
5

Our Approach for Cooperative Reasoning

This chapter presents our proposal of an algorithm and protocol that im-

plement the cooperative reasoning process, according with the design strategies

discussed in the last chapter.

5.1

Strategy for Rule-based Context Reasoning

We propose a strategy in which two entities — a reasoner running on

the user side, the device reasoner , and another one running on the ambient

side, the ambient reasoner — interact to infer situations described by rules

involving context variables depending on data collected from different sources

and stored at both sides, performing what we defined as cooperative reasoning.

Each of these entities (called cooperative reasoners) aggregate context

information obtained from local context providers available at each side and

execute the reasoning of rules submitted by applications running on either side.

As the interaction may start at the ambient side or at the user side, depending

on which side the client application is running, we call local reasoner the one

executing at the side where the interaction begins, and remote reasoner the

other one.

Depending on the rule to be inferred, the reasoning operation may

follow one of the patterns presented in Section 4.2: user side, ambient side or

cooperative reasoning. Now we describe the cooperative reasoning process for a

rule R, submitted to the reasoning service by a client application, highlighting

each step of the process, and hence defining our proposed cooperative reasoning

strategy. As discussed in Section 4.3, the client application may query the

reasoner to get an immediate response about a submitted rule R or may

subscribe to be notified whenever the situation described by R holds. As

such, this cooperation can have two different general forms of interaction, the

synchronous and the asynchronous interactions.

Figures 5.1 and 5.2 show box diagrams in which each of the thirteen

steps of our strategy are represented. We divided these steps into two different

groups, the synchronous interaction steps and the asynchronous interaction

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 52

steps, which we describe, in more detail, as follows.

5.1.1

Synchronous Interaction

The synchronous interaction starts when a client application submits

a synchronous query to the local reasoner , as described in the following

paragraphs.

S1 - Submission: First of all, an application submits an inference rule R to

the local cooperative reasoner . In this step, a submission is identified either as

being a synchronous query , if the application needs to check if the situation

described by the rule holds at that current moment, or as a subscription, if

the application is to be notified whenever the situation described by the rule

holds.

S2 - Partitioning: After receiving a submission for rule R, the reasoner will

parse it and split the antecedent of the original rule in two parts, a local part

RL, comprised by atoms that refer only to context information available at the

local reasoner , and a remote part RR, comprised by the atoms that refer to

context information available at the remote reasoner . In our model we assume

that (a) each reasoner knows whether an atom of the rule corresponds to

context data available at its side, and (b) each atom corresponds to context

data available either at the device side or at the ambient side, i.e., all predicates

are valid. If all context information needed to evaluate the rule is available at

the local knowledge base (local ABox), i.e, the remote part RR is void, we

call R a local rule. In this case, the local reasoner will perform the reasoning

locally, and the next step is the evaluation step. Otherwise, the next step is

the pre-evaluation step.

S3 - Pre-evaluation: The problem of reasoning about rules with variables is

equivalent to finding a set of tuples of individuals that bind to that variables,

satisfying the rule. As discussed in Section 4.4, when the rule R is split into

RL and RR, the local reasoner has to partially evaluate RL to determine a set

of variables V , that are common to RL and RR, and a set of tuples T ={(c1,1,

c1,2..c1,n), (c2,1, c2,2..c2,n)..(ck,1, ck,2..ck,n)}, where each element ci,j of the tuple

is a value of variable vj ∈ V . This step is called pre-evaluation because it

produces a partial result T that serves as input for the remote reasoner to

calculate the final result S.

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 53

Figure 5.1: Box diagram representing the cooperative reasoning strategy for a
synchronous query.

S4 - Forwarding: After pre-evaluating RL, the local reasoner has to forward

RR to the remote reasoner (as a synchronous query), together with the list

of variables V and the respective set of tuples T that were determined in the

pre-evaluation step, if neither is empty. The local reasoner will wait for the

response from the remote reasoner in the peer reasoner response step.

S5 - Evaluation: This step consists in performing the reasoning operation

over the context data available locally to get the set of tuples S, corresponding

to the tuples of individuals that satisfy the local rule. A rule that was forwarded

by the other reasoner is also dealt in this step. In this case, for obtaining S

the reasoner evaluates the rule bounded by the set of tuples T , containing the

possible values for the set of variables in V . The next step is the response step.

S6 - Peer Reasoner Response: When the rule is not local, it will be

partitioned and have the remote part RR evaluated by the remote reasoner ,

according with the pre-condition imposed by the set of variables V and the

set of tuples T associated, as described in Step S5. After forwarding RR (Step

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 54

S3), the local reasoner will wait for the response from the remote reasoner

containing the set of tuples S that corresponds to the result, going to the

following step.

Figure 5.2: Box diagram representing the cooperative reasoning strategy for
an asynchronous interaction.

S7 - Response: The result obtained for a local rule will be sent to the

application client immediately after the evaluation (Step S5). For a rule that

is not local, the local reasoner will go through Steps S3 and S4, and after that

it will wait for the response from the remote reasoner (Step S6) and send to

the application client the set of tuples S, received from the remote reasoner .

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 55

5.1.2

Asynchronous Interaction

The asynchronous interaction starts when a client application submits a

rule R to the local reasoner as a subscription. The initial steps (S1 to S5)

are very similar to what was described for the synchronous interaction in

Subsection 5.1.1. After the rule R is submitted (Step S1), it is partitioned

(Step S2), and if it is not a local rule, it goes through the pre-evaluation (Step

S3) and the forwarding (Step S4), but as a subscription. After that, however,

the reasoner goes to the context monitoring step (Step S8). On the other hand,

if the submitted rule R is local, after the partitioning (Step S2) the next step

will be the evaluation (Step S5) and after that the notification (Step S11) or

the context monitoring (Step S8), as indicated in Figure 5.2. The Steps S8 to

S13 in the asynchronous interaction are presented in the following paragraphs.

S8 - Context Monitoring: After the first evaluation of a local rule (Step

S5), or after the remote part RR of a rule is forwarded to the remote reasoner ,

each subscription is put into a list of subscriptions with the associated data.

This comprises the information about the client application that submitted

the subscription, the local part and remote part (if it exists) of the rule, the

sets of free variables V and tuples T that were sent to the remote reasoner

(or received from a local reasoner , in case the reasoning plays the role of the

remote reasoner and R corresponds to a forwarded rule). Each time there is

a change in context data that may affect one of the rules in the list, each of

these rules is selected so that the reasoner can perform a reevaluation of the

rule (Step S9).

S9 - Reevaluation: After a change in context data that may affect a rule

associated with a subscription, if the rule is a local rule, the reasoner checks the

rule performing a new reasoning operation to find a set of tuples of individuals

S that satisfy the rule. If the rule is not local, similarly to what was described

in Step S3 of the synchronous interaction, RL will be evaluated to find an

updated set of tuples T with values for each variable in V that are common

in RL and RR. In Step 10, the results of this step are compared with the ones

that were previously obtained.

S10 - Comparison: The sets of tuples S or T , which were determined in the

reevaluation step, are compared with sets of tuples previously found. If there

are no differences between the sets, no action will be taken and the process

returns to (Step S8). Otherwise, the reasoner will store the new results for

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 56

future comparisons. If the rule is a local rule, the reasoner will proceed to the

notification step (Step S11). Otherwise, it will proceed to the update step (Step

S12), which will be explained ahead.

S11 - Notification: A notification for a client may be originated in several

forms. (i) After the submission of a rule R (Step S1), if its is partitioned and

identified as a local rule (Step S2), and in its evaluation (Step S5), a set of

tuples of values S that satisfy the rule is found, the local reasoner sends this

result to the client application as a notification. (ii) From then on, this rule

will be monitored (Step S8), reevaluated when necessary (Step S9), and every

time a new set S is found, i.e., different from the previous result (Step S10),

the client will again be notified. (iii) For rules that had the remote part RR

forwarded to the remote reasoner (Step S4), upon being received there, RR

goes straight to the evaluation step (Step S5), and may generate a notification

in the same way described in i and ii, but targeting the peer reasoner. On

receiving this notification (as indicated by the dashed arrow in Figure 5.2),

the local reasoner sends the received result S to the client application, but

only if it meets the conditions that will be discussed in Subsection 5.1.3.

S12 - Update: A particular situation may occur if a rule R has a local part

RL that is being monitored by the local reasoner , and a remote part RR, that

was forwarded to the remote reasoner . While RR is being monitored by the

remote reasoner , changes in the context data may happen also at the local side,

which may cause a change in the set of tuples T that were initially determined

by the local reasoner in the pre-evaluation of RL (Step S3) and previously

forwarded to the remote reasoner (Step S4). Therefore, in Step S8 the local

reasoner monitors the context variables present in the local part RL of a rule,

reevaluates the rule when necessary (Step S9), and updates this information

at the remote reasoner whenever a new set of tuples T is found. This update

is identified by an “update number”, that will be used to guarantee that a

notification from the remote reasoner gives a valid result, as will discussed in

Subsection 5.1.3.

S13 - Removal: At any time the client application can remove a subscription.

If it corresponds to a local rule, the local reasoner simply removes it from the

list of subscriptions. Otherwise, the local reasoner also requests for the remote

reasoner to remove the part of the rule that was forwarded.

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 57

5.1.3

Stability of Context Data

A notification from the remote reasoner to the local reasoner about the

result of a forwarded rule, is based on the context data available at the remote

reasoner at the moment it was generated, and the latest set of tuples T received

from the local reasoner . This set is first determined in Step S3 and may be

subsequently reevaluated in Step S9. Before the notification from the remote

reasoner arrives at the local reasoner , however, there may have been a context

data change at the local reasoner , which caused a new update to be sent to the

remote reasoner . In this case, the result S received from the remote reasoner

can not be considered valid, because it is based on a set of tuples T that has

changed.

To prevent the local reasoner from sending to the client application a

result that is inaccurate, each time a new update is generated by the local

reasoner , it receives an update number , which is sent to the remote reasoner

together with the new set of tuples T . When the remote reasoner finds a set of

values S that satisfy a rule, it notifies the local reasoner , sending the result S,

together with the update number of the latest update it received, allowing the

local reasoner to check if the result corresponds to the latest update. In Step

S11, the local reasoner , after receiving this notification, will send the received

result S to the client application only if the number of the last update received

by the remote reasoner matches the number of the last update sent by the

local reasoner . Otherwise, the result received from the remote reasoner will be

ignored.

If there are frequent changes of the context data related with a rule R at

the local reasoner , the reasoners might never converge to find a response and

notify the client application. This means that this strategy is not adequate

for reasoning with context data that are highly variable. The minimum time

treason that the reasoners take to find a result comprises the periods of time

needed for:

1. RL to be evaluated (or reevaluated) at the local reasoner ;

2. T to be updated at the remote reasoner ;

3. RR to be reevaluated by the remote reasoner , finding a result S;

4. the local reasoner to receive the notification from the remote reasoner ;

Let us assume that these changes of the context data occur with mean

periodicity of time tchange. The necessary condition for guaranteeing the

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 58

convergence of the inference process is that the context data is stable, i.e.,

that tchange >> treason. As the performace attribute identified in Section 4.3

indicates that treason should be adequate, it is directly related with stability of

context data.

5.2

Algorithm

In Section 5.1 we described all the general steps that have to be executed

to perform a cooperative reasoning process. From this description, we can

identify that the events that trigger the actions in this process are:

– in a synchronous interaction:

– the arrival of a new (or forwarded) query;

– in an asynchronous interaction:

– the arrival of a new (or forwarded) subscription;

– a change in context data that is being monitored.

– the arrival of an update from the peer reasoner;

– the arrival of a notification from the peer reasoner;

– the removal of a subscription;

In this section we describe the distributed algorithm used to implement

a service that performs the proposed process. In fact, the overall process may

be divided in blocks of procedures, each triggered by one of the previously

mentioned events.

Algorithm 5.1: ON RECEIVING A NEW QUERY

input: A rule R submitted to the reasoner by client C .

Partitions R to obtain RL and RR1

if RR 6= ∅ then2

Pre-evaluates RL to obtain V and T3

Forwards RR, V and T to the remote reasoner4

Receives S from remote reasoner5

end6

else7

Evaluates R to obtain S8

end9

Sends the result S to client C10

Algorithm 5.1 shows the code that deals with the synchronous inter-

action, which is triggered by the arrival of a new or forwarded query. After

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 59

submission, the rule is partitioned (Line 1), and if it has a remote part, it is

pre-evaluated to obtain the set of tuples T that is forwarded to the remote rea-

soner together with the list of common variables V (Lines 3 and 4). The local

reasoner then waits for the reply from the remote reasoner , which contains

the set of tuples S representing the result for the cooperative reasoning (Line

5). In contrast, if R is a local rule, it is immediately evaluated to obtain the

set of tuples S that represent the result of the reasoning (Line 8). In either

case, the result S is sent to the application client (Line 10). A forwarded rule

is regarded by the remote reasoner in the same form as a local rule, and hence

is also evaluated (Line 8), generating a response to the local reasoner (Line

10).

Algorithm 5.2: ON RECEIVING A NEW SUBSCRIPTION

input: A rule R submitted by client C .

Partitions R to obtain RL and RR1

if RR 6= ∅ then2

Pre-evaluates RL to obtain V and T3

Forwards RR, V and T to the remote reasoner4

end5

else6

Evaluates R to obtain S7

if S 6= ∅ then8

Notifies the client C with the result S9

end10

end11

Puts RL in list L12

Algorithm 5.2 implements the procedure triggered by the arrival of a new

subscription from a client, which initiates an asynchronous interaction. As in

the synchronous interaction, after the submission, the rule R is partitioned to

obtain the local part RL and the remote part RR (Line 1). If R has a remote

part RL, it is pre-evaluated to obtain the set of tuples T (Line 3), which is

forwarded to the remote reasoner as a subscription, together with the list of

common variables V (Line 4). If R is a local rule, it is evaluated to obtain the

set of tuples S that represents the result of the reasoning (Line 7). If this result

is not empty, the client application is notified about the result S. As in the

synchronous interaction, a forwarded rule is regarded by the remote reasoner as

a local rule that is evaluated (Line 7), possibly generating a notification to the

local reasoner (Line 9). In either case, the rule is put in a list of subscriptions

so that it can be checked whenever an event that may change the result occurs,

such as a change in context data, the arrival of an update message from the

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 60

local reasoner , or the arrival of a notification from the remote reasoner .

Algorithm 5.3: ON CONTEXT UPDATE

input: A change in context data D.

for each R ∈ L affected by D do1

if RR = ∅ then2

Reevaluates RL to obtain S3

Compares S and LastResult4

if S 6= LastResult then5

Stores S as LastResult6

Notifies client C with S [and LastUpdateNumber ]7

end8

end9

else10

Reevaluates RL to obtain T11

Compares T and LastTuples12

if T 6= LastTuples then13

Stores T as LastTuples14

Increments LastUpdateNumber15

Updates RR, T and LastUpdateNumber at the remote16

reasoner
end17

end18

end19

Each reasoner monitors its local context data (context monitoring step),

and, as shown in Algorithm 5.3, whenever a change in context is perceived,

the list of subscriptions L is checked to select any rule R that may have been

affected by the change (Line 1), i.e., rules whose any atom is a predicate related

with that context fact. If R is a local rule, it is reevaluated to obtain a new set

of tuples S (Line 3). The new result S is compared with the previous one stored

LastResult. If they differ from each other (Lines 4 and 5), the new result is

stored as LastResult (Line 6) and sent to the client C as a notification (Line 7).

If the client C is the peer reasoner, i.e., the rule being monitored corresponds to

a remote part received from that reasoner, then this notification must include as

parameter the number of the last update received from it, LastUpdateNumber.

If R has a remote part, it is reevaluated to obtain a new set of tuples T (Line

11). The new set of tuples T is compared with the last one stored LastTuples

and if they are different from each other (Lines 12 and 13), this set of tuples is

stored as LastTuples (Line 14) and sent to the remote reasoner as an update

(Line 16). In this case, a variable UpdateNumber is incremented to identify

the number of this update (Line 15) and sent together with T and V .

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 61

Algorithm 5.4: ON RECEIVING UPDATE FROM PEER

input: An update for rule R containing a set of tuples T and an
update number n.

Stores n as LastUpdateNumber1

Reevaluates R to obtain S given T2

Compares S LastResult3

if S 6= LastResult then4

Stores S as LastResult5

Notifies the local reasoner with S and LastUpdateNumber6

end7

As discussed in Step 12 of Subsection 5.1.2, changes in context data at

the local side may cause a change of the variable values that were previously

forwarded to the remote reasoner . In this case, the local reasoner sends

an update to the remote reasoner as described in Algorithm 5.3, Line 16.

Algorithm 5.4 implements the procedure triggered by the arrival of an update

at the remote reasoner . Rule R is reevaluated to obtain a new set of tuples

S (Line 2). The new result S is compared with the previous one stored

LastResult and if they are different from each other (Lines 3 and 4), this

result is stored as LastResult (Line 5) and sent to the local reasoner as a

notification (Line 6).

Algorithm 5.5 implements the procedure triggered by the arrival of a

notification from the remote reasoner at the local reasoner . In this case,

the local reasoner compares the number of the update n, provided with the

notification, with the last UpdateNumber associated with that rule R (Line

1). If they are equal, the result S is sent to the client application (Line 2).

Otherwise, the result is ignored.

Algorithm 5.5: ON RECEIVING NOTIFICATION FROM PEER

input: An notification message containing a set of values S and a
version number n.

if N = UpdateNumber then1

Notifies the client C with result S2

end3

Finally, Algorithm 5.6 implements the procedure triggered by the arrival

of a message from the client asking to remove the subscription associated with

a rule R. If R has a remote part RR, the local reasoner has to send a removal

message to the remote reasoner asking for the removal of the subscription

associated with RR (Line 2). In any case, R is removed by the local reasoner

(Line 4).

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 62

Algorithm 5.6: ON RECEIVING REMOVAL ASK

input: An message asking the removal of rule R.

if RR 6= ∅ then1

Removes RR from the remote reasoner2

end3

Removes R from list L4

5.3

Protocol

The reasoning process discussed in Section 5.1 is implemented as a ser-

vice that receives messages from client applications — synchronous queries or

subscriptions — containing rules that describe situations that are relevant for

these applications. The reasoning process is performed by services, the coope-

rative reasoners, that exchange messages to execute the distributed algorithm

described in Section 5.2. Nevertheless, the overall cooperative reasoning pro-

cess is only completely specified after we define a communication protocol,

describing all the messages exchanged by these services. As we assume that

the communication channel is reliable, i.e., there is no loss of messages, confir-

mations messages were not included in our protocol.

Figure 5.3: Synchronous interaction in the cooperative reasoning.

Figure 5.3 shows the protocol executed for performing the synchronous

interaction of our cooperative reasoning process, as described in Section 5.1.1.

The synchronous interaction starts when a Query message is sent from the

client to the local reasoner , with rule R as parameter, triggering the procedure

described in Algorithm 5.1 (Step S1). A Forward message is sent from the

local reasoner to the remote reasoner , carrying the remote part of the rule

RR, if it exists, together with the set of variables V and the set of tuples T

determined in the pre-evaluation of R (Steps S2, S3 e S4). The rule forwarded

by the local reasoner is received by the remote reasoner as a query with some

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 63

extra parameters, and regarded as a local rule. It is evaluated by the remote

reasoner , and the set of tuples S, found as result of the evaluation, is sent

back to the local reasoner in a Reply message (Step S5). The local reasoner

waits for this response (Step S6), and after receiving it, sends a Reply message

to the client application containing this answer (Step S7). When the original

rule is local, the only message sent is the Reply message containing the set of

tuples S from the local reasoner to the client application (Step S7). Table 5.1

summarizes the synchronous protocol

Operation Description

Query(R) A client application sends a message to the local rea-
soner with a rule R, which describes the situation to

be verified.

Forward(RR, V , T ) The local reasoner sends to the remote reasoner this
message containing RR, the remote part of the original

rule, the list of variables V that were evaluated locally
and the set T of tuples with values for each variable.

Reply (S) The local reasoner sends a message to a client — or the

remote reasoner sends a message to the local reasoner
— as a response to a synchronous query, containing a

set of matches S that satisfy the originally proposed
rule R.

Table 5.1: The protocol executed for performing the synchronous interaction
of our cooperative reasoning process.

The messages exchanged in an asynchronous interaction are shown in

Figure 5.4. This interaction starts when a Subscribe message is sent from

the client to the local reasoner , with the rule R as parameter (Step S1). This

message triggers the procedure described in Algorithm 5.2. A Forwardmessage

is sent from the local reasoner to the remote reasoner if R has a remote part

RR (Steps S2, S3 e S4), with RR together with the set of variables V and the

set of tuples T , determined in the pre-evaluation, as parameters.

Figure 5.4: Asynchronous interaction in the cooperative reasoning.

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 64

An Updatemessage is sent from the local reasoner to the remote reasoner ,

with a reference to rule RR, the new set of tuples T and UpdateNumber as

parameters, whenever a change in context data in the local reasoner causes

T to change (Steps S8, S9, S10 e S12). This message triggers the procedure

described in Algorithm 5.4.

Operation Description

Subscribe(R) A client application sends a message to the local rea-
soner with a rule R describing a situation of interest.

Forward(RR, V , T ) The local reasoner sends this message to the remote

reasoner containing RR, the remote part of the original
rule, the list of variables V that were evaluated locally

and the set T of tuples with values for each variable.

Update(∗RR, T , n) The local reasoner sends this message to the remote
reasoner containing a reference to the rule RR, pre-

viously forwarded, updated information to the corres-
ponding set of tuples T and an update number n that

identifies the update version.

Notify(∗R, S [, n]) The local reasoner sends this message to the client ap-
plication — or the remote reasoner sends the message

to the local reasoner — containing a reference to a
rule R previously provided to the reasoner and a set of

matches S that satisfy the rule R. If the notification
is sent by the remote reasoner to the local reasoner, it

contains also the number of the last update received
by the sender n.

Remove(∗R) A client application sends the message to the local

reasoner — or the local reasoner sends the message
to the remote reasoner — containing a reference to

a rule R previously submitted, whose corresponding
subscription must be removed.

Table 5.2: The protocol executed for performing the asynchronous interaction
of our cooperative reasoning process.

A Notifymessage is sent from the local reasoner to the client application,

with the result S as parameter, after the first evaluation of R (if S is not

empty, Step S5) and whenever a change in context data in the local reasoner

causes S to change (Steps S8, S9, S10 e S11). A Notify message may also

be sent from the remote reasoner to the local reasoner whenever a change

in context data in the remote reasoner causes the result S associated with a

forwarded rule RR to change, with the result S and the LastUpdateNumber

as parameters (Steps S8, S9, S10 e S11). This message triggers the procedure

described in Algorithm 5.5. In this case, another Notify message is sent from

the local reasoner to the client application, with the result S as parameter, if

the LastUpdateNumber received by the local reasoner has the same value of

the local variable UpdateNumber (Step S11).

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 65

The Remove message, sent from the client to local reasoner , triggers the

procedure described in Algorithm 5.6. If the rule to be removed has a remote

part , a Remove message is sent from the local reasoner to the remote reasoner ,

with a reference for rule R as parameter (Step S13). Table 5.2 summarizes the

asynchronous approach.

5.4

Discussion

In this chapter, we proposed a strategy to execute cooperative reasoning

and described the distributed algorithm and communication protocol to per-

form the complete process, according with the functional attributes of the

design stratagies that we enumeratad in Section 4.3.

A fundamental part of our proposal for the split inference of facts is the

partitioning of a rule in its local part, that is evaluated by the local reasoner,

and its remote part, which is forwarded to the remote reasoner. When there

are context variables that are common to the local and the remote part of the

rules, however, the remote reasoner — to be able to evaluate the remote part

of the rule — needs to know which are the possible values that the common

variables may assume. As explained in Section 5.1, this is achieved by the

Pre-evaluation/Forwarding and Reevaluation/Update steps of the reasoning

strategy. These steps are associated with the Update and Forward messages,

whose content comprises the tuples corresponding to the possible values that

the set of variables may assume. In the reasoning process, these tuples represent

a partial result for the local reasoner and a starting point for the remote

reasoner. As the local reasoner forwards no complete RDF tuple for the remote

reasoner, only tuples of individuals representing context variable values, no

knowledge sharing happens between those reasoners. Particularly, when there

is no variable in common between the local and remote parts of the rule, the

variable values have to be solely determined in each side.

Providing asynchronous communication (publish/subscribe) is a particu-

larly important attribute identified for this inference service. To achieve this

goal, a local reasoner has to constantly update the information forwarded to

the remote reasoner, in the cooperative interaction. For that reason, if there

are frequent context changes at the local reasoner, not only the reasoning ope-

ration may never converge, bu also the great number of messages exchanged

between the reasoners may cause a great communication overhead. This means

that the proposed strategy is not adequate for reasoning with highly variable

context data.

In our proposal of a cooperative reasoning protocol, however, we did

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 66

not consider aspects related with an important non-functional attribute, the

robustness and resilience of the service. In our system model we assumed that

the communication was reliable, i.e., there would be no loss of messages. As

such, we did not include confirmation messages in our protocol, and hence, the

loss of a message can cause an inference operation to be discontinued, with no

warning being sent to the clients.

In the next, chapter we present a case study to show how — step-by-

step — this strategy works, both for synchronous communication (queries)

and asynchronous communication (publish/subscribe).

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA




