
7

Conclusions, Contributions and Future Work

In this work, we presented the results of systematic applying techniques that

focus in creating recovery oriented software. By arguing that the objective of

software development must not just be to assure that it is free from defects (defect

prevention), but it should also encompass developing a system for which the risk

of run-time failures and their consequences are acceptable, we analyzed how the

combination of existing techniques could lead to preventing defects in a system,

controlling external defects, reducing the MTTR and enabling fault tolerance in a

system.

Our claim is that some existing proposed solutions for building recovery

oriented software are too complex and have too high a cost of implementation.

We explored simpler alternatives that are easier and cheaper to implement. We

compared our research with the state-of-the-art in software development, and

noticed that little research is being dedicated for non web-based recovery oriented

software. This is why we focused this work on stand alone real-time and

embedded systems, but also arguing that our ideas could be tested for web-based

applications.

We provided some real world cases where the ideas of this work have been

applied, with very interesting results. In all examples:

• the number or defects found in the systems was reduced being close to

world class levels;

• the number of non-trivial defects was reduced (much lower than the

usual 50% reported in [Boehm and Basili, 2001]);

• the time spent to fix the faults (including time spent in locating it) was

significantly reduced;

• the number of “light failures” (no loss of work, recovery limited just

to restarting the system) reported during production time was reduced;

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA

94

• not a single “serious failure” (loss of work, impossibility to recover)

was reported in any of the examples;

• the time spent to test the software was 12% of the total software

development time
6
, whereas the literature reports values of about

25%;

• the measured productivity of correct lines of code per day was about

50 loc/day, whereas the literature reports values of about 25loc/day.

The overall effort for developing each system was not significantly affected

by the use of the techniques. However, it was possible to notice that the test effort

was reduced, whereas the design and coding phased were increased. This can be

explained by the extra-effort in designing and coding instruments specific to

recovery oriented ideas that ended up reducing the test effort. As stated in [Hall,

1990], it is notoriously difficult to compare the costs of developing software under

different methods, by different teams. There are no figures for the development

costs for the same piece of software using the proposals of this work and a

comparable other method. However, experience on the cost of projects that use

ROS techniques are beginning to accumulate, and none of this evidence support

the idea that development costs are higher; if anything, it suggests the opposite.

One could argue that the results achieved in this work could be due to the

high-quality and experience of the development teams. This is partially true from

the point of view that most of them came from the same institution, where they

had (almost) the same academic education. However, only the software engineers

were the same for the teams – the developers were not. It was up to the engineer

to spread the culture of “recovery oriented developing” for the rest of the team. So

even though it is true that personal skills can interfere a lot in software

development production, it is possible to argue that there was enough diversity in

the teams to conclude that the techniques did have an important impact on the

overall production.

The application of the ideas to many real projects also made possible to

identify and propose design and architectural patterns for recovery oriented

6 For the purposes of this work, the “test time” starts when a software is taken to a simulated

production environment and finishes when the user accepts the software.

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA

95

software. It was also possible to analyze how existing patterns (especially those

proposed in [Gamma et al, 1995] could be used in order to help the development

of recovery oriented systems.

We were also able to propose the debuggable software concept, which we

believe is very relevant for any software that claims to be recovery oriented. We

also evaluated some of the impacts of using redundancy in software

(development, failure detection, failure handling, and viability of self-aware

software).

A definition for recovery oriented software was proposed, and as the

examples used in this work were real world systems, it was possible to evaluate

the feasibility of the development for recovery oriented software as well,

assessing the benefits it brings to software development. A set of tools,

technologies and procedures for building recovery oriented software for real time,

embedded and data acquisition systems could then be tested against a set of real

experiments of different domains. Even the measurements using real world

software themselves (indicating the effectiveness of the exposed techniques) can

be seen as an important contribution of this work.

Another interesting thing that arises from the fact that we dealt with real

world systems is that we also had real world customers that were subject to real

world risks and costs. So, we had to invite those customers to take part in this

experience before starting the development process. The interesting thing about it

is that all the customers had already participated in other software development

efforts, so they could qualitatively compare the results to previous experiences.

All the customers were unanimous about the overall impression: they noticed a

reduction not only on the test time but also on the time spent to solve the

identified problems. One of them said that “she felt more confident that the

development team was completely in control of the situation” because of “the

software behavior when a failure was detected” – she was not accustomed neither

to “clear error messages, explaining what went wrong” nor to “quickly restoring

previous state, without any significant loss of work”. So, from the customer’s

point of view, there is an improvement in the perception of the overall results of

the development. This can be explained by the fact that users usually consider

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA

96

fault-removal as a consequence of “bad quality work” that must be “done again

due to lack of accuracy of the development team”.

This work can also be seen as the first steps towards a software development

process that leads to software closer to the “correct by construction” ideal.

As future work derived from the results presented in this thesis, we propose:

Implement self-healing software: we focused on recovery by indentifying

failures, trapping them, and isolating or repairing any damage caused to data and

the overall state of execution. Information for debugging purposes is also

collected, to help developers to locate and fix the fault(s) that caused the failure.

An interesting future work would be to automatically locate and fix the fault. This

would imply dynamically changing the code of a system.

Extend the study about redundancy: explore how controlled redundancy

affects the complete cycle of software development process.

Using aspect oriented programming for pre and post conditions: a

negative issue when using pre and post conditions is that concerns not related to

functional requirements end up mixed in the business code. A proposed solution

to this has been discussed in the decorator pattern in the section

Patterns of the

Concepts and Technologies chapter, but we believe that the use of aspects, besides

enhancing the separation of concerns, would enhance the overall control over

turning on and off conditions – this would be useful for selecting which ones

should be turned on during runtime. This has some impacts over failure detection;

however, the computational costs for leaving all tests on in release may be

prohibitive.

Apply the ideas of recovery oriented software presented in this work for

web applications: the focus of this study was completely out of web applications,

but there is an obvious need for such technology applied to these kinds of

applications.

Enhance the study of debuggable software: the ideas of debuggable

software could be more explored in future works.

Apply the ideas to different software development teams: study how the

practices presented in this work can be applied to different software development

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA

97

teams, especially existing ones, already consolidated (and probably harder to

change).

DBD
PUC-Rio - Certificação Digital Nº 0510951/CA

