado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil, 2010. Inclui bibliografia

 Engenharia civil – Teses. 2.
Aneurisma. 2. Elementos finitos. 3. Instabilidade.
Deformações finitas. I. Pamplona, Djenane Cordeiro. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. III. Título.

CDD: 624

Aos meus pais, amigos e a todos que contribuíram na realização deste trabalho.

Agradecimentos

À PUC-Rio e aos professores do Departamento de Engenharia Civil.

A minha orientadora, pela convivência, disponibilidade, incentivo, paciência e pelos conhecimentos transmitidos durante estes últimos anos.

À banca examinadora.

Aos meus colegas durante estes quatro anos.

Aos funcionários do departamento de Engenharia Civil.

Ao CNPq pela bolsa e à FAPERJ e CAPES pelo suporte à pesquisa.

Resumo

Ibhahim, Lucas Boabaid; Pamplona, Djenane Cordeiro. Análise numérica e experimental da mecânica de formação de aneurismas da aorta abdominal. Rio de Janeiro, 2010. 272p. Dissertação de Doutorado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Esta tese tem por objetivo investigar numérica e experimentalmente a mecânica da formação dos aneurismas na aorta abdominal. A parte experimental foi realizada no Laboratório de Membranas e Biomembranas utilizando-se tubos de silicone com a geometria aproximada da aorta sob pressão hidrostática. Foi investigada a pressão necessária à formação dos aneurismas e o comportamento do material ensaiado. A parte numérica foi realizada por meio do método dos elementos finitos através do programa ABAQUS (6.8.1). Com a análise numérica foi validada a análise experimental. Foram estudados casos de imperfeição geométrica e física do material, usando equações constitutivas propostas para o material da aorta.

Palavras-chave

Aneurisma; elementos finitos; instabilidade; deformações finitas

Abstract

Ibhahim, Lucas Boabaid; Pamplona, Djenane Cordeiro (Advisor). Numerical and experimental analysis of mechanics of formation of abdominal aortic aneurysms. Rio de Janeiro, 2010. 272p. DSc. Disseraation – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

The aim of this work is to investigate numerically and experimentally the mechanics of aortic aneurisms. The experimental part was performed at the Laboratory of Membranes and Biomembranes using silicone tubes with the geometry of the aorta under hydrostatic pressure. We investigate the behavior of the material tested and the critical pressure, this is the pressure necessary for the formation of aneurysms. The numerical analysis is done using the finite element code ABAQUS (6.8.1), and is validated by the experimental analysis. Some studies of geometrical and physical imperfections are performed, as well as the ones with constitutive equations for the material of the aorta.

Keywords

Aneurysm; finite elements; instability; finite deformation

Sumário

1 Introdução	32
1.1. Objetivo da dissertação	33
1.2. Organização do texto	34
2 Revisão bibliográfica	36
2.1. Definição de aneurismas	36
2.2. Tipos de aneurismas	37
2.3. Prevalência	39
2.4. Aorta	40
2.5. Divisão da artéria aorta	42
2.6. Camadas da parede arterial	44
2.7. Etiopatogenia	45
2.8. História	46
2.9. Risco de ruptura e morte	47
2.10. Fatores de risco de ruptura	47
2.11. Diagnósticos clínicos e exames subsidiários	49
2.12. Estudos de modelagens encontradas	50
2.13. Estudo microscópico do tecido arterial	57
3 Analise experimental	59
3.1. Aparato utilizado na análise experimental	61
3.2. Descrição do procedimento realizado na análise experimental	62
3.3. Escolha do material	63
3.4. Confecção do tubo de silicone	64
3.5. Obtenção das propriedades do silicone	65
3.5.1. Corpo de prova	68
3.5.2. Pré-condicionamento	68
3.6. Resultados dos ensaios com tubos de silicone	69
3.7. Estudo da pressão	69

3.8. Estudo da variação volumétrica	70
3.9. Ensaios experimentais	70
3.9.1. Ensaio 1	70
3.9.2. Ensaio 2	73
3.9.3. Ensaio 3	75
3.9.4. Ensaio 4	78
3.9.5. Ensaio 5	80
3.9.6. Ensaio 6	83
3.10. Padronização das pressões críticas	85
3.11. Padronização da análise do volume	86
3.12. Repetibilidade do ensaio	87
3.13. Causas da variação da pressão crítica	88
4 Análise numérica	90
4.1. Descrição da análise numérica	90
4.2. Formulação dos funcionais de energia	91
4.3. Escolha do funcional de energia	93
4.4. Definição da geometria	96
4.4.1. Elemento de casca	96
4.4.2. Elemento sólido	97
4.5. Análise de convergência	98
4.5.1. Análise de convergência de elemento de casca	98
4.5.2. Análise de convergência de elemento sólido	101
4.6. Análise da pressão crítica	103
4.6.1. Análise da pressão crítica com elementos de casca e funcional	de
energia Ogden	104
4.6.1.1. Sem alongamento	104
4.6.1.2. Alongamento de 10%	105
4.6.1.3. Alongamento de 20%	105
4.6.1.4. Comparação dos elementos de casca	106
4.6.2. Análise da pressão crítica com elementos de casca e funcional de	
energia Neo Hooke	107
4.6.2.1. Sem alongamento	107

4.6.2.2. Alongamento de 10%	108
4.6.2.3. Alongamento de 20%	109
4.6.2.4. Comparação dos elementos de casca	109
4.6.3. Análise da pressão crítica com elementos sólidos e funcional de	;
energia Ogden	111
4.6.3.1. Sem alongamento	111
4.6.3.2. Alongamento de 10%	111
4.6.3.3. Alongamento de 20%	112
4.6.3.4. Comparação dos elementos sólidos	113
4.6.4. Análise da pressão crítica com elementos sólidos e funcional de	;
energia Neo Hooke	114
4.6.4.1. Sem alongamento	114
4.6.4.2. Alongamento de 10%	115
4.6.4.3. Alongamento de 20%	116
4.6.4.4. Comparação dos elementos sólidos	116
4.6.5. Comparação dos elementos de casca e sólidos	118
4.7. Estudo das imperfeições impostas	120
4.7.1. Análise da pressão crítica para imperfeição anelar inferior	123
4.7.2. Análise da pressão crítica para imperfeição anelar superior	126
4.7.3. Análise da pressão crítica para imperfeição local	130
4.7.3.1. Caso 1	130
4.7.3.1.1. Caso 1 – modelo perfeito	131
4.7.3.1.2. Caso 1 – espessura de 3,0 mm	132
4.7.3.1.3. Caso 1 – espessura de 2,5 mm	132
4.7.3.1.4. Caso 1 – espessura de 2,0 mm	133
4.7.3.1.5. Caso 1 – espessura de 1,5 mm	134
4.7.3.1.6. Caso 1 – espessura de 1,0 mm	134
4.7.3.1.7. Estudo comparativo do caso 1	135
4.7.3.2. Caso 2	138
4.7.3.2.1. Caso 2 – espessura 3,0 mm	139
4.7.3.2.2. Caso 2 – espessura 2,5 mm	140
4.7.3.2.3. Caso 2 – espessura 2,0 mm	140
4.7.3.2.4. Caso 2 – espessura 1,5 mm	141

4.7.3.2.5. Caso 2 – espessura 1,0 mm	142
4.7.3.2.6. Estudo comparativo do caso 2	142
4.7.3.3. Caso 3	145
4.7.3.3.1. Caso 3 – espessura de 3,0 mm	146
4.7.3.3.2. Caso 3 – espessura de 2,5 mm	147
4.7.3.3.3. Caso 3 – espessura de 2,0 mm	147
4.7.3.3.4. Caso 3 – espessura de 1,5 mm	148
4.7.3.3.5. Caso 3 – espessura de 1,0 mm	151
4.7.3.3.6. Estudo comparativo do caso 3	151
4.7.3.4. Caso 4	152
4.7.3.4.1. Caso 4 – espessura de 3,0 mm	153
4.7.3.4.2. Caso 4 – espessura de 2,5 mm	154
4.7.3.4.3. Caso 4 – espessura de 2,0 mm	154
4.7.3.4.4. Caso 4 – espessura de 1,5 mm	155
4.7.3.4.5. Caso 4 – espessura de 1,0 mm	156
4.7.3.4.6. Estudo comparativo do caso 4	156
4.7.3.5. Estudo comparativo da análise da pressão crítica para	
imperfeição local	159
4.7.4. Análise da pressão crítica para imperfeições geradas por	
excentricidade	161
4.7.4.1. Ogden – excentricidade de 0,5	161
4.7.4.2. Avaliação gráfica	163
4.7.4.3. Neo Hooke – excentricidade de 0,5	165
4.7.4.4. Avaliação gráfica	167
4.7.4.5. Ogden – excentricidade de 1,0	169
4.7.4.6. Avaliação gráfica	171
4.7.4.7. Neo Hooke – excentricidade de 1,0	173
4.7.4.8. Avaliação gráfica	176
4.7.4.9. Ogden – excentricidade de 1,5	178
4.7.4.10. Avaliação gráfica	180
4.7.4.11. Neo Hooke – excentricidade de 1,5	182
4.7.4.12. Avaliação gráfica	184
4.7.4.13. Ogden – excentricidade de 2,0	186

4.7.4.14. Avaliação gráfica	188
4.7.4.15. Neo Hooke – excentricidade de 2,0	190
4.7.4.16. Avaliação gráfica	192
4.7.5. Análise da pressão crítica para imperfeição gerada por	
excentricidade e diminuição da constante elástica	197
4.7.5.1. Análise da sensibilidade da pressão crítica com a perda das	
propriedades elásticas para excentricidade de 0,5	197
4.7.5.2. Avaliação gráfica	201
4.7.5.3. Análise da sensibilidade da pressão crítica com a perda das	
propriedades elásticas para excentricidade de 1,0	202
4.7.5.4. Avaliação gráfica	206
4.7.5.5. Análise da sensibilidade da pressão crítica com a perda das	
propriedades elásticas para excentricidade de 1,5	207
4.7.5.6. Avaliação gráfica	211
4.7.5.7. Análise da sensibilidade da pressão crítica com a perda das	
propriedades elásticas para excentricidade de 2,0	212
4.7.5.8. Avaliação gráfica	216
5. Análise numérica realizada com as características da parede arteria	ıl220
5.1. Primeiro estudo das propriedades da aorta	220
5.1.1. Escolha do funcional de energia	221
5.1.2. Análise de convergência	223
5.1.3. Análise da pressão crítica com elementos de casca e funcional	de
energia Ogden 1	224
5.1.3.1. Sem alongamento	225
5.1.3.2. Alongamento de 10%	225
5.1.3.3. Alongamento de 20%	226
5.1.3.4. Comparação da pressão crítica para Ogden 1	227
5.1.4. Análise da pressão crítica com elementos de casca e funcional	de
energia Yeoh	228
5.1.4.1. Sem alongamento	228
5.1.4.2. Alongamento de 10%	229
5.1.4.3. Alongamento de 20%	229

5.1.4.4. Comparação da pressão crítica para Yeoh	230
5.2. Segundo estudo das propriedades da aorta	231
5.2.1. Equação constitutiva de Delfino	231
5.2.2. Equação constitutiva de Sacks	233
5.2.2.1. Equação constitutiva de Sacks aplicada a espessura da	
media	234
5.2.2.2. Equação constitutiva de Sacks aplicada a espessura da media	a e
geometria de D.P. Sokolis	235
5.3. Estudo da degeneração local do tecido arterial para a formação d	0
aneurisma	235
5.3.1. Primeiro estudo das imperfeições locais dos aneurismas	237
5.3.2. Segundo estudo das imperfeições locais dos aneurismas	241
6. Resultados finais	245
6.1. Tubos de silicone	245
6.1.1. Comparação entre os resultados da pressão crítica	245
6.1.2. Comparação entre os resultados da tensão	247
6.2. Comparação da pressão crítica dos estudos de imperfeição	249
6.2.1. Análise da pressão crítica para imperfeições locais simétricas	249
6.2.2. Análise da pressão crítica para imperfeições locais assimétricas	; 251
6.2.3. Análise dos elementos sólidos com excentricidade	253
6.2.4. Análise dos elementos sólidos com excentricidade e variação da	a
constante elástica	255
6.3. Comparação entre os resultados da pressão crítica obtidas numé	rica
e experimentalmente	256
6.4. Avaliação da pressão para o gráfico tensão deformação proposto	por
Sacks	260
6.5. Estudo das equações constitutivas de artéria	261
6.7. Trabalhos futuros	263
7. Bibliografia	265
Anexo A Código de elementos sólidos	270

Lista de Figuras

Figura 1.1 – Exemplo de aneurismas – John A. Elefteriades (2006)	32
Figura 2.1 – Exemplo de dilatação permanente e localizada –	
http://www.gforum.tv/board/1092/285283/um-importante-avanco-no-	
entendimento-dos-aneurismas-cerebrais.html	36
Figura 2.2 - Representação da ruptura do aneurisma - John A.	
Elefteriades (2006)	37
Figura 2.3 - Representação da dissecção dos aneurismas - John A.	
Elefteriades (2006)	38
Figura 2.4 - Corte transversal do aneurisma de dissecção - John A.	
Elefteriades (2006)	39
Figura 2.5 - Local da maior incidência dos aneurismas -	
http://copy.pnn.pt/noticias_imagens/aneurisma_aorta.jpg	30
Figura 2.6 - Exemplo de aneurisma na aorta abdominal -	
http://www.hospiten.es/hospiten/HOSPITEN/published/DEFAULT/CMI/I	ЭΤ
E/aaa/aneurisma0007.jpg	40
Figura 2.7 - Espessura da parede arterial após a formação do aneurism	ıa -
John A. Elefteriades (2006)	41
Figura 2.8 – Variação da espessura da parede arterial no local de ruptu	ra
do aneurisma - Madhavan L. Raghavan e outros (2006)	42
Figura 2.9 - Representação da aorta e dos principais órgãos do corpo	
humano - http://manualmerck.net/images/thumbnail/p_140.gif	42
Figura 2.10 - Representação da aorta segmentada -	
http://manualmerck.net/images/thumbnail/p_141.gif	43
Figura 2.11 - Camadas constituintes da aorta – Gerhard A. Holzapfel	
(2000)	44
Figura 2.12 - Exemplo de próteses usadas na reparação de aneurismas	3 -
http://manualmerck.net/images/thumbnail/p_142-1.gif	46
Figura 2.13 – Imagem gerada por angiorressonância -	
http://www.cetac.com.br/ex3.htm	50

Figura 2.14 – Gráfico de energia da camada luminal	55
Figura 2.15 - Microscopia realizada no tecido arterial – D. P. Sokolis	
(2006)	59
Figura 3.1 - Variação da espessura da parede arterial proposta por D. F	∍.
Sokolis (2007)	60
Figura 3.2 - Variação do diâmetro interno e externo da parede arterial	
proposta por D. P. Sokolis (2007)	60
Figura 3.3 - Equipamentos utilizados na análise experimental	61
Figura 3.4 - Corpos de prova para determinação da concentração de	
catalisador	63
Figura 3.5 – Processo para retirada de bolhas da mistura	64
Figura 3.6 - Detalhes do molde de gesso utilizado na confecção do tube	D
de silicone	65
Figura 3.7 - Detalhe da garra utilizada no ensaio de tração do corpo de	
prova	66
Figura 3.8 - Detalhe do ensaio de tração	67
Figura 3.9 - Representação dos corpos de prova e da artéria	68
Figura 3.10 – Seqüência de fotos ao longo do ensaio (pressões em	
mmHg)	71
Figura 3.11 – Gráfico de caracterização do ensaio 1	72
Figura 3.12 – Variação da pressão do ensaio 1	72
Figura 3.13 – Variação do volume do ensaio 1	73
Figura 3.14 – Gráfico de caracterização do ensaio 2	74
Figura 3.15 – Variação da pressão do ensaio 2	74
Figura 3.16 – Variação do volume do ensaio 2	75
Figura 3.17 – Seqüência de fotos ao longo do ensaio (pressões em	
mmHg)	77
Figura 3.18 – Gráfico de caracterização do ensaio 3	77
Figura 3.19 – Variação da pressão do ensaio 3	77
Figura 3.20 – Variação do volume do ensaio 3	78
Figura 3.21 – Gráfico de caracterização do ensaio 4	79
Figura 3.22 – Variação da pressão do ensaio 4	79
Figura 3.23 – Variação do volume do ensaio 4	80

Figura 3.24 – Seqüência de fotos ao longo do ensaio (pressões em mmHg) 81 Figura 3.25 – Gráfico de caracterização do ensaio 5 82 Figura 3.26 – Variação da pressão do ensaio 5 82 Figura 3.27 – Variação do volume do ensaio 5 83 Figura 3.28 – Gráfico de caracterização do ensaio 6 84 Figura 3.29 – Variação da pressão do ensaio 6 84 Figura 3.30 - Variação do volume do ensaio 6 85 Figura 3.31 – Análise da variação da pressão 86 Figura 3.32 – Análise da variação do volume 87 Figura 3.33 – Gráfico de caracterização do ensaio 7 88 89 Figura 3.34 – Imperfeições Figura 4.1 – Caracterização numérica do material estudado 93 Figura 4.2 – Aproximação dos funcionais de energia 94 Figura 4.3 – Aproximação dos funcionais de energia estáveis 95 Figura 4.4 – Representação esquemática da variação da espessura ao 97 longo do comprimento para o elemento de casca Figura 4.5 – Representação esquemática da variação da espessura ao 98 longo do comprimento para o elemento sólido Figura 4.6 – Gráfico demonstrativo da análise de convergência do 99 elemento de casca para o funcional Ogden 1 Figura 4.7 – Malhas testadas para o elemento de casca 100 Figura 4.8 – Gráfico demonstrativo da análise de convergência do elemento de casca para o funcional Neo Hooke 100 Figura 4.9 – Gráfico demonstrativo da análise de convergência dos 101 elementos sólidos para o funcional Ogden 1 Figura 4.10 – Malhas testadas para o elemento sólido 102 Figura 4.11 – Gráfico demonstrativo da análise de convergência dos elementos sólidos para o funcional Neo Hooke 102 103 Figura 4.12 – Malha adotada para a análise com elementos sólidos Figura 4.13 – Configuração indeformada e deformada para o tubo de silicone sem alongamento 104

Figura 4.14 – Configuração indeformação e deformada para o tubo de	
silicone com alongamento de 10%	105
Figura 4.15 – Configuração indeformação e deformada para o tubo de	
silicone com alongamento de 20%	106
Figura 4.16 – Variação da pressão em função do alongamento (% do	
comprimento inicial)	106
Figura 4.17 – Variação da tensão máxima trativa principal para o elem	ento
de casca	107
Figura 4.18 – Configuração indeformada e deformada para o tubo de	
silicone sem alongamento	108
Figura 4.19 – Configuração indeformada e deformada para o tubo de	
silicone com alongamento de 10%	108
Figura 4.20 – Configuração indeformada e deformada para o tubo de	
silicone com alongamento de 20%	109
Figura 4.21 – Variação da pressão em função do alongamento (% do	
comprimento inicial)	110
Figura 4.22 – Variação da tensão máxima trativa principal para o elem	ento
de casca	110
Figura 4.23 – Configuração indeformada e deformada para o tubo de	
silicone sem alongamento	111
Figura 4.24 – Configuração indeformada e deformada para o tubo de	
silicone com alongamento de 10%	112
Figura 4.25 – Configuração indeformada e deformada para o tubo de	
silicone com alongamento de 20%	113
Figura 4.26 – Variação da pressão em função do alongamento (% do	
comprimento inicial)	113
Figura 4.27 – Variação da tensão máxima trativa principal para o elem	ento
sólido	114
Figura 4.28 – Configuração indeformada e deformada para o tubo de	
silicone sem alongamento	115
Figura 4.29 – Configuração indeformada e deformada para o tubo de	
silicone com alongamento de 10%	115
Figura 4.30 – Configuração indeformada e deformada para o tubo de	

silicone com alongamento de 20%	116
Figura 4.31 – Variação da pressão em função do alongamento (% do	
comprimento inicial)	117
Figura 4.32 – Variação da tensão máxima trativa principal para o elem	ento
sólido	117
Figura 4.33 – Comparação da variação da pressão em função do	
alongamento (% do comprimento inicial) para elementos de casca	118
Figura 4.34 – Comparação da variação da pressão em função do	
alongamento (% do comprimento inicial) para elementos sólidos	119
Figura 4.35 – Comparação da variação da tensão máxima trativa princ	ipal
em função do alongamento (% do comprimento inicial) para os elemen	itos
de casca	119
Figura 4.36 – Comparação da variação da tensão máxima trativa princ	ipal
em função do alongamento (% do comprimento inicial) para os elemen	itos
sólidos	120
Figura 4.37 – Esquema da imperfeição em formato de anel	121
Figura 4.38 - (a), (b) e (c) Esquema da imperfeição em formato de ser	ni-
anel e (d) formato da área da seção transversal no corte AA	121
Figura 4.39 – Seção transversal da casca com círculos não concêntric	os e
excentricidade e	122
Figura 4.40 – Pressão crítica em função da diminuição da espessura d	a
região anelar inferior e valor da pressão crítica no modelo perfeito	124
Figura 4.41 – (a) posição da imperfeição e (b), (c), (d), (e) e (f)	
configurações deformadas para 3,5 mm (modelo perfeito), 3,0 mm, 2,5	j
mm, 2,0 mm e 1,5 mm	124
Figura 4.42 - Variação da tensão máxima trativa principal em função da	а
diminuição da espessura da região anelar e valor da tensão máxima	
trativa principal no modelo perfeito	125
Figura 4.43 – Pressão crítica em função da diminuição da espessura d	a
região anelar superior e valor da pressão crítica no modelo perfeito	127
Figura $4.44 - (a)$ posição da imperfeição e (b), (c), (d), (e), (f), (g) e (h)	
configurações deformadas para 4,3 mm (modelo perfeito), 4,0 mm, 3,5	;
mm, 3,0 mm, 2,5 mm, 2,0 mm e 1,5 mm	128

Figura 4.45 – Variação da tensão máxima trativa principal em função da diminuição da espessura da região anelar e valor da tensão máxima 129 trativa principal no modelo perfeito Figura 4.46 – Posição do primeiro caso das imperfeições localizadas 131 Figura 4.47 – Configuração indeformada e deformada sem imperfeição 131 Figura 4.48 – Configurações deformadas para imperfeição de 3,0 mm 132 Figura 4.49 – Configurações deformadas para imperfeição de 2,5 mm 133 Figura 4.50 – Configurações deformadas para imperfeição de 2,0 mm 133 Figura 4.51 – Configurações deformadas para imperfeição de 1,5 mm 134 Figura 4.52 – Configurações deformadas para imperfeição de 1.0 mm 135 Figura 4.53 – Configurações deformadas para imperfeição de 3,5 mm, 3,0 mm, 2,5 mm, 2,0 mm, 1,5 mm e 1,0 mm para o caso 1 de imperfeições locais 136 Figura 4.54 – Variação da pressão crítica para o caso 1 e valor da pressão crítica no modelo perfeito 137 Figura 4.55 – Variação da tensão máxima trativa principal para o caso 1 e valor da tensão máxima trativa principal no modelo perfeito 138 Figura 4.56 – Posição do segundo caso das imperfeições localizadas 139 Figura 4.57 – Configurações deformadas para imperfeição de 3,0 mm 139 Figura 4.58 – Configurações deformadas para imperfeição de 2,5 mm 140 Figura 4.59 – Configurações deformadas para imperfeição de 2,0 mm 141 Figura 4.60 – Configurações deformadas para imperfeição de 1,5 mm 142 Figura 4.61 – Configurações deformadas para imperfeição de 1,0 mm 142 Figura 4.62 – Configurações deformadas para imperfeição de 3,0 mm, 2,5 mm, 2.0 mm, 1.5 mm e 1.0 mm para o caso 2 de imperfeições locais 143 Figura 4.63 – Variação da pressão crítica para o caso 2 e valor da 144 pressão crítica no modelo perfeito Figura 4.64 – Variação da tensão máxima trativa principal para o caso 2 e valor da tensão máxima trativa principal no modelo perfeito 145 Figura 4.65 – Posição do segundo caso das imperfeições localizadas 146 Figura 4.66 – Configurações deformadas para imperfeição de 3,0 mm 146 Figura 4.67 – Configurações deformadas para imperfeição de 2,5 mm 147 Figura 4.68 – Configurações deformadas para imperfeição de 2,0 mm 148 Figura 4.69 – Configurações deformadas para imperfeição de 1,5 mm 148 Figura 4.70 – Configurações deformadas para imperfeição de 1,0 mm 149 Figura 4.71 – Configurações deformadas para imperfeição de 3,0 mm, 2,5 mm, 2,0 mm, 1,5 mm e 1,0 mm para o caso 3 de imperfeições locais 150 Figura 4.72 – Variação da pressão crítica para o caso 3 e valor da 151 pressão crítica no modelo perfeito Figura 4.73 – Variação da tensão máxima trativa principal para o caso 3 e valor da tensão máxima trativa principal no modelo perfeito 152 Figura 4.74 – Posição do segundo caso das imperfeições localizadas 153 Figura 4.75 – Configurações deformadas para imperfeição de 3.0 mm 153 Figura 4.76 – Configurações deformadas para imperfeição de 2,5 mm 154 Figura 4.77 – Configurações deformadas para imperfeição de 2,0 mm 155 Figura 4.78 – Configurações deformadas para imperfeição de 1,5 mm 155 Figura 4.79 – Configurações deformadas para imperfeição de 1,0 mm 156 Figura 4.80 – Configurações deformadas para imperfeição de 3,0 mm, 2,5 mm, 2,0 mm, 1,5 mm e 1,0 mm para o caso 4 de imperfeições locais 157 Figura 4.81 – Variação da pressão crítica para o caso 4 e valor da 158 pressão crítica no modelo perfeito Figura 4.82 – Variação da tensão máxima trativa principal para o 159 caso 4 Figura 4.83 – Posição das imperfeições para os casos estudados (a) caso 1, (b) caso 2, (c) caso 3, (d) caso 4; figuras fora de escala 160 Figura 4.84 – Variação da pressão crítica em função de imperfeições locais 160 Figura 4.85 – Configuração indeformada e deformada para Ogden – Sem alongamento – excentricidade de 0,5 162 Figura 4.86 – Configuração indeformada e deformada para Ogden – Alongamento de 10% – excentricidade de 0,5 162 Figura 4.87 - Configuração indeformada e deformada para Ogden -Alongamento de 20% – excentricidade de 0,5 163 Figura 4.88 – Configurações deformadas com excentricidade de 0,5 mm para Ogden com 0 %, 10 % e 20 % de alongamento 164 Figura 4.89 - Variação da pressão crítica - Excentricidade de 0,5mm -

Ogden	164
Figura 4.90 - Variação da tensão máxima trativa principal em função d	0
alongamento aplicado, para excentricidade de 0,5 mm e funcional de	
energia Ogden 1	165
Figura 4.91 – Configuração indeformada e deformada para Neo Hooke) —
Sem alongamento – excentricidade de 0,5	166
Figura 4.92 – Configuração indeformada e deformada para Neo Hooke) —
Alongamento de 10% - excentricidade de 0.5	166
Figura 4.93 – Configuração indeformada e deformada para Neo Hooke) —
Alongamento de 20% – excentricidade de 0,5	167
Figura 4.94 – Configurações deformadas com excentricidade de 0,5 m	m
para Neo Hooke com 0 %, 10 % e 20 % de alongamento	168
Figura 4.95 - Variação da pressão crítica - Excentricidade de 0,5mm -	-
Neo Hooke	168
Figura 4.96 – Variação da tensão máxima trativa principal em função d	0
alongamento aplicado, para excentricidade de 0,5 mm e funcional de	
energia Neo Hooke	169
Figura 4.97 – Configuração indeformada e deformada para Neo Hooke) —
Sem alongamento – excentricidade de 1,0	170
Figura 4.98 – Configuração indeformada e deformada para Neo Hooke) —
Alongamento de 10% - excentricidade de 1,0	170
Figura 4.99 – Configuração indeformada e deformada para Neo Hooke) —
Alongamento de 20% – excentricidade de 1,0	171
Figura 4.100 - Configurações deformadas com excentricidade de 1,0 r	nm
para Ogden com 0 %, 10 % e 20 % de alongamento	172
Figura 4.101 – Variação da pressão crítica – Excentricidade de 1,0mm	-
Ogden	172
Figura 4.102 – Variação da tensão máxima trativa principal em função	do
alongamento aplicado, para excentricidade de 1,0 mm e funcional de	
energia Ogden 1	173
Figura 4.103 – Configuração indeformada e deformada para Neo Hook	.е –
Sem alongamento – excentricidade de 1,0	174
Figura 4.104 – Configuração indeformada e deformada para Neo Hook	се —

Alongamento de 10% – excentricidade de 1,0	175
Figura 4.105 – Configuração indeformada e deformada para Neo Hoo	ke –
Alongamento de 20% – excentricidade de 1,0	175
Figura 4.106 – Configurações deformadas com excentricidade de 1,0	mm
para Neo Hooke com 0 %, 10 % e 20 % de alongamento	176
Figura 4.107 – Variação da pressão crítica – Excentricidade de 1,0mm	n —
Neo Hooke	176
Figura 4.108 – Variação da tensão máxima trativa principal em função	o do
alongamento aplicado, para excentricidade de 1,0 mm e funcional de	
energia Neo Hooke	176
Figura 4.109 – Configuração indeformada e deformada para Neo Hoo	ke –
Sem alongamento – excentricidade de 1,5	178
Figura 4.110 – Configuração indeformada e deformada para Neo Hoo	ke –
Alongamento de 10% - excentricidade de 1,5	179
Figura 4.111 – Configuração indeformada e deformada para Neo Hoo	ke –
Alongamento de 20% – excentricidade de 1,5	179
Figura 4.112 – Configurações deformadas com excentricidade de 1,5	mm
para Ogden com 0 %, 10 % e 20 % de alongamento	180
Figura 4.113 – Variação da pressão crítica – Excentricidade de 1,5mm	n -
Ogden	180
Figura 4.114 – Variação da tensão máxima trativa principal em função	o do
alongamento aplicado, para excentricidade de 1,5 mm e funcional de	
energia Ogden 1	181
Figura 4.115 – Configuração indeformada e deformada para Neo Hoo	ke –
Sem alongamento – excentricidade de 1,5	182
Figura 4.116 – Configuração indeformada e deformada para Neo Hoo	ke –
Alongamento de 10% - excentricidade de 1,5	183
Figura 4.117 – Configuração indeformada e deformada para Neo Hoo	ke –
Alongamento de 20% – excentricidade de 1,5	183
Figura 4.118 – Configurações deformadas com excentricidade de 1,5	mm
para Neo Hooke com 0 %, 10 % e 20 % de alongamento	184
Figura 4.119 – Variação da pressão crítica – Excentricidade de 1,5mm	n —
Neo Hooke	184

Figura 4.120 – Variação da tensão máxima trativa principal em função do alongamento aplicado, para excentricidade de 1,5 mm e funcional de energia Neo Hooke 185 Figura 4.121 – Configuração indeformada e deformada para Ogden – Sem alongamento – excentricidade de 2,0 186 Figura 4.122 – Configuração indeformada e deformada para Ogden – Alongamento de 10% – excentricidade de 2,0 187 Figura 4.123 – Configuração indeformada e deformada para Ogden – Alongamento de 20% – excentricidade de 2,0 187 Figura 4.124 – Configurações deformadas com excentricidade de 2,0 mm para Ogden com 0 %, 10 % e 20 % de alongamento 188 Figura 4.125 – Variação da pressão crítica – Excentricidade de 2,0mm -Ogden 188 Figura 4.126 – Variação da tensão máxima trativa principal em função do alongamento aplicado, para excentricidade de 2,0 mm e funcional de energia Ogden 1 189 Figura 4.127 – Configuração indeformada e deformada para Neo Hooke – Sem alongamento – excentricidade de 2,0 190 Figura 4.128 – Configuração indeformada e deformada para Neo Hooke – Alongamento de 10% – excentricidade de 2,0 191 Figura 4.129 – Configuração indeformada e deformada para Neo Hooke – Alongamento de 20% – excentricidade de 2,0 191 Figura 4.130 – Configurações deformadas com excentricidade de 2,0 mm para Neo Hooke com 0 %, 10 % e 20 % de alongamento 191 Figura 4.131 – Variação da pressão crítica – Excentricidade de 2,0mm – Neo Hooke 191 Figura 4.132 – Variação da tensão máxima trativa principal em função do alongamento aplicado, para excentricidade de 2,0 mm e funcional de 193 energia Ogden 1 Figura 4.133 – Variação da pressão crítica em função da excentricidade e 194 do alongamento para Ogden 1 Figura 4.134 – Variação da pressão crítica em função da excentricidade e do alongamento para Neo Hooke 196

Figura 4.135 – Variação da tensão máxima trativa principal em função da excentricidade e do alongamento para Ogden 1 196 Figura 4.136 – Variação da tensão máxima trativa principal em função da excentricidade e do alongamento para Neo Hooke 196 Figura 4.137 – Configuração indeformada e deformada para Neo Hooke – Alongamento de 10% – excentricidade de $0.5 - C_{10} = 50$ KPa 198 Figura 4.138 – Configuração indeformada e deformada para Neo Hooke – Alongamento de 10% – excentricidade de 0,5 – C_{10} = 40 KPa 198 Figura 4.139 – Configuração indeformada e deformada para Neo Hooke – Alongamento de 10% – excentricidade de 0,5 – C_{10} = 30 KPa 199 Figura 4.140 – Configuração indeformada e deformada para Neo Hooke – Alongamento de 10% – excentricidade de 0,5 – C_{10} = 20 KPa 200 Figura 4.141 – Configuração indeformada e deformada para Neo Hooke – Alongamento de 10% – excentricidade de 0,5 – C_{10} = 10 KPa 200 Figura 4.142 - Variação da pressão crítica - Excentricidade de 0,5mm -Neo Hooke 201 Figura 4.143 – Variação da tensão máxima trativa principal em função da diminuição da constante elástica do funcional de energia Neo Hooke para excentricidade de 0,5 mm 202 Figura 4.144 – Configuração indeformada e deformada para Neo Hooke – Alongamento de 10% – excentricidade de 1,0 – C_{10} = 50 KPa 203 Figura 4.145 – Configuração indeformada e deformada para Neo Hooke – Alongamento de 10% – excentricidade de 1,0 – C_{10} = 40 KPa 203 Figura 4.146 – Configuração indeformada e deformada para Neo Hooke – Alongamento de 10% – excentricidade de 1,0 – C_{10} = 30 KPa 204 Figura 4.147 – Configuração indeformada e deformada para Neo Hooke – Alongamento de 10% – excentricidade de 1.0 – C_{10} = 20 KPa 205 Figura 4.148 – Configuração indeformada e deformada para Neo Hooke – Alongamento de 10% – excentricidade de 1.0 – C_{10} = 10 KPa 205 Figura 4.149 - Variação da pressão crítica - Excentricidade de 1,0mm -Neo Hooke 206 Figura 4.150 – Variação da tensão máxima trativa principal em função da diminuição da constante elástica do funcional de energia Neo Hooke para excentricidade de 1,0 mm 207 Figura 4.151 – Configuração indeformada e deformada para Neo Hooke – Alongamento de 10% – excentricidade de 1,5 – C_{10} = 50 KPa 208 Figura 4.152 – Configuração indeformada e deformada para Neo Hooke – Alongamento de 10% – excentricidade de 1,5 – C_{10} = 40 KPa 208 Figura 4.153 – Configuração indeformada e deformada para Neo Hooke – Alongamento de 10% – excentricidade de 1,5 – C_{10} = 30 KPa 209 Figura 4.154 – Configuração indeformada e deformada para Neo Hooke – Alongamento de 10% – excentricidade de 1,5 – C_{10} = 20 KPa 210 Figura 4.155 – Configuração indeformada e deformada para Neo Hooke – Alongamento de 10% – excentricidade de 1,5 – C_{10} = 10 KPa 210 Figura 4.156- Variação da pressão crítica - Excentricidade de 1,5mm -Neo Hooke 211 Figura 4.157 – Variação da tensão máxima trativa principal em função da diminuição da constante elástica do funcional de energia Neo Hooke para excentricidade de 1,5 mm 212 Figura 4.158 – Configuração indeformada e deformada para Neo Hooke – Alongamento de 10% – excentricidade de 2,0 – C_{10} = 50 KPa 213 Figura 4,159 – Configuração indeformada e deformada para Neo Hooke – Alongamento de 10% – excentricidade de 2,0 – C_{10} = 40 KPa 213 Figura 4.160 – Configuração indeformada e deformada para Neo Hooke – Alongamento de 10% – excentricidade de 2,0 – C_{10} = 30 KPa 214 Figura 4.161 – Configuração indeformada e deformada para Neo Hooke – Alongamento de 10% – excentricidade de 2,0 – C_{10} = 20 KPa 215 Figura 4.162 – Configuração indeformada e deformada para Neo Hooke – Alongamento de 10% – excentricidade de 2,0 – C_{10} = 10 KPa 215 Figura 4.163 – Variação da pressão crítica – Excentricidade de 2,0mm – Neo Hooke 216 Figura 4.164 – Variação da tensão máxima trativa principal em função da

diminuição da constante elástica do funcional de energia Neo Hooke pa	ara
excentricidade de 2,0 mm	217
Figura 4.165 - Variação da pressão crítica em função da excentricidad	e e
da diminuição da constante elástica	218
Figura 4.166 – Variação da tensão máxima trativa principal em função	da
excentricidade e da diminuição da constante elástica	219

Figura 5.1 – Gráfico tensão deformação apresentado por Sacks para o tecido arterial 220 Figura 5.2 – Aproximação dos funcionais de energia estáveis 222 Figura 5.3 – Gráfico demonstrativo de análise de convergência do 224 elemento de casca para o funcional de energia Ogden 1 Figura 5.4 – Configuração indeformada e deformada para o elemento representativo da aorta sem alongamento 225 Figura 5.5 – Configuração indeformada e deformada para o elemento representativo da aorta com alongamento de 10% 226 Figura 5.6 – Configuração indeformada e deformada para o elemento 227 representativo da aorta com alongamento de 20% Figura 5.7 – Variação da pressão em função do alongamento (% do 227 comprimento inicial) Figura 5.8 – Configuração indeformada e deformada para o elemento representativo da aorta sem alongamento 228 Figura 5.9 – Configuração indeformada e deformada para o elemento representativo da aorta com alongamento de 10% 229 Figura 5.10 – Configuração indeformada e deformada para o elemento representativo da aorta com alongamento de 20% 230 Figura 5.11 – Variação da pressão em função do alongamento (% do comprimento inicial) 230 Figura 5.12 – Configuração indeformada e deformada para o funcional de energia de Delfino com geometria sem imperfeição 232 Figura 5.13 – Configuração indeformada e deformada para o funcional de energia de Delfino com geometria com imperfeição inicial 232 Figura 5.14 – Configuração indeformada e deformada para o funcional de

energia de Sacks com geometria sem imperfeição	233	
Figura 5.15 – Configuração indeformada e deformada para o funcional	de	
energia de Sacks com espessura apenas da camada media	234	
Figura 5.16 – Configuração indeformada e deformada para o funcional	de	
energia de Sacks com espessura apenas da camada media e geometr	ria	
de D. P. Sokolis (2007)	235	
Figura 5.17 – Configuração indeformada e deformada proposta por A.		
Dorfmann (2010) para os aneurismas	236	
Figura 5.18 – Posição da imperfeição local	238	
Figura 5.19 - Variação da pressão crítica em função da diminuição da		
constante elástica no local da imperfeição	239	
Figura 5.20 - Variação da tensão máxima trativa principal em função d	а	
diminuição da constante elástica no local da imperfeição	239	
Figura 5.21 - Configurações deformadas de cada uma dos casos		
estudados para a variação da constante elástica (KPa)	240	
Figura 5.22 - Variação da pressão crítica em função da diminuição da		
constante elástica no local da imperfeição	242	
Figura 5.23 - Variação da tensão máxima trativa principal em função d	а	
diminuição da constante elástica no local da imperfeição	242	
Figura 5.24 - Configurações deformadas de cada uma dos casos		
estudados para a variação da constante elástica (KPa)	243	
Figura 6.1 – Gráfico comparativo da pressão crítica numérica e		
experimental	246	
Figura 6.2 – Gráfico comparativo da tensão máxima com a pressão		
crítica	247	
Figura 6.3 – Posição da imperfeição anelar inferior (a) e superior (b)	248	
Figura 6.4 – Variação da pressão crítica (mmHg) em função da diminu	ição	
da espessura na região anelar inferior	250	
Figura 6.5 – Variação da pressão crítica (mmHg) em função da diminuição		
da espessura na região anelar superior	251	
Figura 6.6 – Posição das imperfeições para os casos estudados (a) ca	ISO	
1, (b) caso 2, (c) caso 3, (d) caso 4; figuras fora de escala	252	

Figura 6.7 – Variação da pressão crítica em função de imperfeições	
locais	252
Figura 6.8 – Variação da pressão crítica em função da excentricidade p	bara
Ogden1	253
Figura 6.9 – Variação da pressão crítica em função da excentricidade p	bara
Neo Hooke	254
Figura 6.10 – Variação da pressão crítica em função da redução da	
constante elástica	255
Figura 6.11 – Configurações deformadas (a) sem imperfeição (b)	
experimental, (c), (d), (e) e (f) com excentricidades de 0,5 mm, 1,0 mm	,
1,5 mm e 2,0 mm respectivamente, sem alongamento	257
Figura 6.12 – Configurações deformadas (a) sem imperfeição (b)	
experimental, (c), (d), (e) e (f) com excentricidades de 0,5 mm, 1,0 mm	,
1,5 mm e 2,0 mm respectivamente, com alongamento de 10%	258
Figura 6.13 – Configurações deformadas (a) sem imperfeição (b)	
experimental, (c), (d), (e) e (f) com excentricidades de 0,5 mm, 1,0 mm	,
1,5 mm e 2,0 mm respectivamente, com alongamento de 20%	259
Figura 6.14 – Variação da pressão crítica através dos dados propostos	
por Sacks	260
Figura 6.15 – Configuração indeformada e deformada proposta por A.	
Dorfmann para os aneurismas	261
Figura 6.16 – Par de parâmetros a e b da Equação de Delfino para	
diversas pressões internas	263

Lista de tabelas

Tabela 2.1 – Propriedades mecânicas da artéria	51
Tabela 3.1 – Pressões críticas do ensaio 1	70
Tabela 3.2 – Pressões críticas do ensaio 2	73
Tabela 3.3 – Pressões críticas do ensaio 3	75
Tabela 3.4 – Pressões críticas do ensaio 4	78
Tabela 3.5 – Pressões críticas do ensaio 5	80
Tabela 3.6 – Pressões críticas do ensaio 6	83
Tabela 3.7 – Pressões de referências	85
Tabela 3.8 – Volumes de referência	86
Tabela 4.1 – Valores da constante elástica de Ogden 1	95
Tabela 4.2 – Valores da constante elástica de Neo Hooke	95
Tabela 4.3 – Valores da constante elástica de Arruda-Boyce	96
Tabela 4.4 - Pressão crítica em função da diminuição da espessura o	Ja
região anelar inferior	123
Tabela 4.5 – Variação da tensão máxima trativa principal em função d	da
diminuição da espessura da região anelar	125
Tabela 4.6 – Pressão crítica em função da diminuição da espessura da	
região anelar superior	126
Tabela 4.7 – Variação da tensão máxima trativa principal em função d	da
diminuição da espessura da região anelar	129
Tabela 4.8-Variação da tensão máxima trativa principal para o caso	1 137
Tabela 4.9-Variação da tensão máxima trativa principal para o caso a	2 144
Tabela 4.10-Variação da tensão máxima trativa principal para o caso	3151
Tabela 4.11-Variação da tensão máxima trativa principal para o caso	4158
Tabela 4.12-Variação da tensão máxima trativa principal em função o	do
alongamento aplicado, para excentricidade de 0,5 mm e funcional de	
energia Ogden 1	165
Tabela 4.13 – Variação da tensão máxima trativa principal em função	do

alongamento aplicado, para excentricidade de 0,5 mm e funcional de energia Neo Hooke 169 Tabela 4.14 – Variação da tensão máxima trativa principal em função do alongamento aplicado, para excentricidade de 1,0 mm e funcional de energia Ogden 1 173 Tabela 4.15 – Variação da tensão máxima trativa principal em função do alongamento aplicado, para excentricidade de 1,0 mm e funcional de 177 energia Neo Hooke Tabela 4.16 – Variação da tensão máxima trativa principal em função do alongamento aplicado, para excentricidade de 1,5 mm e funcional de 181 energia Ogden 1 Tabela 4.17 – Variação da tensão máxima trativa principal em função do alongamento aplicado, para excentricidade de 1,5 mm e funcional de energia Neo Hooke 185 Tabela 4.18 – Variação da tensão máxima trativa principal em função do alongamento aplicado, para excentricidade de 2,0 mm e funcional de energia Ogden 1 189 Tabela 4.19 – Variação da tensão máxima trativa principal em função do alongamento aplicado, para excentricidade de 2,0 mm e funcional de 193 energia Neo Hooke Tabela 4.20 – Variação da pressão crítica em função da excentricidade e 194 do alongamento Tabela 4.21 – Variação da tensão máxima trativa principal em função da excentricidade e do alongamento 195 Tabela 4.22 – Variação da tensão máxima trativa principal em função da diminuição da constante elástica do funcional de energia Neo Hooke para excentricidade de 0,5 mm 201 Tabela 4.23 – Variação da tensão máxima trativa principal em função da diminuição da constante elástica do funcional de energia Neo Hooke para excentricidade de 1,0 mm 206 Tabela 4.24 – Variação da tensão máxima trativa principal em função da diminuição da constante elástica do funcional de energia Neo Hooke para 211 excentricidade de 1,5 mm

Tabela 4.25 – Variação da tensão máxima trativa principal em função	da
diminuição da constante elástica do funcional de energia Neo Hooke p	ara
excentricidade de 2,0 mm	216
Tabela 4.26 - Variação da pressão crítica em função da excentricidade	e e
da diminuição da constante elástica	217
Tabela 4.27 – Variação da tensão máxima trativa principal em função	da
excentricidade e da diminuição da constante elástica	218
Tabela 5.1 – Valores da constante elástica de Ogden 1	223
Tabela 5.2 – Valores da constante elástica de Yelow	223
Tabela 5.3 - Variação da pressão crítica e da tensão máxima trativa	
principal em função da diminuição da constante elástica no local da	
imperfeição	238
Tabela 5.4 - Variação da pressão crítica e da tensão máxima trativa	
principal em função da diminuição da constante elástica e da espessu	ra
no local da imperfeição	241
Tabela 6.1 – Comparação da pressão crítica (mmHg) numérica e	
experimental	246
Tabela 6.2 – Diferença percentual dos ensaios numéricos e	
experimentais	247
Tabela 6.3 – Comparação das tensões principais máximas (KPa) que	
ocorrem no instante da pressão crítica	248