
2
Continuous Time Finance

This Chapter will cover the basics of Probability Theory used in Finance

and then the use of it in Finance. We deal, in particular, with the topics

concerning Continuous Time Finance.

The work here is done with discrete time models but as the continuous

case account for the discrete case also as its particular case we will do all

discussion in continuous time for mental exercising and generality.

Most of what is here was made initially as beamer slides presented to my

co-advisor as a weekly seminar based from the Elliot and Kopp book (21) but

I also did a mixing of contents from other books such as the Lecture Notes of

Evans version 1.2 (26), Billingsley (4), Oksendal (38), Shreve (41) and Bingham

and Kiesel (5). We refer to these for some proofs and additional details.

2.1
Initial Definitions

This subsection deals with continuous time stochastic processes, so we

are going to consider that t lies in T , where T is one of the following sets:

[0, T ], [0,∞) or [0,∞]. And we will be always considering a probability space

(Ω,F ,P).

Definition 1 (Filtration) F = {Ft}t∈T is called a filtration if it is a increasing

family of sub-σ-algebras, i.e., if it is a family of σ-algebras such that for s ≤ t:

Ft ⊂ F , Fs ⊂ Ft

We also suppose that the filtration is complete and is right continuous in

the folowing sense: (Information now comes continuously.)

Ft =
⋂

s>t

Fs, t ∈ T

Definition 2 (Stochastic Processes) A continuous-time stochastic process X

taking values in a measurable space (E, E) is a family of r.v’s {Xt} defined in

(Ω,F ,P), indexed by t taking values in (E, E). Notice that:
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Risk Neutral Option Pricing under some special GARCH models 13

• Xt(·) is a random variable.

• X·(ω) is a path of the process X.

2.2
Equivalences among Processes and other Definitions

We are going to define different ways of comparing stochastic processes as

well as clarify the differences among those concepts. Besides that, we are going

to give some common definitions concerning the measurability of stochastic

processes.

Definition 3 (Equivalent Processes) Let

φX
t1,t2,...,tn(A) = P({ω ∈ Ω : (Xt1(ω), Xt2(ω), ..., Xtn(ω)) ∈ A})

be a measure in Rn. X and Y are equivalent if their families of finite

distributions coincides and we denote by X ∼ Y .

Definition 4 (Modification of a process) Suppose (Xt)t≥0 and (Y )t≥0 two

processes defined on the same probability space (Ω,F ,P) and taking values

in (E, E). The process {Yt} is said to be a modification of {Xt} if

Xt = Yt a.s. ∀t ∈ T ;

i.e.,

P(Xt = Yt) = 1 ∀t ∈ T .

Remark: Note that for each t, it is possible to have a null set associated to it.

Definition 5 (Indistinguishable) Suppose (Xt)t≥0 and (Y )t≥0 two processes

defined on the same probability space (Ω,F ,P) and taking values in (E, E).

The process {Yt} is said to be indistinguishable from {Xt} if for almost every

ω ∈ Ω,

Xt(ω) = Yt(ω) ∀t ∈ T ;

i.e.,

P({ω ∈ Ω : Xt(ω) = Yt(ω), ∀t ∈ T }) = 1.

Remark: Note that in this case, there is only one null set.

Now we are going to present a concept concerning sets but that is related

to indistinguishability:
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Risk Neutral Option Pricing under some special GARCH models 14

Definition 6 (Evanescent) A ⊂ [0,∞] × Ω is evanescent if

1A(t, ω) =

{
1, if (t, ω) ∈ A

0, if (t, ω) /∈ A
(2-1)

is indistinguishable from the zero process, i.e.,

P({ω ∈ Ω : 1A(t, ω) = 0, ∀t ∈ T }) = 1. (2-2)

what is equivalent to

P({ω ∈ Ω : ∃t ∈ T with (t, ω) ∈ A}) = 0. (2-3)

which means that the probability of having an omega that allows the existence

of a t such that the pair (t, ω) is in A is null.

Definition 7 (Adapted Process) X is said to be adapted to (Ft)t≥0 if Xt is

Ft-measurable ∀t ∈ T .

It means that information comes according to time. No future information is

known. Here we can for each t, check the measurability of X as a function only

of omega.

Definition 8 (Progressively Measurable) The process X defined in ([0, T ]×
Ω,B([0, T ] × F)) to a measurable space (E, E) is said to be “progressively

measurable” (or simply “progressive”) if, for every time t ∈ [0, T ], the map

X : [0, T ] × Ω → E

(t, ω) 7→ Xt(ω)

is B([0, T ]) ⊗Ft-Measurable function. This implies that X is Ft-adapted.

This property asks a jointly measurability condition that concerns not only

the space but also time.

2.3
Martingales

One of the most important concepts in Finance is the process property

of being a martingale. Here we are going to define, give examples and see the

main related results shortly.
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Risk Neutral Option Pricing under some special GARCH models 15

2.3.1
Definition

Definition 9 (Martingale) A real valued adapted process (Mt) is said to be a

martingale with respect to the filtration {Ft}t∈T if E|Mt| <∞ ∀t and ∀s ≤ t:

E[Mt|Fs] = Ms. a.s.

If the equality is replaced by ≤ then (Mt) is said to be a supermartingale.

If the equality is replaced by ≥ then (Mt) is said to be a submartingale.

The martingale condition can be regarded as E[Xt|Fs] being a version of

the process Xt:

∫

A

E[Xt|Fs]dP =

∫

A

XsdP A ∈ Fs (2-4)

but by the definition of conditional expectation we have:

∫

A

E[Xt|Fs]dP =

∫

A

XtdP A ∈ Fs (2-5)

so that for s ≤ t:

∫

A

XsdP =

∫

A

XtdP A ∈ Fs. (2-6)

The martingale can be seen as a model for “fair games” or a “pure random

process” because given the information available about the process until now,

the expected value is the present value.

Remark: A martingale is a process “constant in mean”, in the sense

that

E[Mt] = E[M0] ∀t ≥ 0

Indeed,

E[Mt|Fs] = Ms a.s. s ≤ t

implies

E[E[Mt|Fs]] = E[Ms]

so that by the iterated expectation property:

E[Mt] = E[Ms] ∀s ≤ t.

Theorem 10 (Levy) Let (Bt)t≥0 be a standard Brownian Motion with respect

to the filtration (Ft)t≥0. Then:
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a) (Bt)t≥0 is an Ft-martingale.

b) (B2
t − t)t≥0 is an Ft-martingale.

c) (eσBt−σ2t
2 )t≥0 is an Ft-martingale.

Also, the converse holds true (stated as Characterization of a Brownian

Motion in section 3.6). Besides that, there is a curious property of the

Brownian Motion, viz., its paths although continuous a.s. are non-differentiable

almost everywhere.

For the proof of this curiosity and the Theorem see Evans (26) and Elliot (21)

respectivelly.

2.4
Stochastic Integrals

Here we build the definition of the stochastic integral starting from simple

functions and finishing with a wider range of functions.

Definition 11 (Simple processes)Consider (Wt) a (Ft)-Brownian motion de-

fined on (Ω,F ,P) . A real-valued simple process on [0, T ] is a function H for

which

a) There is a partition 0 = t0 < t1 < ... < tn = T ; and

b) Ht0 = H0(ω) and Ht = Hi(ω) for t ∈ (ti, ti+1], where Hi(·) is Fti-

measurable and square integrable. That is,

Ht = H0(ω) +
n−1∑

i=0

Hi(ω)1(ti,ti+1], t ∈ [0, T ].

Definition 12 (Stochastic Integral of a simple process) If H is a simple

process, the stochastic integral of H with respect to the Brownian Motion (Wt)

is the process defined for t ∈ (tk, tk+1], by

∫ t

0

HsdWs =
k−1∑

i=0

Hi(Wti+1
−Wti) +Hk(Wt −Wtk).

This can be written as a martingale transform:

∫ t

0

HsdWs =
n∑

i=0

Hi(Wti+1∧t −Wti∧t).

Theorem 13 Suppose H is a simple process. Then:
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a)
∫ t

0
HsdWs is a continuous Ft-martingale.

b) E

[
(
∫ t

0
HsdWs)

2
]

= E

[∫ t

0
H2

sds
]

(Itô Isometry).

c) E

[
sup0≤t≤T |

∫ t

0
HsdWs|2

]
≤ 4E

[∫ T

0
H2

sds
]
.

Lemma 14 Let H be the space of processes adapted to (Ft) that satisfy

E[
∫ T

0
H2

sds] < ∞. Suppose Hs ∈ H. Then there is a sequence {Hn
s } of simple

processes such that

lim
n→∞

E

[∫ T

0

|Hs −Hn
s |2ds

]
= 0.

i.e., we can now define the stochastic integral to a broader space taking

this special L2 limit of simple processes. Simple processes are dense in H if we

consider this convergence.

There is a broader class of processes that the integral can be defined keeping

the properties in the Theorem above. Please refer to Elliott (21) for this

generalization.

2.5
Itô Processes, Differentiation Rule and Solution of a SDE

In this section we are going to present the Itô Processes, the so called

Itô Lemma and see through some examples the usual uses of it in solving

Stochastic Differential Equations.

2.5.1
Initial Definitions

Definition 15 (Itô Processes) Suppose (Ω,F ,P) is a probability space with a

filtration (Ft)t≥0 and (Wt) is a standard (Ft)-Brownian Motion. A real valued

Itô process (Xt)t≥0 is a process of the form:

Xt = X0 +

∫ t

0

Ksds+

∫ t

0

HsdWs,

where:

(a) X0 is F0-measurable,

(b) K and H are adapted to Ft

(c)
∫ T

0
|Ks|ds <∞ a.s. and

∫ T

0
|Hs|2ds <∞ a.s.
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Definition 16 (Quadratic Variation) Given a partition 0 = t0 < t1 < ... <

tn = t of the interval [0, t] and writing |π| = maxi(ti+1 − ti), the quadratic

variation of a continuous martingale (Mt)t≥0, denoted by 〈M〉t, is defined by:

〈M〉t = lim
|π|→0

n∑

i=0

(Mti+1
−Mti)

2

For the Brownian Motion, 〈W 〉t = t

2.5.2
Itô Formula and SDEs

Let’s start with the main result in Stochastic Calculus:

Theorem 17 (Itô Formula) Suppose {Xt}t≥0 is an Itô process of the form

Xt = X0 +

∫ t

0

Ksds+

∫ t

0

HsdWs

Suppose f twice differentiable. Then,

f(Xt) = f(X0) +

∫ t

0

f
′
(Xs)dXs +

1

2

∫ t

0

f
′′
(Xs)d〈X〉s

Here, by definition, 〈X〉t =
∫ t

0
H2

sds ; that is the (predictable) quadratic vari-

ation of X is the quadratic variation of the martingale component
∫ t

0
HsdWs

Also, ∫ t

0

f
′
(Xs)dXs =

∫ t

0

f
′
(Xs)Ksds+

∫ t

0

f
′
(Xs)HsdWs

Definition 18 (Solution of a SDE)

A process Xt , 0 ≤ t ≤ T is a solution of the stochastic differential

equation

dXt = f(Xt, t)dt+ σ(Xt, t)dWt

with initial condition X0 = ξ if for all t the integrals

∫ t

0

f(Xs, s)ds and

∫ t

0

σ(Xs, s)dWs

are well defined and

Xt = ξ +

∫ t

0

f(Xs, s)ds+

∫ t

0

σ(Xs, s)dWs a.s.
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Note that the symbols “dt”, “dW” have no meaning alone they just

make sense when they are in a equation. Even then the meaning is that of a

notation for the integral equation of its solution. Now that we have introduced

the differential notation, for pencil and paper compuations, we prefer to write

the result in Itô Lemma as:

df(Xt) = f
′
(Xt)dXt +

1

2
f

′′
(Xt)d〈X〉t,

together with the fact that 〈X〉t =
∫ t

0
H2

sds we have ultimately:

df(Xt) = f
′
(Xt)dXt +

1

2
f

′′
(Xt)H

2
sds (2-7)

= f
′
(Xt)Ktdt+ f

′
(Xt)HtdWt +

1

2
f

′′
(Xt)H

2
t dt (2-8)

=

(
f

′
(Xt)Kt +

1

2
f

′′
(Xt)H

2
t

)
dt+ f

′
(Xt)HtdWt (2-9)

It is worth writing the more general result although later we are going to show

a sufficient general particular case.

Theorem 19 (Multidimensional Itô Lemma)

Suppose Xt = (X1
t , ..., X

N
t ) is a n-dimensional Itô process with

dX i
t = Ki

tdt+
m∑

j=1

H ij
t dW

j
t , (2-10)

and suppose f : [0, T ] × Rn → R is C1,2. Then

df(t,X1
t , ..., X

n
t ) =

∂f

∂t
(t,X1

0 , ..., X
n
0 )dt+

n∑

i=1

∂f

∂xi

(t,X1
0 , ..., X

n
0 )dX i

t

+
1

2

n∑

i,j=1

∂f 2

∂xi∂xj

(t,X1
0 , ..., X

n
0 )

(
m∑

r=1

H i,r
t Hj,r

t

)
dt

Note that if m = 1 we have:

df(t,X1
t , ..., X

n
t ) =

∂f

∂t
(t,X1

0 , ..., X
n
0 )dt+

n∑

i=1

∂f

∂xi

(t,X1
0 , ..., X

n
0 )dX i

t

+
1

2

n∑

i,j

∂f 2

∂xi∂xj

(t,X1
0 , ..., X

n
0 )H i

tH
j
t dt
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2.5.3
Existence and Uniqueness

The result we are going to present assure us about the existence and

uniquiness of a solution in some Stochastic Differential Equations.

Theorem 20 (Existence and Uniqueness of solutions) Suppose the usual as-

sumptions and that ξ,f and σ satisfy:

|f(x, t) − f(x′, t)| + |σ(x, t) − σ(x′, t)| ≤ K|x− x′|, (2-11)

|f(x, t)|2 + |σ(x, t)|2 ≤ K2
0(1 + |x|2), (2-12)

E[|ξ|2] <∞ (2-13)

for all 0 ≤ t ≤ T, x, x̂ ∈ Rn and some constant K. Then there is a unique

solution X (up to indistinguishability) given by

Xt = ξ +

∫ t

0

f(Xs, s)ds+

∫ t

0

σ(Xs, s)dWs a.s.

such that

E

[
sup

0≤t≤T
|Xt|2

]
< C

(
1 + E[|ξ|2]

)
.

Proof :

Please refer to (21) and (26).

2.6
Examples of Itô Formula

Example 21 Lets Calculate the integral of Wt w.r.t. Wt , i.e.,

∫ t

s

WudWu

For that, we consider dXt = dWt so that Ku = 0 and Hu = 1 and the

fuction y = xm.

By the Itô formula,

〈X〉u = 〈W 〉u =
∫ u

0
1dv = u
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and

d(Wm
t ) = mWm−1

u dWu +
1

2
m(m− 1)Wm−2du.

or equivalently

Wm
t −Wm

s = m

∫ t

s

Wm−1
u dWu +

1

2

∫ t

s

m(m− 1)Wm−2du.

Substituting m = 2, we have

W 2
t −W 2

s = 2

∫ t

s

WudWu +
1

2

∫ t

s

2du

so that

W 2
t −W 2

s = 2

∫ t

s

WudWu +

∫ t

s

du

Then
W 2

t −W 2
s

2
− (t− s)

2
=

∫ t

s

WudWu.

instead of the expected

∫ t

s

WudWu =
W 2

t −W 2
s

2

that we used to have in calculus.

Lemma 22 (Two-dimensional formula)

For,

dXs = Kx
s dt+Hx

s dWs

dYs = Ky
s dt+Hy

s dWs

We have

f(t,Xt, Yt) = f(0, X0, Y0) +

∫ t

0

∂f

∂s
(s, x, y)ds+

∫ t

0

∂f

∂x
(s, x, y)dX +

+

∫ t

0

∂f

∂y
(s, x, y)dY +

∫ t

0

∂f 2

∂x∂y
(s, x, y)Hx

sH
y
s ds

+
1

2

∫ t

0

∂f 2

∂x2
(s, x, y)Hx

s
2ds+

1

2

∫ t

0

∂f 2

∂y2
(s, x, y)Hy

s
2ds

Example 23 (Itô Product Rule) Suppose

dXs = Kx
s dt+Hx

s dWs
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dYs = Ky
s dt+Hy

s dWs

The Itô Formula applied to f(x, y) = x.y we have:

f(t,X, Y ) = f(0, X0, Y0) +

∫ t

0

Y dX +

∫ t

0

XdY

+

∫ t

0

1Hx
sH

y
s ds

or

d(Xt.Yt) = YtdXt +XtdYt +Hx
t H

y
t dt

Example 24 (Solution of a Lognormal SDE)

Suppose

dSt

St

= µdt+ σdWt, S0 = X0.

or equivalently

St = X0 +

∫ t

0

Ssµds+

∫ t

0

SsσdWs.

This is a Itô Process if we think Ks = Ssµ and Hs = Ssσ satisfying the

usual conditions.

Then 〈X〉t =
∫ t

0
σ2S2

sds.

If St > 0, by the Itô Formula with f(x) = log(x) we have

logSt = logX0 +

∫ t

0

1

Ss

dSs +
1

2

∫ t

0

− 1

S2
s

σ2S2
sds (2-14)

= logX0 +

∫ t

0

(
µ− σ2

2

)
ds+

∫ t

0

σdWs (2-15)

= logX0 +

(
µ− σ2

2

)
t+ σWt (2-16)

so that

St = X0.e

{(
µ−σ2

2

)
t+σWt

}

.

Example 25 (Testing a Solution of a Lognormal SDE) Consider

F (t, x) = X0e

{(
µ−σ2

2

)
t+σx

}

.

Show that St = F (t,Wt) satisfies the lognormal SDE of the example using Itô

Formula.
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By Itô Formula,

F (t,Wt) = F (0,W0) +

∫ t

0

∂F

∂s
(s,Ws)ds

+

∫ t

0

∂F

∂Ws

(s,Ws)dWs +

∫ t

0

∂2F

∂W 2
s

(s,Ws)d 〈W 〉s

Equivalently

X0e

{(
µ−σ2

2

)
t+σWt

}

= X0 +

∫ t

0

(
µ− σ2

2

)
X0e

{(
µ−σ2

2

)
s+σWs

}

ds

+

∫ t

0

σX0e

{(
µ−σ2

2

)
s+σWs

}

dWs

+
1

2

∫ t

0

σ2e

{(
µ−σ2

2

)
s+σWs

}

X0ds

Then

X0e

{(
µ−σ2

2

)
t+σWt

}

= X0 +

∫ t

0

µX0e

{(
µ−σ2

2

)
s+σWs

}

ds

+

∫ t

0

σX0e

{(
µ−σ2

2

)
s+σWs

}

dWs.

Now, by the definition of St

St = X0 +

∫ t

0

µSsds+

∫ t

0

σSsdWs.

�

Example 26 (Quotient Rule) Suppose B a Brownian Motion and

dXt = Xt(µXdt+ σXdBt)

dYt = Yt(µY dt+ σY dBt)

Define Z by Zt = Yt/Xt. Show that Z is lognormal with dynamics

dZt = Zt(µZdt+ σZdBt)

and determine µZ and σZ in terms of the coefficients of X and Y .
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The Itô Formula applied to f(x, y) = y/x gives us:

d

(
Yt

Xt

)
=

−Yt

X2
t

dXt +
1

Xt

dYt +
1

2

2Yt

X3
t

X2
t σ

2
Xdt−

1

X2
t

XtYtσXσY =

=
−Yt

X2
t

XtµXdt+
−Yt

X2
t

XtσXdBt +
1

Xt

YtµY dt+
1

Xt

YtσY dBt

+
Yt

Xt

σ2
Xdt−

Yt

Xt

σXσY dt

=
Yt

Xt

(µY − µX + σ2
X − σXσY )dt+

Yt

Xt

(σY − σX)dBt

so that

d

(
Yt

Xt

)
=
Yt

Xt

(µY − µX + σ2
X − σXσY )dt+

Yt

Xt

(σY − σX)dBt

means by the definition of Zt that

dZt = Zt(µZdt+ σZdBt)

with

µZ = (µY − µX + σ2
X − σXσY )

σZ = (σY − σX)

�

2.7
Change of Measure

Let Q be a second probability measure on (Ω,F) that is absolutely

continuous with respect to P (Q << P) such that

Mt =
dQ

dP

∣∣∣∣
Ft

, and Q(A) =

∫

A

MtdP, for A ∈ Ft

Lemma : (XtMt) is a martingale under P iff Xt is a martingale under

Q.

Proof : Suppose s ≤ t and A ∈ Fs. Then

∫

A

XtdQ =

∫

A

XtMtdP =

∫

A

XsMsdP =

∫

A

XsdQ.

Theorem 27 (Characterization of a Brownian Motion) Suppose (Wt)t≥0 is

a continuous (scalar) martingale on the filtered space (Ω,F ,P,F), such that

(W 2
t − t)t≥0 is a martingale. Then (Wt) is a Brownian Motion.
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So this Theorem implies that a real process (Bt)t≥0 is a standard Brown-

ian Motion if:

a) t→ Bt(ω) is continuous a.s.,

b) Bt is a martingale

c) B2
t − t is a martingale.

Definition 28 (History of the Brownian Motion Process) Write F0
t = σ(Bs :

s ≤ t) for the σ-algebra on Ω generated by the history of the Brownian Motion

up to time t. Then, (Ft)t≥0 will denote the right-continuous complete filtration

generated by the F0
t .

The idea of the Girsanov’s Theorem is to show how (Bt) behaves under

a change of measure.

Theorem 29 (Girsanov’s Theorem) Suppose (θt)0≤t≤T is an adapted, mea-

surable process such that
∫ T

0
θ2

sds <∞ a.s. and also so that the process

Λt = e{−
∫ t

0 θsdBs− 1
2

∫ t

0 θ2
sds} (2-17)

is an (Ft,P) martingale. Define a new measure Qθ on FT by

dQθ

dP

∣∣∣∣
FT

= ΛT (2-18)

Then the process

Wt = Bt +

∫ t

0

θsds

is a standard Brownian motion on (Ft,Qθ).

Proof : By Itô differentiation rule and by the definition of Λ. For details please

refer to (21).
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