

Sinai de Fátima Gonçalves da Silva

Ocorrência de PBDEs e PCBs em mexilhões e peixes da Baía de Guanabara

Tese de Doutorado

Tese apresentada ao Programa de Pós-graduação em Química da PUC-Rio como requisito parcial para obtenção do título de Doutor em Química.

Orientadora: Isabel Maria Neto da Silva Moreira Co-orientadora: Inái Martins Ribeiro de Andrade Brüning

Rio de Janeiro, setembro de 2009

Sinai de Fátima Gonçalves da Silva

Ocorrência de PBDEs e PCBs em

mexilhões e peixes da Baía de Guanabara

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Química da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Profa. Isabel Maria Neto da Silva Moreira Orientador

Departamento de Química - PUC-Rio

Profa. Rosalinda Carmela Montone

Instituto Oceanográfico - USP

Prof. Olaf Malm Instituto de Biofísica Carlos Chagas Filho - UFRJ

Profa. Irene Baptista de Alleluia

Divisão de Meio Ambiente - INT

Profa. Silvana Vianna Rodrigues

Departamento de Química Analítica - UFF

José Eugenio Leal

Coordenador Setorial de Pesquisa e Pós-Graduação do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 15 de setembro de 2009

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da autora, do orientador e da universidade.

Sinai de Fátima Gonçalves da Silva

Graduou-se em Engenharia Química (1988) e Licenciatura em Química (1992) pela Universidade Estadual do Rio de Janeiro – UERJ. Especialista em Didática aplicada à Educação Tecnológica pelo Centro Federal de Educação Tecnológica do Rio de Janeiro – CEFET-RJ (1996). Mestre em Ciências – Química pelo Instituto Militar de Engenharia – IME (1999). É professora do Quadro Permanente do Ensino Básico, Técnico e Tecnológico no CEFET-RJ desde 1992.

Ficha Catalográfica

Silva, Sinai de Fátima Gonçalves da

Ocorrência de PBDEs e PCBs em mexilhões e peixes da Baía de Guanabara / Sinai de Fátima Gonçalves da Silva ; orientadoras: Isabel Maria Neto da Silva Moreira, Inái Martins Ribeiro de Andrade Brüning. – 2009.

196 f. : il. (color.) ; 30 cm

Tese (Doutorado em Química)–Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2009.

Inclui bibliografia

 Química – Teses. 2. PCBs. 3. PBDEs. 4.
Poluentes costeiros. 5. Interferentes endócrinos. 6. Peixes.
Mexilhões. 8. Baía de Guanabara. I. Moreira, Isabel Maria Neto da Silva. II. Brüning, Inái Martins Ribeiro de Andrade. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Química. IV. Título. PUC-Rio - Certificação Digital Nº 0510430/CA

Para meu Filho Thiago Raymundo, e Para meu Marido Paulo Raymundo

Agradecimentos

Às minhas orientadoras, Isabel Maria Neto da Silva Moreira e Inái Martins Ribeiro de Andrade Brüning pelo carinho, paciência, motivação, presença, participação, e, principalmente, pela Impecável Orientação sem os quais esta tese não teria sido concluída.

À Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio) pela oportunidade de realização desta Tese e pela bolsa de isenção total das taxas escolares.

À Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) e ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pelo auxílio financeiro.

Aos professores do Departamento de Química da PUC-Rio pelas lições.

À Dr^a Rosalinda Carmela Montone, do LABQOM (Laboratório de Química Orgânica Marinha), IO (Instituto Oceanográfico), USP (Universidade de São Paulo), pela utilização do GC-MS.

À Dr^a Satie Taniguchi, do LABQOM, pela inestimável acolhida e pelas análises no GC-MS.

Ao Patrick e ao Mauro do LABQOM, pela ajuda, nas análises no GC-MS.

Aos componentes da Banca Examinadora pelo julgamento desta Tese.

À Maria de Fátima da S. Almeida, Secretária Executiva da Pós-graduação do Departamento de Química da PUC-Rio, pelo atendimento, atencioso e cortês.

À Marlene e ao Carlos, da secretaria do Departamento de Química (PUC-Rio), sempre solícitos e prestativos.

Ao Paulo Raymundo (meu marido) que me ajudou nas coletas e em muitas outras tarefas, além de tolerar, heroicamente e sempre, todas as minhas idiossincrasias.

À Carla, que me ensinou e, me encorajou na manipulação dos peixes e mexilhões, e a todos do Laboratório de Estudos Marinhos e Ambientais – LABMAM por muitos outros auxílios.

A Rachel e a Roberta Líryo, pelas companhias em algumas coletas e a todos do Laboratório de Espectrometria e Eletroquímica Aplicada – LEEA por muitas outras contribuições.

Ao Danilo (aluno de IC da PUC-Rio), que me auxiliou numa grande parcela do trabalho mais pesado do laboratório.

À Vanessa (aluna de IC da PUC-Rio), que também, me auxiliou numa parte do trabalho no laboratório.

Ao Álvaro, ao Noberto e a todos do Laboratório de Análises Espectrométricas – LABSPECTRO, por inumeráveis e providenciais auxílios.

Aos técnicos, Jorge, Valdeto, Carlos e Charles, por incontáveis empréstimos e ajudas.

Aos meus colegas, Professores da Coordenadoria de Química do Centro Federal de Educação Tecnológica do Rio de Janeiro, que absorveram parte dos meus encargos durante a realização deste trabalho.

Resumo

Silva, Sinai de Fátima Gonçalves; Moreira, Isabel Maria Neto da Silva. Ocorrência de PBDEs e PCBs em peixes e mexilhões da Baía de Guanabara. Rio de Janeiro, 2009. 196p. Tese de Doutorado -Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro.

As bifenilas policloradas (PCBs) foram durante muitos anos usadas, principalmente, como fluidos refrigerantes e lubrificantes, em transformadores, capacitores e outros equipamentos elétricos. Os éteres difenílicos polibromados (PBDEs) ainda são amplamente utilizados como retardadores de chamas. Ambos são considerados poluentes orgânicos de extrema toxicidade e reportados como potentes interferentes endócrinos. Existem trabalhos anteriores que já detectaram PCBs na baía de Guanabara, porém, a pesquisa sobre PBDEs é pioneira. Foi desenvolvida e validada uma metodologia para extração, simultânea dos PCBs e PBDEs. Todas as amostras foram coletadas, extraídas, limpas e analisadas por GC-MS. Os PCBs foram os poluentes predominantes; entre eles o PCB-153 (bifenila-2, 2', 4, 4', 5, 5'-hexaclorada) provou ser o poluente mais disseminado, apresentando teor máximo de 261 ng.g⁻¹ de peso seco no fígado de tainha. A ocorrência dos PBDEs foi significativamente menor; o PBDE-47 (éter difenílico-2, 2', 4, 4'-tetrabromado) foi o mais freqüente, apresentando um teor máximo de 46 ng.g⁻¹ de peso seco no músculo de corvina. Comparando-se com outros ecossistemas, as concentrações de PCBs são maiores e as de PBDEs menores.

Palavras-chave

PCBs; PBDEs; Poluentes costeiros; Interferentes endócrinos; Peixes; Fígados de peixes; Mexilhões; Baía de Guanabara; Rio de Janeiro; Brasil. Silva, Sinai de Fátima Gonçalves; Moreira, Isabel Maria Neto da Silva (Advisor). Occurrence of PBDEs and PCBs in fish and mussels from Guanabara Bay. Rio de Janeiro, 2009. 196p. Doctorate Thesis - Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro.

Polychlorinated biphenyls (PCBs) have been used mainly as coolants and lubricants in transformers, capacitors, and other electrical equipments. Polybrominated diphenyl ethers (PBDEs) are still widely used as additive flame retardants. Both are among the most toxic environmental pollutants and reported as powerful endocrine disruptor. In Guanabara Bay previous studies have already detected PCBs, but the PBDE investigation is pioneer. A procedure for extracting simultaneously PCBs and PBDEs was developed and validated. Samples were collected, extracted, cleaned and analyzed by GC-MS. PCBs were the predominant pollutants, among them PCB-153 (2, 2', 4, 4', 5, 5'-hexachlorobiphenyl) proved to be the most disseminated one, with the highest content of 261 ng.g⁻¹ dry weight (dw) in fish liver. PBDE occurrences were significantly lower, being the PBDE-47 (2, 2', 4, 4'-tetrabromodiphenyl ether the most frequent, with the highest content of 46 ng.g⁻¹ dry weight (dw) in fish tissue. In comparison to other ecosystems PCBs showed higher contents and PBDEs the lower ones.

KEYWORDS

PCBs; PBDEs; Costal pollutants; Endocrine disruptors; Fish; Fish liver; Mussel; Guanabara Bay; Rio de Janeiro; Brasil.

Sumário

1 Introdução	26
2 Bifenilas policloradas (polyclorinated biphenyl – PCBs)	31
2.1. Nomenclatura dos PCBs	32
2.2. Considerações históricas sobre PCBs	32
2.3. Introdução de PCBs no Ambiente	35
2.4. Efeitos dos PCBs nos seres vivos	36
2.5. Toxicologia dos PCBs	37
2.6. Remediação de ambientes contaminados por PCBs	39
3 Éteres difenílicos polibromados (polybrominated diphenyl	
ethers – PBDEs)	40
3.1. Síntese e produção industrial de PBDEs	45
3.2. Distribuição dos PBDEs no planeta	47
3.3. Fotodegradação dos PBDEs	48
3.4. Toxicologia dos PBDEs	49
4 Área de estudo e espécies estudadas	51
5 Experimental	56
5.1. Reagentes	56
5.1.1. Solventes	56
5.1.2. Produtos químicos e adsorventes	56
5.1.3. Padrões	57
5.2. Equipamentos	59
5.3. Materiais	60
5.4. Coleta, amostragem, tratamento e preservação das amostras	60
5.4.1. Mexilhões	61
5.4.2. Peixes	63
5.5. Metodologia analítica	64

5.5.1. Saponificação	66
5.5.2. Extração	66
5.5.3. Limpeza ("clean – up")	67
5.5.4. Análise por cromatografia com fase gasosa	68
5.5.5. Determinação de lipídios	70
5.5.6. Construção das curvas analíticas	71
5.5.7. Controle de qualidade	72
5.5.8. Tratamento estatístico dos dados	75
6 Resultados e discussões	76
6.1. Dados de biometria	76
6.2. Curvas analíticas	83
6.3. Controle de qualidade e validação da metodologia	83
6.3.1. Analise de brancos	83
6.3.2. Limites de detecção (LDM) e quantificação (LQM)	85
6.3.3. Análise do Material de Referência Certificado – SRM 2977	86
6.3.4. Ensaio de recuperação	89
6.4. Determinação do teor de lipídios em músculos de corvinas,	
músculos de tainhas e em tecidos moles de mexilhões	91
6.4.1. Correlação entre teores de lipídios nas espécies estudadas	97
6.5. PBDEs nos músculos de corvinas	97
6.6. PBDEs nos músculos de tainhas	102
6.7. PBDEs nos fígados das tainhas	104
6.8. PBDEs nos mexilhões	108
6.9. PBDEs nas diversas espécies	110
6.10. PCBs nos músculos de corvinas	111
6.11. PCBs nos músculos de tainhas	118
6.12. PCBs nos fígados das tainhas	124
6.13. PCBs nos tecidos moles dos mexilhões	130
6.14. PCBs nas diversas espécies	136
7 Conclusões	139
8 Referências bibliográficas	141

9 Anexos	165
9.1. Anexo 1 - Curva analítica usada nas determinações de	
PCB-153.	165
9.2. Anexo 2 - Curva analítica usada nas determinações de	
PCB-180.	166
9.3. Anexo 3 - Curvas analíticas usadas nas determinações dos	
BDEs.	167
9.4. Anexo 4 - Componentes dos Padrões Certificados	175
9.5. Anexo 5 - Figuras com as tabelas dos resultados dos	
testes estatísticos (imagens importadas do pacote estatístico	
PASW statistics, como figuras).	177
10 Apêndice	195
10.1. Apêndice 1 – O "Box-plot"	195

Lista de figuras

Figura 1 – Estrutura das bifenilas policloradas - PCBs.	26	
Figura 2 – Estrutura dos éteres difenílicos polibromados - PBDEs.		
Figura 3 – Numeração relativa à posição dos átomos de cloro nas		
moléculas de PCBs.	32	
Figura 4 – Estruturas de PCBs coplanares, do PCB-180 e do TCDD.	38	
Figura 5 - Estruturas de PBDEs(a), HBCD(b), TBBPA(c) e PBB(d)	41	
Figura 6 - Estruturas dos PCBs (a) e do DDT (b)	42	
Figura 7 - Estruturas de T4 (a) e T3 (b), hormônios da Tireóide	42	
Figura 8 - numeração relativa à posição dos átomos de bromo		
nas moléculas de PBDEs	43	
Figura 9 – Estrutura espacial do BDE-47	44	
Figura 10 – Solubilidade em água, de PCBs (círculos brancos) e		
de PBDEs (círculos pretos)	49	
Figura 11 - Fórmulas estruturais espaciais do T4(a), PBDE-168 (b)		
e PCB-168 (c)	50	
Figura 12 – Baía de Guanabara, ponte Rio-Niteroi.	51	
Figura 13 – Baía de Guanabara, cultivo de mexilões em Jurujuba	52	
Figura 14 – Baía de Guanabara, Ilha de Boa Viagem	52	
Figura 15 – Baía de Guanabara, Plataforma de petróleo	53	
Figura 16 – Corvina (<i>Micropogonias furnieri</i>)	53	
Figura 17 – Tainha (<i>Mugil lisa</i>)	54	
Figura 18 – Mexilhões <i>(Perna perna)</i>	54	
Figura 19 – Mapa da Baía de Guanabara com as estações de		
coletas de mexilhões numeradas	62	
Figura 20 – Fluxograma representativo das etapas da		
metodologia utilizada	65	
Figura 21 - Distribuição dos valores de comprimentos totais das		
corvinas analisadas de cada campanha de amostragem.	78	

Figura 22– Distribuição dos valores de massas das corvinas	
analisadas de cada campanha de amostragem.	79
Figura 23 - Distribuição dos valores de comprimentos totais	
das tainhas analisadas de cada amostragem.	79
Figura 24 - Distribuição dos valores de massas das tainhas	
analisadas de cada campanha de amostragem.	80
Figura 25 – Dispersão das medidas de comprimentos totais,	
das corvinas analisadas, de cada campanha de	
amostragem.	81
Figura 26 – Dispersão das medidas de massa, das corvinas	
analisadas, em cada campanha de amostragem.	81
Figura 27 – Dispersão das medidas de comprimentos totais,	
das tainhas analisadas, de cada campanha de	
amostragem.	82
Figura 28 - Dispersão das medidas de massa, das tainhas	
analisadas, em cada campanha de amostragem.	82
Figura 29 – Cromatograma típico do ensaio em branco das	
determinações de PBDEs.	83
Figura 30 - Cromatograma típico da curva analítica das	
determinações de PBDEs.	84
Figura 31 - Cromatograma típico da determinação de PBDEs	
numa amostra de corvina.	84
Figura 32 - Cromatograma típico do ensaio em branco das	
determinações de PCBs.	84
Figura 33 - Cromatograma típico da curva analítica das	
determinações de PCBs	85
Figura 34 - Cromatograma típico da determinação de PCBs	
numa amostra de músculo de corvina.	85
Figura 35 – dispersão dos valores percentuais encontrados	
nos ensaios de recuperação	90
Figura 36 - Distribuição dos valores das concentrações de	
lipídios encontrados nos músculos de corvinas	
de cada campanha de amostragem	92

Figura 37 - Distribuição dos valores de concentrações de	
lipídios encontrados nos músculos de tainhas	
de cada campanha de amostragem.	93
Figura 38 - Distribuição dos valores de concentrações de	
lipídios encontrados nos mexilhões de cada	
campanha de amostragem.	93
Figura 39 – Dispersão das concentrações de lipídios, nos	
músculos de corvinas, de cada campanha de	
amostragem.	94
Figura 40 – Dispersão das concentrações de lipídios, nos	
músculos de tainhas, de cada campanha de	
amostragem.	94
Figura 41 – Dispersão das concentrações de lipídios, dos	
mexilhões, de cada campanha de amostragem.	95
Figura 42 – Medianas e dispersões dos teores de lipídios	
(mg.g ⁻¹ de peso seco) nos músculos de corvinas,	
músculos de tainhas e mexilhões.	97
Figura 43 - Distribuição dos teores do BDE-47 nos músculos	
das corvinas.	99
Figura 44 – Dispersão dos teores do BDE-47, por campanha	
de amostragem nos músculos das corvinas.	100
Figura 45 - Distribuição dos teores totais de PBDEs nos	
músculos das corvinas.	100
Figura 46 - Dispersão dos teores totais de PBDEs, por	
campanha de amostragem, nos músculos das	
corvinas.	101
Figura 47 – Distribuição dos teores, em ng.g ⁻¹ de peso seco,	
de BDE-47 nos fígados das tainhas.	106
Figura 48 – Dispersão dos teores do BDE-47, em ng.g ⁻¹ de	
peso seco, por campanha de amostragem nos	
fígados das tainhas	106
Figura 49 - Distribuição dos teores totais de PBDEs , em ng.g ⁻¹	
de peso seco, nos fígados das tainhas	107

Figura 50 – Dispersão dos teores totais de PBDEs, em ng.g ⁻¹	
de peso seco, por campanha de amostragem,	
nos fígados das tainhas	107
Figura 51 – Distribuição dos teores totais de PCBs em	
músculos das corvinas, em ng.g ⁻¹ de peso seco.	116
Figura 52 – Dispersão dos teores totais de PCBs, por	
campanha de amostragem, em músculos das	
corvinas em ng.g ⁻¹ de peso seco.	116
Figura 53 - Distribuição dos teores totais de PCBs em	
músculos das tainhas, em ng.g ⁻¹ de peso seco.	122
Figura 54 - Dispersão dos teores totais de PCBs, por	
campanha de amostragem, em músculos das	
tainhas em ng.g ⁻¹ de peso seco.	123
Figura 55 - Distribuição dos teores totais de PCBs em fígados	
das tainhas, em ng.g ⁻¹ de peso seco.	128
Figura 56 - Dispersão dos teores totais de PCBs, por campanha	
de amostragem, em fígados das tainhas em ng.g ⁻¹	
de peso seco.	129
Figura 57 - Distribuição dos teores totais de PCBs em mexilhões,	
em ng.g ⁻¹ de peso seco.	134
Figura 58 - Dispersão dos teores totais de PCBs, por campanha	
de amostragem, em mexilões, em ng.g ⁻¹ de peso seco.	135
Figura 59 - Dispersão dos teores totais de PCBs, para cada	
espécie estudada, em ng.g ⁻¹ de peso seco.	137
Figura 60 – Teste de significância (Kruskal-Wallis, p > 0,05)	
para verificar a hipótese nula de que as populações	
de músculos de corvinas das três campanhas de	
amostragens têm distribuições de comprimentos e de	
massas idênticas.	177

Figura 61 - Teste de significância (Kruskal-Wallis, p > 0,05) para	
verificar a hipótese nula de que as populações de	
tainhas das três campanhas de amostragens têm	
distribuições de comprimentos e de massas	
idênticas. (imagem importada do pacote	
estatístico PASW statistics).	177
Figura 62 – Teste de significância (t de Student, p>0,05) para	
verificar a hipótese nula de que a média das	
recuperações foi igual a 100%.	178
Figura 63 - Teste de significância (Kruskal-Wallis, p > 0,05)	
para verificar a hipótese nula de que as populações	
de músculos de corvinas das três campanhas de	
amostragens têm distribuições dos teores de	
lipídios idênticas.	178
Figura 64 - Teste de significância (Kruskal-Wallis, p > 0,05) para	
verificar a hipótese nula de que as populações de	
músculos de tainhas das três campanhas de	
amostragens têm distribuições dos teores de	
lipídios idênticas.	179
Figura 65 - Teste de significância (Mann-Whitney, p>0,05)	
para verificar a hipótese nula de que as populações	
de músculos de tainhas das 1ª e 2ª campanhas	
amostragens têm distribuições dos teores de	
lipídios idênticas.	179
Figura 66 – Teste de significância (Mann-Whitney, p>0,05)	
para verificar a hipótese nula de que as populações	
de músculos de tainhas das 1ª e 3ª campanhas de	
amostragens têm distribuições dos teores de lipídios	
idênticas.	180

Figura 67 - Teste de significância (Mann-Whitney, p>0,05)	
para verificar a hipótese nula de que as populações	
de músculos de tainhas das 2ª e 3ª campanhas de	
amostragens têm distribuições dos teores de lipídios	
idênticas.	180
Figura 68 - Teste de significância (Kruskal-Wallis, p > 0,05) para	
verificar a hipótese nula de que as populações de	
mexilhões das três campanhas de amostragens têm	
distribuições dos teores de lipídios idênticas.	181
Figura 69 - Teste de significância (Mann-Whitney, p>0,05) para	
verificar a hipótese nula de que as populações de	
mexilhões das 1ª e 2ª campanhas de amostragens	
têm distribuições dos teores de lipídios idênticas.	181
Figura 70 - Teste de significância (Mann-Whitney, p>0,05) para	
verificar a hipótese nula de que as populações de	
mexilhões das 1ª e 3ª campanhas de amostragens	
têm distribuições dos teores de lipídios idênticas.	182
Figura 71 - Teste de significância (Mann-Whitney, p>0,05) para	
verificar a hipótese nula de que as populações de	
mexilhões das 2ª e 3ª campanhas de amostragens	
têm distribuições dos teores de lipídios idênticas.	182
Figura 72 - Teste de significância (Kruskal-Wallis, p > 0,05) para	
verificar a hipótese nula de que as populações de	
músculos de corvinas, músculos de tainhas e	
mexilhões das têm distribuições de teores de	
lipídios idênticas.	183
Figura 73 - Teste de significância (Mann-Whitney, p>0,05) para	
verificar a hipótese nula de que as populações de	
músculos de corvinas e músculos de tainhas têm	
distribuições de teores de lipídios idênticas.	183

Figura 74 - Teste de significância (Mann-Whitney, p>0,05) para	
verificar a hipótese nula de que as populações de	
músculos de corvinas e mexilhões têm distribuições	
de teores de lipídios idênticas.	184
Figura 75 - Teste de significância (Mann-Whitney, p>0,05) para	
verificar a hipótese nula de que as populações de	
músculos de tainhas e mexilhões têm distribuições	
de teores de lipídios idênticas.	184
Figura 76 - Teste de significância (Kruskal-Wallis, p > 0,05)	
para verificar a hipótese nula de que as populações	
de músculos de corvinas das três campanhas de	
amostragens têm distribuições de teores de	
BDE-47 e do total de PBDEs idênticas.	185
Figura 77 - Teste de significância (Kruskal-Wallis, p > 0,05)	
para verificar a hipótese nula de que as populações	
de fígados de tainhas das três campanhas de	
amostragens têm distribuições de teores de	
BDE-47 e do total de PBDEs idênticas.	185
Figura 78 – Teste de significância (Kruskal-Wallis, p > 0,05)	
para verificar a hipótese nula de que as populações	
de músculos de corvinas das três campanhas de	
amostragens têm distribuições de teores de	
PCBs idênticas.	186
Figura 79 - Teste de significância (Mann-Whitney, p>0,05)	
para verificar a hipótese nula de que as populações	
de músculos de corvinas das 1ª e 2ª campanhas de	
amostragens têm distribuições dos teores de	
PCBs idênticas.	186
Figura 80 - Teste de significância (Mann-Whitney, p>0,05)	
para verificar a hipótese nula de que as populações	
de músculos de corvinas das 1ª e 3ª campanhas de	
amostragens têm distribuições dos teores de PCBs	
idênticas.	187

Figura 81 -	Teste de significância (Mann-Whitney, p>0,05) para	
	verificar a hipótese nula de que as populações de	
	músculos de corvinas das 2ª e 3ª campanhas de	
	amostragens têm distribuições dos teores de	
	PCBs idênticas	187
Figura 82 -	Teste de significância (Kruskal-Wallis, p > 0,05)	
	para verificar a hipótese nula de que as populações	
	de músculos de tainhas das três campanhas de	
	amostragens têm distribuições de teores de PCBs	
	idênticas.	188
Figura 83 -	Teste de significância (Mann-Whitney, p>0,05) para	
	verificar a hipótese nula de que as populações de	
	músculos de tainhas das 1ª e 2ª campanhas de	
	amostragens têm distribuições dos teores de	
	PCBs idênticas.	188
Figura 84 -	· Teste de significância (Mann-Whitney, p>0,05)	
	para verificar a hipótese nula de que as populações	
	de músculos de tainhas das 1ª e 3ª campanhas de	
	amostragens têm distribuições dos teores de PCBs	
	idênticas.	189
Figura 85 -	· Teste de significância (Mann-Whitney, p>0,05) para	
	verificar a hipótese nula de que as populações de	
	músculos de tainhas das 2ª e 3ª campanhas de	
	amostragens têm distribuições dos teores de	
	PCBs idênticas.	189
Figura 86 -	· Teste de significância (Kruskal-Wallis, p > 0,05)	
	para verificar a hipótese nula de que as populações	
	de fígados de tainhas das três campanhas de	
	amostragens têm distribuições de teores de	
	PCBs idênticas.	190

Figura 87 - Teste de signif	icância (Kruskal-Wallis, p > 0,05) para	
verificar a hipó	tese nula de que as populações de	
mexilhões das	três campanhas de amostragens	
têm distribuiçõ	es de teores de PCBs idênticas.	190
Figura 88 – Teste de signi	ficância (Kruskal-Wallis, p > 0,05)	
para verificar a	a hipótese nula de que as populações	
de músculos d	e corvinas, músculos de tainhas,	
fígados de tair	has e mexilhões têm distribuições	
de teores de P	CBs totais idênticas.	191
Figura 89 – Teste de signi	ficância (Mann-Whitney, p > 0,05)	
para verificar	a hipótese nula de que as populações	
de músculos o	de corvinas e músculos de tainhas	
têm distribuiço	ões de teores de PCBs totais	
idênticas.		191
Figura 90 – Teste de signi	ficância (Mann-Whitney, p > 0,05)	
para verificar	a hipótese nula de que as populações	
de músculos o	de corvinas e de fígados de	
músculos de t	ainhas têm distribuições de teores	
de PCBs totai	s idênticas.	192
Figura 91 – Teste de signi	ficância (Mann-Whitney, p > 0,05)	
para verificar	a hipótese nula de que as populações	
de músculos o	de corvinas e de mexilhões têm	
distribuições d	le teores de PCBs totais idênticas.	192
Figura 92 – Teste de signi	ficância (Mann-Whitney, p > 0,05)	
para verificar a	a hipótese nula de que as populações	
de músculos d	e tainhas e de fígados de tainhas têm	
distribuições d	e teores de PCBs totais idênticas.	193
Figura 93 – Teste de signi	ficância (Mann-Whitney, p > 0,05)	
para verificar a	a hipótese nula de que as populações	
de fígados de	tainhas e mexilhões têm	
distribuições d	le teores de PCBs totais idênticas.	193

0510430/CA
ŝ
Digital
ificação
Cert
Ÿ
PUC-Rio

Figura 94 – Teste de significância (Mann-Whitney, p > 0,05) para verificar a hipótese nula de que as populações de músculos de tainhas e de mexilhões têm distribuições de teores de PCBs totais idênticas. 194

Lista de tabelas

Tabela 1 – Isômeros possíveis, massas moleculares e porcentagem,	
em massa, de cloro para cada grupo de congênere.	31
Tabela 2 – Toxicidade de PCBs de interesse ambiental	38
Tabela 3 – Produção estimada de BRFs, no mundo, em 2001	
(BSEF, 2003).	44
Tabela 4 - Dados de biometria dos indivíduos da espécie	
Micropogonias furniere (corvinas) coletados nesta	
pesquisa.	74
Tabela 5. Dados de biometria dos indivíduos da espécie	
Mugil liza (tainha) coletados nesta pesquisa.	77
Tabela 6 – Limites de detecção para os PBDEs (em ng.g ⁻¹	
peso seco)	85
Tabela 7 – Limites de detecção para os PCBs (em ng.g ⁻¹ peso	
seco)	86
Tabela 8 – teores de PBDEs no SRM – 2977 (em ng.g ⁻¹ peso	
seco)	87
Tabela 9 – teores de PCBs no SRM – 2977(em ng.g ⁻¹ peso seco)	87
Tabela 10 - Resultados, em porcentagem da recuperada, do	
ensaio de recuperação	89
Tabela 11 - Resultados das determinações de lipídios	
realizadas nos músculos de corvinas	91
Tabela 12 - Resultados das determinações de lipídios	
realizadas nos músculos de tainhas.	91
Tabela 13 - resultados das determinações de lipídios	
realizadas nos mexilhões.	92
Tabela 14 – Concentração de PBDEs (em ng.g ⁻¹ peso seco)	
em músculos de corvinas da primeira campanha	
de amostragem.	98

Tabela 15 - Concentração de PBDEs (em ng.g ⁻¹ peso seco) em	
músculos de corvinas da segunda campanha de	
amostragem	98
Tabela 16 – Concentração de PBDEs (em ng.g ⁻¹ peso seco) em	
músculos de corvinas da terceira campanha de	
amostragem	98
Tabela 17 - Concentração total de PBDEs (em ng.g ⁻¹ peso	
seco) em músculos de corvinas das três campanhas	
de amostragem	99
Tabela 18 – Concentração de PBDEs (em ng.g ⁻¹ peso seco) em	
músculos de tainhas	102
Tabela 19 - Concentração de PBDEs (em ng.g ⁻¹ peso seco) em	
músculos de tainhas	103
Tabela 20 – Concentração de PBDEs (em ng.g ⁻¹ peso seco) em	
músculos de tainhas	103
Tabela 21 - Concentração total de PBDEs (em ng.g ⁻¹ peso	
seco) em músculos de tainhas das três campanhas	
de amostragem	103
Tabela 22 – Concentração de PBDEs (em ng.g ⁻¹ de peso seco)	
em fígados de tainhas	104
Tabela 23 – Concentração de PBDEs (em ng.g ⁻¹ de peso seco)	
em fígados de tainhas	104
Tabela 24 – Concentração de PBDEs (em ng.g ⁻¹ de peso seco)	
em fígados de tainhas	105
Tabela 25 - Concentração total de PBDEs (em ng.g ⁻¹ de peso	
seco) em fígados de tainhas das três campanhas	
de amostragem	105
Tabela 26 - Concentração de PBDEs (em ng.g ⁻¹ peso seco) em	
mexilhões	109
Tabela 27 - Concentração de PBDEs (em ng.g ⁻¹ peso seco) em	
mexilhões	109

Tabela 28 - Concentração de PBDEs (em ng.g ⁻¹ peso seco) em	
mexilhões	109
Tabela 30 – Teores de PCBs nos músculos de corvinas da 1ª	
amostragem em ng.g ⁻¹ de peso seco.	112
Tabela 31 - Teores de PCBs nos músculos de corvinas da 2ª	
amostragem em ng.g ⁻¹ de peso seco.	113
Tabela 32 - Teores de PCBs nos músculos de corvinas da 3ª	
amostragem em ng.g ⁻¹ de peso seco.	114
Tabela 33 – Total de PCBs nos músculos de corvinas.	115
Tabela 34 - Teores de PCBs nos músculos de tainhas da 1ª	
amostragem em ng.g ⁻¹ de peso seco.	118
Tabela 35 - Teores de PCBs nos músculos de tainhas da 2ª	
amostragem em ng.g ⁻¹ de peso seco.	119
Tabela 36 - Teores de PCBs nos músculos de tainhas da 3ª	
amostragem em ng.g ⁻¹ de peso seco.	120
Tabela 37 - Total de PCBs nos músculos de tainhas.	122
Tabela 38 - Teores de PCBs nos fígados das tainhas da 1ª	
amostragem em ng.g ⁻¹ de peso seco.	124
Tabela 39 - Teores de PCBs nos fígados das tainhas da 2ª	
amostragem em ng.g ⁻¹ de peso seco.	125
Tabela 40 - Teores de PCBs nos fígados das tainhas da 3ª	
amostragem em ng.g ⁻¹ de peso seco.	127
Tabela 41 - Total de PCBs nos fígados das tainhas.	128
Tabela 42 - Teores de PCBs nos mexilhões da 1ª amostragem	
em ng.g⁻¹ de peso seco.	130
Tabela 43 - Teores de PCBs nos mexilhões da 2ª amostragem	
em ng.g⁻¹ de peso seco.	131
Tabela 44 - Teores de PCBs nos mexilhões da 3ª amostragem	
em ng.g⁻¹ de peso seco.	132
Tabela 45 – Total de PCBs nos mexilhões.	134
Tabela 46 – Tabela dos máximos, médias e mínimos dos teores	
de lipídios, PBDEs e PCBs encontrados para as	
espécies estudadas.	138

"Faz-se ciência com fatos, como se faz uma casa com pedras; mas uma acumulação de fatos não é uma ciência, assim como um montão de pedras não é uma casa."

(Henri Poincaré)