6 Métodos de solução

6.1. Modelo para regime permanente

O conjunto de equações descritas no capítulo 4 forma um sistema não-linear de equações algébricas. Nesta seção descrevem-se a abordagem utilizada e a metodologia de solução do modelo matemático.

A plataforma computacional EES (*Engineering Equation Solver*), que utiliza o método de Newton – Raphson serviu como ferramenta para a simulação do sistema de arrefecimento automotivo proposto operando com nanofluidos como fluidos secundários.

Os objetivos da simulação, conhecidas as características dos componentes do ciclo e as condições nas quais opera, são: a determinação da geometria do trocador de calor, a queda de pressão no lado do FDA, e a potência de bombeamento do FDA.

6.1.1. Dados de entrada

As variáveis prescritas foram ordenadas em função de seu uso no programa. Assim, têm-se dados de entrada gerais para o programa e dados utilizados para simular cada componente do sistema.

6.1.1.1. Dados de entrada gerais no programa

- 1. Seleção do nanofluido.
- 2. Diâmetro da nanopartícula.
- 3. Fração volumétrica das nanopartículas.

Enumeram-se, a seguir, os dados de entrada para cada um dos componentes do sistema de arrefecimento automotivo.

6.1.1.2. Camisa do motor

Diâmetro do pistão, D_{pst} ; Curso do pistão, S_{pst} ; Número de cilindros, N_{cil} ; Potência no eixo do motor, \dot{W} ; Rugosidade absoluta das paredes, C_{rg} ; Comprimento das tubulações de FDA, L_{tb} ; Diâmetro das tubulações, D_{tb}

6.1.1.3. Radiador

Comprimento do radiador, L_{rd} ;

Espessura do radiador, D_{rd} ;

Diâmetro hidráulico no lado do ar, $D_{h,ar}$;

Diâmetro hidráulico nos tubos de seção oval, $D_{h,nf}$;

Razão entre a área de troca de calor do ar e o volume total, β_{ar} ;

Razão entre a área de troca de calor do fluido de arrefecimento e o volume

total, β_{nf} ;

Razão entre a área de fluxo livre-mínima do ar e a área frontal, σ_{ar} ;

Razão entre a área aletada e a área total de troca de calor para o ar, γ_{ar} ;

Passo das aletas, F_p ;

Espessura das aletas, F_{th} ;

Passo dos tubos de seção oval, T_p ;

Comprimento dos tubos no sentido do fluxo do ar, T_d ;

Comprimento dos tubos de seção oval, T_w ;

Espessura da parede dos tubos de seção oval, T_{th} ;

Número de tubos de seção oval, N_{tb};

Número de fileiras de tubos, N_{row};

Velocidade de ingresso do ar, *u*_{fr};

Temperatura de ingresso do ar, $T_{ar,i}$; Pressão do ar, P_{ar} ; Temperatura de ingresso do fluido arrefecedor, T_q ; Temperatura de saída do fluido arrefecedor, T_f ; Pressão do fluido arrefecedor, P_{co} ;

6.1.1.4. Bomba do fluido de arrefecimento

Eficiência da bomba, η_{bo} ;

6.1.2. Dados de saída

O programa soluciona o sistema de equações, calculando os seguintes parâmetros:

6.1.2.1. Camisa do motor

Queda de pressão do fluido de arrefecimento, $\Delta P_{co,bc}$; Coeficiente de atrito do fluido de arrefecimento, $f_{co,bc}$;

6.1.2.2. Radiador

Altura do radiador, H_{rd} ;

Área de troca de calor no lado do fluido de arrefecimento, A_{nf} ,

Queda de pressão no fluido de arrefecimento, $\Delta P_{nf,rd}$;

Queda de pressão do ar, ΔP_{ar} ;

Temperatura de saída do ar, $T_{ar,o}$;

Fator de Colburn, j_{ar} ;

Coeficiente de troca de calor do ar, α_{ar} ;

Coeficiente de troca de calor do fluido de arrefecimento, $\alpha_{nf,rd}$;

Número de Reynolds do ar, *Re_{ar}*;

Número de Reynolds do fluido de arrefecimento, Re_{nf} ;

Número de unidades de transferência de calor, NTU;

Efetividade do radiador, ε_{rd} ; Coeficiente geral de troca de calor, U_{rd} ; Fator de atrito do ar, f_{ar} ; Fator de atrito do fluido de arrefecimento, $f_{nf,rd}$;

6.1.2.3. Bomba do fluido de arrefecimento

Potência de bombeamento do fluido de arrefecimento, W_{bo} ;

6.1.3. Plataforma computacional

Para garantir a solução das equações propostas para a caracterização do nanofluido como fluido secundário, utilizou-se a plataforma computacional EES (Klein, 2004), capaz de resolver sistemas de equações algébricas não-lineares.

Entre as principais características que o EES possui podem-se enumerar:

- Identificação automática e agrupamento de equações que devem ser solucionadas simultaneamente;
- Disponibilidade de bibliotecas embutidas para o cálculo de propriedades termofísicas, de grande ajuda na resolução de problemas da área térmica.
- Possibilidade de interação com o REFPROP (Lemmon et al., 2007) desenvolvido no NIST (National Institute of Standards and Technology), dispositivo não acionado no presente trabalho;
- Procedimentos, funções e sub-rotinas podem ser escritas de forma similar a plataformas de programação de alto nível, tais como Pascal e FORTRAN. Em princípio, códigos escritos nestas linguagens de alto nível poderiam ser adaptados ao EES.

O software EES utiliza, para a solução de sistemas de equações não lineares, o método de Newton – Raphson para múltiplas variáveis. Este método constitui um caso particular do método de iteração linear. O método de Newton – Raphson para uma variável é representado matematicamente pelas eq. (5.11) e (5.12). Observa-se que o procedimento é iterativo, ou seja, obtém-se uma fórmula recursiva que calcula uma aproximação, aperfeiçoada a partir da aproximação precedente.

Os valores das derivadas nestes pontos são utilizados para produzir uma seqüência de pontos que convergem para a raiz desejada.

$$\varphi(x) = x - \frac{f(x)}{f'(x)} \tag{5.11}$$

A fórmula recursiva do método de Newton – Raphson é:

$$x_{n+1} = \varphi(x_n) \tag{5.12}$$

A convergência do processo iterativo nem sempre está garantida por este método, sendo necessário o cumprimento das seguintes condições para a convergência do mesmo:

- 1. Existência de apenas uma raiz no intervalo [a, b] onde se deseja obter a raiz;
- Que a primeira e segunda derivadas sejam não-nulas e preservem o sinal no intervalo [a, b];
- 3. Que a derivada da função no ponto x_n seja diferente de zero.

A Figura 19 apresenta a interpretação geométrica do Método de Newton – Raphson.

6.1.4. Desenvolvimento do código

O programa desenvolvido no presente trabalho adota uma forma modular, com módulos dedicados à jaqueta de cilindros, radiador, bomba do fluido de arrefecimento, e termostato, respectivamente. Assim, cada componente pode ser avaliado individualmente de acordo com o modelo matemático selecionado na literatura para descrevê-lo.

Utilizando o programa EES foram determinados, simultaneamente, os dados intermediários que interconectam dois componentes sucessivos. Portanto, qualquer mudança em um dos componentes influencia o desempenho do ciclo assim como o resto dos componentes.

Figura 19 – Interpretação gráfica do método de Newton – Raphson (Kelley, 2003).

6.1.5. Estrutura do programa

O programa principal foi organizado seguindo uma ordem seqüencial, com a execução evoluindo na medida em que o sistema de arrefecimento vai sendo resolvido. Assim, a ordem geral que segue o programa é:

- 1. Jaqueta do motor;
- 2. Radiador;
- 3. Bomba do fluido de arrefecimento.

Os comandos de cálculo de cada componente estão organizados da seguinte forma:

- 1. Entrada das condições de operação;
- 2. Cálculo das propriedades termodinâmicas;

- Execução das equações como parte do modelo matemático do componente;
- 4. Produção de resultados (intermediários ou finais).

6.2. Solução numérica do modelo do regime transiente

Considera-se uma condição inicial de partida a frio pela qual: $T_{bc} = T_{nf} = T_0$. Utilizou-se o método de Euler para as equações (5.5) e (5.7). O método de Euler permite aproximar uma equação diferencial ordinária a partir de somas algébricas na seguinte forma:

$$\frac{dT}{dt} \approx \frac{T(t+\Delta t) - T(t)}{\Delta t}$$
(5.13)

Os valores das derivadas são obtidos a partir de incrementos sucessivos a partir de uma condição inicial dada. Na Figura 20 mostra-se o esquema gráfico do processo de solução do método numérico de Euler.

Figura 20 – Esquema do processo de cálculo pelo método de Euler.

Utilizou-se no presente estudo, um incremento de 1s. A mesma plataforma computacional, EES, foi utilizada.