

Maria Stella Nunes de Oliveira

Síntese e Caracterização de Complexos Envolvendo Poliaminas e os Íons Metálicos Zinco (II), Níquel (II) e Paládio (II)

Dissertação de Mestrado

Dissertação apresentada ao Programa de Pós-Graduação em Química da PUC-Rio como requisito parcial para obtenção do título de Mestre em Química.

Orientadora: Prof. Judith Felcman Co-orientadora: Prof. Bárbara Lúcia Almeida

Maria Stella Nunes de Oliveira

Síntese e Caracterização de Complexos Envolvendo Poliaminas e os Íons Metálicos Zinco (II), Níquel (II) e Paládio (II)

Dissertação apresentada ao Programa de Pós-Graduação em Química da PUC-Rio como requisito parcial para obtenção do título de Mestre em Química. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Judith FelcmanOrientadora
Departamento de Química – PUC-Rio

Prof. Bárbara Lúcia de Almeida Co-orientadora UFJF

Prof. Andréa de Moraes Silva IFRJ

Prof. Otavio Versiane Cabral IFRJ

Prof. José Eugenio Leal Coordenador Setorial de Pós-Graduação do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 25 de fevereiro de 2010

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da Universidade, da autora e da orientadora.

Maria Stella Nunes de Oliveira

Graduou-se em Licenciatura em Química no CEFET Química atual Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro em 2007. Durante a graduação teve bolsa de estágio curricular no Museu da Vida da Fundação Oswaldo Cruz no período de 2005 a 2006 e foi aluna de Iniciação Científica do CEFET Química no período de 2006 a 2007, desenvolvendo trabalhos na área de Química Bioinorgânica.

Ficha Catalográfica

Oliveira, Maria Stella Nunes de

Síntese e caracterização de complexos envolvendo poliaminas e os íons metálicos zinco (II), níquel (II) e paládio (II) / Maria Stella Nunes de Oliveira; orientadora: Judith Felcman; coorientadora: Bárbara Lúcia Almeida — 2010.

196 f.: il. (color.); 30 cm

Dissertação (Mestrado)-Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Química, 2010.

Inclui bibliografia

Química - Teses. 2. Poliaminas. Complexos de zinco (II). 4. Complexos de níquel (II). 5. Complexos de paládio (II). I. Felcman, Judith. Almeida. Bárbara Lúcia. III. Pontifícia Universidade Católica Rio Janeiro. do de Departamento de Química. IV. Título.

A Deus, pelas bênçãos que recebo todos os dias de suas mãos.

Aos meus pais e ao meu irmão pelo incentivo, amor e compreensão.

Agradecimentos

A Deus, pelo dom da vida e pelas inúmeras bênçãos que dispõe em minha vida.

À professora Judith Felcman pela disponibilidade da orientação, pela paciência, pelo companheirismo, pela compreensão e, principalmente, pela forma amável que trata todos os seus alunos.

À Professora Bárbara Lúcia de Almeida pela amizade, pela dedicação, pela paciência e pelos ricos e fundamentais ensinamentos transmitidos.

À minha família e aos meus amigos que tanto torceram por mim, colaborando com estímulo e amizade, elementos fundamentais para essa conquista.

Aos amigos Leonardo e Aline que são como irmãos. Juntos superamos dificuldades na graduação e no mestrado. Apoiamo-nos na hora das tristezas e lamentações e nos alegramos na hora das conquistas. Estudamos muuuuiiiito! E sempre juntos! Pela amizade, pelo companheirismo e pela alegria de estarmos juntos, o meu agradecimento.

A todos os amigos da PUC-Rio, entre eles, Joanna, Pedro, Vanessa, Natalie, Felipe e todos os outros, pelo companheirismo e pela amizade.

Às amigas Luciana e Luciene da PUC-Rio pelo companheirismo, pela generosidade e pelo carinho. Conhecer pessoas como vocês faz com que eu tenha certeza de que determinadas pessoas são realmente anjos que Deus coloca no mundo para iluminar a vida dos outros.

À Professora Andréa de Moraes Silva que, com sua doçura e seu rigor, despertou em meu coração o desejo de estudar Química Inorgânica.

Ao técnico Jorge, pelo auxílio na espectroscopia de infravermelho e na análise termogravimétrica. Ao técnico Caio, pela assistência na análise elementar. Ao Químico Rodrigo e ao técnico Willian pela ajuda na espectroscopia de absorção atômica.

À Dra. Érika e à FIOCRUZ pelos espectros de Ressonância Magnética Nuclear.

Ao Dr. Ernesto Lang e ao Dr. Davi Fernando Back da Universidade Federal de Santa Maria, pela contribuição fundamental com a Cristalografia de Raios-X.

A todos os professores e funcionários do Departamento de Química da PUC-Rio que direta ou indiretamente contribuíram para a execução deste trabalho, em especial à Secretária da Pós-Graduação Maria de Fátima que, com sua amabilidade, conquista a todos.

Aos membros da banca examinadora pela análise do trabalho.

À PUC-Rio pela oportunidade e pelos auxílios concedidos.

Resumo

Oliveira, Maria Stella Nunes de; Felcman, Judith. **Síntese e Caracterização de Complexos Envolvendo Poliaminas e os Íons Metálicos Zinco (II), Níquel (II) e Paládio (II)**. Rio de Janeiro, 2010. 196p. Dissertação de Mestrado - Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro.

O presente trabalho descreve a síntese e a caracterização de treze envolvendo as poliamina etilenodiamina, diaminopropano, diaminobutano, espermidina e espermina e os íons metálicos Zn (II), Ni (II) e Pd (II). Todas as sínteses foram realizadas em água, um solvente de importância biológica, e em condições próximas às fisiológicas, com o objetivo de mimetizar as ligações e compreender como ocorre a interação das poliaminas com ânions no ciclo biológico, haja vista que em pH fisiológico essas moléculas se encontram primordialmente na forma protonada e interagem com biomoléculas aniônicas, entre essas, determinados sítios do DNA. Utilizou-se para a caracterização dos complexos as técnicas de condutivimetria, análise elementar, espectrometria de absorção atômica, análise termogravimétrica, espectroscopia no infravermelho, espectroscopia de ressonância magnética nuclear de Hidrogênio e Carbono 13 (para os complexos de zinco), difratometria de Raio-X (para os cristais de zinco), entre outras. Inicialmente foram sintetizados os complexos do tipo (poliamina[ZnCl₄]) e, posteriormente, compostos análogos de íon níquel (II) de estequiometria (poliamina[NiCl₄]). Observou-se que nesses complexos, as poliaminas interagem com o ânion tetraclorometalato (II) através de ligações de hidrogênio. Essas interações ocorrem entre o hidrogênio da amina primária e o cloro da esfera de coordenação. Os complexos formados pelo íon metálico paládio (II) apresentaram, conforme as análises realizadas, estruturas químicas distintas dos demais compostos. Neste caso, foram obtidos complexos $[Pd(Cl)_2(C_2H_8N_2)], [Pd(Cl)_2(C_3H_{10}N_2)] \in [Pd_2(Cl)_4(C_{10}H_{27}N_4)],$ que apresentam importância como possíveis fármacos para o tratamento do câncer.

Palavras-chave

Poliaminas; Complexos de zinco (II); Complexos de níquel (II); Complexos de paládio (II)

Abstract

Oliveira, Maria Stella Nunes de; Felcman, Judith. Synthesis and Characterization of Complexes Involving polyamines and the metal ions Zinc (II), Nickel (II) and Palladium (II). Rio de Janeiro, 2010. 196p. MSc. Dissertation — Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro.

This paper describes the synthesis and characterization of thirteen the polyamines ethylenediamine, complexes involving diaminopropane, diaminobutane, spermidine and spermine, and the metal ions Zn (II), Ni (II) and Pd (II). All syntheses were performed in water, a solvent of biological importance, and under near-physiological changes in order to mimic the bonds and understand the interaction of polyamines with anions in the biological cycle. At physiological pH these molecules are primarily in the protonated form and interact with anionic molecules, among which certain DNA sites. The complexes were characterized by the techniques of conductivity, elemental analysis, atomic absorption spectrometry, thermogravimetric analysis, infrared spectroscopy, nuclear magnetic resonance of Hydrogen and Carbon 13 (for the zinc complexes), and Xray diffraction (for zinc crystals). The complexes of the type (polyamine [ZnCl₄]) were synthesized first and, subsequently, analogous compounds of ion nickel (II) with stoichiometry (polyamine [NiCl₄]) were synthesized. It was observed that in these complexes, the polyamines interact with the tetrachlorometalate (II) anion via hydrogen bonds. These interactions occur between the primary amine hydrogen and the chlorine from the coordination sphere. The metal ion complexes formed by palladium (II) showed, as the analysis data, chemical structures distinct from the other compounds. In this case, we obtained the complex $[Pd(Cl)_2(C_2H_8N_2)], [Pd(Cl)_2(C_3H_{10}N_2)] e [Pd_2(Cl)_4(C_{10}H_{27}N_4)], which have$ importance as potential drugs for the treatment of cancer.

Keywords

Polyamines; Zinc Complexes; Nickel Complexes; Palladium Complexes.

Sumário

1. Introdução	20
1.1. Objetivos do presente estudo	21
2. Natureza das Poliaminas	22
2.1. Aspectos Químicos	22
2.2. Aspectos Biológicos	23
3. Natureza dos Íons Metálicos	30
3.1. Aspectos Químicos do Zinco	30
3.1.1 Descrição do Metal	30
3.1.2 Abundância e Ocorrência	30
3.1.3. Usos	30
3.1.4. Propriedades Químicas	31
3.1.5. Ânion Tetraclorozincato [ZnCl ₄] ²⁻	33
3.2. Aspectos Bioquímicos do Zinco	33
3.2.1. Enzimas	35
3.2.1.1. Anidrase Carbônica	35
3.2.1.2. Álcool Desidrogenase	37
3.3. Aspectos Químicos do Níquel	42
3.3.1. Descrição do Metal	42
3.3.2. Abundância e Ocorrência	42
3.3.3. Usos	43
3.3.4. Propriedades Químicas	43
3.3.5. Ânion Tetracloroniquelato [NiCl ₄] ²⁻	44
3.3.6. Termocromismo	45
3.4. Aspectos Bioquímicos do Níquel	47
3.4.1. Enzimas	50
3.4.1.1. Urease	50
3.4.1.2. Hidrogenase	51

3.4.1.3. Monóxido de Carbono desidrogenase	54
3.5. Aspectos Químicos do Paládio	55
3.5.1. Descrição do Metal	55
3.5.2. Abundância e Ocorrência	55
3.5.3. Usos	55
3.5.4. Propriedades Químicas	55
3.6. Aspectos Farmacológicos do Paládio	56
4. Parte Experimental	59
4.1. Materiais e Métodos	59
4.1.1. Lista de Reagentes e Solventes	59
4.1.2. Equipamentos	60
4.2. Ligantes	62
4.2.1. Nomes Oficiais	62
4.2.2. Estrutura das Poliaminas	62
4.2.3. Dados Experimentais	63
4.2.3.1. Informações Gerais sobre as Poliaminas	63
4.3. Complexos de Zinco (II)	64
4.3.1. Síntese dos compostos binários tetraclorozincatos PA[ZnCl ₄]	64
4.3.2. Dados Experimentais	65
4.3.2.1. Informações Gerais sobre os compostos biná	rios
tetraclorozincatos PA[ZnCl ₄]	65
4.4. Complexos de Níquel (II)	67
4.4.1. Síntese dos compostos binários tetracloroniquelatos PA[NiCl ₄]	67
4.4.2. Dados Experimentais	68
4.4.2.1.Informações Gerais sobre os compostos biná	rios
tetracloroniquelatos PA[NiCl ₄]	68
4.5. Complexos de Paládio (II)	70
$4.5.1. \ \ Sintese \ \ dos \ \ complexos \ \ [Pd(Cl)_2(C_2H_8N_2)], \ \ [Pd(Cl)_2(C_3H_{10}N_2)]$] e
$[Pd_2(CI)_4(C_{10}H_{27}N_4)]$	70
4.5.2. Dados Experimentais	71
4.5.2.1. Informações Gerais sobre os complexos $[Pd(CI)_2(C_2H_8N_1)]$	l ₂)],
$[Pd(CI)_2(C_3H_{10}N_2)] e [Pd_2(CI)_4(C_{10}H_{27}N_4)]$	71

5. Resultados e Discussão					72
5.1. Compostos binários tet	raclo	prozincatos PA[2	ZnCl ₄]		73
5.1.1. Geral					73
5.1.2. Ponto de Fusão					75
5.1.3. Condutivimetria					76
5.1.4. Análise Elementar (C	HN)	e Espectrometr	ia de Absorçã	ão Atômica	a 77
5.1.5. Análise Termogravim	étric	a			79
5.1.6. Espectroscopia no Inf	frave	ermelho			83
5.1.7. Espectroscopia Rama	an				86
5.1.8. Espectroscopia no Ul	travi	oleta-Visível			87
5.1.9. Espectroscopia de Re	esso	nância Magnéti	ca Nuclear de	e Hidrogêr	iio e
Carbono 13					89
5.1.9.1. Espectroscopia	de	Ressonância	Magnética	Nuclear	de
Hidrogênio					89
5.1.9.2. Espectroscopia	de	Ressonância	Magnética	Nuclear	de
Carbono 13					93
5.1.10. Difratometria de Rai	os-X				95
5.1.11. Particularidade do C	omp	oosto Spd[ZnCl ₄]		97
5.2. Compostos binários tet	raclo	oroniquelatos PA	A[NiCl ₄]		98
5.1.1. Geral					98
5.1.2. Ponto de Fusão					100
5.1.3. Condutivimetria					102
5.1.4. Análise Elementai	((CHN) e Espe	ectrometria	de Abso	rção
Atômica					104
5.1.5. Análise Termogravim	étric	a			106
5.1.6. Espectroscopia no In	frave	ermelho			110
5.1.7. Espectroscopia Rama	an				112
5.1.8. Particularidade do Co	mpo	osto Spd[NiCl ₄]			114
5.3. Complexos de Paládio	o (II)	- [Pd(Cl) ₂ (C ₂ H	$_8N_2)], [Pd(Cl$) ₂ (C ₃ H ₁₀ N ₂	<u>·</u>)] e
$[Pd_2(CI)_4(C_{10}H_{27}N_4)]$					115
5.3.1 Geral					115
5.3.2. Ponto de Fusão					116
5.3.3. Análise Elementar (C	HN)				117
5.3.4. Análise Termogravim	étric	а			119

5.3.5. Espectroscopia no Infravermelho	121
5.3.6. Comparação entre o estudo dos complexos $[Pd(CI)_2(C_2F_1)]$	1 ₈ N ₂)] e
[Pd(Cl) ₂ (C ₃ H ₁₀ N ₂)] no estado sólido e em solução	123
6. Conclusão	125
6.1. Complexos do tipo PA[ZnCl ₄]	125
6.2. Complexos do tipo PA[NiCl ₄]	126
$6.3. Complexos \ de \ Paládio \ (II) \ - \ [Pd(CI)_2(C_2H_8N_2)], \ [Pd(CI)_2(C_3H_8N_2)], \ [Pd(CI)_2(C_3H_8N_2)], \ Pd(CI)_2(C_3H_8N_2)$	$H_{10}N_2)]$ e
$[Pd_2(CI)_4(C_{10}H_{27}N_4)]$	127
6.4. Considerações Finais	128
7. Referências Bibliográficas	130
8. Anexos	141
8.1 Anexo A	141
8.2 Anexo B	161
8.3 Anexo C	181
8.4 Anexo D	192

Lista de Figuras

Figura 2.1. Estrutura da 1,2 diaminoetano	22
Figura 2.2. Estrutura da 1,3 diaminopropano	22
Figura 2.3. Estrutura da 1,4 diaminobutano	22
Figura 2.4. Estrutura da N-(3aminopropil)butano-1,4-diamino	22
Figura 2.5. Estrutura da N,N'-bis(3aminopropil)butano-1,3-diamino	22
Figura 2.6. Biossíntese das poliaminas	27
Figura 2.7. Degradação das poliaminas	28
Figura 3.1. Algumas reações catalisadas por enzimas de zinco	34
Figura 3.2. Sítio ativo da enzima anidrase carbônica	35
Figura 3.3. Estrutura enzima anidrase carbônica	36
Figura 3.4. Mecanismo catalítico da enzima	37
Figura 3.5. Oxidação de álcool catalisada pela álcool desidrogenase	38
Figura 3.6. Coordenação do zinco catalítico e do zinco estrutural	38
Figura 3.7. Complexo formado entre o íon níquel e a dimetilglioxima	44
Figura 3.8. Apresentação esquemática do termocromismo	46
Figura 3.9. Reações catalisadas por enzimas contendo íon níquel	48
Figura 3.10. Estrutura de uma urease bacteriana	51
Figura 3.11. Proposta para o mecanismo de reação da urease	51
Figura 3.12. Estrutura do sítio catalítico de uma NiFe hidrogenase	52
Figura 3.13. Proposta de mecanismo de oxidação de H ₂ , envolvendo c	iclo
entre os estados de oxidação +1 e +2	53
Figura 3.14. Proposta de mecanismo de oxidação de H ₂ , envolvendo c	iclo
entre os estados de oxidação +2 e +3	53
Figura 3.15. Proposta de mecanismo de reação de Acetil-C	CoA
isomerase	54
Figura 3.16. Estrutura do complexo [Pd(En)(Pyridine)Cl] ⁺	57
Figura 3.17. Estrutura do complexo [Pd ₂ (S(-)C2, N-dmpa) ₂ (µ-dppe)Cl ₂]	57
Figura 3.18. Estrutura do complexo [Pd ₂ (Cl) ₄ (Put) ₂]	58
Figura 3.19. Estrutura do complexo [Pd ₂ (Cl) ₄ (Spm)]	58

Figura 4.1. Estrutura da 1,2 diaminoetano 62
Figura 4.2. Estrutura da 1,3 diaminopropano 62
Figura 4.3. Estrutura da 1,4 diaminobutano 62
Figura 4.4. Estrutura da N-(3aminopropil)butano-1,4-diamino 62
Figura 4.5. Estrutura da N,N'-bis(3aminopropil)butano-1,3-diamino 62
Figura 5.1. Estrutura do ânion complexo tetraclorozincato 74
Figura 5.2. Diagrama dos orbitais moleculares do complexo
poliamina[ZnCl ₄] 74
Figura 5.3. Estrutura do ânion complexo tetraclorozincato tendo a
poliamina como contra-íon 75
Figura 5.4. Esquema para ilustração do sistema 1:1 na solução do
complexo 77
Figura 5.5. Estrutura do composto de fórmula molecular $C_2H_{10}N_2Cl_4Zn$,
sugerido como En[ZnCl ₄] 78
Figura 5.6. Estrutura do composto de fórmula molecular $C_3H_{12}N_2Cl_4Zn$,
sugerido como Tn[ZnCl ₄] 78
Figura 5.7. Estrutura do composto de fórmula molecular $C_4H_{14}N_2CI_4Zn$,
sugerido como Put[ZnCl ₄] 78
Figura 5.8. Estrutura do composto de fórmula molecular $C_7H_{22}N_3Cl_5Zn$,
sugerido como Spd[ZnCl ₄] 79
Figura 5.9. Estrutura do composto de fórmula molecular $C_{10}H_{30}N_4Cl_6Zn$,
sugerido como Spm[ZnCl ₄] 79
Figura 5.10. Comparação entre os gráficos de TGA e DTG do ligante puro
putrescina e do composto Put[ZnCl ₄] 83
Figura 5.11. Proposta de estrutura evidenciada para o composto
En[ZnCl ₄] a partir dos dados de TGA e DTG e outros estudos 83
Figura 5.12. Modos vibracionais de [MX ₄] ²⁻ ativos no Raman 86
Figura 5.13. Estrutura obtida a partir dos dados de difratometria de Raio-X
para o complexo En[ZnCl ₄] 96
Figura 5.14. Estrutura obtida a partir dos dados de difratometria de Raio-X
para o complexo Tn[ZnCl ₄] 96
Figura 5.15. Estrutura obtida a partir dos dados de difratometria de Raio-X
para o complexo Put[ZnCl ₄] 97

Figura 5.16. Oleo obtido durante a sintese do composto Spd[∠nCl₄] 9
Figura 5.17. Estrutura do ânion complexo tetracloroniquelato 9
Figura 5.18. Estrutura do ânion complexo tetracloroniquelato 9
Figura 5.19. Disposição dos orbitais moleculares no complexo na
diversas geometrias 10
Figura 5.20. Diagrama dos orbitais moleculares do complex
poliamina[NiCl ₄] 10
Figura 5.21. Fusão do complexo Spd[NiCl ₄] em 265°C 10
Figura 5.22. Esquema para ilustração do sistema 1:1 na solução d
complexo En[NiCl ₄] 10
Figura 5.23. Estrutura do composto de fórmula molecular $C_2H_{10}N_2CI_4N_1$
sugerido como En[NiCl ₄] 10
Figura 5.24. Estrutura do composto de fórmula molecular $C_3H_{12}N_2CI_4N_1$
sugerido como Tn[NiCl ₄] 10
Figura 5.25. Estrutura do composto de fórmula molecular $C_4H_{14}N_2CI_4N_1$
sugerido como Put[NiCl ₄] 10
Figura 5.26. Estrutura do composto de fórmula molecular $C_7H_{22}N_3CI_5N_1$
sugerido como Spd[NiCl ₄] 10
Figura 5.27. Estrutura do composto de fórmula molecular $C_{10}H_{30}N_4CI_6N_1$
sugerido como Spm[NiCl ₄] 10
Figura 5.28. Proposta de estrutura evidenciada para o composto En[NiCla
a partir dos dados de TGA e DTG e outros estudos 10
Figura 5.29. Termocromismo observado no complexo Spd[NiCl ₄] 11
Figura 5.30. Efeito de um campo cristalino quadrado planar nas energia
dos orbitais <i>d</i> 11
Figura 5.31. Estrutura do composto de fórmula molecula
$[Pd(CI)_2(C_2H_8N_2)]$ 11
Figura 5.32. Estrutura do composto de fórmula molecula
$[Pd(CI)_2(C_3H_{10}N_2)]$ 11
Figura 5.33. Estrutura do composto de fórmula molecula
$[Pd_2(CI)_4(C_{10}H_{27}N_4)]$ 11:

Lista de Tabelas

Tabela 2.1. Algumas poliaminas biológicas e suas respectivas fórmu químicas	ulas 23
Tabela 3.1. Características especiais do íon zinco	32
Tabela 3.2. Valores normais de zinco no organismo	41
Tabela 4.1. Dados gerais das poliaminas	63
Tabela 4.2. Dados gerais dos complexos	65
Tabela 4.3. Dados gerais dos complexos	68
Tabela 4.4. Dados gerais dos complexos	71
Tabela 5.1. Ponto de fusão dos complexos e das aminas puras	75
Tabela 5.2. Condutividade dos complexos, do sal cloreto de zinco e	das
aminas livres	76
Tabela 5.3. Análise elementar e absorção atômica dos complexos	78
Tabela 5.4. Proposta de fragmentação dos compos	stos
poliamina[ZnCl ₄]	82
Tabela 5.5. Freqüências vibracionais dos compostos poliamina[ZnCl ₄],	, na
região de alta freqüência	85
Tabela 5.6. Freqüências vibracionais dos compostos poliamina[ZnCl ₄],	, na
região de baixa freqüência	86
Tabela 5.7. Algumas freqüências vibracionais dos compos	stos
poliamina[ZnCl ₄], ativos no Raman	87
Tabela 5.8. Comprimento de onda e absortividade molar verificada p	ara
os compostos poliamina[ZnCl ₄]	88
Tabela 5.9. Dados de ressonância magnética nuclear de ¹ H e ¹³ C	das
poliaminas em água deuterada	90
Tabela 5.10. Dados de ressonância magnética nuclear de ¹ H	dos
complexos em água deuterada	92

Tabela 5.11. Dados de ressonância magnética nuclear de ¹³ C dos
complexos em água deuterada 94
Tabela 5.12. Ponto de fusão dos complexos e das aminas livres 102
Tabela 5.13. Condutividade dos complexos, do sal cloreto de níquel e das
aminas livres 103
Tabela 5.14. Análise elementar e absorção atômica dos complexos 104
Tabela 5.15. Proposta de fragmentação dos compostos
poliamina[NiCl ₄] 108
Tabela 5.16. Freqüências vibracionais dos compostos poliamina[NiCl ₄], na
região de alta freqüência 110
Tabela 5.17. Freqüência vibracional do grupamento OH referente a
hidratação dos compostos poliamina[NiCl ₄] 111
Tabela 5.18. Freqüências vibracionais dos compostos poliamina[NiCl₄], na
região de baixa freqüência 112
Tabela 5.19. Alguns modos vibracionais dos compostos poliamina[NiCl $_4$],
ativos no Raman 113
Tabela 5.20. Ponto de fusão dos complexos de paládio (II) e das aminas
puras 117
Tabela 5.21. Análise elementar dos complexos 117
Tabela 5.22. Proposta de fragmentação dos complexos [Pd(Cl) $_2$ (C $_2$ H $_8$ N $_2$)],
$[Pd(CI)_2(C_3H_{10}N_2)] e [Pd_2(CI)_4(C_{10}H_{27}N_4)] $ 121
Tabela 5.23. Freqüências vibracionais dos complexos de paládio (II), na
região de alta freqüência 123
Tabela 5.24. Freqüências vibracionais dos complexos de paládio (II), na
região de baixa freqüência 123

Lista de Símbolos

PA - Poliamina

En - Etilenodiamina

Tn – Diaminopropano

Put - Diaminobutano

Spd - Espermidina

Spm - Espermina

En[ZnCl₄] – Tetraclorozincato de etilenodiamina

Tn[ZnCl₄] – Tetraclorozincato de diaminopropano

Put[ZnCl₄] – Tetraclorozincato de diaminobutano

Spd[ZnCl₄] – Tetraclorozincato de espermidina

Spm[ZnCl₄] – Tetraclorozincato de espermina

En[NiCl₄] – Tetracloroniquelato de etilenodiamina

Tn[NiCl₄] – Tetracloroniquelato de diaminopropano

Put[NiCl₄] – Tetracloroniquelato de diaminobutano

Spd[NiCl₄] – Tetracloroniquelato de espermidina

Spm[NiCl₄] – Tetracloroniquelato de espermina

[Pd(Cl)₂(C₂H₈N₂)] – Dicloroetilenodiaminopaládio (II)

[Pd(Cl)₂(C₃H₁₀N₂)] – Diaminopropanodicloropaládio (II)

[Pd₂(Cl)₄(C₁₀H₂₇N₄)] – Espermidinatetraclorodipaládio (II)

TG – Análise termogravimétrica

DTG – Derivada da curva termogravimétrica

RMN – Ressonância Magnética Nuclear

v_s – Deformação axial simétrica

das - Deformação angular assimétrica

e – Absortividade molar

O_h – Simetria dos compostos octaédricos

T_d – Simetria dos compostos tetraédricos

D_{4h} – Simetria dos compostos quadrado planares

"Confie no Senhor de todo o coração e não se apóie em sua própria inteligência. Lembre-se de Deus em tudo o que fizer, e Ele lhe mostrará o caminho certo."