Resultados do modelo do sistema de arrefecimento do motor de combustão interna

Apresentam-se neste capítulo a comparação entre os resultados obtidos da simulação do sistema de arrefecimento automotivo fazendo uso de água e nanofluidos como fluidos de arrefecimento.

Entende-se que os sistemas atuais de arrefecimento não mais utilizem água pura. Entretanto, água foi utilizada para efeitos de comparação com os nanofluidos em virtude de ser este o fluido – base mais comum para as poucas correlações disponíveis na literatura.

Para se avaliar o desempenho do sistema com o uso destes fluidos os seguintes parâmetros foram levados em consideração:

- Área de troca de calor do radiador: tendo mostrado os nanofluidos elevados valores na condutividade térmica respeito do fluido – base, espera-se um ganho no sentido de diminuir o comprimento dos tubos e, conseqüentemente, a área de troca de calor.
- Queda de pressão do fluido escoando nos tubos do radiador: devido ao incremento da viscosidade dinâmica com a concentração volumétrica de nanopartículas, é importante ter em consideração a queda de pressão no FDA.

As variáveis de controles consideradas para o estudo do sistema de arrefecimento são: concentração volumétrica da nanopartícula no fluido base, φ_{np} , e o tipo de nanopartícula empregada.

As partículas usadas neste trabalho e algumas das suas propriedades são mostradas na Tabela 2:

7

Propriedade	Cu	Al ₂ O ₃	CuO	TiO ₂
Densidade [kg/m ³]	8933	3970	6500	4250
Condutividade térmica [kW/m·K]	0,4	0,04	0,02	0,0089
Calor específico [kJ/kg·K]	0,385	0,765	0,535	0,686

Tabela 2 – Propriedades termofísicas das nanopartículas, (Velagapudi, V. et al., 2008).

Foram testadas diferentes concentrações volumétricas das nanopartículas, para, assim, avaliar a influência desta variável sobre os parâmetros de desempenho do sistema. As concentrações volumétricas ϕ_{np} testadas estiveram nas faixas de 0,01 até 0,15; respeitadas as faixas de operação das correlações empregadas.

São apresentados, a seguir, os valores numéricos utilizados na presente simulação:

Dados de entrada gerais no programa

Diâmetro da nanopartícula.	10 [nm]
Fração volumétrica das nanopartículas.	1 – 15 %
Camisa do motor	
Diâmetro do pistão, D_{pst}	0,12 [m]
Curso do pistão, S _{pst}	0,13 [m]
Número de cilindros, N _{cil}	12
Potência no eixo do motor, \dot{W}	368 [kW]
Rugosidade absoluta das paredes, C_{rg}	0,003 [m]
Comprimento das tubulações, L_{tb}	0,3 [m]
Diâmetro das tubulações, D_{tb}	0,0127 [m]

Comprimento do radiador, L_{rd}	0,937 [m]
Espessura do radiador, D_{rd}	0,111 [m]
Diâmetro hidráulico no lado do ar, $D_{h,ar}$	0,003335 [m]
Diâmetro hidráulico nos tubos de seção oval, $D_{h,nf}$	0,00373 [m]
Razão entre a área de troca de calor do ar e o volume	745
total, β_{ar}	743
Razão entre a área de troca de calor do fluido de	138
arrefecimento e o volume total, β_{nf}	
Razão entre a área de fluxo livre-mínima do ar e a área	0,621
frontal, σ_{ar}	
Razão entre a área aletada e a área total de troca de	0 748
calor para o ar, γ_{ar}	0,748
Passo das aletas, F_p	0,002674 [m]
Espessura das aletas, F_{th}	0,00007 [m]
Passo dos tubos de seção oval, T_p	0000873 [m]
Comprimento dos tubos no sentido do fluxo do ar, T_d	001271 [m]
Comprimento dos tubos de seção oval, T_w	0,003175 [m]
Espessura da parede dos tubos de seção oval, T_{th}	0,00032 [m]
Número de tubos de seção oval, N _{tb}	644
Número de fileiras de tubos, N _{row}	6
Velocidade de ingresso do ar, u_{fr}	27,77 [m/s]
Temperatura de ingresso do ar, $T_{ar,i}$	30 [°C]
Pressão do ar, <i>P_{ar}</i>	101,325 [kPa]
Temperatura de ingresso do fluido arrefecedor, T_q	92 [°C]
Temperatura de saída do fluido arrefecedor, T_f	86 [°C]
Pressão do fluido arrefecedor, P_{co}	150 [kPa]
Bomba do fluido de arrefecimento	
Eficiência da bomba, η_{bo}	0,8

7.1. Propriedades termofísicas

São apresentadas, inicialmente, as propriedades termofísicas efetivas dos nanofluidos, definidas como a seguir:

$$\rho_{eff} = \frac{\rho_{nf}}{\rho_{fb}} \tag{5.14}$$

$$c_{p,eff} = \frac{c_{p,nf}}{c_{p,fb}}$$
(5.15)

$$\mu_{eff} = \frac{\mu_{nf}}{\mu_{fb}} \tag{5.16}$$

$$k_{eff} = \frac{k_{nf}}{k_{m}} \tag{5.17}$$

7.1.1. Densidade efetiva

Na Figura 21 observa-se que a densidade dos nanofluidos é maior que a densidade da água e também que esta aumenta com a fração volumétrica das nanopartículas. Isto é devido ao aumento da quantidade de partículas, as quais possuem maior densidade que a água.

7.1.2. Calor específico efetivo

Na Figura 22 observa-se que o calor específico dos nanofluidos é tão menor que o calor específico da água, quanto maior for a concentração volumétrica das nanopartículas suspensas.

Figura 21 – Densidade efetiva dos nanofluidos para várias concentrações de nanopartículas com diâmetro $d_{np} = 10$ nm operando a 89 °C.

Segundo a expressão usada para o cálculo do calor específico, eq. (2.16), a maior densidade do nanofluido no denominador pode explicar a queda do calor específico com a concentração volumétrica.

Provavelmente a concentrações de nanopartículas menores a 0,02 donde se observa um pouco incremento da densidade seja possível aproveitar melhor a elevada condutividade térmica apresentada pelos nanofluidos em trabalhos anteriores.

7.1.3. Viscosidade dinâmica

Na Figura 23 mostra-se a variação da viscosidade dinâmica efetiva dos nanofluidos com a fração volumétrica de nanopartículas. Segundo as eq. (2.9) a (2.12), incrementos na concentração volumétrica fazem com que a viscosidade do nanofluido também aumente, limitando, assim, a faixa da concentração de nanopartículas. Mesmo assim, ainda é possível se obter um ganho na troca de calor pela elevada condutividade térmica dos nanofluidos.

Figura 22 – Calor específico efetivo dos nanofluidos para diferentes frações volumétricas de nanopartículas com diâmetro $d_{np} = 10$ nm e operando a 89 °C.

Figura 23 – Viscosidade dinâmica efetiva para várias concentrações de nanopartículas com um diâmetro $d_{np} = 10$ nm e operando a 89 °C.

7.1.4. Condutividade térmica efetiva

Na Figura 24 mostra-se um aumento da condutividade térmica efetiva com a concentração de partículas. A eq. (2.7) é usada para o cálculo da condutividade.

Observa-se que, quanto maiores forem as concentrações volumétricas de nanopartículas (com maior condutividade térmica que o fluido base – água), tanto maiores serão os valores da condutividade térmica efetiva.

Figura 24 – Condutividade térmica efetiva para diferentes frações volumétricas de nanopartículas, com um diâmetro $d_{np} = 10$ nm e operando a 89 °C.

7.2. Resultados para o radiador

Para avaliar as possíveis vantagens do uso dos nanofluidos fez-se o cálculo da geometria necessária com o uso destes fluidos. Neste estudo foi calculada a área interna dos tubos de seção oval e a altura do radiador, isto é, no lado do FDA.

7.2.1. Número de Nusselt do nanofluido

Na Figura 25 observa-se um aumento do número de Nusselt dos nanofluidos $H_2O - TiO_2 e H_2O - CuO$ com o aumento da concentração de nanopartículas. No caso do nanofluido $H_2O - Al_2O_3$ observa-se uma queda do número de Nusselt a maiores concentrações, provavelmente, devido ao aumento da viscosidade com a concentração.

Para o nanofluido H_2O – Cu o máximo valor do número de Nusselt é para aproximadamente 3,2 % em volume de nanopartículas. Assim, dependendo do tipo de nanopartícula, faixas apropriadas de concentração deveram ser consideradas nas aplicações de troca dos nanofluidos.

Figura 25 – Número de Nusselt do nanofluido escoando nos tubos de seção alongada em função da concentração volumétrica de nanopartículas com diâmetro $d_{np} = 10$ nm e operando a 89 °C.

7.2.2. Coeficiente de troca de calor

Na Figura 26 observa-se um aumento do coeficiente convectivo de transferência de calor para os nanofluidos $H_2O - TiO_2$ e $H_2O - CuO$ quando aumenta a concentração de nanopartículas suspensas.

Os resultados concordam com a tendência mostrada no comportamento do coeficiente de troca de calor em (Xuan e Li, 2003), com respeito ao aumento do valor do coeficiente para concentrações de até 0,02.

O coeficiente de troca de calor do nanofluido H_2O – Cu apresenta um aumento para concentrações menores que 0,075; mostrando uma queda no seu valor no restante da faixa de concentrações considerada.

O nanofluido $H_2O - Al_2O_3$ é o que apresenta uma queda nos valores do coeficiente de transferência desde valores próximos a 0,01 de concentração.

A existência de valores máximos no coeficiente de transferência de calor sugere a existência de faixas ótimas de concentração de partículas para determinadas condições de operação, notadamente a temperatura, segundo o tipo de nanopartícula empregada.

Figura 26 – Coeficiente de troca de calor para diferentes concentrações de nanopartículas, a uma temperatura de operação de 89 °C, e um diâmetro de nanopartículas $d_{np} = 10$ nm.

7.2.3. Área requerida de transferência de calor

Na Figura 27 observa-se uma diminuição da área requerida de troca de calor a maiores concentrações de nanopartículas. Somente o nanofluido $H_2O - Al_2O_3$ apresenta um aumento na área de troca para maiores concentrações.

Neste último caso, novamente um aumento da viscosidade pode estar compensando negativamente a vantagem que se espera de uma maior condutividade térmica da parte do nanofluido.

Isto está de acordo com o mostrado na Figura 23, onde a viscosidade do nanofluido $H_2O - Al_2O_3$ apresenta um maior aumento com a concentração volumétrica de nanopartículas quando comparada a outros nanofluidos.

Figura 27 – Área de transferência de calor no lado interno dos tubos de seção oval do radiador para diferentes concentrações, a uma temperatura de operação de 89 °C, e para um diâmetro de partículas $d_{np} = 10$ nm.

7.2.4. Altura do radiador

Figura 28 – Altura do radiador para diferentes concentrações de nanopartículas, para uma temperatura de operação de 89 °C e um diâmetro de partículas $d_{np} = 10$ nm.

Na Figura 28 mostram-se as diminuições obtidas na altura requerida do radiador para aumentos na concentração de nanopartículas. Novamente o nanofluido $H_2O - Al_2O_3$ mostra uma tendência diferente à dos outros nanofluidos.

7.3. Bomba do fluido de arrefecimento

É importante, na análise de um sistema de arrefecimento automotivo, não só predizer o comportamento térmico, ou seja, a maneira como o calor será trocado com o meio externo, mas também conhecer o seu comportamento hidráulico, com o propósito de quantificar o consumo de energia mecânica no bombeamento do FDA.

Os parâmetros usados para esta análise são: a queda de pressão no lado do nanofluido e a potência requerida de bombeamento do FDA.

7.3.1. Queda de pressão

Figura 29 – Queda de pressão dos nanofluidos em função da concentração volumétrica das nanopartículas, a uma temperatura de operação de 89 °C e um diâmetro de partículas $d_{np} = 10$ nm.

Na Figura 29 observa-se aumento da queda de pressão a maiores concentrações de nanopartículas. Somente o nanofluido H_2O – CuO apresentou maiores quedas de pressão se comparado aos outros nanofluidos.

7.3.2. Potência de bombeamento

Na Figura 30 observa-se um aumento na potência de bombeamento para maiores valores da concentração das nanopartículas. O nanofluido $H_2O - TiO_2$ é o que apresenta menores valores na potência de bombeamento, em relação aos outros nanofluidos.

Embora os nanofluidos apresentem coeficientes de troca de calor maiores que os relativos à sustância base (água), o aumento da viscosidade dinâmica com a concentração pode reduzir as vantagens em potencial destes fluidos.

Figura 30 – Potência de bombeamento do nanofluido a diferentes concentrações volumétricas, a uma temperatura de operação de 89 °C, e um diâmetro de nanopartículas $d_{np} = 10$ nm.

Dos resultados apresentados até a presente data, é inconclusivo prever possíveis vantagens quanto ao uso dos nanofluidos como FDA. De acordo com os modelos e correlações empregadas no presente estudo, em algumas faixas de concentração volumétrica, obtêm-se resultados opostos quanto à esperada redução em área.

De fato, Bem Mansour et al. (2007) mostraram que, dependendo dos modelos empregados para descrever as propriedades termofísicas dos nanofluidos, suas vantagens com respeito a ganhos em geometria ou diminuições na potência de bombeamento podem apresentar resultados opostos.

Por exemplo, para valores constantes de fluxo de calor, do diâmetro e comprimento do tubo e da diferença de temperatura, as predições da potência de bombeamento com respeito ao desenho original são mostradas na figura 31. Foram usados os modelos GdS e BMGN, comentados a seguir.

Os modelos GdS e BMNG são uma combinação de modelos usados para descrever as propriedades termofísicas dos nanofluidos. Assim, GdS é um modelo

que usa a relação de Hamilton e Crosser (1962) para modelar a condutividade do nanofluido, enquanto que, para o modelo BMNG, utiliza-se a equação de Maxwell modificada para o cálculo da condutividade térmica efetiva, proposto em Yu e Choi (2003).

Figura 31 – Efeito da concentração das nanopartículas sobre a potência de bombeamento para nanofluido de alumina (Ben Mansour et al., 2007).

7.4. Resultados do modelo do regime transiente

Nas Figuras 32 e 33 observa-se que o uso de nanofluido como FDA refletese favoravelmente na redução do tempo de aquecimento do motor (de 5,8 % e 2,9 %, respectivamente) para determinadas condições de operação.

Note-se que, para diferentes tipos de nanopartículas, diferentes tempos de aquecimento são atingidos, como mostrados nos gráficos a seguir.

Figura 32 – Aumento da temperatura do FDA durante o período de aquecimento do motor (termostato fechado) para o nanofluido H₂O – Cu e água.

Figura 33 – Aumento da temperatura do FDA durante o período de aquecimento do motor (termostato fechado) para o nanofluido $H_2O - Al_2O_3$ e água.